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Abstract

We introduce and analyze MT-OMD, a multitask generalization of Online Mirror Descent
(OMD) which operates by sharing updates between tasks. We prove that the regret of
MT-OMD is of order

√
1 + σ2(N − 1)

√
T , where σ2 is the task variance according to the

geometry induced by the regularizer, N is the number of tasks, and T is the time horizon.
Whenever tasks are similar, that is σ2 ≤ 1, our method improves upon the

√
NT bound

obtained by running independent OMDs on each task. We further provide a matching
lower bound, and show that our multitask extensions of Online Gradient Descent and
Exponentiated Gradient, two major instances of OMD, enjoy closed-form updates, making
them easy to use in practice. Finally, we present experiments which support our theoretical
findings.

1 Introduction

In multitask learning (Caruana, 1997), one faces a set of tasks to solve, and tries to leverage their similarities
to learn faster. Task similarity is often formalized in terms of Euclidean distances among the best performing
models for each task, see Evgeniou & Pontil (2004) for an example. However, in online convex optimization,
and Online Mirror Descent (OMD) in particular, it is well known that using different geometries to measure
distances in the model space can bring substantial advantages — see, e.g., Hazan (2016); Orabona (2019).
For instance, when the model space is the probability simplex in Rd, running OMD with the KL divergence
(corresponding to an entropic regularizer) allows one to learn at a rate depending only logarithmically on d.
It is thus natural to investigate to what extent measuring task similarities using geometries that are possibly
non-Euclidean could improve the analysis of online multitask learning. From an application perspective,
typical online multitask scenarios include federated learning applications for mobile users (e.g., personalized
recommendation or health monitoring) or for smart homes (e.g., energy consumption prediction), mobile
sensor networks for environmental monitoring, or even networked weather forecasting. These scenarios fit
well with online learning, as new data is being generated all the time, and require different losses and decision
sets, motivating the design of a general framework.

In this work, we introduce MT-OMD, a multitask generalization of OMD which applies to any strongly convex
regularizer. We present a regret analysis establishing that MT-OMD outperforms OMD (run independently
on each task) whenever tasks are similar according to the geometry induced by the regularizer. Our work
builds on the multitask extension of the Perceptron algorithm developed in Cavallanti et al. (2010), where
prior knowledge about task similarities is expressed through a symmetric positive definite interaction matrix
A. Typically, A = I +L, where L is the Laplacian of a task relatedness graph with adjacency matrix W . The
authors then show that the number of mistakes depends on

∑
i ‖ui‖22 +

∑
i,jWij‖ui − uj‖22, where each ui

denotes the best model for task i. This expression can be seen as a measure of task dispersion with respect
to matrix W and norm ‖ · ‖2. The Euclidean norm appears because the Perceptron is an instance of OMD
for the hinge loss with the Euclidean regularizer, so that distances in the model space are measured through
the corresponding Bregman divergence, which is the Euclidean squared norm.

For an arbitrary strongly convex regularizer ψ, the regret of OMD is controlled by a Bregman divergence
and a term inversely proportional to the curvature of the regularizer. The key challenge we face is how to
extend the OMD regularizer to the multitask setting so that the dispersion term captures task similarities. A
natural strategy would be to choose a regularizer whose Bregman divergence features

∑
i,jWijBψ(ui, uj).
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Although this mimics the Euclidean dispersion term of the Perceptron, the associated regularizer has a small
curvature, compromising the divergence-curvature balance which, as we said, controls the regret. Observing
that the Perceptron’s dispersion term can be rewritten ‖A1/2u‖22, where A is a block version (across tasks)
of A and u is the concatenation of the reference vectors ui, our solution consists in using the regularizer
ψ
(
A1/2 ·

)
, where ψ is the compound version of any base regularizer ψ defined on the model space. While

exhibiting the right curvature, this regularizer has still the drawback that A1/2u might be outside the domain
of ψ. To get around this difficulty, we introduce a notion of variance aligned with the geometry induced by
ψ, such that the corresponding Bregman divergence Bψ

(
A1/2u,A1/2v

)
is always defined for sets of tasks

with small variance. We then show that the Bregman divergence can be upper bounded in terms of the task
variance σ2, and by tuning appropriately the matrix A we obtain a regret bound for MT-OMD that scales
as
√

1 + σ2(N − 1). In contrast, the regret of independent OMD scales as
√
N , highlighting the advantage

brought by MT-OMD when tasks have a small variance. We stress that this improvement is independent of
the chosen regularizer, thereby offering a substantial acceleration in a wide range of scenarios. To keep the
exposition simple, we first work with a fixed and known σ2. We then show an extension of MT-OMD that
does not require any prior knowledge on the task similarity. The rest of the paper is organized as follows.
In Section 2, we introduce the multitask online learning problem and describe MT-OMD, our multitask
extension to solve it. In Section 3, we derive a regret analysis for MT-OMD, which highlights its advantage
when tasks are similar. Section 4 is devoted to algorithmic implementations, and Section 5 to experiments.

