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ABSTRACT

Building effective knowledge graphs (KGs) for Retrieval-Augmented Generation
(RAG) is pivotal for advancing question answering (QA) systems. However,
its effectiveness is hindered by a fundamental disconnect: the knowledge graph
(KG) construction process is decoupled from its downstream application, yielding
suboptimal graph structures. To bridge this gap, we introduce AutoGraph-R1,
the first framework to directly optimize KG construction for task performance
using Reinforcement Learning (RL). AutoGraph-R1 trains an LLM constructor
by framing graph generation as a policy learning problem, where the reward is
derived from the graph’s functional utility in a RAG pipeline. We design two
novel, task-aware reward functions, one for graphs as knowledge carriers and
another as knowledge indices. Across multiple QA benchmarks, AutoGraph-R1
consistently enables graph RAG methods to achieve significant performance gains
over using task-agnostic baseline graphs. Our work shows it is possible to close
the loop between construction and application, shifting the paradigm from building
intrinsically “good” graphs to building demonstrably “useful” ones.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has become a cornerstone for enhancing Large Language
Models (LLMs), enabling them to ground responses in external knowledge, reduce hallucinations,
and incorporate real-time, domain-specific information (Gao et al., 2024a; Peng et al., 2024a). A
particularly promising frontier is graph-based RAG, where LLMs leverage the structured nature
of Knowledge Graphs (KGs) for complex data sensemaking and reasoning (Edge et al., 2025).
The typical pipeline begins by constructing a KG from unstructured text, often using LLM-driven
extractors and heuristics (Han et al., 2024; Lairgi et al., 2024; Bai et al., 2025), which then supports
downstream question answering (Gutiérrez et al., 2025a; Sun et al., 2024).

Despite its potential, the prevailing graph-based RAG paradigm suffers from a fundamental disconnect:
the process is split into two isolated phases. First, a construction phase, where a graph is built
and evaluated on intrinsic metrics like precision and coverage (Huang et al., 2025a). Second, an
application phase, where this static graph is used for a downstream task. The critical flaw in this
approach is that a “good” graph by intrinsic standards is not necessarily a “useful” one for the
end task (Xue & Zou, 2022). For instance, a graph built to maximize factual accuracy might be
structurally fragmented, causing retrievers to fail on multi-hop questions that require connecting
distant information, as illustrated in Figure 1.

This disconnect persists because closing the loop between downstream performance and graph con-
struction is technically challenging. The construction process generating discrete (subject, predicate,
object) triples and performing entity resolution is inherently non-differentiable. Consequently, stan-
dard gradient-based optimization cannot backpropagate performance signals from a downstream task,
such as question answering accuracy, to guide the graph generation model. The graph, once built,
cannot learn from its failures. To bridge this gap, we employ Reinforcement Learning (RL). While
prior work has used RL to refine retrieval over search tools or improve query reformulation (Jin et al.,
2025; Jiang et al., 2025b; Luo et al., 2025), our work is the first to leverage RL to directly optimize
the KG construction process itself. We introduce AutoGraph-R1, a framework that fine-tunes an
LLM-based graph generator by optimizing for downstream task performance. As shown in Figure 2,
the graph generation model learns a construction policy from raw text. The utility of the generated

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Source Documents
Doc 1: "The Golden Gate Bridge is an iconic suspension bridge spanning the Golden Gate strait, connecting

the city of San Francisco.“

Doc 2: "San Francisco is the cultural, commercial, and financial center of Northern California."

Doc 3: "The government of California is organized as a republic, with three branches: the executive, 

legislative, and judicial."

(A) Standard LLM Extraction (B) AutoGraph-R1 Extraction (RL-Optimized)

Golden Gate 

Bridge

San Francisco

Northern 

California
California

Republic

connects

is the center of

has 

government

Knowledge Graph 1 (Structurally Suboptimal)

Golden Gate Bridge

California

Republic

is located in

has government

Knowledge Graph 2 (Optimized)

Downstream Question Answering Downstream Question Answering

Q: What is the government of the state where the Golden Gate 

Bridge's city is?
Q: What is the government of the state where the Golden Gate 

Bridge's city is?

FAIL : Reasoning path is too long (4+ hops) and fragile. 

Retriever fails to find the full context.

SUCCESS : Reasoning path is short (2 hops) and robust. 

Retriever easily finds the answer.

(missing)

is in

Figure 1: Bridging the Disconnection Between KG Construction and Utility. (A) A KG optimized for
intrinsic metrics can be too fragmented for multi-hop QA, causing retrieval to fail. (B) AutoGraph-R1
uses an end-task RL reward to build a functionally superior graph, ensuring its structure is optimized
to support various graph retrievers for successful reasoning.

graph is then evaluated in a downstream RAG pipeline, yielding a reward signal. This task-aware
reward is used to update the generator’s parameters via policy gradient methods, guiding it to produce
graphs that are not just factually accurate but functionally optimal, for instance, by creating valid
paths that facilitate complex reasoning.

To the best of our knowledge, this is the first work to use reinforcement learning to optimize KG
construction for general downstream tasks using LLMs. We focus on complex question answering
over benchmark datasets requiring multi-document reasoning (Yang et al., 2018; Trivedi et al., 2022;
Mallen et al., 2023). Our framework’s reward function is based on the utility of the resulting graph,
evaluating whether it serves as an effective knowledge index for retrieving useful text chunks or
provides subgraphs that directly support the reasoning process. By designing these task-aware
rewards, we directly align the objectives of KG construction with end-task performance.

In summary, our contributions are:

• We introduce AutoGraph-R1, a novel RL framework that directly optimizes knowledge
graph construction for downstream utility, bridging the critical gap between graph quality
and task performance.

• We design and implement task-aware reward functions that successfully align KG structure
with the demands of complex reasoning tasks, compelling the model to build functionally
superior graphs.

• Through extensive experiments, we demonstrate that integrating AutoGraph-R1’s graphs
into a state-of-the-art RAG pipeline yields significant performance gains on multiple QA
benchmarks, validating that RL-driven graph construction improves downstream task utility.

2 RELATED WORK

2.1 GRAPH-BASED RETRIEVAL-AUGMENTED GENERATION

Large Language Models (LLMs), despite demonstrating strong reasoning capabilities (DeepSeek-AI
et al., 2025a), remain susceptible to factual hallucinations (Ji et al., 2023; Huang et al., 2025b) and
knowledge incompleteness (Peng et al., 2023). Retrieval-Augmented Generation (RAG) (Lewis et al.,
2021; Gao et al., 2024b) mitigates these issues by grounding LLMs in external knowledge sources,
thereby improving factual accuracy and reasoning. A burgeoning area of research extends RAG
with graph-structured knowledge (Peng et al., 2024b; Xiang et al., 2025; Zhang et al., 2025a; Han
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et al., 2025). In these pipelines, graphs serve two primary functions. First, as knowledge indices,
where the graph organizes and connects raw text chunks, and its structural properties are leveraged
for more sophisticated retrieval strategies (Liang et al., 2024; Liu et al., 2024b; Zhang et al., 2024b;
Wang et al., 2023; Li et al., 2024a). Methods like HippoRAG (Gutiérrez et al., 2025a;b) exemplify
this by exploiting structural connections to access relevant information more effectively. Second, as
knowledge carriers, where the graph itself is the primary information source, and the model reasons
directly over recovered subgraphs (Shen et al., 2025b; Liu et al., 2024a). This paradigm is adopted
by approaches such as Think-on-Graph (Ma et al., 2025; Sun et al., 2024), SubgraphRAG (Li et al.,
2025a), StructRAG (Li et al., 2024b), and KnowGPT (Zhang et al., 2024a).

