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Abstract

Despite the many recent advances in reinforcement learning (RL), the question
of learning policies that robustly satisfy state constraints under disturbances re-
mains open. This paper reveals how robustness arises naturally by combining two
common practices in unconstrained RL: entropy regularization and constraints
penalization. Our results provide a method to learn robust policies, model-free and
with standard popular algorithms. We begin by showing how entropy regularization
biases the constrained RL problem towards maximizing the number of future viable
actions, which is a form of robustness. Then, we relax the safety constraints via
penalties to obtain an unconstrained RL problem, which we show approximates its
constrained counterpart arbitrarily closely. We support our findings with illustrative
examples and on popular RL benchmarks.

1 Introduction

Safety and, more generally, viability [1], is the ability of a controller to keep the system away from a
set of state constraints. Robustness extends the notion to an adversarial or noisy setting; a robust agent
remains outside of the constraints in spite of the noise or adversary. It is then meaningful to ask how
to encode these desirable properties into a reward or cost function for reinforcement learning (RL) or
optimal control in a practical way. While this question is well-studied for viability [2, 3], it is much
less for robustness. The purpose of this work is to reveal how robustness arises naturally from two
common practices in RL; namely, entropy regularization [4] and constraints penalization [2]. Our
results provide additional theoretical and empirical support for the notion that entropy regularization
can effectively enhance robustness against disturbances and model uncertainties [5–7].

Incorporating robustness in the optimization objective begs the question of the precise definition
of robustness considered. For instance, robustness in the sense of Hamilton-Jacobi reachability
is worst-case; the goal is to satisfy the constraints despite adversarial, bounded disturbances [8].
The idea is appealing but comes at the price of specialized algorithms [9], often model-based and
computationally expensive [8]. An alternative viewpoint is to consider the quantification of the
robustness of a state as the number of viable actions available in that state, as proposed in [10, 11]. In
this work, we extend this line of thought from states to policies by quantifying their robustness based
on the long-term number of viable actions they consider. The cumulative discounted entropy of a
stochastic policy directly expresses this metric as an on-policy property; the higher the cumulative
entropy of a viable policy is, the more viable actions it considers along its trajectories; therefore,
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it is robust in this sense. We call this notion S-robustness and encode it in the optimization target
via a dual formulation, which yields precisely the entropy-regularized RL problem in a modified
environment where only viable actions are available. While the connection of S-robustness with
standard, control-theoretic notions remains an open question, we show on illustrative examples that it
is a meaningful definition as the mode of the resulting policy keeps the system further away from
constraints as the Lagrange multiplier grows.

Making this definition of robustness relevant to state-of-the-art practices in RL then requires relating
the unconstrained and state-constrained optimization problems, as most applications focus on the
former [3]. This is the role of constraints penalization — or, more concisely, of penalties. In the
absence of entropy regularization, they are known to make constraints violations suboptimal, and
large enough penalties guarantee viable optimal controllers [2]. We add entropy regularization to this
analysis to show that the combination of entropy regularization with sufficiently high penalties yields
(approximately) robustly viable policy, with a degree of robustness controlled by the temperature
parameter. Furthermore, the mode of the resulting policy is viable and robust.

Our results emphasize a benefit of entropy regularization that differs from what is commonly men-
tioned in the literature. Indeed, algorithms such as soft actor-critic (SAC) [4] are often praised for
their excellent exploration and their robustness to the choice of hyperparameters [4]. Although crucial
in practice, these strengths are relevant during learning. In contrast, we focus on the learned policy,
that is, what occurs after learning is completed (assuming a successful optimization). While the
guarantees we derive are theoretical tools, they enable an understanding of the optimal behavior and
its properties that result from the problem setup. We argue that such an understanding is essential for
a successful parameterization of learning problems. For instance, if robustness is a concern for the
downstream application, knowing how different parameters influence it is valuable.

We frame our results in great generality to maximize their applicability. Specifically, we focus on
viability: the agent should avoid visiting a set of constraints. In contrast with safety, visiting that set
may or may not result in the termination of the episode; we allow for both settings. Furthermore, we
allow penalizing states that are not yet constraints violations but inevitably lead there because of the
dynamics; such states are called unviable. This setup is strictly more general than that of [2], which
only covers the case of penalizing immediate constraints violations.

Contributions: We reveal how robust optimal controllers arise from the combination of entropy
regularization together with sufficient constraints penalization, in theory and practice. Specifically:

• We introduce S-robustness, a new notion of robustness measuring the ability of a controller
to preserve the number of viable actions, together with an ordering of safe controllers to
compare their degree of S-robustness;

• We explain theoretically how entropy regularization of the viability-constrained RL problem
promotes S-robustness (Theorem 6 and Corollary 7);

• We show that introducing sufficient penalization in the entropy-regularized, unconstrained
RL problem solves its constrained counterpart arbitrarily closely, providing a model-free
way to obtain robust and viable controllers (Theorem 8);

• We illustrate our theoretical findings on both illustrative examples and RL benchmarks,
showcasing the relationship between the penalty, the temperature, and robustness.

Overall, our findings facilitate the choice of hyperparameters in applications where robustness is
important. We discuss other approaches to robustness in RL in Section 2. We then expose necessary
preliminaries in Section 3, and formalize S-robustness and the problem we consider in Section 4.
Our theoretical findings are in Section 5, and our empirical results in Section 6.

2 Related work

Viability and safety in RL: There is a wide variety of definitions of safety in RL [3]. We consider
the case of avoiding state constraints with certainty (level 3 in [3]). Such a definition of safety falls
into the general problem of viability2 [1]. Many specialized algorithms were developed to solve this
safe RL problem, both model-free and model-based [12]. It has been shown in [2] that sufficient

2Arguably, the main difference is terminological and both concepts are formally equivalent. However,
viability violations need not lead to catastrophic outcomes.
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failure penalties enforce equivalence between the unconstrained and safety-constrained problems,
making safe RL provably amenable to unconstrained algorithms. The difference with previous similar
results [13] is that [2] concludes on safety of the controllers, which is stronger than strong duality
since the latter only informs on the optimization objective value. Regardless, the above works only
guarantee safety and neglect robustness, with the notable exception of [9], which implements ideas
from Hamilton-Jacobi reachability analysis. We extend the analysis and proof methods of [2] to
entropy-regularized RL, which naturally yields robustness in addition to safety.

