
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOGRAPH-R1: END-TO-END REINFORCEMENT
LEARNING FOR KNOWLEDGE GRAPH CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Building effective knowledge graphs (KGs) for Retrieval-Augmented Generation
(RAG) is pivotal for advancing question answering (QA) systems. However,
its effectiveness is hindered by a fundamental disconnect: the knowledge graph
(KG) construction process is decoupled from its downstream application, yielding
suboptimal graph structures. To bridge this gap, we introduce AutoGraph-R1,
the first framework to directly optimize KG construction for task performance
using Reinforcement Learning (RL). AutoGraph-R1 trains an LLM constructor
by framing graph generation as a policy learning problem, where the reward is
derived from the graph’s functional utility in a RAG pipeline. We design two
novel, task-aware reward functions, one for graphs as knowledge carriers and
another as knowledge indices. Across multiple QA benchmarks, AutoGraph-R1
consistently enables graph RAG methods to achieve significant performance gains
over using task-agnostic baseline graphs. Our work shows it is possible to close
the loop between construction and application, shifting the paradigm from building
intrinsically “good” graphs to building demonstrably “useful” ones.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has become a cornerstone for enhancing Large Language
Models (LLMs), enabling them to ground responses in external knowledge, reduce hallucinations,
and incorporate real-time, domain-specific information (Gao et al., 2024a; Peng et al., 2024a). A
particularly promising frontier is graph-based RAG, where LLMs leverage the structured nature
of Knowledge Graphs (KGs) for complex data sensemaking and reasoning (Edge et al., 2025).
The typical pipeline begins by constructing a KG from unstructured text, often using LLM-driven
extractors and heuristics (Han et al., 2024; Lairgi et al., 2024; Bai et al., 2025), which then supports
downstream question answering (Gutiérrez et al., 2025a; Sun et al., 2024).

Despite its potential, the prevailing graph-based RAG paradigm suffers from a fundamental disconnect:
the process is split into two isolated phases. First, a construction phase, where a graph is built
and evaluated on intrinsic metrics like precision and coverage (Huang et al., 2025a). Second, an
application phase, where this static graph is used for a downstream task. The critical flaw in this
approach is that a “good” graph by intrinsic standards is not necessarily a “useful” one for the
end task (Xue & Zou, 2022). For instance, a graph built to maximize factual accuracy might be
structurally fragmented, causing retrievers to fail on multi-hop questions that require connecting
distant information, as illustrated in Figure 1.

This disconnect persists because closing the loop between downstream performance and graph con-
struction is technically challenging. The construction process generating discrete (subject, predicate,
object) triples and performing entity resolution is inherently non-differentiable. Consequently, stan-
dard gradient-based optimization cannot backpropagate performance signals from a downstream task,
such as question answering accuracy, to guide the graph generation model. The graph, once built,
cannot learn from its failures. To bridge this gap, we employ Reinforcement Learning (RL). While
prior work has used RL to refine retrieval over search tools or improve query reformulation (Jin et al.,
2025; Jiang et al., 2025b; Luo et al., 2025), our work is the first to leverage RL to directly optimize
the KG construction process itself. We introduce AutoGraph-R1, a framework that fine-tunes an
LLM-based graph generator by optimizing for downstream task performance. As shown in Figure 2,
the graph generation model learns a construction policy from raw text. The utility of the generated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Source Documents
Doc 1: "The Golden Gate Bridge is an iconic suspension bridge spanning the Golden Gate strait, connecting

the city of San Francisco.“

Doc 2: "San Francisco is the cultural, commercial, and financial center of Northern California."

Doc 3: "The government of California is organized as a republic, with three branches: the executive,

legislative, and judicial."

(A) Standard LLM Extraction (B) AutoGraph-R1 Extraction (RL-Optimized)

Golden Gate

Bridge

San Francisco

Northern

California
California

Republic

connects

is the center of

has

government

Knowledge Graph 1 (Structurally Suboptimal)

Golden Gate Bridge

California

Republic

is located in

has government

Knowledge Graph 2 (Optimized)

Downstream Question Answering Downstream Question Answering

Q: What is the government of the state where the Golden Gate

Bridge's city is?
Q: What is the government of the state where the Golden Gate

Bridge's city is?

FAIL : Reasoning path is too long (4+ hops) and fragile.

Retriever fails to find the full context.

SUCCESS : Reasoning path is short (2 hops) and robust.

Retriever easily finds the answer.

(missing)

is in

Figure 1: Bridging the Disconnection Between KG Construction and Utility. (A) A KG optimized for
intrinsic metrics can be too fragmented for multi-hop QA, causing retrieval to fail. (B) AutoGraph-R1
uses an end-task RL reward to build a functionally superior graph, ensuring its structure is optimized
to support various graph retrievers for successful reasoning.

graph is then evaluated in a downstream RAG pipeline, yielding a reward signal. This task-aware
reward is used to update the generator’s parameters via policy gradient methods, guiding it to produce
graphs that are not just factually accurate but functionally optimal, for instance, by creating valid
paths that facilitate complex reasoning.

To the best of our knowledge, this is the first work to use reinforcement learning to optimize KG
construction for general downstream tasks using LLMs. We focus on complex question answering
over benchmark datasets requiring multi-document reasoning (Yang et al., 2018; Trivedi et al., 2022;
Mallen et al., 2023). Our framework’s reward function is based on the utility of the resulting graph,
evaluating whether it serves as an effective knowledge index for retrieving useful text chunks or
provides subgraphs that directly support the reasoning process. By designing these task-aware
rewards, we directly align the objectives of KG construction with end-task performance.

In summary, our contributions are:

• We introduce AutoGraph-R1, a novel RL framework that directly optimizes knowledge
graph construction for downstream utility, bridging the critical gap between graph quality
and task performance.

• We design and implement task-aware reward functions that successfully align KG structure
with the demands of complex reasoning tasks, compelling the model to build functionally
superior graphs.

• Through extensive experiments, we demonstrate that integrating AutoGraph-R1’s graphs
into a state-of-the-art RAG pipeline yields significant performance gains on multiple QA
benchmarks, validating that RL-driven graph construction improves downstream task utility.

2 RELATED WORK

2.1 GRAPH-BASED RETRIEVAL-AUGMENTED GENERATION

Large Language Models (LLMs), despite demonstrating strong reasoning capabilities (DeepSeek-AI
et al., 2025a), remain susceptible to factual hallucinations (Ji et al., 2023; Huang et al., 2025b) and
knowledge incompleteness (Peng et al., 2023). Retrieval-Augmented Generation (RAG) (Lewis et al.,
2021; Gao et al., 2024b) mitigates these issues by grounding LLMs in external knowledge sources,
thereby improving factual accuracy and reasoning. A burgeoning area of research extends RAG
with graph-structured knowledge (Peng et al., 2024b; Xiang et al., 2025; Zhang et al., 2025a; Han

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2025). In these pipelines, graphs serve two primary functions. First, as knowledge indices,
where the graph organizes and connects raw text chunks, and its structural properties are leveraged
for more sophisticated retrieval strategies (Liang et al., 2024; Liu et al., 2024b; Zhang et al., 2024b;
Wang et al., 2023; Li et al., 2024a). Methods like HippoRAG (Gutiérrez et al., 2025a;b) exemplify
this by exploiting structural connections to access relevant information more effectively. Second, as
knowledge carriers, where the graph itself is the primary information source, and the model reasons
directly over recovered subgraphs (Shen et al., 2025b; Liu et al., 2024a). This paradigm is adopted
by approaches such as Think-on-Graph (Ma et al., 2025; Sun et al., 2024), SubgraphRAG (Li et al.,
2025a), StructRAG (Li et al., 2024b), and KnowGPT (Zhang et al., 2024a).

The construction of KGs has evolved from traditional rule-based systems like OpenIE (Angeli et al.,
2015) to more flexible LLM-based pipelines such as PiVE (Han et al., 2024), iText2KG (Lairgi et al.,
2024), KGGEN (Mo et al., 2025), GraphRAG (Edge et al., 2025), and AutoSchemaKG (Bai et al.,
2025). While powerful, these LLM-driven methods typically generate a static graph based on fixed
prompts or heuristics, often evaluated using intrinsic metrics. However, the optimal structure of a KG
is highly dependent on variety of downstream applications (Gubanov et al., 2024; Wu et al., 2024;
Zhao et al., 2024; He et al.; 2024; Liu et al., 2024c). For instance, a graph acting as a text index
may prioritize fine-grained partitioning, while one used for reasoning chains requires long-range
connectivity (Jin et al., 2024; Huang et al., 2024). This creates the disconnect we identified earlier: a
graph built to be “good” in isolation may be functionally poor for a specific task. Our work addresses
this gap by optimizing graph construction directly for downstream performance, a problem that, to
our knowledge, has not been systematically investigated, despite progress in KG refinement and
completion techniques (Chen et al.; 2024b;a; Zhang et al., 2022; Dong et al., 2023).

2.2 REINFORCEMENT LEARNING FOR LANGUAGE MODEL OPTIMIZATION

Reinforcement learning (RL) (Kaelbling et al., 1996) offers a powerful framework for optimizing the
sequential decision-making capabilities of LLMs by enabling them to learn through environmental
interaction and reward feedback (Kaufmann et al., 2024; Xi et al., 2025). As LLMs have become
more powerful through fine-tuning, methodological advances—from Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022) to more scalable and cost-effective algorithms like
Proximal Policy Optimization (PPO) (Schulman et al., 2017), Dynamic Sampling Policy Optimization
(DAPO) (Yu et al., 2025), and Group Relative Policy Optimization (GRPO) (DeepSeek-AI et al.,
2025a)—have enabled successful applications in diverse domains, including open-domain retrieval
and scientific discovery. (Zheng et al., 2025; Yu et al., 2024; Zhu et al., 2025; Shen et al., 2025a).