The construction of KGs has evolved from traditional rule-based systems like OpenIE (Angeli et al.,
2015) to more flexible LLM-based pipelines such as PiVE (Han et al., 2024), iText2KG (Lairgi et al.,
2024), KGGEN (Mo et al., 2025), GraphRAG (Edge et al., 2025), and AutoSchemaKG (Bai et al.,
2025). While powerful, these LLM-driven methods typically generate a static graph based on fixed
prompts or heuristics, often evaluated using intrinsic metrics. However, the optimal structure of a KG
is highly dependent on variety of downstream applications (Gubanov et al., 2024; Wu et al., 2024;
Zhao et al., 2024; He et al.; 2024; Liu et al., 2024c). For instance, a graph acting as a text index
may prioritize fine-grained partitioning, while one used for reasoning chains requires long-range
connectivity (Jin et al., 2024; Huang et al., 2024). This creates the disconnect we identified earlier: a
graph built to be “good” in isolation may be functionally poor for a specific task. Our work addresses
this gap by optimizing graph construction directly for downstream performance, a problem that, to
our knowledge, has not been systematically investigated, despite progress in KG refinement and
completion techniques (Chen et al.; 2024b;a; Zhang et al., 2022; Dong et al., 2023).

2.2 REINFORCEMENT LEARNING FOR LANGUAGE MODEL OPTIMIZATION

Reinforcement learning (RL) (Kaelbling et al., 1996) offers a powerful framework for optimizing the
sequential decision-making capabilities of LLMs by enabling them to learn through environmental
interaction and reward feedback (Kaufmann et al., 2024; Xi et al., 2025). As LLMs have become
more powerful through fine-tuning, methodological advances—from Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022) to more scalable and cost-effective algorithms like
Proximal Policy Optimization (PPO) (Schulman et al., 2017), Dynamic Sampling Policy Optimization
(DAPO) (Yu et al., 2025), and Group Relative Policy Optimization (GRPO) (DeepSeek-AI et al.,
2025a)—have enabled successful applications in diverse domains, including open-domain retrieval
and scientific discovery. (Zheng et al., 2025; Yu et al., 2024; Zhu et al., 2025; Shen et al., 2025a).

Prior to its widespread adoption for LLM alignment, RL had been explored for knowledge base tasks,
such as bidirectional text-to-graph conversion (Dognin et al., 2021). More recently, RL has proven
effective in training LLMs to interact with external tools, such as search engines (Jin et al., 2025;
Jiang et al., 2025b; Li et al., 2025b; Zhang et al., 2025b; Jiang et al., 2025a). Notably, frameworks
like Graph-R1 (Luo et al., 2025) have shown that RL can teach an LLM to effectively navigate
graph-structured tools to improve retrieval. However, these works use RL to learn a policy for
navigating or querying an existing knowledge source. Our approach is fundamentally different: we
use RL to learn a policy for constructing the knowledge source itself. To our knowledge, this is
the first application of RL to directly optimize a KG’s structure based on its measured utility in a
downstream reasoning task. This distinction forms the motivation for AutoGraph-R1.

3 PRELIMINARIES

In this section, we formalize the key concepts underlying AutoGraph-R1, including knowledge graph
construction, graph-based retrieval, and answer generation within a RAG pipeline.

3.1 KNOWLEDGE GRAPH CONSTRUCTION

We define a knowledge graph (KG) as a directed, labeled graph G = (V, E ,R), constructed from a
set of documents D. Here, V is the set of nodes, R the set of relation types, and E ⊆ V × R × V
the set of edges represented as triples (s, r, o). Nodes s, o ∈ V may correspond to entities, events, or
concepts, and r ∈ R denotes a relation type. Following prior work (Zhang et al., 2025a), we consider
two principal configurations for the graph’s role.
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Graphs as Knowledge Carriers In this configuration, the graph serves as a self-contained knowledge
base. It consists of factual triples (s, r, o) ∈ E , where nodes s, o ∈ V are entities and r ∈ R is the
relation. These triples act as discrete, structured knowledge units that are retrieved and processed
directly by the downstream model.

Graphs for Knowledge Indexing Alternatively, the graph functions as a structured index over the
raw document corpus D. Nodes are augmented with pointers to text spans, denoted τ(v). Formally,
the node set can be partitioned into entity nodes Ve and document or chunk nodes Vd, such that
V = Ve ∪Vd. This hybrid structure allows the graph to guide retrieval not only of structured facts but
also of the original, unstructured text passages.

3.2 RETRIEVAL MODULE

Given a query q, the goal of the retrieval module is to produce a set of evidence units C(q) that will
be passed to the LLM for answer generation. We consider two complementary retrieval strategies.

Graph Knowledge Retriever This retriever, denotedRgraph, operates directly on the graph structure.
Given a query q, it identifies relevant components such as individual triples, multi-hop paths, or entire
subgraphs. Formally, we define its output as a set of structured evidence P(q) = Rgraph(q,G). The
elements of P(q) are then linearized into text to serve as context for the LLM.

Graph-based Text Retriever This retriever, denotedRtext, uses the graph as an index to find relevant
text passages from the source corpus. It leverages graph connectivity to identify promising document
nodes. Formally, Rtext(q,G) 7→ T (q), where T (q) ⊆ {τ(v) | v ∈ Vd} is a set of raw text passages
linked from document nodes.

3.3 ANSWER GENERATION

The final answer generation step uses a large language model πans to synthesize an answer ŷ from
the query q and the retrieved evidence C(q). The evidence context C(q) is composed of either the
linearized graph structures P(q) from the graph knowledge retriever or the text passages T (q) from
the graph-based text retriever. The final answer ŷ is generated by conditioning the LLM on the query
and evidence: ŷ = πans(q, C(q)). This unified framework allows our optimization process to apply to
both types of graph construction, directly linking the structure of G to its utility in the final QA-task.

4 AUTOGRAPH-R1

4.1 REINFORCEMENT LEARNING FOR GRAPH CONSTRUCTION

AutoGraph-R1, an end-to-end reinforcement learning (RL) framework that directly optimizes
knowledge graph (KG) construction with downstream task performance as the reward signal. The
framework unifies two common graph-augmented retrieval paradigms: Graph RAG (retrieval over
entity triples) and Graph Text RAG (retrieval over text nodes through graph index).

As shown in Figure 2, AutoGraph-R1 consists of three components: (1) a KG construction policy
model πKG

θ , instantiated as a large language model (LLM), which maps a list of documents D into
a graph G; (2) a frozen RAG server with a fixed answer generator πans, which retrieves from G
and produces an answer ŷ to the input query q; (3) a task-specific reward function R(q, ŷ, y,G) that
evaluates how well the constructed graph supports QA, where y is the gold answer.