Related work. Starting from the seminal work by Caruana (1997), multitask learning has been intensively
studied for more than two decades, see Zhang & Yang (2021) for a recent survey. Similarly to Cavallanti et al.
(2010), our work is inspired by the Laplacian multitask framework of Evgeniou et al. (2005). This framework
has been extended to kernel-based learning (Sheldon, 2008), kernel-based unsupervised learning (Gu et al.,
2011), contextual bandits (Cesa-Bianchi et al., 2013), spectral clustering (Yang et al., 2014), stratified model
learning (Tuck et al., 2021), and, more recently, federated learning (Dinh et al., 2021). See also Herbster
& Lever (2009) for different applications of Laplacians in online learning. A multitask version of OMD has
been previously proposed by Kakade et al. (2012). Their approach, unlike ours, is cast in terms of matrix
learning, and uses group norms and Schatten p-norm regularizers. Their bounds scale with the diameter of
the model space according to these norms (as opposed to scaling with the task variance, as in our analysis).
Moreover, their learning bias is limited to the choice of the matrix norm regularizer and does not explicitly
include a notion of task similarity matrix. Abernethy et al. (2007); Dekel et al. (2007) investigate different
multitask extensions of online learning, see also Alquier et al. (2017); Finn et al. (2019); Balcan et al. (2019);
Denevi et al. (2019) for related extensions to meta-learning. Some online multitask applications are studied in
Pillonetto et al. (2008); Li et al. (2014; 2019), but without providing any regret analyses. Saha et al. (2011);
Zhang et al. (2018) extend the results of Cavallanti et al. (2010) to dynamically updated interaction matrices.
However, no regret bounds are provided. Murugesan et al. (2016) look at distributed online classification and
prove regret bounds, but they are not applicable in our asynchronous model. Other approaches for learning
task similarities include Zhang & Yeung (2010); Pentina & Lampert (2017); Shui et al. (2019). We finally
note the recent work by Boursier et al. (2022), which establishes multitask learning guarantees with trace
norm regularization when the number of samples per task is small, and that by Laforgue et al. (2022), which
learns jointly the tasks and their structure, but only with the Euclidean regularizer and under the assumption
that the task activations are stochastic.

Although our asynchronous multitask setting is identical to that of Cavallanti et al. (2010), we emphasize
that our work extends theirs much beyond the fact that we consider arbitrary convex losses instead of just
the hinge loss. Algorithmically, MT-OMD generalizes the Multitask Perceptron in much the same way OMD
generalizes the standard Perceptron. From a technical point of view, Theorem 1 in Cavallanti et al. (2010) is
a direct consequence of the Kernel Perceptron Theorem, and is therefore limited to Euclidean geometries.
Instead, our work provides a complete analysis of all regularizers of the form ψ(A1/2·). Although Cavallanti
et al. (2010) also contains a non-Euclidean p-norm extension of the Multitask Perceptron, we point out that
their extension is based on a regularizer of the form ‖Au‖2p. This is different from MT-OMD for p-norms,
which instead uses

∑
i ‖(A1/2u)(i)‖2p. As a consequence, their bound is worse than ours (see Appendix C for

technical details), does not feature any variance term, and does not specialize to the Euclidean case when
p = 2. Note that our analysis on the simplex is also completely novel as far as we know.
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2 Multitask Online Learning

We now describe the multitask online learning problem, and introduce our approach to solve it. We use a
cooperative and asynchronous multiagent formalism: the online algorithm is run in a distributed fashion by
communicating agents, that however make predictions at different time steps.

Problem formulation and reminders on OMD. We consider an online convex optimization setting
with a set of N ∈ N agents, each learning a possibly different task on a common convex decision set V ⊂ Rd.
At each time step t = 1, 2, . . . some agent it ≤ N makes a prediction xt ∈ V for its task, incurs loss `t(xt),
and observes a subgradient of `t at xt, where `t is a convex loss function. We say that it is the active agent
at time t. Both the sequence i1, i2, . . . of active agents and the sequence `1, `2, . . . of convex losses are chosen
adversarially and hidden from the agents. Our goal is to minimize the multitask regret, which is defined as
the sum of the individual regrets

RT =
N∑
i=1

( ∑
t : it=i

`t(xt)− inf
u∈V

∑
t : it=i

`t(u)
)

=
T∑
t=1

`t(xt)−
N∑
i=1

inf
u∈V

∑
t : it=i

`t(u) . (1)

A natural idea to minimize Equation (1) is to run N independent OMDs, one for each agent. Recall that OMD
refers to a family of algorithms, typically used to minimize a regret of the form

∑
t `t(xt)− infu∈V

∑
t `t(u),

for any sequence of proper convex loss functions `t. An instance of OMD is parameterized by a λ-strongly
convex regularizer ψ : Rd → R, and has the update rule

xt+1 = arg min
x∈V

〈ηtgt, x〉+Bψ(x, xt) , (2)

where gt ∈ Rd is a subgradient of `t at point xt, Bψ(x, y) = ψ(x)−ψ(y)−〈∇ψ(y), x−y〉 denotes the Bregman
divergence associated to ψ, and ηt > 0 is a tunable learning rate. Standard results allow to bound the regret
achieved by the sequence of iterates produced by OMD. For a fixed η and any initial point x1 ∈ V , we have
(Orabona, 2019, Theorem 6.8) that for all u ∈ V