Robustness in optimal control: Robustness is a well-studied topic in (optimal) control [14], and
consists of preserving viability despite model uncertainties. Classical general approaches therein
consist of robust model predictive control [15, 16] and Hamilton-Jacobi reachability analysis [8].
They provide worst-case guarantees, and recent methods such as scenario optimization [17] were
developed to address quantitative uncertainty. While S-robustness fits in neither category yet, we
expect that the mode of S-robust policies enjoys worst-case guarantees.

Robustness in RL: Achieving robustness for RL policies is an active area of research [18]. A
common formalization is that of a two-player game between the agent and an adversary [19, 20].
This setup is akin to Hamilton-Jacobi reachability analysis, only with a discounted cost. These
approaches allow achieving robustness through an adversary controlling, for instance, disturbances
[20] or action noise [21], yielding worst-case robustness. However, such adversarially robust RL
requires specialized algorithms and training the adversary. In contrast, entropy-regularized RL is a
popular framework with many standard implementations, which, as we show, also yields robustness.

We are not the first to report that entropy-regularization leads to robustness. Some empirical [5, 6]
and theoretical works [7] highlight the inherent robustness of entropy-regularized RL. Eysenbach
and Levine [7] consider robustness to changes in the dynamic and reward transformations, whereas
we introduce a new robustness notion for learning under constraints based on entropy and viability.

3 Preliminaries

We introduce in this section the concepts relevant to frame the optimization problems and their
constraints. In particular, we address entropy-regularized optimal control and viability.

3.1 Entropy-regularized optimal control

We consider finite sets X and A called the state and action spaces, respectively, and deterministic
dynamics f : Q → X , where Q = X ×A is the state-action space. Then, a policy π : Q → [0, 1]
is a map whose partial evaluation in any x ∈ X is a probability mass function on A. We write
π(· | x) and denote the set of all policies by Π. The state at time t ∈ N from initial state x ∈ X and
following the policy π ∈ Π is the random variable X(t;x, π), and the action taken by π at that time
is A(t;x, π). If the policy and initial state are clear from context, we simply write Xt and At.

We also consider r : Q → R a reward function, which is necessarily bounded since Q is finite. The
return of a policy π ∈ Π from initial state x ∈ X is then

G(x, π) =

∞∑
t=0

γtr(Xt, At), (1)

where γ ∈ [0, 1) is the discount factor. It quantifies the problem-specific time-horizon: a smaller γ
disregards delayed rewards, even though this effect can be overcome if the said rewards have large
magnitude. The expected return is then Ḡ(x, π) = E[G(x, π)]. With H as the entropy, we introduce
the discounted total entropy of a policy π ∈ Π from the state x ∈ X as

S(x, π) =

∞∑
t=0

γtH(π(· | Xt)), (2)

and its expectation S̄(x, π) = E[S(x, π)]. The objective of entropy-regularized optimal control is
then to find an optimal policy, that is, a policy πopt ∈ Π such that

πopt ∈ argmax
π∈Π

Ḡ(x, π) + αS̄(x, π), ∀x ∈ X , (3)
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where α ∈ R≥0 is a design parameter called the temperature. It is known that there exists an
optimal policy [4]. Specifically, one can be computed by leveraging the optimal soft-Q-value function
q : Q → R, which is the only fixed point of the optimal soft-Bellman operator [22]:

q(x, a) = r(x, a) + γα ln

[∑
b∈A

exp

(
1

α
q(x′, b)

)]
, ∀(x, a) ∈ Q, (4)

where we defined the shorthand x′ = f(x, a). An equivalent definition is [22, Theorem 16]

q(x, a) = max
π∈Π

r(x, a) + γḠ(x′, π) + αγS̄(x′, π). (5)

Once q is known, the following policy solves (3):

πopt(a | x) = softmax

[
1

α
Q(x, ·)

]
(a) =

exp
[
1
αQ(x, a)

]∑
b∈A exp

[
1
αQ(x, b)

] , ∀(x, a) ∈ Q. (6)

3.2 Viability

We consider a set of states XC ⊂ X that the system should never visit. This constraint may encode
safety concerns, for instance, but it can generally contain any states that are deemed undesirable
for the problem at hand. Avoiding XC is a dynamic concern, and some states that are not in XC

themselves may still lead there inevitably. We address this through viability theory [1, Chapter 2].
Definition 1 (Viability kernel). The viability kernel XV is the set of states from where XC can be
avoided at all times almost surely:

XV = {x ∈ X | ∃π ∈ Π, ∀t ∈ N>0,P[Xt /∈ XC] = 1}. (7)

By definition, any state that is not in the viability kernel leads to XC in finite time. Such states are
called unviable. The viability kernel is therefore the largest set that enables recursive feasibility of
the problem of avoiding transitions into XC. A closely related concept is the viable set, which is the
set of state-action pairs that preserve viability [10]:

QV = {(x, a) ∈ Q | x ∈ XV ∧ f(x, a) ∈ XV}. (8)

We also define the unviable set QU = Q \ QV, and the critical set Qcrit = QU ∩ (XV ×A) [23].
Definition 2. Let π ∈ Π. We say that π is viable from the state x ∈ X if P[Xt /∈ XC] = 1 for all
t ∈ N>0. We say that π is viable if it is viable from any x ∈ XV. Furthermore, for any δ > 0, we say
that π is δ-viable if maxQcrit

π ≤ δ. We denote the set of policies viable from the state x by ΠV(x)
and that of viable policies by ΠV.