Prior to its widespread adoption for LLM alignment, RL had been explored for knowledge base tasks,
such as bidirectional text-to-graph conversion (Dognin et al., 2021). More recently, RL has proven
effective in training LLMs to interact with external tools, such as search engines (Jin et al., 2025;
Jiang et al., 2025b; Li et al., 2025b; Zhang et al., 2025b; Jiang et al., 2025a). Notably, frameworks
like Graph-R1 (Luo et al., 2025) have shown that RL can teach an LLM to effectively navigate
graph-structured tools to improve retrieval. However, these works use RL to learn a policy for
navigating or querying an existing knowledge source. Our approach is fundamentally different: we
use RL to learn a policy for constructing the knowledge source itself. To our knowledge, this is
the first application of RL to directly optimize a KG’s structure based on its measured utility in a
downstream reasoning task. This distinction forms the motivation for AutoGraph-R1.

3 PRELIMINARIES

In this section, we formalize the key concepts underlying AutoGraph-R1, including knowledge graph
construction, graph-based retrieval, and answer generation within a RAG pipeline.

3.1 KNOWLEDGE GRAPH CONSTRUCTION

We define a knowledge graph (KG) as a directed, labeled graph G = (V, E ,R), constructed from a
set of documents D. Here, V is the set of nodes, R the set of relation types, and E ⊆ V × R × V
the set of edges represented as triples (s, r, o). Nodes s, o ∈ V may correspond to entities, events, or
concepts, and r ∈ R denotes a relation type. Following prior work (Zhang et al., 2025a), we consider
two principal configurations for the graph’s role.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Graphs as Knowledge Carriers In this configuration, the graph serves as a self-contained knowledge
base. It consists of factual triples (s, r, o) ∈ E , where nodes s, o ∈ V are entities and r ∈ R is the
relation. These triples act as discrete, structured knowledge units that are retrieved and processed
directly by the downstream model.

Graphs for Knowledge Indexing Alternatively, the graph functions as a structured index over the
raw document corpus D. Nodes are augmented with pointers to text spans, denoted τ(v). Formally,
the node set can be partitioned into entity nodes Ve and document or chunk nodes Vd, such that
V = Ve ∪Vd. This hybrid structure allows the graph to guide retrieval not only of structured facts but
also of the original, unstructured text passages.

3.2 RETRIEVAL MODULE

Given a query q, the goal of the retrieval module is to produce a set of evidence units C(q) that will
be passed to the LLM for answer generation. We consider two complementary retrieval strategies.

Graph Knowledge Retriever This retriever, denotedRgraph, operates directly on the graph structure.
Given a query q, it identifies relevant components such as individual triples, multi-hop paths, or entire
subgraphs. Formally, we define its output as a set of structured evidence P(q) = Rgraph(q,G). The
elements of P(q) are then linearized into text to serve as context for the LLM.

Graph-based Text Retriever This retriever, denotedRtext, uses the graph as an index to find relevant
text passages from the source corpus. It leverages graph connectivity to identify promising document
nodes. Formally, Rtext(q,G) 7→ T (q), where T (q) ⊆ {τ(v) | v ∈ Vd} is a set of raw text passages
linked from document nodes.

3.3 ANSWER GENERATION

The final answer generation step uses a large language model πans to synthesize an answer ŷ from
the query q and the retrieved evidence C(q). The evidence context C(q) is composed of either the
linearized graph structures P(q) from the graph knowledge retriever or the text passages T (q) from
the graph-based text retriever. The final answer ŷ is generated by conditioning the LLM on the query
and evidence: ŷ = πans(q, C(q)). This unified framework allows our optimization process to apply to
both types of graph construction, directly linking the structure of G to its utility in the final QA-task.

4 AUTOGRAPH-R1

4.1 REINFORCEMENT LEARNING FOR GRAPH CONSTRUCTION

AutoGraph-R1, an end-to-end reinforcement learning (RL) framework that directly optimizes
knowledge graph (KG) construction with downstream task performance as the reward signal. The
framework unifies two common graph-augmented retrieval paradigms: Graph RAG (retrieval over
entity triples) and Graph Text RAG (retrieval over text nodes through graph index).

As shown in Figure 2, AutoGraph-R1 consists of three components: (1) a KG construction policy
model πKG

θ , instantiated as a large language model (LLM), which maps a list of documents D into
a graph G; (2) a frozen RAG server with a fixed answer generator πans, which retrieves from G
and produces an answer ŷ to the input query q; (3) a task-specific reward function R(q, ŷ, y,G) that
evaluates how well the constructed graph supports QA, where y is the gold answer.

Task-Aware Training Loop A central design choice in AutoGraph-R1, inspired by s3 (Jiang et al.,
2025b), is to freeze the retrieval module while the KG construction policy πKG

θ adapts. During train-
ing, each sample (q, y,Dq)—comprising a query, a gold answer, and relevant documents—triggers a
full end-to-end loop of KG construction, retrieval, and answer generation. Crucially, the definition of
a ”useful” graph is contingent on the retrieval paradigm. We therefore tailor the training process for
two distinct scenarios, aligning the KG’s structure with its intended function.

Training with a Graph Knowledge Retriever When the KG acts as a knowledge carrier, retrieval
quality is measured by its ability to provide a self-contained, structured context for reasoning. To
isolate the impact of graph structure, we employ a simple subgraph retriever. Given a query q, we
extract its named entities to serve as anchors and retrieve the n-hop neighborhood surrounding them to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Inference

Graph Retrieval

& Generation

General

Corpus

Correct

Answer

Queries

AutoGraph-R1

Graph

Construction

AutoGraph-R1 Graph Constructor Training

AutoGraph-R1

Graph

Construction

Graph

Retrieval

Supporting Docs:
The Collegian is

owned by …

Distractor Docs:
This is a list of Old

Scotch Collegians …

When was the institute that

owned The Collegian founded?

Reward
Knowledge-Carrying Capability

Knowledge-Indexing Capability

GRPO

Training

Reward

Computation

Figure 2: Overview of the AutoGraph-R1 Framework. AutoGraph-R1 optimizes knowledge graph
construction for downstream utility using reinforcement learning. During the training phase (left),
a graph constructor is fine-tuned with GRPO. The reward signal is derived from the performance
of a graph retriever on the generated KG, directly measuring the graph’s functional quality. During
the inference phase (right), the trained constructor is used to build a large-scale KG from a general
corpus, which then serves a downstream graph-based RAG system.

form the context P(q). This design intentionally bypasses dense vector similarity, forcing the reward
signal to reflect the graph’s relational completeness and structural integrity. The policy is rewarded
for creating graphs where the correct answer is directly deducible from the retrieved subgraph.

Training with a Graph-based Text Retriever. When the KG serves as a knowledge index, its utility is
determined by how well it guides the retriever to relevant text passages. We adapt the HippoRAG-2
retriever (Gutiérrez et al., 2025b) for this purpose. First, candidate triples (s, r, o) are selected based
on embedding similarity to the query q (using Qwen-3-0.6B). However, unlike the original method,
we then use only these triple-level similarities to initialize a Personalized PageRank algorithm over the
constructed graph G. This process propagates relevance scores through the graph structure, ultimately
identifying text nodes that are structurally connected to the most pertinent facts, from which the
top-N passages are returned. The policy is therefore incentivized to build graphs where structural
connectivity, not just semantic similarity, is a reliable signal for identifying crucial evidence passages,
including both direct and complementary information that might otherwise be overlooked.

In both scenarios, by freezing the retriever and aligning the reward with its specific mechanism,
AutoGraph-R1 ensures the graph construction policy learns to produce graphs that are functionally
optimized for a given downstream retrieval strategy.

4.2 REWARD DESIGN FOR FUNCTIONAL GRAPH CONSTRUCTION

A primary challenge in optimizing this end-to-end pipeline is the sparse and indirect nature of the
learning signal, where a single reward is given after a long sequence of construction actions. This
creates a severe credit assignment problem and places a heavy burden on the quality of the reward
signal itself. While the final answer’s F1 score has been explored as a reward in prior work (Jin et al.,
2025), we find its properties make it a challenging choice for our goal of guiding graph construction.
The F1 score is brittle; minor phrasing variations in the LLM output can cause swings in the metric,
an issue that persists even with deterministic decoding. This instability results in a noisy reward that
can impede or destabilize policy optimization. Our approach is therefore motivated by the need to
design more direct and stable, task-specific rewards better suited to our problem.

To overcome these challenges, we design two distinct reward functions that provide a more direct and
stable learning signal by measuring the functional utility of the graph for a specific retrieval task.

Graph Knowledge Retriever Retrieval operates on subgraphs or relation paths. The key requirement
is that the gold answer y should be deducible from G. An answer y is considered deducible from G if
the retrieved triples or subgraphs contain sufficient relational information to logically infer the gold
answer y for a given query q, either directly through explicit facts or indirectly through reasoning
over connected triples. We therefore define a binary reward, the Knowledge-Carrying Reward, RC ,
which measures the deducibility of gold answer in the constructed KG. An external LLM judge is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

prompted with (q, y,G) and determines whether y can be deduced from the retrieved triples:

RC(q, y,G) = I
[
deducible(q, y | G)

]
. (1)

Graph-based Text Retriever Retrieval operates over the graph structure of the KG to locate relevant
text passages. To enhance the knowledge-indexing capability, we use Knoweldge-Indexing Reward,
RI , as the reward function. This aligns with the fundamental objective of these retrievers by measuring
the effectiveness of the retrieved passages in capturing the relevant information. The reward is defined
as follows:

RI(q,Dgold,G) =
|Top-k(G, q) ∩ Dgold|

|Dgold|
(2)

where Dgold denotes the gold passages for q, and Top-k(G, q) are the retrieved passages.

4.3 GRPO FOR GRAPH CONSTRUCTION

To optimize the knowledge graph (KG) constructor policy πKG
θ , we employ Group-Relative Pol-

icy Optimization (GRPO) (Shao et al., 2024), a memory-efficient alternative to Proximal Policy
Optimization (PPO). GRPO is well-suited for our LLM-based framework, as it eliminates the need
for a separate value model by using a relative reward baseline derived from a group of sampled
graph outputs. This approach reduces computational overhead and memory usage, enabling scalable
training for large-scale graph construction tasks.