T∑
t=1

`t(xt)− `t(u) ≤ Bψ(u, x1)
η

+ η

2λ

T∑
t=1
‖gt‖2? , (3)

with ‖ · ‖? the dual norm of the norm with respect to which ψ is strongly convex (see Definition 4 in the
Appendix). The choice of the regularizer ψ shapes the above bound through the quantities Bψ(u, x1) and
‖gt‖?. When ψ = 1

2‖ · ‖
2
2, we have Bψ(x, y) = 1

2‖x− y‖
2
2, ‖ · ‖? = ‖ · ‖2, λ = 1, and the algorithm is called

Online Gradient Descent (OGD). However, depending on the problem, a different choice of the regularizer
might better captures the underlying geometry. A well-known example is Exponentiated Gradient (EG), an
instance of OMD in which V is the probability simplex in Rd, such that V = ∆ := {x ∈ Rd+ :

∑
j xj = 1}. EG

uses the negative entropy regularizer x 7→
∑
j xj ln(xj), and assuming that ‖gt‖∞ ≤ Lg, one achieves bounds

of order O(Lg
√
T ln d), while OGD yields bounds of order O(Lg

√
dT ). We emphasize that our cooperative

extension adapts to several types of regularizers, and can therefore exploit these improvements with respect
to the dependence on d, see Proposition 8. Let C be a generic constant such that C

√
T bounds the regret

incurred by the chosen OMD (e.g., C = Lg
√

ln d, or C = Lg
√
d above). Then, by Jensen’s inequality the

multitask regret of N independent OMDs satisfies

RT ≤
N∑
i=1

C
√
Ti ≤ C

√
NT , (4)

where Ti =
∑T
t=1 I{it = i} denotes the number of times agent i was active. Our goal is to show that

introducing communication between the agents may significantly improve on Equation (4) with respect to
the dependence on N .
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A multitask extension. We now describe our multitask OMD approach. To gain some insights on it, we
first focus on OGD. For i ≤ N and t ≤ T , let xi,t ∈ Rd denote the prediction maintained by agent i at time
step t. By completing the square in Equation (2) for ψ = ψEuc := 1

2‖ · ‖
2
2, the independent OGDs updates

can be rewritten for all i ≤ N and t such that it = i:

xi,t+1 = ΠV,‖·‖2

(
xi,t − ηtgt

)
, (5)

where ΠV,‖·‖ denotes the projection operator onto the convex set V according to the norm ‖ · ‖, that is
ΠV,‖·‖(x) = arg miny∈V ‖x − y‖. Our analysis relies on compound representations, that we explain next.
We use bold notation to refer to compound vectors, such that for u1, . . . , uN ∈ Rd, the compound vector
is u = [u1, . . . , uN ] ∈ RNd. For i ≤ N , we use u(i) to refer to the ith block of u, such that u(i) = ui in
the above example. So xt is the compound vector of the (xi,t)Ni=1, such that xt = x

(it)
t , and the multitask

regret rewrites as RT (u) =
∑T
t=1 `t

(
x

(it)
t

)
− `t

(
u(it)

)
. For any set V ⊂ Rd, let V = V ⊗N ⊂ RNd denote the

compound set such that u ∈ V is equivalent to u(i) ∈ V for all i ≤ N . Equipped with this notation, the
independent OGD updates Equation (5) rewrite as

xt+1 = ΠV ,‖·‖2

(
xt − ηtgt

)
, (6)

with gt ∈ RNd such that g(i)
t = gt for i = it, and 0Rd otherwise. In other words, only the active agent has

a non-zero gradient and therefore makes an update. Our goal is to incorporate communication into this
independent update. To that end, we consider the general idea of sharing updates by considering (sub)
gradients of the form A−1gt, where A−1 ∈ RNd×Nd is a shortcut notation for A−1 ⊗ Id and A ∈ RN×N is
any symmetric positive definite interaction matrix. Note that A is a parameter of the algorithm playing the
role of a learning bias. While our central result (Theorem 1) holds for any choice of A, our more specialized
bounds (see Propositions 5 to 8) apply to a parameterized family of matrices A. A simple computation shows
that (A−1gt)(i) = A−1

iit
gt. Thus, every agent i makes an update proportional to A−1

iit
at each time step t. In

other words, the active agent (the only one to suffer a loss) shares its update with the other agents. Results
in Section 3 are proved by designing a matrix A−1 (or equivalently A) such that A−1

iit
captures the similarity

between tasks i and it. Intuitively, the active agent it should share its update (gradient) with another agent i
to the extent their respective tasks are similar. Overall, denoting by ‖u‖M =

√
u>Mu the Mahalanobis norm

of u, the MT-OGD update writes

xt+1 = ΠV ,‖·‖A
(
xt − ηtA−1gt

)
. (7)

In comparison to Equation (6), the need for changing the norm in the projection, although unclear at first
sight, can be explained in multiple ways. First, it is key to the analysis, as we see in the proof of Theorem 1.
Second, it can be interpreted as another way of exchanging information between agents, see Remark 1. Finally,
note that update Equation (7) can be decomposed as

x̃t+1 = arg min
x∈RNd

〈ηtgt,x〉+ 1
2‖x− xt‖

2
A ,

xt+1 = arg min
x∈V

1
2‖x− x̃t+1‖2A ,

(8)

showing that it is natural to keep the same norm in both updates. Most importantly, what Equation (8) tells
us, is that the MT-OGD update rule is actually an OMD update—see e.g., (Orabona, 2019, Section 6.4)—
with regularizer x 7→ 1