By definition of the viability kernel, the condition for a viable policy can be replaced with P[Xt ∈
XV] = 1 for all t ∈ N. In the next section, we consider an optimal control problem over the set of
safe policies and dual relaxations thereof. For this, we introduce dynamic indicators.
Definition 3 (Dynamic indicator). Let c : Q → R≥0 and the associated discounted risk

ρ(x, π) =

∞∑
t=0

γtc(Xt, At). (9)

We say that c is a dynamic indicator of XC if, for all x ∈ XV, E[ρ(x, π)] > 0 if, and only if,
π /∈ ΠV(x).

The notion is independent of γ ∈ (0, 1). For instance, the composition of the indicator function of
XC with the dynamics is a dynamic indicator of XC [2, Lemma 1].
Remark 4 (Recovering from constraints violation). Our results hold in the two settings where
visiting XC terminates the episode or not. The second case is fully consistent with the setup of infinite
time-horizon optimal control that precedes. Then, actions taken from XC may map back into XV:
trajectories leaving XV may only return there after visiting XC. We even have XC ∩ XV ̸= ∅ in
general, and the intersection is composed of states with actions that map in XV \ XC. The first case,
however, is not naturally framed in infinite time-horizon. Indeed, while adding an absorbing state
with null reward and dynamic indicator as in [2] effectively cuts the sums in G(x, π) and ρ(x, π), the
sum in S(x, π) cannot be handled similarly without additional notation. In the interest of conciseness
and clarity, we thus only introduce formally the case of non-terminal XC.
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4 Problem formulation

We consider a standard reinforcement learning problem with dynamics f , constraint set XC, viability
kernel XV, and return G as defined in Section 3. We aim to learn policies that find a trade-off
between robustness and return maximization. To arrive at such a trade-off, we start with the minimal
requirement that policies should be viable, meaning that the maximum objective we can achieve is

max
π∈ΠV

Ḡ(x, π). (10)

This represents the solution with no explicit robustness consideration. To introduce robustness starting
from here, we ask the following:

Problem 1. How do we bias the solution of (10) towards robustness?

Problem 2. How do we solve the resulting constrained and biased problem with classical algorithms?

We address Problem 1 in Section 5.2 by weighting G in the objective of (10) with a quantification of
a meaningful notion of robustness and Problem 2 in Section 5.3 via a Lagrangian relaxation of the
constraint π ∈ ΠV, hereby approximately solving the biased modification of (10) arbitrarily closely.

5 Theoretical results

In this section, we present our definition of S-robustness and derive S-robustness properties of entropy-
regularized RL problems, first with constraints, and then without. The proofs are in Appendix B.

5.1 Robustness as preserving future viable options

As motivated in the introduction, we extend the line of thought of Heim et al. [11], which defines the
“natural robustness of a state x ∈ XV” as the number of viable actions available in that state, that is,
the cardinality of QV[x]. They call this quantity the safety measure.

To generalize this notion to policies, an idea is to consider (a transformation of) the safety measure of
every state visited by the policy, and to aggregate the result across time and realizations. By choosing
the aggregations as the infimum and expectation, respectively, this defines E[inft H(uV (· | Xt))] as
the robustness of a policy π ∈ ΠV from a state x ∈ XV, where uV (· | x) is the uniform distribution
with support QV[x]. In other words, it is the average of the minimum value of (a transformation of)
the safety measure across trajectories.

Unfortunately, this definition has the problem of being off-policy, which encourages, for instance,
visiting states where most viable actions lead to only having only few viable options remaining, as
long as at least one path guarantees many choices. A compelling example illustrating why a policy
with a high such metric should not be called robust is in Appendix A. This motivates an on-policy
notion by using, in each state, the number of viable actions the policy considers instead of the safety
measure, which yields the metric E[inft H(π(· | Xt))] for π ∈ ΠV. Indeed, since π is viable by
assumption, its entropy in each state measures the number of viable actions it considers there. A
policy maximizing this quantity is forced into a trade-off between its current entropy and avoiding
states that lead to only few viable options, and it assigns higher probabilities to states that preserve
the number of those future viable options. In other words, the on-policy nature of the metric forces
policies to commit to the actions that contribute to it. It is thus intuitive that the mode of such a policy
achieves a meaningful form of robustness. In what follows, we use a discounted sum rather than an
infimum over time for compatibility with RL.

Definition 5. We say that π1 ∈ ΠV is less S-robust than π2 ∈ ΠV, and write π1 ⪯ π2, if

S̄(x, π1) ≤ S̄(x, π2), ∀x ∈ XV. (11)

5.2 Biasing for robustness

With this definition, the maximum entropy policy is the most robust one, and is the maximum element
for the partial order ⪯:

π⋆
ent = arg max

π∈ΠV

S̄(x, π), ∀x ∈ XV. (12)
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The trade-off between optimality and robustness is achieved by the relative weighting of both terms:

π⋆
α = arg max

π∈ΠV

Ḡ(x, π) + αS̄(x, π), ∀x ∈ XV. (13)

This is precisely the entropy-regularized RL problem in the modified state-action space QV with
temperature α ∈ R≥0.

5.2.1 Behavior for increasing temperatures

For α = 0, (13) recovers (10); we are maximizing the return over viable policies with no concerns
about robustness. As α increases, entropy is more and more prevalent in the objective of (13), whose
solution converges to π⋆

ent. This is best seen through the soft-value function.

Theorem 6. Consider the soft-Q-value functions Qent and Qα of (12) and (13), respectively and for
all α ∈ R≥0. Then, maxQV | 1αQα −Qent|→ 0 as α → ∞.

Corollary 7. Denote by π⋆
ent and π⋆

α the solutions of (12) and (13), respectively and for all α ∈ R≥0.
Then, the map α 7→ π⋆

α is monotonic for ⪯ and maxQV |π⋆
α − π⋆

ent| → 0 as α → ∞.