The GRPO objective updates πKG
θ to favor graphs that maximize downstream QA performance,

incorporating a clipping mechanism to ensure stable updates. We simplify the training procedure
by removing the KL divergence term to lower the computational overhead and save memory usage
without damaging the training (Liu et al., 2025; Hu et al., 2025). Formally, the objective is defined as:

JGRPO(θ) = Es∼D,{ai}G
i=1∼πθold (·|s)

 1

G

G∑
i=1

|ai|∑
t=1

min
(
ri,t(θ)Âi, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi

)
Here, the policy πKG

θ generates a graph G token by token, where a = {a1, ..., aT } represents the
sequence of tokens forming the graph. In this equation, s is the input document list D, and ai is
the i-th sampled graph output from a group of G samples. The probability ratio ri,t(θ) is defined
as πθ(ai,t|s,ai,<t)

πθold (ai,t|s,ai,<t)
. Âi =

Ri−µR

σR
represents the Group-Relative Advantage for the entire graph ai,

which is derived by normalizing its reward relative to the group’s mean µR and standard deviation
σR.The downstream reward signal, Ri, for the i-th graph sample is determined by the specific training
setup: R = RC (Eq. 1) when employing a graph knowledge retriever, or R = RI (Eq. 2) when a
graph-based text retriever is used. ϵ is a small clipping hyperparameter that ensures stable updates by
preventing the new policy from straying too far from the old policy.

5 EXPERIMENTS

Our experiments are designed to answer three primary research questions: RQ1. Does optimizing
KG construction with a downstream task reward (AutoGraph-R1) lead to better end-to-end RAG
performance compared to standard, task-agnostic KG construction? RQ2. Is this performance
improvement consistent across different graph-based RAG paradigms (i.e., when the graph is a
knowledge carrier vs. a knowledge index) and across different model scales? RQ3. Does optimizing
for downstream utility also improve the intrinsic quality (e.g., factual precision and recall) of the
graph, and how do different reward functions bias the final graph structure?

5.1 DATASETS AND CORPORA

Training Datasets For the reinforcement learning phase, we utilize two multi-hop QA datasets:
HotpotQA (Yang et al., 2018) and Musique (Trivedi et al., 2022). To create a more challenging
training environment for the text retrieval scenario, we implement a hard negative mining strategy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For each query, we use a Qwen3-8B (Zhang et al., 2025c) embedding model to identify the most
semantically similar non-gold passage from the corpus, which is then added as a distractor. In contrast,
for the graph knowledge retriever scenario, no distractors are used, as the primary objective is to
optimize the informational completeness of the graph constructed from source documents, improving
the knowledge-carrying capability of graph, rather than its ability to filter irrelevant content.

Evaluation Datasets For final RAG evaluation, we use a diverse set of five QA datasets, each
comprising 1,000 samples. These include two general QA benchmarks, Natural Questions (NQ)
(Kwiatkowski et al., 2019) and PopQA (Mallen et al., 2023), and three multi-hop QA benchmarks,
HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), and Musique (Trivedi et al., 2022).
These datasets enable a comprehensive evaluation of AutoGraph-R1 on downstream task-utility.

Corpora. For the general QA datasets (NQ, PopQA), the knowledge corpus is built from the
introductory sections of the December 2021 Wikipedia dump Izacard et al. (2022). For the multi-
hop QA datasets, the corpus for each is constructed from the documents associated with its 1,000
evaluation samples, following the methodology in Gutiérrez et al. (2025a).

5.2 EXPERIMENTS CONFIGS

Models We experiment with fine-tuning both Qwen2.5-3B and Qwen2.5-7B (Qwen et al., 2025)
as the KG construction model (πKG

θ). For all RAG evaluations, we use a frozen Qwen2.5-7B as
the answer generation LLM. The Qwen3-0.6B model is used consistently for all embedding tasks
in both training and evaluation.

RL Training Configuration We fine-tune the KG construction policy using the GRPO algorithm
(Shao et al., 2024) on two H100 GPUs. For each training sample, the policy iteratively generates
triples for each document. The training setup is tailored to the retrieval paradigm. For the graph-based
text retriever, the model operates on a fixed pool of 15 documents per query, retrieving the top-N
passages, where N equals the number of gold supporting passages. For the graph knowledge retriever,
we retrieve an n-hop subgraph, where n is dynamically set to match the number of hops required by
the query to ensure sufficient context.

Evaluation Protocol For evaluation, a KG is first constructed over the entire document corpus for a
each dataset. Then, depends on the type of retriever, the corresponding RAG is performed using this
static graph. We report the final answer F1 score as the primary metric, consistent with prior work.

5.3 BASELINES

We evaluate AutoGraph-R1 by using a suite of state-of-the-art retrieval methods to benchmark the
functional utility of the knowledge graphs it generates against a task-agnostic baseline.

KG Construction Baseline To benchmark the performance of our RL-optimized constructor, we
establish a baseline using a zero-shot approach. Specifically, we construct the baseline knowledge
graphs using Qwen2.5-3B and Qwen2.5-7B model guided solely by the same designed prompts
used in fine-tuning models. This represents a standard, task-agnostic method for KG construction
and allows us to directly measure the gains attributable to our downstream-aware optimization.

RAG Method Baselines We evaluate the KGs constructed by both AutoGraph-R1 and the zero-
shot baseline using a suite of state-of-the-art RAG methods to measure their functional utility. For
graph knowledge retrieval, where the graph itself is the source of information, we test three
distinct approaches. First, we use ToG (Sun et al., 2024), setting both the width and depth to 3. It
performs beam search on the graph and uses the Qwen3-0.6B model for relation pruning to discover
meaningful paths. Second, we employ a Subgraph Retriever, which first performs Named Entity
Recognition (NER) on the query and then expands 1-hop from the identified entities to form the
retrieval context. Third, we include a Dense Triple Retriever, which uses the Qwen3-0.6B model
to retrieve triples based on the semantic similarity between their embeddings and the query embedding.
For these methods, the top-10 retrieved paths or triples are used as context. For graph-based text
retrieval, where the graph serves as an index over a text corpus, we use HippoRAG (Gutiérrez et al.,
2025a) and HippoRAG-2 (Gutiérrez et al., 2025b). Both methods perform query-to-edge retrieval to
identify relevant triples, which then seed a Personalized PageRank (PPR) algorithm over the KG to
score and rank text passages. The top-5 ranked passages are then returned as evidence.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Impact of our Knowledge-Carrying reward finetuned KG constructor on Graph Knowledge
Retriever performance. The table reports the final RAG F1 scores on five QA datasets. We compare
KGs generated by our fine-tuned models (“Ours”) with KGs from the base models (“Base”). Fine-
tuning the KG constructor with GRPO yields substantial improvements for all tested graph retrieval
methods and model sizes.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-3B

Subgraph (Base) 26.43 54.48 39.02 34.15 13.82 33.58
Subgraph (Ours) 28.03↑1.60 59.46↑4.98 40.77↑1.75 34.71↑0.56 15.13↑1.31 35.62↑2.04
Triples Retriever (Base) 30.53 51.67 40.76 32.18 17.81 34.58
Triples Retriever (Ours) 33.67↑3.14 56.76↑5.09 46.94↑6.18 36.09↑3.91 21.41↑3.60 38.97↑4.39
ToG (Base) 26.32 54.92 41.77 43.54 18.21 36.95
ToG (Ours) 29.27↑2.95 61.40↑6.48 44.56↑2.79 49.33↑5.79 18.42↑0.21 40.60↑3.65
Qwen2.5-7B

Subgraph (Base) 28.07 55.43 41.66 33.97 15.24 34.87
Subgraph (Ours) 28.54↑0.47 60.94↑5.51 43.59↑1.93 37.43↑3.46 15.65↑0.41 37.23↑2.36
Triples Retriever (Base) 33.26 55.56 44.99 35.57 20.43 37.96
Triples Retriever (Ours) 33.98↑0.72 58.02↑2.46 48.28↑3.29 36.04↑0.47 20.56↑0.13 39.38↑1.42
ToG (Base) 25.59 57.53 43.93 46.03 18.46 38.31
ToG (Ours) 29.36↑3.77 62.85↑5.32 44.68↑0.75 50.20↑4.17 19.31↑0.85 41.28↑2.97

Table 2: Impact of our Knowledge-Indexing reward finetuned KG constructor on Graph-based Text
Retriever performance. The table shows the final RAG F1 scores, where the KG serves as an index
to retrieve text passages. KGs built with our fine-tuned models (“Ours”) lead to superior retrieval
accuracy compared to KGs from base models (“Base”), improving results for both HippoRAG and
HippoRAG2.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-3B

HippoRAG (Base) 36.28 65.55 53.22 48.97 27.44 46.29
HippoRAG (Ours) 38.28↑2.00 65.93↑0.38 55.39↑2.17 51.69↑2.72 28.11↑0.67 47.88↑1.59
HippoRAG2 (Base) 35.88 65.02 53.70 50.98 25.70 46.25
HippoRAG2 (Ours) 38.45↑2.57 66.23↑1.21 56.28↑2.58 52.80↑1.82 27.93↑2.23 48.34↑2.09
Qwen2.5-7B

HippoRAG (Base) 37.16 65.95 55.50 53.01 26.03 47.53
HippoRAG (Ours) 38.80↑1.64 67.85↑1.90 57.19↑1.69 53.60↑0.59 26.97↑0.94 48.88↑1.35
HippoRAG2 (Base) 37.02 65.74 57.08 54.99 26.77 48.32
HippoRAG2 (Ours) 38.68↑1.66 67.72↑1.97 58.98↑1.90 56.46↑1.47 27.18↑0.41 49.80↑1.48

5.4 RESULTS AND ANALYSIS

AutoGraph-R1 consistently improves downstream RAG performance across different paradigms
and model scales. Our primary finding is that optimizing KG construction for downstream utility
leads to significant end-to-end F1 score improvements over a standard zero-shot constructor. As
shown in Table 1, when the KG acts as a knowledge carrier, our method yields average F1 gains
of up to +4.39 (3B model) and +2.97 (7B model). Similarly, when the KG is a knowledge index
(Table 2), performance increases by up to +2.09 and +1.48 average F1 points for the 3B and 7B
models, respectively. This confirms that task-aware optimization is broadly effective, enhancing
utility regardless of the graph’s function or the base model’s size.