2‖x‖
2
A = ψEuc

(
A1/2x

)
. This provides a natural path for extending our multitask

approach to any regularizer. Given a base regularizer ψ : Rd → R, the compound regularizer ψ is given
by ψ : x ∈ RNd 7→

∑N
i=1 ψ

(
x(i)). When there exists a function φ : R → R such that ψ(x) =

∑
j φ(xj),

the compound regularizer is the natural extension of ψ to RNd. Note, however, that the relationship can
be more complex, e.g., when ψ(x) = 1

2‖x‖
2
p. Using regularizer ψ

(
A1/2 ·

)
, whose associate divergence is

Bψ
(
A1/2x,A1/2x′

)
, the MT-OMD update thus reads

xt+1 = arg min
x∈V

〈ηtgt,x〉+Bψ
(
A1/2x,A1/2xt

)
. (9)
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Clearly, if ψ = ψEuc, we recover the MT-OGD update. Observe also that whenever A = IN , MT-OMD is
equivalent to N independent OMDs. We conclude this exposition with a remark shedding light on the way
MT-OMD introduces communication between agents.
Remark 1. Denoting yt = A1/2xt, Equation (9) rewrites

xt+1 = A−1/2 arg min
y∈A1/2(V )

〈ηtA−1/2gt,y〉+Bψ(y,yt) . (10)

The two occurrences of A−1/2 reveal that agents communicate in two distinct ways: one through the shared
update (the innermost occurrence of A−1/2), and one through computing the final prediction xt+1 as a linear
combination of the solution to the optimization problem. Multiplying Equation (10) by A1/2, MT-OMD can
also be seen as standard OMD on the transformed iterate yt.

3 Regret Analysis

We now provide a regret analysis for MT-OMD. We start with a general theorem presenting two bounds, for
constant and time-varying learning rates. These results are then instantiated to different types of regularizer
and variance in Propositions 2 to 8. The main difficulty is to characterize the strong convexity of ψ

(
A1/2 ·

)
,

see Lemmas 10 and 11 in the Appendix. Throughout the section, V ⊂ Rd is a convex set of comparators, and
(`t)Tt=1 is a sequence of proper convex loss functions chosen by the adversary. Note that all technical proofs
can be found in Appendix A.
Theorem 1. Let ψ : Rd → R be λ-strongly convex with respect to norm ‖ · ‖ on V , let A ∈ RN×N be
symmetric positive definite, and set x1 ∈ V . Then, MT-OMD with ηt := η produces a sequence of iterates
(xt)Tt=1 such that for all u ∈ V , RT (u) is bounded by

Bψ
(
A1/2u,A1/2x1

)
η

+ max
i≤N

A−1
ii

η

2λ

T∑
t=1
‖gt‖2? . (11)

Moreover, for any sequence of nonincreasing learning rates (ηt)Tt=1, MT-OMD produces a sequence of iterates
(xt)Tt=1 such that for all u ∈ V , RT (u) is bounded by

max
t≤T

Bψ
(
A1/2u,A1/2xt

)
ηT

+ max
i≤N

A−1
ii

1
2λ

T∑
t=1

ηt‖gt‖2? . (12)

3.1 Multitask Online Gradient Descent

For ψ = 1
2‖ · ‖

2
2, A = IN (independent updates), unit-norm reference vectors (u(i))Ni=1, Lg-Lipschitz losses,

and x1 = 0, bound Equation (11) becomes: ND2/2η + ηTL2
g/2. Choosing η = D

√
N/Lg

√
T , we recover the

DLg
√
NT bound of Equation (4). Our goal is to design interaction matrices A that make Equation (11)

smaller. In the absence of additional assumptions on the set of comparators, it is however impossible to
get a systematic improvement: the bound is a sum of two terms, and introducing interactions typically
reduces one term but increases the other. To get around this difficulty, we introduce a simple condition on
the task similarity, that allows us to control the increase of Bψ

(
A1/2u,A1/2x1

)
for a carefully designed class

of interaction matrices.
Definition 1. Let ‖ · ‖ : Rd → R be any norm, and ū = (1/N)

∑N
i=1 u

(i), for any u ∈ RNd. We define the
variance of u w.r.t. ‖ · ‖ as

Var‖·‖(u) = 1
N − 1

N∑
i=1

∥∥u(i) − ū
∥∥2
.

Let D = supu∈V ‖u‖, and σ > 0. The comparators with variance smaller than σ2D2 are denoted by

V‖·‖,σ =
{
u ∈ V : Var‖·‖(u) ≤ σ2D2} . (13)

5
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For sets of comparators of the form Equation (13), we show that MT-OGD achieves significant improvements
over its independent counterpart. The rationale behind this gain is fairly natural: the tasks associated with
comparators in Equation (13) are similar due to the variance constraint, so that communication indeed helps.
Note that condition Equation (13) does not enforce any restriction on the norms of the individual u(i), and is
much more complex than a simple rescaling of the feasible set by σ2. For instance, one could imagine task
vectors highly concentrated around some vector u0, whose norm is D: the individual norms are close to D,
but the task variance is small. This is precisely the construction used in the separation result (Proposition 4).
As MT-OMD leverages the additional information of the task variance (unavailable in the independent case),
it is expected that an improvement should be possible. The problems of how to use this extra information
and what improvement can be achieved through it are addressed in the rest of this section. To that end, we
first assume σ2 to be known. This assumption can be seen as a learning bias, analog to the knowledge of the
diameter D in standard OGD bounds. In Section 3.4, we then detail a Hedge-based extension of MT-OGD
that does not require the knowledge of σ2 and only suffers an additional regret of order

√
T logN .