In particular, Corollary 7 implies that the solution of (13) gets more and more robust as α increases.

5.3 Relaxing safety constraints with penalties

A drawback of (13) that hinders its practicality is that it explicitly involves both the viability kernel XV

and the viable set QV, which are unknown in model-free situations. We now leverage a Lagrangian
relaxation of these viability constraints to make the problem amenable to model-free algorithms. The
results in this section extend those of [2] to the case of an objective involving entropy regularization.

In this section, we consider c, a dynamic indicator function of XC, and ρ, the associated discounted
risk (Definition 3). We are interested in the following penalized problem

π⋆
α,p = argmax

π∈Π
Ḡ(x, π) + αS̄(x, π)− pρ(x, π), (14)

where p ∈ R≥0 is a penalty parameter. It is known that in the case α = 0, (14) and (10) share the
same solutions if p is large enough [2, Theorem 2]. Unfortunately, this result does not directly carry
to the case α > 0: from (6), π⋆

α,p(a | x) > 0 for all (x, a) ∈ Q, and thus in particular π⋆
α,p /∈ ΠV.

However, scaling the penalty remains possible if one accepts to trade viability for δ-viability.

Theorem 8. For any δ > 0, ϵ > 0, and α > 0, there exists p⋆ ∈ R≥0 such that, for all p > p⋆, the
optimal policy of (14) π⋆

α,p is δ-viable and

max
QV

|π⋆
α,p − π⋆

α| < ϵ. (15)

Sketch of proof. The penalty enforces an upper-bound on the soft Q-value of state-actions in Qcrit

(Lemma 11). Values there thus decrease arbitrarily low as the penalty increases, while it remains
lower-bounded on QV. This, in turn, shows δ-safety of π⋆

α,p for p large enough. Therefore, the value
function of (14) approximates to that of (10) on QV, and π⋆

α,p gets arbitrarily close to π⋆
α.

In practice, the weakening to δ-viability is not problematic, as one is particularly concerned about the
mode of the policy learned via entropy regularization, which is safe if δ is low enough in Theorem 8.
One of the purposes of the next section is to demonstrate empirically the robustness of this mode.

Conclusion on the problems Finally, we are able to answer Problems 1 and 2 based on the
following arguments. Entropy regularization in the presence of constraints biases the learning
problem to favor S-robustness, with the temperature coefficient monotonically controlling the degree
of S-robustness. The viability constraints of (13) can be relaxed by a Lagrangian formulation at the
price of trading viability for δ-viability. Specifically, the solution of (14) approximates arbitrarily
closely that of (13), provided that the penalty is sufficiently high. Put together, these results provide a
model-free way to approximate robust controllers with tunable degrees of robustness.
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Figure 1: Fenced cliff — Robustness as a function of α: An entropy regularized policy avoids states
with unviable actions (d). The degree is controlled by the temperature parameter α. As it increases
(a–c), the policy moves away from the constraints, getting more robust but taking longer to reach the
target. The mode of the policy is shown as a thin blue line.

6 Empirical results

We demonstrate the robustness of entropy-regularized, penalized policies in two ways. We start
with a discrete gridworld, which reveals, through simple dynamics, the effects and interactions
of the temperature and penalty. Second, we evaluate entropy-regularized neural network policies
on RL benchmarks. We go beyond our theoretical results by evaluating the robustness to external
disturbances to complement previous observations that show SAC leads to robust policies [5, 6].

6.1 Cliff walking

Our gridworld is an adaptation of the cliff environment [24, Example 6.6]. Three states in the middle
of the bottom row represent the cliff; the constraint set XC the agent should robustly avoid. The right
column represents the target of escaping the cliff. Both the cliff and target states are invariant under
all actions. Otherwise, the dynamics follow the direction of the chosen action and map back into the
current state if the agent hits a border. Actions outside of the cliff and target get a −1 reward.

6.1.1 Constraints and entropy enforce a robustness–performance trade-off

The constrained version of the environment — the fenced cliff — only offers three actions to an agent
neighboring the cliff, imposing a lower achievable entropy in those states. This observation is key in
understanding why entropy regularization avoids them, yielding robustness (Fig. 1.d).

Indeed, in the absence of any reward, the maximum entropy policy favors transitioning away from
states neighboring the constraints due to the aforementioned upper bound on immediate entropy. In
turn, the immediate entropy of the policy in the 2-step neighbors is also reduced since some transitions
are less desirable. The same logic applies recursively “outwards” from states with unviable actions,
and the policy prefers the top corners as these are as far as possible from the constraint (Fig. 1.d) The
trade-off between short- and long-term entropy depends on the discount factor γ.

In contrast, adding a nonzero reward (Fig. 5.a–c) finds a trade-off between entropy — that is, moving
randomly — and reaching the goal state to avoid the negative reward. The agent thus takes more
risks to collect rewards while preserving some distance from the constraints. This trade-off between
performance and robustness is controlled by the temperature parameter α: High values favor entropy
(and, thus, robustness by what precedes), whereas lower ones favor performance.

While high robustness may be desirable, it comes at the price of suboptimality. Too high a temperature
may entirely prevent task completion if the path to it is inherently risky, leading to unsuccessful
learning outcomes due to poor choice of hyperparameters.

6.1.2 Unconstrained cliff walking

Sufficient constraints penalization enables solving the constrained problem (Fig. 2), consistently with
Theorem 8. The example shows the robustness–performance trade-off with different temperatures
and penalties. Importantly, entropy and penalties are now competing, and insufficient penalties
get overcome by high temperatures, degrading safety. The penalty thus needs to scale with the
temperature to ensure δ-safety with a low δ, as shown in Appendix C.
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Figure 2: Unconstrained cliff — Safety and robustness as functions of α and p: Safety and
robustness can be achieved by penalizing (p) the constraints XC and adjusting the temperature (α).