Task-Aware Training Loop A central design choice in AutoGraph-R1, inspired by s3 (Jiang et al.,
2025b), is to freeze the retrieval module while the KG construction policy πKG

θ adapts. During train-
ing, each sample (q, y,Dq)—comprising a query, a gold answer, and relevant documents—triggers a
full end-to-end loop of KG construction, retrieval, and answer generation. Crucially, the definition of
a ”useful” graph is contingent on the retrieval paradigm. We therefore tailor the training process for
two distinct scenarios, aligning the KG’s structure with its intended function.

Training with a Graph Knowledge Retriever When the KG acts as a knowledge carrier, retrieval
quality is measured by its ability to provide a self-contained, structured context for reasoning. To
isolate the impact of graph structure, we employ a simple subgraph retriever. Given a query q, we
extract its named entities to serve as anchors and retrieve the n-hop neighborhood surrounding them to
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Figure 2: Overview of the AutoGraph-R1 Framework. AutoGraph-R1 optimizes knowledge graph
construction for downstream utility using reinforcement learning. During the training phase (left),
a graph constructor is fine-tuned with GRPO. The reward signal is derived from the performance
of a graph retriever on the generated KG, directly measuring the graph’s functional quality. During
the inference phase (right), the trained constructor is used to build a large-scale KG from a general
corpus, which then serves a downstream graph-based RAG system.

form the context P(q). This design intentionally bypasses dense vector similarity, forcing the reward
signal to reflect the graph’s relational completeness and structural integrity. The policy is rewarded
for creating graphs where the correct answer is directly deducible from the retrieved subgraph.

Training with a Graph-based Text Retriever. When the KG serves as a knowledge index, its utility is
determined by how well it guides the retriever to relevant text passages. We adapt the HippoRAG-2
retriever (Gutiérrez et al., 2025b) for this purpose. First, candidate triples (s, r, o) are selected based
on embedding similarity to the query q (using Qwen-3-0.6B). However, unlike the original method,
we then use only these triple-level similarities to initialize a Personalized PageRank algorithm over the
constructed graph G. This process propagates relevance scores through the graph structure, ultimately
identifying text nodes that are structurally connected to the most pertinent facts, from which the
top-N passages are returned. The policy is therefore incentivized to build graphs where structural
connectivity, not just semantic similarity, is a reliable signal for identifying crucial evidence passages,
including both direct and complementary information that might otherwise be overlooked.

In both scenarios, by freezing the retriever and aligning the reward with its specific mechanism,
AutoGraph-R1 ensures the graph construction policy learns to produce graphs that are functionally
optimized for a given downstream retrieval strategy.

4.2 REWARD DESIGN FOR FUNCTIONAL GRAPH CONSTRUCTION

A primary challenge in optimizing this end-to-end pipeline is the sparse and indirect nature of the
learning signal, where a single reward is given after a long sequence of construction actions. This
creates a severe credit assignment problem and places a heavy burden on the quality of the reward
signal itself. While the final answer’s F1 score has been explored as a reward in prior work (Jin et al.,
2025), we find its properties make it a challenging choice for our goal of guiding graph construction.
The F1 score is brittle; minor phrasing variations in the LLM output can cause swings in the metric,
an issue that persists even with deterministic decoding. This instability results in a noisy reward that
can impede or destabilize policy optimization. Our approach is therefore motivated by the need to
design more direct and stable, task-specific rewards better suited to our problem.

To overcome these challenges, we design two distinct reward functions that provide a more direct and
stable learning signal by measuring the functional utility of the graph for a specific retrieval task.

Graph Knowledge Retriever Retrieval operates on subgraphs or relation paths. The key requirement
is that the gold answer y should be deducible from G. An answer y is considered deducible from G if
the retrieved triples or subgraphs contain sufficient relational information to logically infer the gold
answer y for a given query q, either directly through explicit facts or indirectly through reasoning
over connected triples. We therefore define a binary reward, the Knowledge-Carrying Reward, RC ,
which measures the deducibility of gold answer in the constructed KG. An external LLM judge is
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prompted with (q, y,G) and determines whether y can be deduced from the retrieved triples:

RC(q, y,G) = I
[
deducible(q, y | G)

]
. (1)

Graph-based Text Retriever Retrieval operates over the graph structure of the KG to locate relevant
text passages. To enhance the knowledge-indexing capability, we use Knoweldge-Indexing Reward,
RI , as the reward function. This aligns with the fundamental objective of these retrievers by measuring
the effectiveness of the retrieved passages in capturing the relevant information. The reward is defined
as follows:

RI(q,Dgold,G) =
|Top-k(G, q) ∩ Dgold|

|Dgold|
(2)

where Dgold denotes the gold passages for q, and Top-k(G, q) are the retrieved passages.

4.3 GRPO FOR GRAPH CONSTRUCTION

To optimize the knowledge graph (KG) constructor policy πKG
θ , we employ Group-Relative Pol-

icy Optimization (GRPO) (Shao et al., 2024), a memory-efficient alternative to Proximal Policy
Optimization (PPO). GRPO is well-suited for our LLM-based framework, as it eliminates the need
for a separate value model by using a relative reward baseline derived from a group of sampled
graph outputs. This approach reduces computational overhead and memory usage, enabling scalable
training for large-scale graph construction tasks.

The GRPO objective updates πKG
θ to favor graphs that maximize downstream QA performance,

incorporating a clipping mechanism to ensure stable updates. We simplify the training procedure
by removing the KL divergence term to lower the computational overhead and save memory usage
without damaging the training (Liu et al., 2025; Hu et al., 2025). Formally, the objective is defined as:

JGRPO(θ) = Es∼D,{ai}G
i=1∼πθold (·|s)

 1

G

G∑
i=1

|ai|∑
t=1

min
(
ri,t(θ)Âi, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi

)
Here, the policy πKG

θ generates a graph G token by token, where a = {a1, ..., aT } represents the
sequence of tokens forming the graph. In this equation, s is the input document list D, and ai is
the i-th sampled graph output from a group of G samples. The probability ratio ri,t(θ) is defined
as πθ(ai,t|s,ai,<t)

πθold (ai,t|s,ai,<t)
. Âi =

Ri−µR

σR
represents the Group-Relative Advantage for the entire graph ai,

which is derived by normalizing its reward relative to the group’s mean µR and standard deviation
σR.The downstream reward signal, Ri, for the i-th graph sample is determined by the specific training
setup: R = RC (Eq. 1) when employing a graph knowledge retriever, or R = RI (Eq. 2) when a
graph-based text retriever is used. ϵ is a small clipping hyperparameter that ensures stable updates by
preventing the new policy from straying too far from the old policy.

5 EXPERIMENTS

Our experiments are designed to answer three primary research questions: RQ1. Does optimizing
KG construction with a downstream task reward (AutoGraph-R1) lead to better end-to-end RAG
performance compared to standard, task-agnostic KG construction? RQ2. Is this performance
improvement consistent across different graph-based RAG paradigms (i.e., when the graph is a
knowledge carrier vs. a knowledge index) and across different model scales? RQ3. Does optimizing
for downstream utility also improve the intrinsic quality (e.g., factual precision and recall) of the
graph, and how do different reward functions bias the final graph structure?