The class of interaction matrices we consider is defined as follows. Let L = IN − 11
>/N . We consider

matrices of the form A(b) = IN + b L, where b ≥ 0 quantifies the magnitude of the communication. For
more intuition about this choice, see Section 3.4. We can now state a first result highlighting the advantage
brought by MT-OGD.
Proposition 2. Let ψ = 1

2‖ · ‖
2
2, D = supx∈V ‖x‖2, and σ ≤ 1. Assume that ‖∂`t(x)‖2 ≤ Lg for all t ≤ T

and any x ∈ V . Set b = N , x1 = 0, and η = D
√
N(N + 1)(1 + (N − 1)σ2)/Lg

√
2T . Then, MT-OGD

produces a sequence of iterates (xt)Tt=1 such that for all u ∈ V‖·‖2,σ

RT (u) ≤ DLg
√

1 + σ2(N − 1)
√

2T . (14)

Proof sketch. With ψ = 1
2‖ · ‖

2
2, and x1 = 0, we have 2Bψ

(
A(b)1/2u,A(b)1/20

)
= ‖u‖22 + b(N − 1)Var‖·‖2(u),

which is smaller than ND2(1 + bN−1
N σ2). Then, it is easy to check that

[
A(b)−1]

ii
= b+N

(1+b)N for all i ≤ N .
Substituting these values into Equation (11), we obtain

RT (u) ≤
ND2(1 + bN−1

N σ2)
2η +

ηTL2
g

2
b+N

(1 + b)N .

Finally, set η = ND
Lg

√(
1+bN−1

N σ2
)

(1+b)
(b+N)T and b = N .

Thus, MT-OGD enjoys a
√

1 + σ2(N − 1) dependence, which is smaller than
√
N when tasks have a variance

smaller than 1. When σ = 0 (all tasks are equal), MT-OGD scales as if there were only one task. When
σ ≥ 1, the analysis suggests to choose b = 0, i.e., A = IN , and one recovers the performance of independent
OGDs. Note that the additional

√
2 factor in Equation (14) can be removed for limit cases through a better

optimization in b: the bound obtained in the proof actually reads DL
√
F (σ)T , with F (0) = 1 and F (1) = N .

However, the function F lacks of interpretability outside of the limit cases (for details see Appendix A.2)
motivating our choice to present the looser but more interpretable bound Equation (14). For a large N , we
have

√
1 + σ2(N − 1) ≈ σ

√
N . The improvement brought by MT-OGD is thus roughly proportional to the

square root of the task variance. From now on, we refer to this gain as the multitask acceleration. This
improvement achieved by MT-OGD is actually optimal up to constants, as revealed by the following lower
bound, which is only 1/4 of Equation (14).
Proposition 3. Under the conditions of Proposition 2, the regret of any algorithm satisfies

sup
u∈V‖·‖2,σ

RT (u) ≥ 1
4

(
DLg

√
1 + σ2(N − 1)

√
2T
)
.

Another way to gain intuition about Equation (14) is to compare it to the lower bound for OGD considering
independent tasks (IT-OGD). The following separation result shows that MT-OGD may strictly improve
over IT-OGD.

6
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Proposition 4. Let d ≥ 9, N = 2d, and σ ≤ 1 to be tuned later. Then, there exists u ∈ V‖·‖2,σ such that

RIT−OGD
T (u) ≥

√
(1− 2σ2)N

4
√

2T .

Proposition 2 then yields that for any σ2 < N−16
18N−16

RIT−OGD
T (u) > RMT−OGD

T (u) .

3.2 Extension to any Norm Regularizers

A natural question is: can the multitask acceleration be achieved with other regularizers? Indeed, the proof of
Proposition 2 crucially relies on the fact that the Bregman divergence can be exactly expressed in terms of
‖u‖22 and Var‖·‖2(u). In the following proposition, we show that such an improvement is also possible for all
regularizers of the form 1

2‖ · ‖
2, for arbitrary norms ‖ · ‖, up to an additional multiplicative constant. A crucial

application is the use of the p-norm on the probability simplex, which is known to exhibit a logarithmic
dependence in d for a well-chosen p.
Proposition 5. Let ‖ · ‖ : Rd → R be any norm, ψ = 1

2‖ · ‖
2, D = supx∈V ‖x‖, and σ ≤ 1. Assume that

‖∂`t(x)‖? ≤ Lg for all t ≤ T , x ∈ V . Set b = N , x1 = 0 and η = D
√
N(N + 1)(1 + (N − 1)σ2)/Lg

√
2T .

Then, MT-OMD produces a sequence of iterates (xt)Tt=1 such that for all u ∈ V‖·‖,σ

RT (u) ≤ DLg
√

1 + σ2(N − 1)
√

8T .