6.2 Reinforcement learning benchmarks

This section demonstrates the performance robustness trade-off in entropy-regularized RL on two
popular benchmarks. For this, we train a neural network policy using the SAC implementation of
Huang et al. [25] with different fixed temperature values (no automatic tuning). The hyperparameters
are reported in Appendix E. For each α, we train on 25 random seeds and evaluate the trained policy
in terms of return and robustness.

To evaluate robustness, we take the mode of each trained policy and add a disturbance sampled from
a uniform distribution U(−ϵ, ϵ) to the action at each environment step. An episode is successful if the
agent obeys the constraint despite the input disturbance. We test each trained policy for 100 episodes
and report the success rate. Consistent with our theoretical results, we find (i) entropy-regularization
decreases the return by avoiding high-value states with many unviable actions; (ii) the mode of
entropy-regularized policies is more robust to disturbances as the training temperature increases.

6.2.1 Pendulum

We modify the Pendulum-v1 environment [26] as follows to make it suitable for a study on ro-
bustness: (i) the initial state is the still upright position; (ii) the constraints consist of angles with
magnitude beyond 90° and the penalty is 90; and (iii) the reward is the quadratic distance to a target
angle of 45°, which is outside of the viability kernel since the agent exerts bounded torque. See
Appendix D.1 for further details.

The results are shown in Fig. 3. All policies lean towards the target state but avoid leaving the
viability kernel and reaching the constraints. Sufficient penalties emulate the boundary of the viability
kernel, which reduces the effective number of available actions when leaning to one side. This pushes
entropy-regularized policies away from the target state, as can be seen in the lower return — the
maximum entropy policy keeps the pendulum upright. The results show a robustness–performance
trade-off between staying upright and leaning as far as possible towards the target, which is controlled
by the temperature α. Furthermore, the mode of the entropy-regularized policy can cope with
significantly higher disturbances when trained with higher temperatures.
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Figure 3: Learning robust policies with SAC: Evaluation on the Pendulum-v1 (top row) and
Hopper-v2 (bottom row) environments. Left: As the temperature increases, the mode of the policy
trades return for robustness and gets more conservative. Right: The mode of the stochastic policy is
more robust to disturbances as the temperature increases.

6.2.2 Hopper

We repeat the same experiment as in the previous section for a modified Hopper-v2 environment
[26]. We modify the environment by penalizing the “unhealthy” states with a penalty of p = 300.
The results are shown in Fig. 3. The gait becomes slower but more robust to disturbances as the
training temperature increases. Interestingly, as the temperature is increased, the training finds two
distinct robust behaviors. One is the intended hopping forward; the other is standing still and only
collecting the healthy reward.

7 Limitations

In this section, we point towards some of the limitations of our analysis. First, and maybe most
importantly, we do not yet establish a formal connection between S-robustness and classical robust-
ness in optimal control. The main difficulty is that entropy-regularized policies have full support
and explore every state with positive probability, while most classical robustness notions are about
surely preserving a margin to unsafe states, represented by the bound on the allowed disturbances. A
promising approach for future research is thus to focus on the mode of the stochastic entropy policy.
Indeed, our results already empirically demonstrate that it can achieve robustness to disturbances.

A further limitation is that we restrict our analysis to optimal value functions. While this is necessary
to understand the learning problem, we inherit practical issues that come with solving (14) with
specific RL algorithms, such as local minima and function approximation errors. We have encountered
this problem already in the evaluation of the hopper. A direction for future research is ensuring that the
learning outcome has the desired robustness properties using, for example, formal certification [27].

8 Conclusion

We discuss the properties of the entropy-regularized solution to optimal control problems with
constraints or penalties. We argue that the entropy of a viable policy measures a form of robustness

9



and show that the combination of entropy regularization and constraints penalization is sufficient to
learn robustly viable policies in model-free RL.

We expect our findings to inform practitioners when applying RL algorithms such as SAC. While
entropy regularization has mainly been developed as an exploration mechanism [4], it biases the
policy to robustly move away from states with low rewards, which means remaining viable if one uses
constraints penalties. If such a behavior is desirable for the given application, our analysis suggests
avoiding a common practice of annealing the temperature α during learning. On the other hand, high
temperatures or minimum entropy constraints [28] can make parts of the state space unreachable,
lead to conservative policies, and may even entirely prevent task completion. Overall, our results
enable principled decisions regarding this crucial parameter.
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A Counterexample for an off-policy metric of robustness

S1

S2

S3

S4 F

Figure 4: Counterexample for an off-policy metric of robustness based on entropy. The constraint
set is XC = {F}.

Figure 4 illustrates a counterexample demonstrating why the number of viable actions, expressed as
Eπ[inft H(uV (· | Xt)], does not quantify a meaningful notion of robustness.

Consider two policies: π1, that goes from S1 to S2, and π2, that goes from S1 to S3. Consider the
case — which differs from Figure 4 — where there is only one action leading from S3 to S4. Then,
arguably, a meaningful notion of robustness should say that π1 is more robust than π2; indeed, in the
presence of action perturbations, both may end up in S4, but π1 takes a path with more “chances”
to avoid — or delay — going there. Adding additional actions from S3 to S4 does not change this
reasoning, and π1 should still be considered more robust than π2 in the situation of Figure 4. Yet, the
value of Eπ2

[inft H(uV (· | Xt))] is higher than that of Eπ1
[inft H(uV (· | Xt))], since the former is

increased by the additional actions. Choosing this metric thus classifies π2 as more robust than π1,
which is the opposite of the desired outcome.

The property of the above metric allowing this example is that the policy only needs to visit states
with a high number of viable actions, without considering whether those actions preserve a high
number of viable actions themselves, as long as at least one does. In other words, the policy does not
need to commit to the viable actions that contribute to the value of its metric. This observation calls
for an on-policy metric of robustness, which we achieve by replacing uV in the previous proposition
by the policy itself, yielding E[inft H(π(· | Xt))]. Then, there are policies that visit S2 with a metric
higher than the value achieved by any policy that visits S3.