AutoGraph-R1 demonstrably improves the graph’s core function as a knowledge index. The
magnitude of F1 gains is more modest in the text retrieval setting. This is an expected outcome,
stemming from the dual nature of using full text passages as evidence. On one hand, their rich context
can enable the generator to succeed even with imperfect retrieval, masking some F1 gains. On the
other hand, this verbosity can introduce noise, unlike the concise, structured triples provided by the
graph knowledge retriever. To isolate the direct impact on retrieval quality, we evaluate passage

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

recall@5. Table 3 shows clear improvements: average recall increases by over 2 points for both 3B
and 7B model. This confirms that our RL framework creates a more effective knowledge index.

Table 3: Evaluating Knowledge Indexing Quality via Passage Recall. This table demonstrates that
KGs constructed by AutoGraph-R1 consistently improve passage recall@5 over zero-shot baselines
when used with graph-based text retrievers (HippoRAG and HippoRAG2). This confirms the RL-
optimized graph is a more effective knowledge index for guiding retrieval.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-3B

HippoRAG (Base) 79.50 92.10 68.41 70.84 46.5 71.47
HippoRAG (Ours) 93.00↑13.5 95.60↑4.20 68.82↑0.41 74.02↑3.18 47.65↑1.15 75.82↑4.35
HippoRAG2 (Base) 82.20 92.20 70.06 73.49 46.93 72.98
HippoRAG2 (Ours) 94.00↑11.8 95.40↑3.40 71.21↑1.15 76.42↑2.93 49.13↑2.2 77.23↑4.25
Qwen2.5-7B

HippoRAG (Base) 93.30 92.90 69.97 72.87 47.19 75.24
HippoRAG (Ours) 94.30↑1.0 95.80↑2.9 71.4↑1.43 76.16↑3.29 48.44↑1.25 77.22↑1.98
HippoRAG2 (Base) 94.10 92.80 72.03 75.98 48.55 76.69
HippoRAG2 (Ours) 95.00↑0.9 96.30↑3.5 73.61↑1.58 78.66↑2.68 49.23↑0.68 78.56↑1.87

Optimizing for downstream utility also enhances the intrinsic factual quality of the graph. We
investigated whether extrinsic optimization comes at the cost of intrinsic quality by measuring the
precision, recall, and F1 score of the extracted triples against the source text (Huang et al., 2025a)
using Deepseek-V3 model as a judge (DeepSeek-AI et al., 2025b). The results in Table 4 show a clear
positive correlation. Across all datasets, KGs fine-tuned with AutoGraph-R1 exhibit higher intrinsic
F1 scores than their zero-shot counterparts. This indicates our RL framework does not sacrifice
factual accuracy for functional utility; rather, it improves both simultaneously.

The choice of reward function induces specific and beneficial structural biases in the KG. A
deeper analysis of Table 4 reveals that the two reward functions specialize the graph’s structure.
The Knowledge-Carrying Reward (RC), optimized for graph knowledge retrieval, consistently
produces graphs with higher recall, aligning with its goal of ensuring all necessary facts for reasoning
are present. In contrast, the Knowledge-Indexing Reward (RI), optimized for text retrieval, yields
graphs with higher precision, reflecting its need for a clean, high-fidelity index. This finding highlights
that AutoGraph-R1 not only improves graph quality but also tailors the graph’s structure to its specific
downstream function.

Table 4: Further analysis on whether GRPO training increases the triple extraction quality, measured
by Precision, Recall and, F1 defined in previous work (Huang et al., 2025a; Bai et al., 2025).

KG Construction Model HotpotQA 2WikiMultihopQA Musique 2021Wiki

Acc Recall F1 Acc Recall F1 Acc Recall F1 Acc Recall F1

Qwen2.5-7B-Instruct 98.50 93.68 95.65 94.80 91.19 92.68 96.77 95.27 95.73 95.03 91.39 92.92
+ GRPO with Knowledge-Carrying Reward 97.53 96.66 96.71 95.51 96.55 95.25 97.14 96.75 96.45 96.17 96.66 96.15
+ GRPO with Knowledge-Indexing Reward 98.96 94.81 96.59 98.35 94.54 96.16 99.53 93.14 95.81 97.44 95.01 95.99

Qwen2.5-3B-Instruct 94.41 91.00 91.92 83.53 79.34 81.01 92.07 89.52 90.31 87.79 86.01 86.63
+ GRPO with Knowledge-Carrying Reward 96.52 94.24 94.80 95.91 96.28 95.80 97.01 94.74 95.22 96.70 95.58 95.76
+ GRPO with Knowledge-Indexing Reward 97.11 93.15 94.64 96.19 93.66 94.48 96.20 93.87 94.55 98.22 96.04 96.85

6 CONCLUSION

In this work, we introduced AutoGraph-R1, the first reinforcement learning framework for knowl-
edge graph construction that directly optimizes downstream RAG performance. By incorporating
task-aware rewards, our approach bridges the gap between traditional graph quality metrics and
end-task utility. Experiments across five QA benchmarks demonstrate consistent improvements over
strong baselines in both graph knowledge and graph-based text retrieval. Overall, our work shows
that reinforcement learning can effectively connect the graph construction process with downstream
QA performance, ensuring that knowledge graphs are optimized for their intended applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We affirm our commitment to the ICLR Code of Ethics. Our research does not involve human subjects
or the collection of new personally identifiable information. All datasets used for training (HotpotQA,
Musique) and evaluation (NQ, PopQA, etc.) are publicly available benchmarks and were used in
accordance with their licenses. All models employed (Qwen series, DeepSeek-V3) are open-source
and were run locally. We use an open-source RL framework VeRL (Sheng et al., 2025) for training.
While our work aims to improve the factuality of LLMs, we acknowledge that the underlying models
and data can contain biases, which may be reflected in the generated graphs. Experiments were
conducted on two H100 GPUs; we have focused on models in the 3B-7B parameter range to promote
accessible research.

8 REPRODUCIBILITY STATEMENT

Models Key models in our experiments include Qwen2.5-3B and Qwen2.5-7B as KG construc-
tors, a frozen Qwen2.5-7B for answer generation, and Qwen3 series models for embeddings.
DeepSeek-V3 was used as the LLM judge for evaluation. All models is open-source and available
via the Hugging Face Hub.

Code, Checkpoints, and Data. All datasets are standard public benchmarks. We will release
our full source code, including the custom reinforcement learning (RL) training loop, retriever
implementations, evaluation scripts, and specific prompts for baselines. Crucially, we will also
release the final checkpoints for our trained AutoGraph-R1 constructor models upon publication,
allowing for the direct replication of our results. All hyperparameter configurations will be provided
in the released code.

REFERENCES

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging Linguistic
Structure For Open Domain Information Extraction. In Chengqing Zong and Michael Strube
(eds.), Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 344–354, Beijing, China, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1034. URL https://aclanthology.org/P15-1034/.

Jiaxin Bai, Wei Fan, Qi Hu, Qing Zong, Chunyang Li, Hong Ting Tsang, Hongyu Luo, Yauwai Yim,
Haoyu Huang, Xiao Zhou, Feng Qin, Tianshi Zheng, Xi Peng, Xin Yao, Huiwen Yang, Leijie Wu,
Yi Ji, Gong Zhang, Renhai Chen, and Yangqiu Song. AutoSchemaKG: Autonomous Knowledge
Graph Construction through Dynamic Schema Induction from Web-Scale Corpora, August 2025.
URL http://arxiv.org/abs/2505.23628. arXiv:2505.23628 [cs].

Shengyuan Chen, Yunfeng Cai, Huang Fang, Xiao Huang, and Mingming Sun. Differentiable
Neuro-Symbolic Reasoning on Large-Scale Knowledge Graphs.

Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen Hua, Jiannong Cao, and Xiao Huang. Neuro-
Symbolic Entity Alignment via Variational Inference, October 2024a. URL http://arxiv.
org/abs/2410.04153. arXiv:2410.04153 [cs].

Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen Hua, Qing Li, and Xiao Huang. Entity
Alignment with Noisy Annotations from Large Language Models, May 2024b. URL http:
//arxiv.org/abs/2405.16806. arXiv:2405.16806 [cs].

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing Reasoning
Capability in LLMs via Reinforcement Learning, January 2025a. URL http://arxiv.org/
abs/2501.12948. arXiv:2501.12948 [cs].

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,

10

https://aclanthology.org/P15-1034/
http://arxiv.org/abs/2505.23628
http://arxiv.org/abs/2410.04153
http://arxiv.org/abs/2410.04153
http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li,
Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu,
Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei,
Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu,
Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie,
Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan
Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan
Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan
Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang,
Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang
Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. DeepSeek-V3 Technical
Report, February 2025b. URL http://arxiv.org/abs/2412.19437. arXiv:2412.19437
[cs].

Pierre Dognin, Inkit Padhi, Igor Melnyk, and Payel Das. ReGen: Reinforcement Learning for Text and
Knowledge Base Generation using Pretrained Language Models. In Marie-Francine Moens, Xuan-
jing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 1084–1099, Online and Punta Cana, Do-
minican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.83. URL https://aclanthology.org/2021.emnlp-main.83/.

Junnan Dong, Qinggang Zhang, Xiao Huang, Qiaoyu Tan, Daochen Zha, and Zhao Zihao. Active
Ensemble Learning for Knowledge Graph Error Detection. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pp. 877–885, Singapore Singapore,
February 2023. ACM. ISBN 978-1-4503-9407-9. doi: 10.1145/3539597.3570368. URL https:
//dl.acm.org/doi/10.1145/3539597.3570368.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From Local to Global: A
Graph RAG Approach to Query-Focused Summarization, February 2025. URL http://arxiv.
org/abs/2404.16130. arXiv:2404.16130 [cs].