In particular, for d ≥ 3 and V = ∆, choosing ‖ · ‖ = ‖ · ‖p, for p = 2 ln d/(2 ln d − 1), and assuming that
‖∂`t(x)‖∞ ≤ Lg, it holds for all u ∈∆‖·‖p,σ

RT (u) ≤ Lg
√

1 + σ2(N − 1)
√

16e T ln d .

In comparison, under the same assumptions, bound Equation (14) would write as: Lg
√

1 + σ2(N − 1)
√

2Td.

Projecting onto Vσ. Propositions 2 and 5 reveal that whenever tasks are similar (i.e., whenever u ∈ Vσ),
then using the regularizer ψ

(
A1/2 ·

)
with A 6= IN accelerates the convergence. However, this is not the only

way to leverage the small variance condition. For instance, one may also use this information to directly
project onto Vσ ⊂ V , by considering the update

xt+1 = arg min
x∈Vσ

〈ηtgt,x〉+Bψ
(
A1/2x,A1/2xt

)
. (15)

Although not necessary in general (Propositions 2 and 5 show that communicating the gradients is sufficient
to get an improvement), this refinement presents several advantages. First, it might be simpler to compute in
practice, see Section 4. Second, it allows for adaptive learning rates, that preserve the guarantees while being
independent from the horizon T (Proposition 6). Finally, it allows to derive L? bounds with the multitask
acceleration for smooth loss functions (Proposition 7). Results are stated for arbitrary norms, but bounds
sharper by a factor 2 can be obtained for ‖ · ‖2.
Proposition 6. Let ‖ · ‖ : Rd → R be any norm, ψ = 1

2‖ · ‖
2, D = supx∈V ‖x‖, and σ ≤ 1. Set b = N , and

ηt = D
√
N(N + 1)(1 + (N − 1)σ2)(

∑t
i=1 ‖gi‖2?)−1/2. Then, Equation (15) produces a sequence of iterates

(xt)Tt=1 such that for all u ∈ V‖·‖,σ

RT (u) ≤ 8D
√

1 + σ2(N − 1)
( T∑
t=1
‖gt‖2?

)1/2
.

Proposition 7. Let ‖ · ‖ : Rd → R be any norm, ψ = 1
2‖ · ‖

2, D = supx∈V ‖x‖, and σ ≤ 1. Assume that the
`t are M -smooth, i.e., ‖∇`t(x)−∇`t(y)‖? ≤M‖x− y‖ for all t ≤ T , and any x, y ∈ V . Set b and ηt as in
Proposition 6. Then, update Equation (15) produces a sequence of iterates (xt)Tt=1 such that for all u ∈ V‖·‖,σ

RT (u) ≤16D
√

1 + σ2(N − 1)

2MD
√

1 + σ2(N − 1) +

√√√√M

T∑
t=1

`t
(
u(it)

) .
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3.3 Regularizers on the Simplex

As seen in Propositions 2 to 7, MT-OMD induces a multitask acceleration in a wide range of settings, involving
different regularizers (Euclidean norm, p-norms) and various kind of loss functions (Lipschitz continuous,
smooth continuous gradients). This systematic gain suggests that multitask acceleration essentially derives
from our approach, and is completely orthogonal to the improvements achievable by choosing the regularizer
appropriately. Bounds combining both benefits are actually derived in the second claim of Proposition 5.
However, all regularizers studied so far share a crucial feature: they are defined on the entire space Rd.
As a consequence, the divergence Bψ(A1/2u,A1/2x) is always well defined, which might not be true in
general, for instance when the comparator set studied is the probability simplex ∆. A workaround consists
in assigning the value +∞ to the Bregman divergence whenever either of the arguments is outside of the
compound simplex ∆ = ∆⊗N . The choice of the interaction matrix A then becomes critical to prevent the
bound from exploding, and calls for a new definition of the variance. Indeed, note that for i ≤ N we have
(A(b)1/2u)(i) =

√
1 + b u(i) + (1−

√
1 + b)ū. If all u(i) are equal (say to u0 ∈ ∆), then all (A(b)1/2u)(i) are

also equal to u0 and A(b)1/2u ∈ ∆. However, if they are different, by definition of ū, for all j ≤ d, there
exists i ≤ N such that u(i)

j ≤ ūj . Then, for b large enough,
√

1 + b u
(i)
j + (1−

√
1 + b)ūj becomes negative,

and (A(b)1/2u)(i) is out of the simplex. Luckily, the maximum acceptable value for b can be easily deduced
from the following variance definition.
Definition 2. Let u ∈ Rd. For all j ≤ d, let

umax
j = max

i≤N
u

(i)
j , and umin

j = min
i≤N

u
(i)
j .

Then, with the convention 0/0 = 0 we define

Var∆(u) = max
j≤d

(
umax
j − umin

j

umax
j

)2

,

and for any σ ≤ 1
∆σ =

{
u ∈∆ : Var∆(u) ≤ σ2} .