5.1 DATASETS AND CORPORA

Training Datasets For the reinforcement learning phase, we utilize two multi-hop QA datasets:
HotpotQA (Yang et al., 2018) and Musique (Trivedi et al., 2022). To create a more challenging
training environment for the text retrieval scenario, we implement a hard negative mining strategy.
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For each query, we use a Qwen3-8B (Zhang et al., 2025c) embedding model to identify the most
semantically similar non-gold passage from the corpus, which is then added as a distractor. In contrast,
for the graph knowledge retriever scenario, no distractors are used, as the primary objective is to
optimize the informational completeness of the graph constructed from source documents, improving
the knowledge-carrying capability of graph, rather than its ability to filter irrelevant content.

Evaluation Datasets For final RAG evaluation, we use a diverse set of five QA datasets, each
comprising 1,000 samples. These include two general QA benchmarks, Natural Questions (NQ)
(Kwiatkowski et al., 2019) and PopQA (Mallen et al., 2023), and three multi-hop QA benchmarks,
HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), and Musique (Trivedi et al., 2022).
These datasets enable a comprehensive evaluation of AutoGraph-R1 on downstream task-utility.

Corpora. For the general QA datasets (NQ, PopQA), the knowledge corpus is built from the
introductory sections of the December 2021 Wikipedia dump Izacard et al. (2022). For the multi-
hop QA datasets, the corpus for each is constructed from the documents associated with its 1,000
evaluation samples, following the methodology in Gutiérrez et al. (2025a).

5.2 EXPERIMENTS CONFIGS

Models We experiment with fine-tuning both Qwen2.5-3B and Qwen2.5-7B (Qwen et al., 2025)
as the KG construction model (πKG

θ ). For all RAG evaluations, we use a frozen Qwen2.5-7B as
the answer generation LLM. The Qwen3-0.6B model is used consistently for all embedding tasks
in both training and evaluation.

RL Training Configuration We fine-tune the KG construction policy using the GRPO algorithm
(Shao et al., 2024) on two H100 GPUs. For each training sample, the policy iteratively generates
triples for each document. The training setup is tailored to the retrieval paradigm. For the graph-based
text retriever, the model operates on a fixed pool of 15 documents per query, retrieving the top-N
passages, where N equals the number of gold supporting passages. For the graph knowledge retriever,
we retrieve an n-hop subgraph, where n is dynamically set to match the number of hops required by
the query to ensure sufficient context.

Evaluation Protocol For evaluation, a KG is first constructed over the entire document corpus for a
each dataset. Then, depends on the type of retriever, the corresponding RAG is performed using this
static graph. We report the final answer F1 score as the primary metric, consistent with prior work.

5.3 BASELINES

We evaluate AutoGraph-R1 by using a suite of state-of-the-art retrieval methods to benchmark the
functional utility of the knowledge graphs it generates against a task-agnostic baseline.

KG Construction Baseline To benchmark the performance of our RL-optimized constructor, we
establish a baseline using a zero-shot approach. Specifically, we construct the baseline knowledge
graphs using Qwen2.5-3B and Qwen2.5-7B model guided solely by the same designed prompts
used in fine-tuning models. This represents a standard, task-agnostic method for KG construction
and allows us to directly measure the gains attributable to our downstream-aware optimization.

RAG Method Baselines We evaluate the KGs constructed by both AutoGraph-R1 and the zero-
shot baseline using a suite of state-of-the-art RAG methods to measure their functional utility. For
graph knowledge retrieval, where the graph itself is the source of information, we test three
distinct approaches. First, we use ToG (Sun et al., 2024), setting both the width and depth to 3. It
performs beam search on the graph and uses the Qwen3-0.6B model for relation pruning to discover
meaningful paths. Second, we employ a Subgraph Retriever, which first performs Named Entity
Recognition (NER) on the query and then expands 1-hop from the identified entities to form the
retrieval context. Third, we include a Dense Triple Retriever, which uses the Qwen3-0.6B model
to retrieve triples based on the semantic similarity between their embeddings and the query embedding.
For these methods, the top-10 retrieved paths or triples are used as context. For graph-based text
retrieval, where the graph serves as an index over a text corpus, we use HippoRAG (Gutiérrez et al.,
2025a) and HippoRAG-2 (Gutiérrez et al., 2025b). Both methods perform query-to-edge retrieval to
identify relevant triples, which then seed a Personalized PageRank (PPR) algorithm over the KG to
score and rank text passages. The top-5 ranked passages are then returned as evidence.
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Table 1: Impact of our Knowledge-Carrying reward finetuned KG constructor on Graph Knowledge
Retriever performance. The table reports the final RAG F1 scores on five QA datasets. We compare
KGs generated by our fine-tuned models (“Ours”) with KGs from the base models (“Base”). Fine-
tuning the KG constructor with GRPO yields substantial improvements for all tested graph retrieval
methods and model sizes.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-3B

Subgraph (Base) 26.43 54.48 39.02 34.15 13.82 33.58
Subgraph (Ours) 28.03↑1.60 59.46↑4.98 40.77↑1.75 34.71↑0.56 15.13↑1.31 35.62↑2.04
Triples Retriever (Base) 30.53 51.67 40.76 32.18 17.81 34.58
Triples Retriever (Ours) 33.67↑3.14 56.76↑5.09 46.94↑6.18 36.09↑3.91 21.41↑3.60 38.97↑4.39
ToG (Base) 26.32 54.92 41.77 43.54 18.21 36.95
ToG (Ours) 29.27↑2.95 61.40↑6.48 44.56↑2.79 49.33↑5.79 18.42↑0.21 40.60↑3.65
Qwen2.5-7B

Subgraph (Base) 28.07 55.43 41.66 33.97 15.24 34.87
Subgraph (Ours) 28.54↑0.47 60.94↑5.51 43.59↑1.93 37.43↑3.46 15.65↑0.41 37.23↑2.36
Triples Retriever (Base) 33.26 55.56 44.99 35.57 20.43 37.96
Triples Retriever (Ours) 33.98↑0.72 58.02↑2.46 48.28↑3.29 36.04↑0.47 20.56↑0.13 39.38↑1.42
ToG (Base) 25.59 57.53 43.93 46.03 18.46 38.31
ToG (Ours) 29.36↑3.77 62.85↑5.32 44.68↑0.75 50.20↑4.17 19.31↑0.85 41.28↑2.97

Table 2: Impact of our Knowledge-Indexing reward finetuned KG constructor on Graph-based Text
Retriever performance. The table shows the final RAG F1 scores, where the KG serves as an index
to retrieve text passages. KGs built with our fine-tuned models (“Ours”) lead to superior retrieval
accuracy compared to KGs from base models (“Base”), improving results for both HippoRAG and
HippoRAG2.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-3B

HippoRAG (Base) 36.28 65.55 53.22 48.97 27.44 46.29
HippoRAG (Ours) 38.28↑2.00 65.93↑0.38 55.39↑2.17 51.69↑2.72 28.11↑0.67 47.88↑1.59
HippoRAG2 (Base) 35.88 65.02 53.70 50.98 25.70 46.25
HippoRAG2 (Ours) 38.45↑2.57 66.23↑1.21 56.28↑2.58 52.80↑1.82 27.93↑2.23 48.34↑2.09
Qwen2.5-7B

HippoRAG (Base) 37.16 65.95 55.50 53.01 26.03 47.53
HippoRAG (Ours) 38.80↑1.64 67.85↑1.90 57.19↑1.69 53.60↑0.59 26.97↑0.94 48.88↑1.35
HippoRAG2 (Base) 37.02 65.74 57.08 54.99 26.77 48.32
HippoRAG2 (Ours) 38.68↑1.66 67.72↑1.97 58.98↑1.90 56.46↑1.47 27.18↑0.41 49.80↑1.48

5.4 RESULTS AND ANALYSIS

AutoGraph-R1 consistently improves downstream RAG performance across different paradigms
and model scales. Our primary finding is that optimizing KG construction for downstream utility
leads to significant end-to-end F1 score improvements over a standard zero-shot constructor. As
shown in Table 1, when the KG acts as a knowledge carrier, our method yields average F1 gains
of up to +4.39 (3B model) and +2.97 (7B model). Similarly, when the KG is a knowledge index
(Table 2), performance increases by up to +2.09 and +1.48 average F1 points for the 3B and 7B
models, respectively. This confirms that task-aware optimization is broadly effective, enhancing
utility regardless of the graph’s function or the base model’s size.