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024a. URL https://arxiv.org/abs/2312.10997.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-Augmented Generation for Large Language Models: A Survey,
March 2024b. URL http://arxiv.org/abs/2312.10997. arXiv:2312.10997 [cs].

Michael Gubanov, Anna Pyayt, and Aleksandra Karolak. CancerKG.ORG A Web-scale, Interactive,
Verifiable Knowledge Graph-LLM Hybrid for Assisting with Optimal Cancer Treatment and
Care. In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, pp. 4497–4505, October 2024. doi: 10.1145/3627673.3680094. URL http:
//arxiv.org/abs/2501.00223. arXiv:2501.00223 [cs].

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. HippoRAG:
Neurobiologically Inspired Long-Term Memory for Large Language Models, January 2025a. URL
http://arxiv.org/abs/2405.14831. arXiv:2405.14831 [cs].

11

http://arxiv.org/abs/2412.19437
https://aclanthology.org/2021.emnlp-main.83/
https://dl.acm.org/doi/10.1145/3539597.3570368
https://dl.acm.org/doi/10.1145/3539597.3570368
http://arxiv.org/abs/2404.16130
http://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2501.00223
http://arxiv.org/abs/2501.00223
http://arxiv.org/abs/2405.14831

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From RAG to Memory:
Non-Parametric Continual Learning for Large Language Models, June 2025b. URL http:
//arxiv.org/abs/2502.14802. arXiv:2502.14802 [cs].

Haoyu Han, Harry Shomer, Yu Wang, Yongjia Lei, Kai Guo, Zhigang Hua, Bo Long, Hui Liu, and
Jiliang Tang. RAG vs. GraphRAG: A Systematic Evaluation and Key Insights, February 2025.
URL http://arxiv.org/abs/2502.11371. arXiv:2502.11371 [cs].

Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan Shareghi. PiVe: Prompting with Iterative
Verification Improving Graph-based Generative Capability of LLMs, May 2024. URL http:
//arxiv.org/abs/2305.12392. arXiv:2305.12392 [cs].

Mengliang He, Aimin Zhou, and Xiaoming Shi. Enhancing Textbook Question Answering with
Knowledge Graph-Augmented Large Language Models.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann LeCun, Xavier
Bresson, and Bryan Hooi. G-Retriever: Retrieval-Augmented Generation for Textual Graph
Understanding and Question Answering, May 2024. URL http://arxiv.org/abs/2402.
07630. arXiv:2402.07630 [cs].

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A Multi-
hop QA Dataset for Comprehensive Evaluation of Reasoning Steps, November 2020. URL
http://arxiv.org/abs/2011.01060. arXiv:2011.01060 [cs].

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the
Base Model, July 2025. URL http://arxiv.org/abs/2503.24290. arXiv:2503.24290
[cs].

Haoyu Huang, Chong Chen, Zeang Sheng, Yang Li, and Wentao Zhang. Can LLMs be Good Graph
Judge for Knowledge Graph Construction?, May 2025a. URL http://arxiv.org/abs/
2411.17388. arXiv:2411.17388 [cs].

Jiatan Huang, Mingchen Li, Zonghai Yao, Zhichao Yang, Yongkang Xiao, Feiyun Ouyang, Xiaohan
Li, Shuo Han, and Hong Yu. RiTeK: A Dataset for Large Language Models Complex Reasoning
over Textual Knowledge Graphs, October 2024. URL http://arxiv.org/abs/2410.
13987. arXiv:2410.13987 [cs].

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A Survey on Hallucination
in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions. ACM
Transactions on Information Systems, 43(2):1–55, March 2025b. ISSN 1046-8188, 1558-2868.
doi: 10.1145/3703155. URL http://arxiv.org/abs/2311.05232. arXiv:2311.05232
[cs].

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot Learning with
Retrieval Augmented Language Models, November 2022. URL http://arxiv.org/abs/
2208.03299. arXiv:2208.03299 [cs].

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong
Chen, Wenliang Dai, Ho Shu Chan, Andrea Madotto, and Pascale Fung. Survey of Hallucination in
Natural Language Generation. ACM Computing Surveys, 55(12):1–38, December 2023. ISSN 0360-
0300, 1557-7341. doi: 10.1145/3571730. URL http://arxiv.org/abs/2202.03629.
arXiv:2202.03629 [cs].

Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun,
and Jiawei Han. DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language
Models via Reinforcement Learning, April 2025a. URL http://arxiv.org/abs/2503.
00223. arXiv:2503.00223 [cs].

Pengcheng Jiang, Xueqiang Xu, Jiacheng Lin, Jinfeng Xiao, Zifeng Wang, Jimeng Sun, and Jiawei
Han. s3: You Don’t Need That Much Data to Train a Search Agent via RL, May 2025b. URL
http://arxiv.org/abs/2505.14146. arXiv:2505.14146 [cs].

12

http://arxiv.org/abs/2502.14802
http://arxiv.org/abs/2502.14802
http://arxiv.org/abs/2502.11371
http://arxiv.org/abs/2305.12392
http://arxiv.org/abs/2305.12392
http://arxiv.org/abs/2402.07630
http://arxiv.org/abs/2402.07630
http://arxiv.org/abs/2011.01060
http://arxiv.org/abs/2503.24290
http://arxiv.org/abs/2411.17388
http://arxiv.org/abs/2411.17388
http://arxiv.org/abs/2410.13987
http://arxiv.org/abs/2410.13987
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2202.03629
http://arxiv.org/abs/2503.00223
http://arxiv.org/abs/2503.00223
http://arxiv.org/abs/2505.14146

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
Tang, Suhang Wang, Yu Meng, and Jiawei Han. Graph Chain-of-Thought: Augmenting Large
Language Models by Reasoning on Graphs, October 2024. URL http://arxiv.org/abs/
2404.07103. arXiv:2404.07103 [cs].

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Ji-
awei Han. Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement
Learning, July 2025. URL http://arxiv.org/abs/2503.09516. arXiv:2503.09516 [cs].

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey, May 1996.
URL http://arxiv.org/abs/cs/9605103. arXiv:cs/9605103.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A Survey of Reinforcement
Learning from Human Feedback, April 2024. URL http://arxiv.org/abs/2312.14925.
arXiv:2312.14925 [cs].

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural Questions: A Benchmark for Question Answering Research. Transactions of
the Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276.
URL https://aclanthology.org/Q19-1026/. Place: Cambridge, MA Publisher: MIT
Press.

Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, and Pierre Cléau. iText2KG:
Incremental Knowledge Graphs Construction Using Large Language Models, September 2024.
URL http://arxiv.org/abs/2409.03284. arXiv:2409.03284 [cs].

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, April 2021. URL
http://arxiv.org/abs/2005.11401. arXiv:2005.11401 [cs].

Mufei Li, Siqi Miao, and Pan Li. Simple Is Effective: The Roles of Graphs and Large Language
Models in Knowledge-Graph-Based Retrieval-Augmented Generation, February 2025a. URL
http://arxiv.org/abs/2410.20724. arXiv:2410.20724 [cs].

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu,
Yangguang Li, Wanli Ouyang, Wenbo Su, and Bo Zheng. GraphReader: Building Graph-based
Agent to Enhance Long-Context Abilities of Large Language Models, November 2024a. URL
http://arxiv.org/abs/2406.14550. arXiv:2406.14550 [cs].

Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei,
Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui
Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, and Philip S. Yu.
Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs,
July 2025b. URL http://arxiv.org/abs/2507.09477. arXiv:2507.09477 [cs].

Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xianpei
Han, Le Sun, and Yongbin Li. StructRAG: Boosting Knowledge Intensive Reasoning of LLMs
via Inference-time Hybrid Information Structurization, October 2024b. URL http://arxiv.
org/abs/2410.08815. arXiv:2410.08815 [cs].

Xun Liang, Simin Niu, Zhiyu li, Sensen Zhang, Shichao Song, Hanyu Wang, Jiawei Yang, Feiyu
Xiong, Bo Tang, and Chenyang Xi. Empowering Large Language Models to Set up a Knowl-
edge Retrieval Indexer via Self-Learning, May 2024. URL http://arxiv.org/abs/2405.
16933. arXiv:2405.16933 [cs].

Haochen Liu, Song Wang, Yaochen Zhu, Yushun Dong, and Jundong Li. Knowledge Graph-Enhanced
Large Language Models via Path Selection, June 2024a. URL http://arxiv.org/abs/
2406.13862. arXiv:2406.13862 [cs].

13

http://arxiv.org/abs/2404.07103
http://arxiv.org/abs/2404.07103
http://arxiv.org/abs/2503.09516
http://arxiv.org/abs/cs/9605103
http://arxiv.org/abs/2312.14925
https://aclanthology.org/Q19-1026/
http://arxiv.org/abs/2409.03284
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2410.20724
http://arxiv.org/abs/2406.14550
http://arxiv.org/abs/2507.09477
http://arxiv.org/abs/2410.08815
http://arxiv.org/abs/2410.08815
http://arxiv.org/abs/2405.16933
http://arxiv.org/abs/2405.16933
http://arxiv.org/abs/2406.13862
http://arxiv.org/abs/2406.13862

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin, and Qianxiang
Wang. GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based
Retrieval and Language Model, September 2024b. URL http://arxiv.org/abs/2406.
07003. arXiv:2406.07003 [cs].

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael Shieh, and
Wenmeng Zhou. CodexGraph: Bridging Large Language Models and Code Repositories via
Code Graph Databases, August 2024c. URL http://arxiv.org/abs/2408.03910.
arXiv:2408.03910 [cs].

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding R1-Zero-Like Training: A Critical Perspective, March 2025. URL
http://arxiv.org/abs/2503.20783. arXiv:2503.20783 [cs].

Haoran Luo, Haihong E, Guanting Chen, Qika Lin, Yikai Guo, Fangzhi Xu, Zemin Kuang, Meina
Song, Xiaobao Wu, Yifan Zhu, and Luu Anh Tuan. Graph-R1: Towards Agentic GraphRAG
Framework via End-to-end Reinforcement Learning, July 2025. URL http://arxiv.org/
abs/2507.21892. arXiv:2507.21892 [cs].