Equipped with this new variance definition, we can now analyze regularizers defined on the simplex.
Proposition 8. Let ψ : ∆ → R be λ-strongly convex w.r.t. norm ‖ · ‖, and such that there exist x∗ ∈ ∆
and C <+∞ such that for all x ∈ ∆, Bψ(x, x∗) ≤ C. Let σ ≤ 1, and assume that ‖∂`t(x)‖? ≤ Lg for all
t ≤ T and x ∈ ∆. Set b = (1 − σ2)/σ2, x1 = [x∗, . . . , x∗], and η = N

√
2λ(1 + b)C/Lg

√
(b+N)T . Then,

MT-OMD produces a sequence of iterates (xt)Tt=1 such that for all u ∈∆σ

RT (u) ≤ Lg
√

1 + σ2(N − 1)
√

2CT/λ .

For the negative entropy we have x∗=1/d and C= ln d. With subgradients satisfying ‖∂`t(x)‖∞ ≤ Lg we
obtain

RT (u) ≤ Lg
√

1 + σ2(N − 1)
√

2T ln d .

Proposition 8 shows that the multitask acceleration is not an artifact of the Euclidean geometry, but rather a
general feature of MT-OMD, as long as the variance definition is aligned with the geometry of the problem.

3.4 Adaptivity to the Task Variance

Most of the results we presented so far require the knowledge of the task variance σ2. We now present an
Hedge-based extension of MT-OMD, denoted Hedge-MT-OMD, that does not require any prior information
on σ2. First, note that for σ2 ≥ 1, MT-OMD becomes equivalent to independent OMDs. A simple approach
consists then in using Hedge—see, e.g., (Orabona, 2019, Section 6.8)—over a set of experts, each running an
instance of MT-OMD with a different value of σ2 chosen on a uniform grid of the interval [0, 1].1 We can
show that Hedge-MT-OGD only suffers an additional regret of order

√
T logN against MT-OGD run with

the exact knowledge of Var‖·‖2(u).
1Note that Hedge-MT-OGD computes the loss subgradient at arbitrary points (corresponding to the expert’s predictions).

8
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Theorem 9. Let D = supx∈V ‖x‖2, and assume that ‖∂`t(x)‖2 ≤ Lg for all t ≤ T , x ∈ V . Then, for all
u ∈ V the regret of Hedge-MT-OGD is bounded by

DLg

(
2 +

√
logN +

√
min

{
Var‖·‖2(u), 1

}
·N
)√

2T .

Variance definition and choice of A. Note that we have (N − 1)Var‖·‖2(u) = 1
N

∑
i,j ‖u(i) − u(j)‖22 =

u>Lu, where L = IN − 11>/N is the Laplacian of the weighted clique graph over {1, . . . , N}, with edges of
1/N . A natural extension then consists in considering variances of the form

VarW‖·‖2
(u) =

N∑
i,j=1

Wij‖u(i) − u(j)‖22 = u>LWu

for any adjacency matrix W and its Laplacian LW . For instance, if we expect tasks to be concentrated in
clusters, it is natural to consider Wij = 1 if u(i) and u(j) (are thought to) belong to the same cluster, and 0
otherwise. This local version is interesting, as it allows to satisfy the variance condition with a smaller σ,
which improves the MT-OMD regret bound. Note that the proof of Theorem 1 can be readily adapted to this
definition by considering the class of interaction matrices {A(b) = IN + bLW }. The bound however features
maxi≤N [A(b)−1]ii, which depends on W in a nontrivial way and requires a case by case analysis, preventing
from stating a general result for an arbitrary W . Considering even more general matrices A, i.e., that do not
write as IN + bL, suffers from the same problem (one then also needs to compute Bψ(A1/2u,A1/2v) on a
case by case basis), and does not enjoy anymore the variance interpretation seen above. Furthermore, note
that Proposition 2 is obtained by minimizing Equation (11) with respect to A. For matrices of the form
A(b), this tradeoff only depends on b, and is thus much easier to solve than for general matrices. Finally, we
stress that local variances can be similarly considered on the simplex. Instead of involving the global umax

j ,
the variance formula then features for each task/node a local maximum (respectively minimum) over its
neighbours.

4 Algorithms

We now show that MT-OGD and MT-EG enjoy closed-form updates, making them easy to implement. Note
that the MT-OGD derivation is valid for any matrix A positive definite, while MT-EG requires A−1/2 to be
stochastic. This is verified by matrices of the form A = IN + LW (Lemma 12).

MT-OGD. Let V = {u ∈ Rd : ‖u‖2 ≤ D}, and σ ≤ 1. Recall that V = V ⊗N = {u ∈ RNd : ‖u‖2,∞ ≤ D},
and V‖·‖2,σ = {u ∈ V : Var‖·‖2(u) ≤ σ2}. Solving the first equation in Equation (8), we obtain that the
iterate xt+1 produced by MT-OGD is the solution to

min
x∈RNd

{∥∥xt − ηtA−1gt − x
∥∥2
A

: ‖x‖2,∞ ≤ D
}
.

However, computing this update is made difficult by the discrepancy between the norms used in the objective
and the constraint. A simple work around consists in considering the minimization over the Mahalanobis ball
VA = {u ∈ RNd : ‖u‖2A ≤ (1 + bσ2)ND2} instead. It is easy to check that V‖·‖2,σ ⊂ VA, so that every result
derived in Section 3 for MT-OGD remains valid (only the fact that comparators and iterates are in VA is
actually used). With the substitution yt = A1/2xt the MT-OGD update then rewrites (see Appendix B.1 for
technical details)

yt+1 = Proj
(
yt − ηtA−1/2gt,

√
(1 + bσ2)ND

)
, (16)

where Proj(x, τ) = min
{

1, τ
‖x‖2

}
x. Note that Equation (16) can be easily turned back into an update on xt

by making the inverse substitution. In practice however, xt is only computed to make the predictions.