AutoGraph-R1 demonstrably improves the graph’s core function as a knowledge index. The
magnitude of F1 gains is more modest in the text retrieval setting. This is an expected outcome,
stemming from the dual nature of using full text passages as evidence. On one hand, their rich context
can enable the generator to succeed even with imperfect retrieval, masking some F1 gains. On the
other hand, this verbosity can introduce noise, unlike the concise, structured triples provided by the
graph knowledge retriever. To isolate the direct impact on retrieval quality, we evaluate passage
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recall@5. Table 3 shows clear improvements: average recall increases by over 2 points for both 3B
and 7B model. This confirms that our RL framework creates a more effective knowledge index.

Table 3: Evaluating Knowledge Indexing Quality via Passage Recall. This table demonstrates that
KGs constructed by AutoGraph-R1 consistently improve passage recall@5 over zero-shot baselines
when used with graph-based text retrievers (HippoRAG and HippoRAG2). This confirms the RL-
optimized graph is a more effective knowledge index for guiding retrieval.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-3B

HippoRAG (Base) 79.50 92.10 68.41 70.84 46.5 71.47
HippoRAG (Ours) 93.00↑13.5 95.60↑4.20 68.82↑0.41 74.02↑3.18 47.65↑1.15 75.82↑4.35
HippoRAG2 (Base) 82.20 92.20 70.06 73.49 46.93 72.98
HippoRAG2 (Ours) 94.00↑11.8 95.40↑3.40 71.21↑1.15 76.42↑2.93 49.13↑2.2 77.23↑4.25
Qwen2.5-7B

HippoRAG (Base) 93.30 92.90 69.97 72.87 47.19 75.24
HippoRAG (Ours) 94.30↑1.0 95.80↑2.9 71.4↑1.43 76.16↑3.29 48.44↑1.25 77.22↑1.98
HippoRAG2 (Base) 94.10 92.80 72.03 75.98 48.55 76.69
HippoRAG2 (Ours) 95.00↑0.9 96.30↑3.5 73.61↑1.58 78.66↑2.68 49.23↑0.68 78.56↑1.87

Optimizing for downstream utility also enhances the intrinsic factual quality of the graph. We
investigated whether extrinsic optimization comes at the cost of intrinsic quality by measuring the
precision, recall, and F1 score of the extracted triples against the source text (Huang et al., 2025a)
using Deepseek-V3 model as a judge (DeepSeek-AI et al., 2025b). The results in Table 4 show a clear
positive correlation. Across all datasets, KGs fine-tuned with AutoGraph-R1 exhibit higher intrinsic
F1 scores than their zero-shot counterparts. This indicates our RL framework does not sacrifice
factual accuracy for functional utility; rather, it improves both simultaneously.

The choice of reward function induces specific and beneficial structural biases in the KG. A
deeper analysis of Table 4 reveals that the two reward functions specialize the graph’s structure.
The Knowledge-Carrying Reward (RC), optimized for graph knowledge retrieval, consistently
produces graphs with higher recall, aligning with its goal of ensuring all necessary facts for reasoning
are present. In contrast, the Knowledge-Indexing Reward (RI ), optimized for text retrieval, yields
graphs with higher precision, reflecting its need for a clean, high-fidelity index. This finding highlights
that AutoGraph-R1 not only improves graph quality but also tailors the graph’s structure to its specific
downstream function.

Table 4: Further analysis on whether GRPO training increases the triple extraction quality, measured
by Precision, Recall and, F1 defined in previous work (Huang et al., 2025a; Bai et al., 2025).

KG Construction Model HotpotQA 2WikiMultihopQA Musique 2021Wiki

Acc Recall F1 Acc Recall F1 Acc Recall F1 Acc Recall F1

Qwen2.5-7B-Instruct 98.50 93.68 95.65 94.80 91.19 92.68 96.77 95.27 95.73 95.03 91.39 92.92
+ GRPO with Knowledge-Carrying Reward 97.53 96.66 96.71 95.51 96.55 95.25 97.14 96.75 96.45 96.17 96.66 96.15
+ GRPO with Knowledge-Indexing Reward 98.96 94.81 96.59 98.35 94.54 96.16 99.53 93.14 95.81 97.44 95.01 95.99

Qwen2.5-3B-Instruct 94.41 91.00 91.92 83.53 79.34 81.01 92.07 89.52 90.31 87.79 86.01 86.63
+ GRPO with Knowledge-Carrying Reward 96.52 94.24 94.80 95.91 96.28 95.80 97.01 94.74 95.22 96.70 95.58 95.76
+ GRPO with Knowledge-Indexing Reward 97.11 93.15 94.64 96.19 93.66 94.48 96.20 93.87 94.55 98.22 96.04 96.85

6 CONCLUSION

In this work, we introduced AutoGraph-R1, the first reinforcement learning framework for knowl-
edge graph construction that directly optimizes downstream RAG performance. By incorporating
task-aware rewards, our approach bridges the gap between traditional graph quality metrics and
end-task utility. Experiments across five QA benchmarks demonstrate consistent improvements over
strong baselines in both graph knowledge and graph-based text retrieval. Overall, our work shows
that reinforcement learning can effectively connect the graph construction process with downstream
QA performance, ensuring that knowledge graphs are optimized for their intended applications.
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7 ETHICS STATEMENT

We affirm our commitment to the ICLR Code of Ethics. Our research does not involve human subjects
or the collection of new personally identifiable information. All datasets used for training (HotpotQA,
Musique) and evaluation (NQ, PopQA, etc.) are publicly available benchmarks and were used in
accordance with their licenses. All models employed (Qwen series, DeepSeek-V3) are open-source
and were run locally. We use an open-source RL framework VeRL (Sheng et al., 2025) for training.
While our work aims to improve the factuality of LLMs, we acknowledge that the underlying models
and data can contain biases, which may be reflected in the generated graphs. Experiments were
conducted on two H100 GPUs; we have focused on models in the 3B-7B parameter range to promote
accessible research.

8 REPRODUCIBILITY STATEMENT

Models Key models in our experiments include Qwen2.5-3B and Qwen2.5-7B as KG construc-
tors, a frozen Qwen2.5-7B for answer generation, and Qwen3 series models for embeddings.
DeepSeek-V3 was used as the LLM judge for evaluation. All models is open-source and available
via the Hugging Face Hub.