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-
guided Retrieval Augmented Generation, February 2025. URL http://arxiv.org/abs/
2407.10805. arXiv:2407.10805 [cs].

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Ha-
jishirzi. When Not to Trust Language Models: Investigating Effectiveness of Parametric
and Non-Parametric Memories, July 2023. URL http://arxiv.org/abs/2212.10511.
arXiv:2212.10511 [cs].

Belinda Mo, Kyssen Yu, Joshua Kazdan, Proud Mpala, Lisa Yu, Chris Cundy, Charilaos Kanatsoulis,
and Sanmi Koyejo. KGGen: Extracting Knowledge Graphs from Plain Text with Language Models,
February 2025. URL http://arxiv.org/abs/2502.09956. arXiv:2502.09956 [cs].

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, March 2022.
URL http://arxiv.org/abs/2203.02155. arXiv:2203.02155 [cs].

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. Graph retrieval-augmented generation: A survey, 2024a. URL https://arxiv.org/
abs/2408.08921.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and
Siliang Tang. Graph Retrieval-Augmented Generation: A Survey, September 2024b. URL
http://arxiv.org/abs/2408.08921. arXiv:2408.08921 [cs].

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E. Smith, Nima PourNejatian, Anthony B. Costa, Cheryl
Martin, Mona G. Flores, Ying Zhang, Tanja Magoc, Gloria Lipori, Duane A. Mitchell, Naykky S.
Ospina, Mustafa M. Ahmed, William R. Hogan, Elizabeth A. Shenkman, Yi Guo, Jiang Bian,
and Yonghui Wu. A Study of Generative Large Language Model for Medical Research and
Healthcare. npj Digital Medicine, 6(1):210, November 2023. ISSN 2398-6352. doi: 10.1038/
s41746-023-00958-w. URL http://arxiv.org/abs/2305.13523. arXiv:2305.13523
[cs].

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report, January 2025.
URL http://arxiv.org/abs/2412.15115. arXiv:2412.15115 [cs].

14

http://arxiv.org/abs/2406.07003
http://arxiv.org/abs/2406.07003
http://arxiv.org/abs/2408.03910
http://arxiv.org/abs/2503.20783
http://arxiv.org/abs/2507.21892
http://arxiv.org/abs/2507.21892
http://arxiv.org/abs/2407.10805
http://arxiv.org/abs/2407.10805
http://arxiv.org/abs/2212.10511
http://arxiv.org/abs/2502.09956
http://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
http://arxiv.org/abs/2408.08921
http://arxiv.org/abs/2305.13523
http://arxiv.org/abs/2412.15115

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Pol-
icy Optimization Algorithms, August 2017. URL http://arxiv.org/abs/1707.06347.
arXiv:1707.06347 [cs].

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024. URL http://arxiv.org/
abs/2402.03300. arXiv:2402.03300 [cs].

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A Stable
and Generalizable R1-style Large Vision-Language Model, April 2025a. URL http://arxiv.
org/abs/2504.07615. arXiv:2504.07615 [cs].

Xiangqing Shen, Fanfan Wang, and Rui Xia. Reason-Align-Respond: Aligning LLM Reasoning with
Knowledge Graphs for KGQA, May 2025b. URL http://arxiv.org/abs/2505.20971.
arXiv:2505.20971 [cs].

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. HybridFlow: A Flexible and Efficient RLHF Framework. In Pro-
ceedings of the Twentieth European Conference on Computer Systems, pp. 1279–1297, March
2025. doi: 10.1145/3689031.3696075. URL http://arxiv.org/abs/2409.19256.
arXiv:2409.19256 [cs].

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M. Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-Graph: Deep and Responsible Reasoning of Large
Language Model on Knowledge Graph, March 2024. URL http://arxiv.org/abs/2307.
07697. arXiv:2307.07697 [cs].

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
Questions via Single-hop Question Composition, May 2022. URL http://arxiv.org/abs/
2108.00573. arXiv:2108.00573 [cs].

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge Graph
Prompting for Multi-Document Question Answering, December 2023. URL http://arxiv.
org/abs/2308.11730. arXiv:2308.11730 [cs] version: 3.

Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min Xu, Filippo Menolascina, and Vicente
Grau. Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-
Augmented Generation, October 2024. URL http://arxiv.org/abs/2408.04187.
arXiv:2408.04187 [cs].

Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen
Liu, Yong Yu, and Weinan Zhang. A Survey of LLM-based Deep Search Agents: Paradigm,
Optimization, Evaluation, and Challenges, August 2025. URL http://arxiv.org/abs/
2508.05668. arXiv:2508.05668 [cs].

Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, and Jin-
song Su. When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented
Generation, June 2025. URL http://arxiv.org/abs/2506.05690. arXiv:2506.05690
[cs].

Bingcong Xue and Lei Zou. Knowledge Graph Quality Management: a Comprehensive Survey. IEEE
Transactions on Knowledge and Data Engineering, pp. 1–1, 2022. ISSN 1041-4347, 1558-2191,
2326-3865. doi: 10.1109/TKDE.2022.3150080. URL https://ieeexplore.ieee.org/
document/9709663/.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question An-
swering, September 2018. URL http://arxiv.org/abs/1809.09600. arXiv:1809.09600
[cs].

15

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2504.07615
http://arxiv.org/abs/2504.07615
http://arxiv.org/abs/2505.20971
http://arxiv.org/abs/2409.19256
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2108.00573
http://arxiv.org/abs/2108.00573
http://arxiv.org/abs/2308.11730
http://arxiv.org/abs/2308.11730
http://arxiv.org/abs/2408.04187
http://arxiv.org/abs/2508.05668
http://arxiv.org/abs/2508.05668
http://arxiv.org/abs/2506.05690
https://ieeexplore.ieee.org/document/9709663/
https://ieeexplore.ieee.org/document/9709663/
http://arxiv.org/abs/1809.09600

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: An
Open-Source LLM Reinforcement Learning System at Scale, May 2025. URL http://arxiv.
org/abs/2503.14476. arXiv:2503.14476 [cs].

Zishun Yu, Yunzhe Tao, Liyu Chen, Tao Sun, and Hongxia Yang. \mathcal{B}-Coder: Value-
Based Deep Reinforcement Learning for Program Synthesis, March 2024. URL http://arxiv.
org/abs/2310.03173. arXiv:2310.03173 [cs].

Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, and Linchuan Xu. Contrastive
Knowledge Graph Error Detection. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 2590–2599, October 2022. doi: 10.1145/3511808.
3557264. URL http://arxiv.org/abs/2211.10030. arXiv:2211.10030 [cs].

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. KnowGPT:
Knowledge Graph based Prompting for Large Language Models, June 2024a. URL http:
//arxiv.org/abs/2312.06185. arXiv:2312.06185 [cs].

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan
Dong, Hao Chen, Yi Chang, and Xiao Huang. A Survey of Graph Retrieval-Augmented Generation
for Customized Large Language Models, January 2025a. URL http://arxiv.org/abs/
2501.13958. arXiv:2501.13958 [cs] version: 1.

Weizhi Zhang, Yangning Li, Yuanchen Bei, Junyu Luo, Guancheng Wan, Liangwei Yang, Chenxuan
Xie, Yuyao Yang, Wei-Chieh Huang, Chunyu Miao, Henry Peng Zou, Xiao Luo, Yusheng Zhao,
Yankai Chen, Chunkit Chan, Peilin Zhou, Xinyang Zhang, Chenwei Zhang, Jingbo Shang, Ming
Zhang, Yangqiu Song, Irwin King, and Philip S. Yu. From Web Search towards Agentic Deep
Research: Incentivizing Search with Reasoning Agents, July 2025b. URL http://arxiv.
org/abs/2506.18959. arXiv:2506.18959 [cs].

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 Embedding:
Advancing Text Embedding and Reranking Through Foundation Models, June 2025c. URL
http://arxiv.org/abs/2506.05176. arXiv:2506.05176 [cs].

Yichi Zhang, Binbin Hu, Zhuo Chen, Lingbing Guo, Ziqi Liu, Zhiqiang Zhang, Lei Liang, Huajun
Chen, and Wen Zhang. Multi-domain Knowledge Graph Collaborative Pre-training and Prompt
Tuning for Diverse Downstream Tasks, May 2024b. URL http://arxiv.org/abs/2405.
13085. arXiv:2405.13085 [cs] version: 1.

Xinjie Zhao, Moritz Blum, Rui Yang, Boming Yang, Luis Márquez Carpintero, Mónica Pina-Navarro,
Tony Wang, Xin Li, Huitao Li, Yanran Fu, Rongrong Wang, Juntao Zhang, and Irene Li. AGENTi-
Graph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data,
October 2024. URL http://arxiv.org/abs/2410.11531. arXiv:2410.11531 [cs].

Tianshi Zheng, Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, and Yangqiu
Song. From Automation to Autonomy: A Survey on Large Language Models in Scientific
Discovery, August 2025. URL http://arxiv.org/abs/2505.13259. arXiv:2505.13259
[cs].

Changtai Zhu, Siyin Wang, Ruijun Feng, Kai Song, and Xipeng Qiu. ConvSearch-R1: Enhancing
Query Reformulation for Conversational Search with Reasoning via Reinforcement Learning, May
2025. URL http://arxiv.org/abs/2505.15776. arXiv:2505.15776 [cs].

16

http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2310.03173
http://arxiv.org/abs/2310.03173
http://arxiv.org/abs/2211.10030
http://arxiv.org/abs/2312.06185
http://arxiv.org/abs/2312.06185
http://arxiv.org/abs/2501.13958
http://arxiv.org/abs/2501.13958
http://arxiv.org/abs/2506.18959
http://arxiv.org/abs/2506.18959
http://arxiv.org/abs/2506.05176
http://arxiv.org/abs/2405.13085
http://arxiv.org/abs/2405.13085
http://arxiv.org/abs/2410.11531
http://arxiv.org/abs/2505.13259
http://arxiv.org/abs/2505.15776

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A TRAINING DYNAMICS OF AUTOGRAPH-R1

0 10 20 30 40 50
Step

0.35

0.40

0.45

0.50

0.55

0.60

0.65

D
ed

uc
ab

le
critic/rewards/deducable (Smoothed, Window=10)

Run Name
Graph-Retriever-3B
Graph-Retriever-7B

(a) Reward convergence.