B Proofs

In all of this section, we identify real functions defined on QV with vectors in R|QV|, and use
operators defined on the functions on their vector representations indistinctly.

B.1 Proof of Theorem 6

Proof. For α ∈ R>0, consider the operators B⋆ and B⋆
α defined on RQV by, for all h ∈ RQV and

(x, a) ∈ QV,

(B⋆h)(x, a) = γ ln

 ∑
b∈QV[x]

exp[h(x′, b)]

 ,

(B⋆
αh)(x, a) =

1

α
r(x, a) + γ ln

 ∑
b∈QV[x]

exp[h(x′, b)]

 ,

where we introduced the shorthand x′ = f(x, a). The operator B⋆ is the optimal soft-Bellman
operator associated with (12), and B⋆

α is that associated with (10), scaled by the factor 1
α . Let now
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Rα = 1
αQα. By properties of the optimal Bellman operator, Rα and Qent are the unique fixed points

of B⋆
α and B⋆, respectively.

Let us fix a strictly increasing sequence (αn)n∈N, and define for conciseness Rαn
= Rn and

B⋆
αn

= B⋆
n. The sequence (Rn)n∈N is clearly bounded. Therefore, there exists R ∈ R|QV| and

(mn)n∈N, strictly increasing, such that Rmn
→ R as n → ∞. We show B⋆(R) = R. For all n ∈ N,

∥R−B⋆R∥ ≤ ∥R−Rmn∥+ ∥B⋆
mn

(Rmn)−B⋆(Rmn)∥+ ∥B⋆(Rmn)−B⋆(R)∥

≤ ∥R−Rmn
∥+ 1

αn
∥r∥+ ∥B⋆(Rmn

)−B⋆(R)∥,

where we used the identity B⋆
mn

(Rmn
) = Rmn

in the first inequality. By continuity of B⋆, we
have B⋆(Rmn

) → B⋆(R), and thus the right-hand side converges to 0 as n → ∞. We deduce that
R = B⋆(R). But then, by uniqueness of the fixed point of B⋆, R = Qent. This shows that the
bounded sequence (Rn)n∈N admits a unique accumulation point Qent, and thus converges to Qent.
We have thus shown that for any strictly increasing sequence (αn)n∈N, Rαn → Qent as n → ∞.
This concludes the proof by the sequential characterization of convergence of a function.

B.2 Proof of Corollary 7

Proof. We focus on monotonicity since convergence follows immediately from Theorem 6 and (6).
Let α and β be in R≥0, with α ≤ β. Let x ∈ XV. By definition of π⋆

α and π⋆
β , we have both

Ḡ(x, π⋆
α) + αS̄(x, π⋆

α) ≥ Ḡ(x, π⋆
β) + αS̄(x, π⋆

β),

Ḡ(x, π⋆
α) + βS̄(x, π⋆

α) ≤ Ḡ(x, π⋆
β) + βS̄(x, π⋆

β).

Taking the difference and rearranging yields

(α− β)(S̄(x, π⋆
α)− S̄(x, π⋆

β)) ≥ 0.

We deduce that the two factors have the same sign, i.e., S̄(x, π⋆
α) ≤ S̄(x, π⋆

α). Since this is valid for
all x ∈ XV, this concludes the proof.

B.3 Proof of Theorem 8

We begin with two preliminary technical results on dynamic indicators. For any trajectory τ =
[(xn, an)]n∈N ⊂ QN, we introduce the notations

TC(τ) = min{t ∈ N | xt ∈ XC},
TR(τ) = min{t ∈ N | xt ∈ XC ∧ xt+1 /∈ XC},

with the convention min ∅ = ∞.
Lemma 9 (Characterization of dynamic indicators). Let c : Q → R≥0. Then, c is dynamic indicator
of XC if, and only if, c|QV

= 0 and for any trajectory τ = [(xt, at)]t∈N ⊂ QN such that x0 ∈ XV

and TC(τ) < ∞, there exists t ≤ TR(τ) such that c(xt, at) > 0.

Proof. We first show the converse implication. Let x ∈ XV and π ∈ Π. If π /∈ ΠV(x), then let
τ = [(xn, an)]n∈N be a trajectory starting from x and generated by π with positive probability such
TC(τ) < ∞. Let t ≤ TR(τ) such that c(xt, at) > 0. Then,

ρ̄(x, π) ≥ L ·
∞∑
u=0

γuc(xu, au) ≥ L · γtc(xt, at) > 0,

where we defined L = P[((X(t;x, π), A(t;x, π)))t∈{0,...,T} = ((xt, at))t∈{0,...,T}] > 0 for concise-
ness. Conversely, if ρ̄(x, π) > 0, then there must exist a trajectory τ = [(xt, at)]t∈N starting from x
and with positive probability such that

∑∞
t=0 γ

tc(xt, at) > 0. But there must then be a t ∈ N such
that (xt, at) /∈ QV, by assumption on c. By definition, the trajectory τ reaches XC in finite time after
that time t. Since τ has positive probability by following π, this shows that π /∈ ΠV(x) and shows
the implication.

For the converse implication, assume that c is a dynamic indicator of XC. Let (x, a) ∈ QV, and
take any policy π ∈ ΠV such that π(a | x) = 1 (such a policy exists by definition of the viability
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kernel). Then, 0 = ρ̄(x, π) ≥ c(x, a), and thus c|QV
= 0. Next, let τ = [(xt, at)]t∈N be such that

x0 ∈ XV and TC(τ) < ∞. Introduce TV = max{t ∈ N | t ≤ TC(τ) ∧ (xt, at) ∈ QV}, and define
(x, a) = (xTV+1, aTV+1). For every y ∈ X , define the set of actions that τ takes in state y,

τ(y) = {b ∈ A | ∃t ∈ N, (xt, at) = (y, b)}.