Code, Checkpoints, and Data. All datasets are standard public benchmarks. We will release
our full source code, including the custom reinforcement learning (RL) training loop, retriever
implementations, evaluation scripts, and specific prompts for baselines. Crucially, we will also
release the final checkpoints for our trained AutoGraph-R1 constructor models upon publication,
allowing for the direct replication of our results. All hyperparameter configurations will be provided
in the released code.

REFERENCES

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging Linguistic
Structure For Open Domain Information Extraction. In Chengqing Zong and Michael Strube
(eds.), Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 344–354, Beijing, China, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1034. URL https://aclanthology.org/P15-1034/.

Jiaxin Bai, Wei Fan, Qi Hu, Qing Zong, Chunyang Li, Hong Ting Tsang, Hongyu Luo, Yauwai Yim,
Haoyu Huang, Xiao Zhou, Feng Qin, Tianshi Zheng, Xi Peng, Xin Yao, Huiwen Yang, Leijie Wu,
Yi Ji, Gong Zhang, Renhai Chen, and Yangqiu Song. AutoSchemaKG: Autonomous Knowledge
Graph Construction through Dynamic Schema Induction from Web-Scale Corpora, August 2025.
URL http://arxiv.org/abs/2505.23628. arXiv:2505.23628 [cs].

Shengyuan Chen, Yunfeng Cai, Huang Fang, Xiao Huang, and Mingming Sun. Differentiable
Neuro-Symbolic Reasoning on Large-Scale Knowledge Graphs.

Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen Hua, Jiannong Cao, and Xiao Huang. Neuro-
Symbolic Entity Alignment via Variational Inference, October 2024a. URL http://arxiv.
org/abs/2410.04153. arXiv:2410.04153 [cs].

Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen Hua, Qing Li, and Xiao Huang. Entity
Alignment with Noisy Annotations from Large Language Models, May 2024b. URL http:
//arxiv.org/abs/2405.16806. arXiv:2405.16806 [cs].

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing Reasoning
Capability in LLMs via Reinforcement Learning, January 2025a. URL http://arxiv.org/
abs/2501.12948. arXiv:2501.12948 [cs].

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,

10

https://aclanthology.org/P15-1034/
http://arxiv.org/abs/2505.23628
http://arxiv.org/abs/2410.04153
http://arxiv.org/abs/2410.04153
http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li,
Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu,
Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei,
Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu,
Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie,
Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan
Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan
Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan
Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang,
Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang
Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. DeepSeek-V3 Technical
Report, February 2025b. URL http://arxiv.org/abs/2412.19437. arXiv:2412.19437
[cs].

Pierre Dognin, Inkit Padhi, Igor Melnyk, and Payel Das. ReGen: Reinforcement Learning for Text and
Knowledge Base Generation using Pretrained Language Models. In Marie-Francine Moens, Xuan-
jing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 1084–1099, Online and Punta Cana, Do-
minican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.83. URL https://aclanthology.org/2021.emnlp-main.83/.

Junnan Dong, Qinggang Zhang, Xiao Huang, Qiaoyu Tan, Daochen Zha, and Zhao Zihao. Active
Ensemble Learning for Knowledge Graph Error Detection. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pp. 877–885, Singapore Singapore,
February 2023. ACM. ISBN 978-1-4503-9407-9. doi: 10.1145/3539597.3570368. URL https:
//dl.acm.org/doi/10.1145/3539597.3570368.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From Local to Global: A
Graph RAG Approach to Query-Focused Summarization, February 2025. URL http://arxiv.
org/abs/2404.16130. arXiv:2404.16130 [cs].

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024a. URL https://arxiv.org/abs/2312.10997.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-Augmented Generation for Large Language Models: A Survey,
March 2024b. URL http://arxiv.org/abs/2312.10997. arXiv:2312.10997 [cs].

Michael Gubanov, Anna Pyayt, and Aleksandra Karolak. CancerKG.ORG A Web-scale, Interactive,
Verifiable Knowledge Graph-LLM Hybrid for Assisting with Optimal Cancer Treatment and
Care. In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, pp. 4497–4505, October 2024. doi: 10.1145/3627673.3680094. URL http:
//arxiv.org/abs/2501.00223. arXiv:2501.00223 [cs].
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A TRAINING DYNAMICS OF AUTOGRAPH-R1
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(a) Reward convergence.
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Figure 3: Effective Training Dynamics with the Deducible Reward (RC). Training curves for
the Graph Knowledge Retriever setting. (a) The reward, measuring answer deducibility, steadily
increases and converges, demonstrating the policy is successfully learning its objective. (b) The
advantage gain trends towards a small negative value, indicating that the value function’s estimate of
expected reward is rising quickly while the policy makes stable, incremental improvements. This
dynamic, coupled with the rising absolute reward, points to effective and controlled optimization.
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(b) Positive advantage gain.

Figure 4: Effective Training Dynamics with the Knowledge-Indexing Reward (RI ). Training
curves for the Graph-based Text Retriever setting. (a) The reward, measuring passage recall, shows a
clear upward trend of improvement. (b) The advantage gain dynamic, paired with the rising reward
curve, confirms that the policy is effectively learning from this stable, task-specific signal.

B IMPACT OF USING F1 REWARD FOR AUTOGRAPH-R1

To validate our choice of using task-specific rewards (RC and RI ), we conducted an ablation study
comparing them against a more direct but potentially noisier signal: the final answer’s F1 score. We
trained two additional KG constructor models using the RAG F1 score as the reward signal. The
results demonstrate that our proposed task-specific rewards are significantly more effective and stable,
a finding supported by both the training dynamics and final performance metrics.

F1-based RL leads to unstable training and poor performance. Figure 5a illustrates the instability
inherent in using the final F1 score as a reward. The reward curve (Figure 5a) exhibits high variance
and lacks a clear, monotonic upward trend comparing with using task specific reward, indicating a
noisy learning signal.

The downstream impact of this unstable training is evident in Tables 5 and 6. For graph knowledge
retrievers, the F1-rewarded model yields inconsistent results and, in the case of the Triples Retriever,
underperforms the zero-shot baseline by over -2.2 avg. F1 points. This contrasts sharply with our
Knowledge-Carrying Reward (RC), which delivers consistent gains across all retriever types. The
failure is even more pronounced for graph-based text retrievers. The F1-rewarded model degrades
average performance below the baseline for both HippoRAG and HippoRAG2. Table 7 reveals why
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Figure 5: Unstable Training Dynamics Using a Naive F1 Reward. Training curves for the ablation
study where the final RAG F1 score is used as the reward. (a) The F1 reward signal is highly volatile
and shows no clear upward trend, providing a noisy and ineffective learning signal. (b) Consequently,
the advantage gain remains flat and centered around zero, confirming that the policy is failing to find
a consistent direction for improvement. This leads to stalled optimization, as reflected in the poor
downstream results.