0 10 20 30 40 50
Step

0.15

0.10

0.05

0.00

0.05

M
ea

n

critic/advantages/mean (Smoothed, Window=10)

Run Name
Graph-Retriever-3B
Graph-Retriever-7B

(b) Positive advantage gain.

Figure 3: Effective Training Dynamics with the Deducible Reward (RC). Training curves for
the Graph Knowledge Retriever setting. (a) The reward, measuring answer deducibility, steadily
increases and converges, demonstrating the policy is successfully learning its objective. (b) The
advantage gain trends towards a small negative value, indicating that the value function’s estimate of
expected reward is rising quickly while the policy makes stable, incremental improvements. This
dynamic, coupled with the rising absolute reward, points to effective and controlled optimization.

0 10 20 30 40 50
Step

0.2

0.3

0.4

0.5

0.6

R
ec

al
l

critic/rewards/recall (Smoothed, Window=10)

Run Name
Graph-Text-Retriever-DistractorSize-15-3B
Graph-Text-Retriever-DistractorSize-15-7B

(a) Reward convergence.

0 10 20 30 40 50
Step

0.05

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n

critic/advantages/mean (Smoothed, Window=10)
Run Name

Graph-Text-Retriever-DistractorSize-15-3B
Graph-Text-Retriever-DistractorSize-15-7B

(b) Positive advantage gain.

Figure 4: Effective Training Dynamics with the Knowledge-Indexing Reward (RI). Training
curves for the Graph-based Text Retriever setting. (a) The reward, measuring passage recall, shows a
clear upward trend of improvement. (b) The advantage gain dynamic, paired with the rising reward
curve, confirms that the policy is effectively learning from this stable, task-specific signal.

B IMPACT OF USING F1 REWARD FOR AUTOGRAPH-R1

To validate our choice of using task-specific rewards (RC and RI), we conducted an ablation study
comparing them against a more direct but potentially noisier signal: the final answer’s F1 score. We
trained two additional KG constructor models using the RAG F1 score as the reward signal. The
results demonstrate that our proposed task-specific rewards are significantly more effective and stable,
a finding supported by both the training dynamics and final performance metrics.

F1-based RL leads to unstable training and poor performance. Figure 5a illustrates the instability
inherent in using the final F1 score as a reward. The reward curve (Figure 5a) exhibits high variance
and lacks a clear, monotonic upward trend comparing with using task specific reward, indicating a
noisy learning signal.

The downstream impact of this unstable training is evident in Tables 5 and 6. For graph knowledge
retrievers, the F1-rewarded model yields inconsistent results and, in the case of the Triples Retriever,
underperforms the zero-shot baseline by over -2.2 avg. F1 points. This contrasts sharply with our
Knowledge-Carrying Reward (RC), which delivers consistent gains across all retriever types. The
failure is even more pronounced for graph-based text retrievers. The F1-rewarded model degrades
average performance below the baseline for both HippoRAG and HippoRAG2. Table 7 reveals why

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Step

0.2

0.3

0.4

0.5

0.6

0.7

F1
 S

co
re

critic/rewards/f1_score (Smoothed, Window=10)

Run Name
Graph-Retriever-F1-7B
Graph-Text-Retriever-F1-7B

(a) Volatile reward signal.

0 10 20 30 40 50
Step

0.10

0.05

0.00

0.05

0.10

M
ea

n

critic/advantages/mean (Smoothed, Window=10)

Run Name
Graph-Retriever-F1-7B
Graph-Text-Retriever-F1-7B

(b) Stagnant advantage gain.

Figure 5: Unstable Training Dynamics Using a Naive F1 Reward. Training curves for the ablation
study where the final RAG F1 score is used as the reward. (a) The F1 reward signal is highly volatile
and shows no clear upward trend, providing a noisy and ineffective learning signal. (b) Consequently,
the advantage gain remains flat and centered around zero, confirming that the policy is failing to find
a consistent direction for improvement. This leads to stalled optimization, as reflected in the poor
downstream results.

Table 5: Ablation Study on Reward Functions for Graph Knowledge Retrievers. This table
compares the final RAG F1 scores of KGs built using a zero-shot baseline, our proposed Deducible
Reward (RC), and a naive F1 Reward. Results are for the Qwen2.5-7B model. Our task-specific
Deducible Reward consistently outperforms the unstable F1 Reward.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-7B

Subgraph (Base) 28.07 55.43 41.66 33.97 15.24 34.87
Subgraph (F1 Reward) 27.36 55.09 41.15 35.13 15.70 34.89
Subgraph (Knowledge-Carrying Reward) 28.54 60.94 43.59 37.43 15.65 37.23

Triples Retriever (Base) 33.26 55.56 44.99 35.57 20.43 37.96
Triples Retriever (F1 Reward) 31.52 53.85 44.52 30.68 18.00 35.71
Triples Retriever (Knowledge-Carrying Reward) 33.98 58.02 48.28 36.04 20.56 39.38

ToG (Base) 25.59 57.53 43.93 46.03 18.46 38.31
ToG (F1 Reward) 27.64 56.95 45.19 51.10 18.37 39.85
ToG (Knowledge-Carrying Reward) 29.36 62.85 44.68 50.20 19.31 41.28

Table 6: Ablation Study on Reward Functions for Graph-based Text Retrievers. This table compares
the final RAG F1 scores using KGs from a zero-shot baseline, our Recall Reward (RI), and a naive
F1 Reward. Results are for the Qwen2.5-7B model. The F1 Reward signal is unstable and degrades
performance, while our task-specific Recall Reward provides consistent gains.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-7B

HippoRAG (Base) 37.16 65.95 55.50 53.01 26.03 47.53
HippoRAG (F1 Reward) 39.66 63.74 53.74 49.58 28.68 47.08
HippoRAG (Knowledge-Indexing Reward) 38.80 67.85 57.19 53.60 26.97 48.88

HippoRAG2 (Base) 37.02 65.74 57.08 54.99 26.77 48.32
HippoRAG2 (F1 Reward) 38.33 62.92 55.19 50.23 27.51 46.83
HippoRAG2 (Knowledge-Indexing Reward) 38.68 67.72 58.98 56.46 27.18 49.80

using the F1 reward actively hurts retrieval quality, causing a drop in average recall@5. This suggests
the optimizer, chasing a volatile signal, creates a graph that is structurally worse for retrieval.

In contrast, our proposed Knowledge-Indexing Reward, (RI) provides consistent and positive gains
in both final F1 score and, critically, in the underlying recall@5 metric. Overall, this two-part analysis
provides compelling evidence that a direct, task-specific reward measuring a graph’s functional utility

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Ablation Study on Reward Functions for Knowledge Indexing Quality (Recall@5). This
table shows the direct impact of the reward function on the graph’s ability to guide text retrieval.
While our task-specific Recall Reward (RI) consistently improves recall, the naive F1 Reward
often degrades it below the baseline, highlighting its unsuitability for this task.

Methods Simple QA Multihop QA Overall

NQ* PopQA* HotpotQA 2WikiQA Musique Avg.

Qwen2.5-7B

HippoRAG
HippoRAG (Base) 93.30 92.90 69.97 72.87 47.19 75.25
HippoRAG (F1 Reward) 93.90 92.10 69.18 72.71 47.71 75.12
HippoRAG (Recall Reward) 94.30 95.80 71.40 76.16 48.44 77.22

HippoRAG2
HippoRAG2 (Base) 94.10 92.80 72.03 75.98 48.55 76.69
HippoRAG2 (F1 Reward) 94.80 92.00 71.07 72.81 48.75 75.88
HippoRAG2 (Recall Reward) 95.00 96.30 73.61 78.66 49.23 78.56

is a more stable and effective signal for RL-based KG construction than a sparse and noisy end-to-end
task metric.

C CASE STUDIES: THE FUNCTIONAL ADVANTAGE OF AUTOGRAPH-R1

To qualitatively illustrate the benefits of our task-aware optimization, we present two case studies from
the 2WikiMultiHopQA dataset that highlight how AutoGraph-R1 constructs functionally superior
knowledge graphs compared to a standard zero-shot baseline.

C.1 CASE STUDY 1: COMPARATIVE REASONING

The first case study examines a question requiring a comparison between the death dates of two film
directors. This task requires the KG to contain specific, comparable facts (i.e., dates) for multiple
entities. As shown in Figure 6, the zero-shot KG fails because it does not extract the specific
death dates needed for comparison. In contrast, the KG constructed by AutoGraph-R1 contains the
necessary date information, as the RL training has taught the constructor that dates are critical for
such questions. This complete evidence enables the LLM to easily answer the question correctly.

C.2 CASE STUDY 2: PATH-BASED REASONING

The second case study involves a 2-hop question that requires finding a path from a film to its director,
and then from the director to their child. This task depends on the structural connectivity of the graph.

As shown in Figure 7, the zero-shot KG (top) fails critically. While it successfully extracts the first
link in the path—‘ (Los Pagares de Mendieta, directed by, Leopoldo Torres Rı́os)‘—it fails to extract
the second, crucial link about the director’s child. The reasoning path is broken after the first hop,
causing the QA system to fail. In contrast, the AutoGraph-R1 KG (bottom) explicitly contains the
complete 2-hop reasoning path. It successfully extracts both ‘(Los Pagares de Mendieta, directed by,
Leopoldo Torres Rı́os)‘ and ‘(Leopoldo Torres Rı́os, father of, Leopoldo Torre Nilsson)‘. The RL
process has rewarded the constructor for building these essential connective trails, recognizing that
entity linkage across different relationships is crucial for multi-hop QA.