MT-EG. Using Equation (8) with yt = A1/2xt, MT-EG reads
ỹt+1 = arg min

y∈RNd
〈ηA−1/2gt,y〉+Bψ(y,yt) ,

yt+1 = arg min
y∈A1/2(∆)

Bψ(y, ỹt+1) , (17)

9



Under review as submission to TMLR

where ψ is the compound negative entropy regularizer such that ψ(x) =
∑N
i=1
∑d
j=1 x

(i)
j ln

(
x

(i)
j

)
. One can

show (see Appendix B.2 for details) that the update can be rewritten for all i ≤ N and j ≤ d

ỹ
(i)
t+1,j = y

(i)
t,j exp

(
−ηA−1/2

iit
gt,j − 1

)
,

y
(i)
t+1,j =

ỹ
(i)
t+1,j∑d

k=1 ỹ
(i)
t+1,k

.

Combining both equations, we finally obtain

y
(i)
t+1,j =

y
(i)
t,j e

−ηA−1/2
iit

gt,j∑d
k=1 y

(i)
t,k e

−ηA−1/2
iit

gt,k
. (18)

Update Equation (18) enjoys a natural interpretation. Each block y(i) is operating an individual standard
EG update, but with gradient A−1/2

iit
gt. When A = IN , only the active block is updated. Otherwise, the

update of block i is proportional to A−1/2
iit

, that quantifies the similarity between tasks i and it. Although
this work only focuses on OMD for clarity, note that considering Follow-the-Regularized-Leader—see, e.g.,
(Orabona, 2019, Section 7)—with λ = ψ(A1/2·) would yield similar bounds. This would allow, for instance,
the use of time-varying learning rates with entropic regularization.

5 Experiments

In this section, we empirically compare the performance of Hedge-MT-OGD/EG against two natural
alternatives: an independent-task approach (IT-OGD/EG) where the agents do not communicate, and a
single-task approach (ST-OGD/EG) where a single model is learned and shared by all agents. Note that
both IT and ST approaches are special cases of MT-OMD, obtained respectively with the choices b = 0 (i.e.,
σ2 ≥ 1), or b = +∞ (i.e., σ2 = 0). In Appendix D we report an additional experiment where we empirically
validate the dependence of the performance of MT-OGD on the task variance.

Online Gradient Descent. For this experiment, we use the Lenk dataset (Lenk et al., 1996; Argyriou
et al., 2007). It consists of 2880 computer ratings in the range {1, 2, . . . , 10}, made by 180 individuals (the
tasks) on the basis of 14 binary features. Each computer is rated on a discrete scale from 0 to 10, expressing
the likelihood of an individual buying that computer. We run Hedge-MT-OGD using the clique interaction
matrix A = (1 + N)IN − 11

> and the square loss. For all algorithms, the value of η is set according to
the optimal theoretical value, see Proposition 2. In Hedge-MT-OGD, the variance σ2 is learned in a set of
5 experts uniformly spaced over [0, 1]. For simplicity, we use D = 1 and compute the resulting Lipschitz
constant accordingly. Results are reported in Figure 1(a).

Exponentiated Gradient. For our second experiment, we consider EMNIST, a classification dataset
consisting of 62 classes (images of digits, small and capital letters). To speed up computation, we reduced the
number of features from 784 down to 10 through a standard dimensionality reduction method. We created
61 binary classification tasks by considering the 0 digit class against each other class. To each task, we
assigned 10 examples (5 positive, 5 negative) randomly chosen from the set of examples for that task. We
considered the linear logistic regression and ran Hedge-MT-EG with the parameterized clique interaction
matrix A(b) = (1 + b)IN − b11>/N . The value of b is set according to the theoretical value (that depends on
σ2, see Proposition 8), while σ2 is learned in a set of 5 experts uniformly spaced over [0, 1]. For all algorithms,
the value of η is set according to the optimal theoretical values. Results are reported in Figure 1(b).

6 Conclusion

We introduced and analyzed MT-OMD, a multitask extension of OMD whose regret is shown to improve as
the task variance, expressed in terms of the geometry induced by the regularizer, decreases. We provided a
unifying analysis and a single algorithm that explains when is multitask acceleration possible based on the

10
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(a) Lenk (OGD, cumulative square loss) (b) EMNIST (EG, cumulative logistic loss)

Figure 1: Comparison between multitask (MT), independent-task (IT), and single-task (ST) OGD and EG
on the Lenk and EMNIST datasets. We plot the cumulative losses against time. Lenk is known to work well
in multi-task settings, and indeed Hedge-MT-OGD performs significantly better than both baselines. On
the other hand, EMNIST has a variance significantly higher than Lenk. However, even in this unfavorable
scenario, Hedge-MT-EG is still outperforming the baselines, though by a small margin.

current geometry, and how to achieve it. Natural and interesting directions for future research include: (1)
analyzing the multitask acceleration in combination with other properties, such as strongly convex losses,
and (2) designing and analyzing an extension of MT-OMD that is adaptive to the best interaction matrix.
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