Table 5: Ablation Study on Reward Functions for Graph Knowledge Retrievers. This table
compares the final RAG F1 scores of KGs built using a zero-shot baseline, our proposed Deducible
Reward (RC), and a naive F1 Reward. Results are for the Qwen2.5-7B model. Our task-specific
Deducible Reward consistently outperforms the unstable F1 Reward.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-7B

Subgraph (Base) 28.07 55.43 41.66 33.97 15.24 34.87
Subgraph (F1 Reward) 27.36 55.09 41.15 35.13 15.70 34.89
Subgraph (Knowledge-Carrying Reward) 28.54 60.94 43.59 37.43 15.65 37.23

Triples Retriever (Base) 33.26 55.56 44.99 35.57 20.43 37.96
Triples Retriever (F1 Reward) 31.52 53.85 44.52 30.68 18.00 35.71
Triples Retriever (Knowledge-Carrying Reward) 33.98 58.02 48.28 36.04 20.56 39.38

ToG (Base) 25.59 57.53 43.93 46.03 18.46 38.31
ToG (F1 Reward) 27.64 56.95 45.19 51.10 18.37 39.85
ToG (Knowledge-Carrying Reward) 29.36 62.85 44.68 50.20 19.31 41.28

Table 6: Ablation Study on Reward Functions for Graph-based Text Retrievers. This table compares
the final RAG F1 scores using KGs from a zero-shot baseline, our Recall Reward (RI ), and a naive
F1 Reward. Results are for the Qwen2.5-7B model. The F1 Reward signal is unstable and degrades
performance, while our task-specific Recall Reward provides consistent gains.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-7B

HippoRAG (Base) 37.16 65.95 55.50 53.01 26.03 47.53
HippoRAG (F1 Reward) 39.66 63.74 53.74 49.58 28.68 47.08
HippoRAG (Knowledge-Indexing Reward) 38.80 67.85 57.19 53.60 26.97 48.88

HippoRAG2 (Base) 37.02 65.74 57.08 54.99 26.77 48.32
HippoRAG2 (F1 Reward) 38.33 62.92 55.19 50.23 27.51 46.83
HippoRAG2 (Knowledge-Indexing Reward) 38.68 67.72 58.98 56.46 27.18 49.80

using the F1 reward actively hurts retrieval quality, causing a drop in average recall@5. This suggests
the optimizer, chasing a volatile signal, creates a graph that is structurally worse for retrieval.

In contrast, our proposed Knowledge-Indexing Reward, (RI ) provides consistent and positive gains
in both final F1 score and, critically, in the underlying recall@5 metric. Overall, this two-part analysis
provides compelling evidence that a direct, task-specific reward measuring a graph’s functional utility
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Table 7: Ablation Study on Reward Functions for Knowledge Indexing Quality (Recall@5). This
table shows the direct impact of the reward function on the graph’s ability to guide text retrieval.
While our task-specific Recall Reward (RI ) consistently improves recall, the naive F1 Reward
often degrades it below the baseline, highlighting its unsuitability for this task.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-7B

HippoRAG
HippoRAG (Base) 93.30 92.90 69.97 72.87 47.19 75.25
HippoRAG (F1 Reward) 93.90 92.10 69.18 72.71 47.71 75.12
HippoRAG (Recall Reward) 94.30 95.80 71.40 76.16 48.44 77.22

HippoRAG2
HippoRAG2 (Base) 94.10 92.80 72.03 75.98 48.55 76.69
HippoRAG2 (F1 Reward) 94.80 92.00 71.07 72.81 48.75 75.88
HippoRAG2 (Recall Reward) 95.00 96.30 73.61 78.66 49.23 78.56

is a more stable and effective signal for RL-based KG construction than a sparse and noisy end-to-end
task metric.

C CASE STUDIES: THE FUNCTIONAL ADVANTAGE OF AUTOGRAPH-R1

To qualitatively illustrate the benefits of our task-aware optimization, we present two case studies from
the 2WikiMultiHopQA dataset that highlight how AutoGraph-R1 constructs functionally superior
knowledge graphs compared to a standard zero-shot baseline.

C.1 CASE STUDY 1: COMPARATIVE REASONING

The first case study examines a question requiring a comparison between the death dates of two film
directors. This task requires the KG to contain specific, comparable facts (i.e., dates) for multiple
entities. As shown in Figure 6, the zero-shot KG fails because it does not extract the specific
death dates needed for comparison. In contrast, the KG constructed by AutoGraph-R1 contains the
necessary date information, as the RL training has taught the constructor that dates are critical for
such questions. This complete evidence enables the LLM to easily answer the question correctly.

C.2 CASE STUDY 2: PATH-BASED REASONING

The second case study involves a 2-hop question that requires finding a path from a film to its director,
and then from the director to their child. This task depends on the structural connectivity of the graph.

As shown in Figure 7, the zero-shot KG (top) fails critically. While it successfully extracts the first
link in the path—‘ (Los Pagares de Mendieta, directed by, Leopoldo Torres Rı́os)‘—it fails to extract
the second, crucial link about the director’s child. The reasoning path is broken after the first hop,
causing the QA system to fail. In contrast, the AutoGraph-R1 KG (bottom) explicitly contains the
complete 2-hop reasoning path. It successfully extracts both ‘(Los Pagares de Mendieta, directed by,
Leopoldo Torres Rı́os)‘ and ‘(Leopoldo Torres Rı́os, father of, Leopoldo Torre Nilsson)‘. The RL
process has rewarded the constructor for building these essential connective trails, recognizing that
entity linkage across different relationships is crucial for multi-hop QA.

D AUTOGRAPH-R1 TRAINING ALGORITHM

The end-to-end training process for the AutoGraph-R1 KG constructor is formalized in Algorithm
1. The core idea is to iteratively construct a knowledge graph for a given query and its context
documents, evaluate the graph’s utility using a task-specific reward function, and then update the
constructor’s policy using the collected rewards.
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Case Study 1: Zero-Shot KG (ToG Retriever) - Failed Answer

Question: Which film has the director who died first, The Goose Woman or You Can No Longer
Remain Silent?
Retrieved Triples:
"(You Can No Longer Remain Silent, directed by, Robert A. Stemmle)",
"(Robert A. Stemmle, died in, Baden-Baden, Germany)",
"(The Goose Woman, directed by, Clarence Brown)",
"(Clarence Brown, was a, American film director)"
... (and other irrelevant triples)

Case Study 1: AutoGraph-R1 KG (ToG Retriever) - Correct Answer

Question: Which film has the director who died first, The Goose Woman or You Can No Longer
Remain Silent?
Retrieved Triples:
"(You Can No Longer Remain Silent, directed by, Robert A. Stemmle)",
"(Robert A. Stemmle, died on, 24 February 1974)",
"(The Goose Woman, directed by, Clarence Brown)",
"(Clarence Brown, died on, August 17, 1987)",
...

Figure 6: Qualitative comparison for a comparative reasoning question. The zero-shot KG lacks
specific death dates, leading to failure. The AutoGraph-R1 KG, optimized for task utility, successfully
extracts the critical dates needed for comparison.

Case Study 2: Zero-Shot KG (ToG Retriever) - Failed Answer

Question: Who is the child of the director of film Los Pagares De Mendieta?
Retrieved Triples:
"(Los Pagares de Mendieta, directed by, Leopoldo Torres R0̆0edos)",
"(Leopoldo Torres R0̆0edos, age at death, 60)",
"(Leopoldo Torres R0̆0edos, occupation, film director and
screenwriter)",
... (and other facts about the director, but not their child)

Case Study 2: AutoGraph-R1 KG (ToG Retriever) - Correct Answer

Question: Who is the child of the director of film Los Pagares De Mendieta?
Retrieved Triples:
"(Los Pagares de Mendieta, directed by, Leopoldo Torres R0̆0edos)",
"(Leopoldo Torres R0̆0edos, father of, Leopoldo Torre Nilsson, ...)",
"(Leopoldo Torres R0̆0edos, born on, 27 December 1899)",
...