D AUTOGRAPH-R1 TRAINING ALGORITHM

The end-to-end training process for the AutoGraph-R1 KG constructor is formalized in Algorithm
1. The core idea is to iteratively construct a knowledge graph for a given query and its context
documents, evaluate the graph’s utility using a task-specific reward function, and then update the
constructor’s policy using the collected rewards.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Case Study 1: Zero-Shot KG (ToG Retriever) - Failed Answer

Question: Which film has the director who died first, The Goose Woman or You Can No Longer
Remain Silent?
Retrieved Triples:
"(You Can No Longer Remain Silent, directed by, Robert A. Stemmle)",
"(Robert A. Stemmle, died in, Baden-Baden, Germany)",
"(The Goose Woman, directed by, Clarence Brown)",
"(Clarence Brown, was a, American film director)"
... (and other irrelevant triples)

Case Study 1: AutoGraph-R1 KG (ToG Retriever) - Correct Answer

Question: Which film has the director who died first, The Goose Woman or You Can No Longer
Remain Silent?
Retrieved Triples:
"(You Can No Longer Remain Silent, directed by, Robert A. Stemmle)",
"(Robert A. Stemmle, died on, 24 February 1974)",
"(The Goose Woman, directed by, Clarence Brown)",
"(Clarence Brown, died on, August 17, 1987)",
...

Figure 6: Qualitative comparison for a comparative reasoning question. The zero-shot KG lacks
specific death dates, leading to failure. The AutoGraph-R1 KG, optimized for task utility, successfully
extracts the critical dates needed for comparison.

Case Study 2: Zero-Shot KG (ToG Retriever) - Failed Answer

Question: Who is the child of the director of film Los Pagares De Mendieta?
Retrieved Triples:
"(Los Pagares de Mendieta, directed by, Leopoldo Torres R0̆0edos)",
"(Leopoldo Torres R0̆0edos, age at death, 60)",
"(Leopoldo Torres R0̆0edos, occupation, film director and
screenwriter)",
... (and other facts about the director, but not their child)

Case Study 2: AutoGraph-R1 KG (ToG Retriever) - Correct Answer

Question: Who is the child of the director of film Los Pagares De Mendieta?
Retrieved Triples:
"(Los Pagares de Mendieta, directed by, Leopoldo Torres R0̆0edos)",
"(Leopoldo Torres R0̆0edos, father of, Leopoldo Torre Nilsson, ...)",
"(Leopoldo Torres R0̆0edos, born on, 27 December 1899)",
...

Figure 7: Qualitative comparison for a 2-hop path-based question. The zero-shot KG extracts the
first link (director of the film) but misses the second (child of the director), breaking the reasoning
path. The AutoGraph-R1 KG successfully constructs the full path.

E PROMPTS

This section details the specific prompts used in our experimental pipeline. The process begins with
the graph construction prompt (Figure 8), which guides the LLM to extract triples from raw text.
During RL training, the Knowledge-Carrying Reward (RC) is determined using the deducibility
judge prompt shown in Figure 9. For the final RAG answer generation step, we use distinct prompts
tailored to the retrieved context: one for linearized graph triples (Figure 10) and another for raw
text passages (Figure 11). Finally, Figure 12 shows the prompts used for our intrinsic graph quality
analysis, where an LLM judge generates and answers multiple-choice questions to evaluate factual
coverage.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 AutoGraph-R1 Training Loop

1: Input: Training dataset S = {(qi, yi,Dqi)}Ni=1, where Dqi are the context documents for query
qi.

2: Input: KG constructor policy πKG
θ (an LLM).

3: Input: Frozen retrieverRfrozen (either a graph knowledge retriever or a graph-based text retriever).
4: Input: Chosen reward function Rtask (either RC or RI).
5: Initialize: Policy parameters θ.
6: for each training step do
7: Sample a minibatch of data {(q, y,Dq)} from S.
8: Initialize an empty list of trajectories ‘trajectories‘.
9: for each sample (q, y,Dq) in the minibatch do

10: ▷ Step 1: Construct the Knowledge Graph
11: Generate the graph by sampling from the policy: G ∼ πKG

θ (· | Dq).
12: ▷ Step 2: Determine Task-Specific Reward
13: if Rtask is Knowledge-Carrying Reward (RC) then
14: Use the frozen retrieverRgraph to get evidence P(q) from G.
15: Calculate reward r = RC(q, y,P(q)) using Eq. (1).
16: else if Rtask is Knowledge-Indexing Reward (RI) then
17: Use the frozen retrieverRtext to get passages T (q) from G.
18: Calculate reward r = RI(q, y, T (q)) using Eq. (2).
19: end if
20: Store the generation trajectory (actions taken to build G) and the final reward r in

‘trajectories‘.
21: end for
22: ▷ Step 3: Update Policy Parameters
23: Compute the policy gradient∇θJ(θ) using the stored ‘trajectories‘ and a policy optimization

algorithm (e.g., GRPO).
24: Update the policy parameters: θ ← θ − η · ∇θJ(θ).
25: end for
26: Return: Optimized KG constructor parameters θ.

Graph Construction

Graph Generation System Prompt:
You are an expert knowledge graph constructor. Your task is to extract factual information from the
provided text and represent it strictly as a JSON array of knowledge graph triples.
Output Format

- The output must be a **JSON array**.
- Each element in the array must be a **JSON object** with exactly three non-empty keys:

- ”subject”: the main entity, concept, event, or attribute.
- ”relation”: a concise, descriptive phrase or verb that describes the relationship (e.g., ”founded

by”, ”started on”, ”is a”, ”has circulation of”).
- ”object”: the entity, concept, value, event, or attribute that the subject has a relationship with.

Constraints
- **Do not include any text other than the JSON output.**
- Do not add explanations, comments, or formatting outside of the JSON array.
- Extract **all possible and relevant triples**.
- All keys must exist and all values must be non-empty strings.
- The ”subject” and ”object” can be specific entities (e.g., ”Radio City”, ”Football in Albania”,

”Echosmith”) or specific values (e.g., ”3 July 2001”, ”1,310,696”).
- If no triples can be extracted, return exactly: ‘[]‘.

Extracts for: {passage}

Figure 8: The prompt used for both zero-shot KG construction and fine-tuning KG constructor model
during RL.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Deducible Judge

Deducible Judge Prompt:
As an advanced reading comprehension assistant, your task is to evaluate whether the provided knowl-
edge graph (KG) context contains sufficient information to deduce the given true answer to the question.
Analyze the KG context carefully and determine if it fully supports the true answer without requiring
external knowledge. Respond with only ’Yes’ or ’No’, indicating whether the true answer can be
deduced from the KG context.
Knowledge graph (KG) context:{triples string}
Question:{query}
True Answer:{answer}
Can the true answer be deduced from the KG context? Answer ’Yes’ or ’No’ only.

Figure 9: The prompts for freeze LLM to determine the Knowledge-Carrying Reward (RC). The
’Yes’ or ’No’ response serves as the binary reward signal.

Graph Retriever Answer Generation

Answer Generation Prompt For Graph Retriever:
As an advanced reading comprehension assistant, your task is to analyze extracted information and
corresponding questions meticulously. If the knowledge graph information is not enough, you can use
your own knowledge to answer the question. Your response start after ”Thought: ”, where you will
methodically break down the reasoning process, illustrating how you arrive at conclusions. Conclude
with ”Answer: ” to present a concise, definitive response as a noun phrase, no elaborations.
{triples string}
{question}
Thought:

Figure 10: The prompt used by the final answer generator when the retrieved evidence consists of
linearized knowledge graph triples.

Graph Text Retriever Answer Generation

Answer Generation Prompt:
As an advanced reading comprehension assistant, your task is to analyze text passages and corresponding
questions meticulously. If the information is not enough, you can use your own knowledge to answer the
question. Your response start after ”Thought: ”, where you will methodically break down the reasoning
process, illustrating how you arrive at conclusions. Conclude with ”Answer: ” to present a concise,
definitive response as a noun phrase, no elaborations.
{Retrieved Texts}
{question}
Thought:

Figure 11: The prompt used by the final answer generator when the retrieved evidence consists of
raw text passages.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Multiple-Choice Question Generation and Answering

MCQ Generation Prompt:
You are an expert in generating multiple-choice questions (MCQs) from scientific texts. Your task is to
generate 5 multiple-choice questions based on the following passage.
Each question should:

- Focus on factual claims, numerical data, definitions, or relational knowledge from the passage.
- Have 4 options (one correct answer and three plausible distractors).
- Clearly indicate the correct answer.

The output should be in JSON format, with each question as a dictionary containing:
- ”question”: The MCQ question.
- ”options”: A list of 4 options (e.g., [”A: ..”, ”B: ..”, ”C: ..”, ”D: ..”]).
- ”answer”: The correct answer (e.g., ”A”).

Passage: {passage}

MCQ Answering Prompt:
Given the contexts or evidences: {contexts}
Here is a multiple-choice question:
Question: {question}
Options: A. {options 0} B. {options 1} C. {options 2} D. {options 3}
Please select the correct answer by choosing A, B, C, or D. Respond with only the letter of your choice.

Figure 12: The prompt provided to the LLM judge (DeepSeek-V3) to evaluate triples extraction
quality

23

	Introduction
	Related Work
	Graph-based Retrieval-Augmented Generation
	Reinforcement Learning for Language Model Optimization

	Preliminaries
	Knowledge Graph Construction
	Retrieval Module
	Answer Generation

	AutoGraph-R1
	Reinforcement Learning for Graph Construction
	Reward Design for Functional Graph Construction
	GRPO for Graph Construction

	Experiments
	Datasets and Corpora
	Experiments Configs
	Baselines
	Results and Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Training Dynamics of AutoGraph-R1
	Impact of using F1 reward for AutoGraph-R1
	Case Studies: The Functional Advantage of AutoGraph-R1
	Case Study 1: Comparative Reasoning
	Case Study 2: Path-Based Reasoning

	AutoGraph-R1 Training Algorithm
	Prompts