Let θ : X → A be a map such that

• θ(x) = a;

• for all y ∈ XV with y ̸= x, θ(y) ∈ QV[y];

• for all y /∈ XV with τ(y) ̸= ∅, θ(y) ∈ τ(y).

Define the policy π(b | y) = δθ(y)(b). Clearly, π /∈ ΠV(x), since it takes action a in x, and thus
ρ̄(x, π) > 0. Define now τ0:R = {(y, b) ∈ Q | ∃t ∈ {0, . . . , TR(τ)}, (y, b) = (xt, at)}. Crucially,
π only explores state-action pairs that are either in QV or in τ0:R when initialized in XV. We thus
obtain (almost-surely)

ρ̄(x, π) =

∞∑
t=0

γtc(X(t;x, π), A(t;x, π))

=

∞∑
t=0

∑
(y,b)∈τ0:R

γtc(y, b) · δy(X(t;x, π)) · δb(A(t;x, π))

=
∑

(y,b)∈τ0:R

c(y, b) ·
∞∑
t=0

γt · δy(X(t;x, π)) · δb(A(t;x, π)),

where we leveraged the fact that c|QV
= 0. Therefore, there must be (y, b) ∈ τ0:R such that

c(y, b) > 0, concluding the proof.

Corollary 10. Let c be a dynamic indicator of XC, ρ the associated discounted risk (9), and q ∈ Qcrit.
For any q ∈ Qcrit, c(q) + γminπ∈Π ρ̄(f(q), π) > 0.

Proof. From classical results on dynamic programming, there exists η ∈ Π such that ρ̄(f(q), η) =
minπ∈Π ρ̄(f(q), π). Furthermore, η can be chosen deterministic. Consider then the trajectory of η
starting from f(q), and prepend q to it. Let us call τ the resulting trajectory. It begins in XV and
TC(τ) < ∞, since q ∈ Qcrit. Therefore, by Lemma 9, there exists t ≤ TR(τ) such that c(xt, at) > 0,
where τ = [(xu, au)]u∈N. The result follows from c(q) + ρ̄(f(q), η) ≥ γtc(xt, at) > 0.

The following lemma is the core of the proof of Theorem 8: it upper-bounds the soft-Q-value on
Qcrit, and lower-bounds it on QV. It is a generalization to the present setting of [2, Lemma 2].

Lemma 11. There exists constants v1, u1, u2 ∈ R and u3 ∈ R>0 such that, for all α ∈ R>0 and
p ∈ R≥0,

min
QV

Qα,p ≥ v1, (16)

max
Qcrit

Qα,p ≤ u1 + α · u2 − p · u3. (17)

Proof. By [28, Theorem 1], we have in particular for all α ∈ R≥0 and p ∈ R≥0 that Qα,p ≥ Qπ
α,p,

where Qπ
α,p is the soft Q-value function of an arbitrary policy π ∈ Π, that is, the only fixed point of

the operator Bπ
α,p defined for all h ∈ RQ as

(Bπ
α,ph)(x, a) = r(x, a) + γE[h(x′, A1)− lnπ(A1 | x′)],

for all (x, a) ∈ Q and where we defined the shorthand x′ = f(x, a). Take for π a deterministic policy.
Then, Bπ

α,p simplifies to the classical Bellman operator, and thus the soft-Q-value function coincides
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with the classical Q-value function Qπ
p . Therefore, Qα,p ≥ Qπ

p for any π ∈ Π deterministic. This
holds in particular if π ∈ ΠV, for which

Qπ
p (x, a) = r(x, a)− p · c(x, a) + γ(G(x′, π)− pρ(x′, π))

= r(x, a) + γG(x′, π),

for all (x, a) ∈ QV and with x′ = f(x, a). Indeed, c(x, a) = 0 by Lemma 9 since (x, a) ∈ QV, and
ρ(x′, π) = 0 since π ∈ ΠV(x

′). Since the right-hand side is lower-bounded (by boundedness of r)
by a constant independent of p and α, we deduce the existence of v1 as announced.

In contrast, from [22, Theorem 16], it follows that for all (x, a) ∈ Qcrit

Qα,p(x, a) = max
π∈Π

r(x, a) + γḠ(x′, π) + αγS(x′, π)− pc(x, a)− pγρ̄(x′, π)

≤ max
π∈Π

1

1− γ
(sup

Q
r + αγ|A| ln|A|)− pc(x, a)− pγρ̄(x′, π)

= u1 + α · u2 − p ·
(
c(x, a) + γmin

π∈Π
ρ̄(x′, π)

)
,

with x′ = f(x, a). Here, we have defined u1 = 1
1−γ supQ r and u2 = 1

1−γ |A| ln|A|. Furthermore,
let u3 = minq∈Qcrit

[c(q) + minπ∈Π ρ̄(f(q), π)], which is positive by Corollary 10 and since Qcrit is
finite. This yields the desired upper bound for all (x, a) ∈ Qcrit. Since the constants are independent
of α and p, this concludes the proof.

This enables showing convergence of the unconstrained, penalized soft-Q-value to its constrained
counterpart.
Lemma 12. For all α > 0, we have

sup
Qcrit

Qα,p −−−→
p→∞

−∞,

sup
QV

|Qα,p −Qα| −−−→
p→∞

0.

Proof. The first claim follows immediately from Lemma 11. For the second one, recall from [22,
Theorem 16] that for all (x, a) ∈ Q

Qα,p(x, a) = max
π∈Π

r(x, a) + γḠ(x′, π) + αγS(x′, π)− pc(x, a)− pγρ̄(x′, π).