Figure 7: Qualitative comparison for a 2-hop path-based question. The zero-shot KG extracts the
first link (director of the film) but misses the second (child of the director), breaking the reasoning
path. The AutoGraph-R1 KG successfully constructs the full path.

E PROMPTS

This section details the specific prompts used in our experimental pipeline. The process begins with
the graph construction prompt (Figure 8), which guides the LLM to extract triples from raw text.
During RL training, the Knowledge-Carrying Reward (RC) is determined using the deducibility
judge prompt shown in Figure 9. For the final RAG answer generation step, we use distinct prompts
tailored to the retrieved context: one for linearized graph triples (Figure 10) and another for raw
text passages (Figure 11). Finally, Figure 12 shows the prompts used for our intrinsic graph quality
analysis, where an LLM judge generates and answers multiple-choice questions to evaluate factual
coverage.
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Algorithm 1 AutoGraph-R1 Training Loop

1: Input: Training dataset S = {(qi, yi,Dqi)}Ni=1, where Dqi are the context documents for query
qi.

2: Input: KG constructor policy πKG
θ (an LLM).

3: Input: Frozen retrieverRfrozen (either a graph knowledge retriever or a graph-based text retriever).
4: Input: Chosen reward function Rtask (either RC or RI ).
5: Initialize: Policy parameters θ.
6: for each training step do
7: Sample a minibatch of data {(q, y,Dq)} from S.
8: Initialize an empty list of trajectories ‘trajectories‘.
9: for each sample (q, y,Dq) in the minibatch do

10: ▷ Step 1: Construct the Knowledge Graph
11: Generate the graph by sampling from the policy: G ∼ πKG

θ (· | Dq).
12: ▷ Step 2: Determine Task-Specific Reward
13: if Rtask is Knowledge-Carrying Reward (RC) then
14: Use the frozen retrieverRgraph to get evidence P(q) from G.
15: Calculate reward r = RC(q, y,P(q)) using Eq. (1).
16: else if Rtask is Knowledge-Indexing Reward (RI ) then
17: Use the frozen retrieverRtext to get passages T (q) from G.
18: Calculate reward r = RI(q, y, T (q)) using Eq. (2).
19: end if
20: Store the generation trajectory (actions taken to build G) and the final reward r in

‘trajectories‘.
21: end for
22: ▷ Step 3: Update Policy Parameters
23: Compute the policy gradient∇θJ(θ) using the stored ‘trajectories‘ and a policy optimization

algorithm (e.g., GRPO).
24: Update the policy parameters: θ ← θ − η · ∇θJ(θ).
25: end for
26: Return: Optimized KG constructor parameters θ.

Graph Construction

Graph Generation System Prompt:
You are an expert knowledge graph constructor. Your task is to extract factual information from the
provided text and represent it strictly as a JSON array of knowledge graph triples.
Output Format

- The output must be a **JSON array**.
- Each element in the array must be a **JSON object** with exactly three non-empty keys:

- ”subject”: the main entity, concept, event, or attribute.
- ”relation”: a concise, descriptive phrase or verb that describes the relationship (e.g., ”founded

by”, ”started on”, ”is a”, ”has circulation of”).
- ”object”: the entity, concept, value, event, or attribute that the subject has a relationship with.

Constraints
- **Do not include any text other than the JSON output.**
- Do not add explanations, comments, or formatting outside of the JSON array.
- Extract **all possible and relevant triples**.
- All keys must exist and all values must be non-empty strings.
- The ”subject” and ”object” can be specific entities (e.g., ”Radio City”, ”Football in Albania”,

”Echosmith”) or specific values (e.g., ”3 July 2001”, ”1,310,696”).
- If no triples can be extracted, return exactly: ‘[]‘.

Extracts for: {passage}

Figure 8: The prompt used for both zero-shot KG construction and fine-tuning KG constructor model
during RL.
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Deducible Judge

Deducible Judge Prompt:
As an advanced reading comprehension assistant, your task is to evaluate whether the provided knowl-
edge graph (KG) context contains sufficient information to deduce the given true answer to the question.
Analyze the KG context carefully and determine if it fully supports the true answer without requiring
external knowledge. Respond with only ’Yes’ or ’No’, indicating whether the true answer can be
deduced from the KG context.
Knowledge graph (KG) context:{triples string}
Question:{query}
True Answer:{answer}
Can the true answer be deduced from the KG context? Answer ’Yes’ or ’No’ only.

Figure 9: The prompts for freeze LLM to determine the Knowledge-Carrying Reward (RC). The
’Yes’ or ’No’ response serves as the binary reward signal.

Graph Retriever Answer Generation

Answer Generation Prompt For Graph Retriever:
As an advanced reading comprehension assistant, your task is to analyze extracted information and
corresponding questions meticulously. If the knowledge graph information is not enough, you can use
your own knowledge to answer the question. Your response start after ”Thought: ”, where you will
methodically break down the reasoning process, illustrating how you arrive at conclusions. Conclude
with ”Answer: ” to present a concise, definitive response as a noun phrase, no elaborations.
{triples string}
{question}
Thought:

Figure 10: The prompt used by the final answer generator when the retrieved evidence consists of
linearized knowledge graph triples.

Graph Text Retriever Answer Generation

Answer Generation Prompt:
As an advanced reading comprehension assistant, your task is to analyze text passages and corresponding
questions meticulously. If the information is not enough, you can use your own knowledge to answer the
question. Your response start after ”Thought: ”, where you will methodically break down the reasoning
process, illustrating how you arrive at conclusions. Conclude with ”Answer: ” to present a concise,
definitive response as a noun phrase, no elaborations.
{Retrieved Texts}
{question}
Thought:

Figure 11: The prompt used by the final answer generator when the retrieved evidence consists of
raw text passages.
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Multiple-Choice Question Generation and Answering

MCQ Generation Prompt:
You are an expert in generating multiple-choice questions (MCQs) from scientific texts. Your task is to
generate 5 multiple-choice questions based on the following passage.
Each question should:

- Focus on factual claims, numerical data, definitions, or relational knowledge from the passage.
- Have 4 options (one correct answer and three plausible distractors).
- Clearly indicate the correct answer.

The output should be in JSON format, with each question as a dictionary containing:
- ”question”: The MCQ question.
- ”options”: A list of 4 options (e.g., [”A: ..”, ”B: ..”, ”C: ..”, ”D: ..”]).
- ”answer”: The correct answer (e.g., ”A”).

Passage: {passage}

MCQ Answering Prompt:
Given the contexts or evidences: {contexts}
Here is a multiple-choice question:
Question: {question}
Options: A. {options 0} B. {options 1} C. {options 2} D. {options 3}
Please select the correct answer by choosing A, B, C, or D. Respond with only the letter of your choice.

Figure 12: The prompt provided to the LLM judge (DeepSeek-V3) to evaluate triples extraction
quality
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