It follows that the function p 7→ Qα,p(x, a) is nonincreasing. If (x, a) ∈ QV, it is also lower-bounded
by Lemma 11. Therefore, there exists Q̄ : QV → R such that limp→∞ Qα,p = Q̄, pointwise on QV

(and, thus, uniformly as well). We show Q̄ = Qα.

Let (x, a) ∈ QV and x′ = f(x, a). For any p ∈ R≥0, the definition of Qα,p as the unique fixed
point [22] of the soft-Bellman operator associated to the reward r − pc gives

Qα,p(x, a) = r(x, a) + αγ ln

[∑
b∈A

exp

[
1

α
Qα,p(x

′, b)

]]
,

recalling that c(x, a) = 0. Taking the limit as p → ∞ on both sides yields

Q̄(x, a) = r(x, a) + αγ ln

[∑
b∈A

exp

[
1

α
lim
p→∞

Qα,p(x
′, b)

]]

= r(x, a) + αγ ln

 ∑
b∈QV[x′]

exp

[
1

α
Q̄(x′, b)

]
+

∑
b∈Qcrit[x′]

0


= r(x, a) + αγ ln

 ∑
b∈QV[x′]

exp

[
1

α
Q̄(x′, b)

] ,

where we used the fact that limp→∞ Qα,p(x, b) = −∞ for all b ∈ Qcrit[x
′]. In other words, Q̄ is a

fixed point of the same Bellman operator as Qα. Since that fixed point is unique and equal to Qα,
this concludes the proof.
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Proof of Theorem 8. Let δ, ϵ, and α be in R>0. Let p1 = u1−v1
u3

+ u2−ln δ
u3

α and p > p1. By
Lemma 11, we have

π⋆
α,p(a | x) =

exp
[
1
αQα,p(x, a)

]∑
b∈A exp

[
1
αQ(x, b)

]
≤ exp

[
u1 − v1

α
+ u2 −

u3

α
p

]
< δ,

for all (x, a) ∈ Qcrit.

Next, it follows from Lemma 12 that exp
[
1
αQα,p(x, a)

]
converges to exp

[
1
αQα(x, a)

]
if (x, a) ∈

QV, and to 0 if (x, a) ∈ Qcrit. It follows immediately that there exists p2 ∈ R≥0 such that, for all
(x, a) ∈ QV and p > p2,

∣∣∣∣softmax

[
1

α
Qα,p(x, ·)

]
(a)− softmax

[
1

α
Qα(x, ·)

]
(a)

∣∣∣∣ < ϵ.

The result follows by taking p⋆ = max{p1, p2}.
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C Extended cliff walking results

C.1 Policy entropy

In Fig. 5 we show the entropy of the optimal policy in each state for both the maximum entropy
policy and the regularized policy.

(a) Maximum entropy
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Figure 5: Maximum entropy policy (a) vs. regularized policy (b): To avoid states with unviable
actions, π⋆

ent moves away from the constraint (a). The regularized policy (α = 4) trades entropy for
return and stays closer to the constraints (b). The colormap is the entropy of the optimal policy and
the blue arrows the expected actions. Shorter arrows thus mean a higher action distribution entropy.

C.2 δ-viability of the optimal soft-max policy

We show the numerical results for δ-viability in Fig. 6.
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Figure 6: Effect of the temperature and penalty on δ-viability. δ-viability: As the penalty for XC

is increased δ quickly goes to zero.
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D Extended RL benchmark results

D.1 Detail of the modified pendulum environment

In Fig 7 we show a sketch of the modified pendulum environment. Clearly, the upright position is the
most robust state with the largest distance to the constraint set.

We set the reward function to
r(x, a) = −(θ − θtarget)

2, (18)
in order to instigate the agent to move towards the edge of the viability kernel.

θtarget
θ

XC

τ

Figure 7: A sketch of the pendulum environment with target angle θtarget and constraint set XC

.

D.2 Success rate under disturbance as a function of α

We show in Fig. 8 and Fig. 9 the dependence between the training temperature temperature and
the degree of disturbance the agent can withstand. Generally, as the training temperature increases
so does the robustness of the mode of the learned policy. For the hopper environment (Fig. 9) the
trend is intact but our results exhibit high variance over different training runs, especially for high
temperatures. We attribute this to suboptimal solutions found during learning. When inspecting the
trained policy’s behavior we see that sometimes the agent learns to stand still in order to increase
robustness.
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Figure 8: Robustness to disturbances for the pendulum environment: Evaluation of a policy
trained with different temperatures α. We show the mean and standard deviation of the success rate
evaluated over training with 25 random seeds. As the magnitude ϵ of the disturbance is increased, the
mode policy retains higher success rates for higher temperatures.
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Figure 9: Robustness to disturbances for the hopper environment: Evaluation of a policy trained
with different temperatures α. We show the mean and standard deviation of the success rate evaluated
over training with 25 random seeds. As the magnitude ϵ of the disturbance is increased, the mode
policy retains higher success rates for higher temperatures.
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E Hyperparameters

All experiments in Sec. 6.2 were conducted on a compute cluster. In total around 50 core-hours on an
Intel Xeon 8468 Sapphire and 450 core-hours on an NVIDIA H100 have been used to produce the
results. The code will be published upon acceptance and is also part of the supplementary material of
the submission.

After training, we evaluate the policy with the highest environment return seen during the training.

Table 1: Hyperparameters for tabular RL experiments.

Name Value

Discount factor 0.95
Maximum number of iterations 1, 000
Convergence tolerance 0.00001

Table 2: Hyperparameters for Deep RL experiments.

Name Value (Pendulum) Value (Hopper)

Penalty 90 300
Total steps 250, 000 600, 000
Buffer size 250, 000 600, 000
Batch size 256 256
Discount factor 0.99 0.99
Target smoothing coefficient 0.005 0.005
Policy learning rate 0.0003 0.0003
Q learning rate 0.001 0.001
Optimizer Adam Adam
Policy update frequency 2−1 2−1

Target network update frequency 1 1
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