
Under review as a conference paper at ICLR 2022

TWO REGIMES OF GENERALIZATION FOR NON-
LINEAR METRIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A common approach to metric learning is to seek an embedding of the input data
that behaves well with respect to the labels. While generalization bounds for linear
embeddings are known, the non-linear case is not well understood. In this work
we fill this gap by providing uniform generalization guarantees for the case where
the metric is induced by a neural network type embedding of the data. Specifi-
cally, we discover and analyze two regimes of behavior of the networks, which
are roughly related to the sparsity of the last layer. The bounds corresponding to
the first regime are based on the spectral and (2, 1)-norms of the weight matrices,
while the second regime bounds use the (2,∞)-norm at the last layer, and are sig-
nificantly stronger when the last layer is dense. In addition, we empirically eval-
uate the behaviour of the bounds for networks trained with SGD on the MNIST
and 20newsgroups datasets. In particular, we demonstrate that both regimes occur
naturally in realistic data.

1 INTRODUCTION

Metric Learning, Bellet et al. (2015), is the problem of finding a metric ρ on the space of features,
such that ρ reflects some semantic properties of a given task. Generally, the input can be thought
of as a set of labeled pairs {((xi, x′i), yi)}ni=1, where xi, x′i ∈ Rd are the features, and yi is the
label, indicating whether xi and x′i should be close in the metric or far apart. For instance, in face
identification, Schroff et al. (2015), features xi and x′i corresponding to the same face should be
close in ρ, while different faces should be far apart.

Note that the above metric learning formulation is fairly general and one can convert supervised
clustering, or even standard classification problems into metric learning simply by setting yi = 1 if
xi and x′i have the same original label and yi = 0 otherwise Davis et al. (2007); Weinberger & Saul
(2009); Cao et al. (2016); Khosla et al. (2020); Chicco (2020).

The metric ρ is typically assumed to be the Euclidean metric taken after a linear or non-linear
embedding of the features. That is, we consider a parametric family G of embeddings into a k-
dimensional space, g : Rd → Rk, and set 1

ρ(x, x′) = ρg(x, x
′) = ‖g(x)− g(x′)‖22 . (1)

As an example, Figure 1 shows tSNE plots, Maaten & Hinton (2008), of the classical 20newsgroups
dataset. Figure 1a was generated using the regular bag of words representation of the data (see
Sections 5 and D for additional details) while Figure 1b was generated by applying tSNE to an
embedding of the data (of the form (3) below) learned by minimizing a loss based on labels, as
described above. Clearly, there is no discernible relation between the label and the metric in the
raw representation, but there is a strong relation in the learned metric. One can also obtain similar
conclusions, and quantify them, by, for instance, replacing tSNE with spectral clustering.

The uniform generalization problem for metric learning is the following: Given a family of embed-
dings G, provide bounds, that hold uniformly for all g ∈ G, on the difference between the expected
value of the loss and the average value of the loss on the train set; see Section 2 for a formal defini-
tion. Such bounds guarantee, for instance, that the train set would not be overfitted. Given a family

1Note that ρ in (1) is not strictly a metric. Nevertheless, this terminology is common.
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(a) Raw features, after normalization and 500 dim.
PCA.
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(b) Learned embedding, k=50, test set.

Figure 1: tSNE plot of the 20newsgroup data, restricted to the first 10 labels. Points are colored
according to the label.

of embeddings G, consider the family F of functions f : Rd × Rd → R of the form

F = {f(x, x′) = ρg(x, x
′) | g ∈ G} . (2)

We refer to these as the distance functions, which map a pair of features into their distance after
the embedding. Well known arguments imply that one can obtain generalization bounds for F by
providing upper bounds on the Rademacher complexity Rn (F) of the family of the scalar functions
F . Therefore in what follows, we discuss directly the upper bounds on Rn (F) for various families
G. We refer to Section 2 for formal definitions and details on the relation between G,F ,Rn (F), and
generalization bounds.

1.1 OVERVIEW OF THE RESULTS

In this paper our goal is to study generalization bounds for neural network type non-linear embed-
dings g : Rd → Rk given by neural networks of depth L ≥ 1. Specifically, we consider embeddings
of the form

g(x) = gA(x) = φL
(
AtL ·

(
φL−1

(
AtL−1 . . . φ1

(
At1x

)
. . .
)))

, (3)

where A = (A1, . . . , AL) is a tuple of matrices such that Ai ∈ Rki−1×ki for i = 1, . . . , L, and ki
are the layer widths, with k0 = d and kL = k. The activations φi : R → R are assumed to be
Lipschitz, with ‖φ‖Lip ≤ ρi, and act on vectors in Rki coordinatewise. A family of matrix tuples
will be generally denoted by A, while the associated embeddings family (3) will be denoted by G
and the associated family of distance functions, (2), will be denoted by F .

In the context of deep learning generalization guarantees for classification, there exists a large body
of work on various complexity bounds related to the family of mappings G. The current strongest
uniform bounds were given in Bartlett et al. (2017) (see also Neyshabur et al. (2018)). Our goal here
is to translate these bounds to bounds on the Rademacher complexity of the family F , derived from
G. That is, we study the aspects of the problem that are specific to the metric learning setting.

To state the results, we require a few norm definitions: For matrix A ∈ Rs×t, ‖A‖op is the spectral
norm, and set ‖A‖2,1 =

∑t
i=1 ‖A·i‖2, where A·i is the i-th column of A. For a family A of matrix

tuples, A = (A1, . . . , AL) ∈ A, for i ≤ L we set

‖Ai‖op = sup
A∈A
‖Ai‖op and ‖Ai‖2,1 = sup

A∈A
‖Ai‖2,1 . (4)

Thus ‖Ai‖op , ‖Ai‖op are the largest respective norms of the component Ai in A.

With this notation, our first result is the following bound (up to logarithmic factors):

Rn (F) ≤ O

 1√
n
b2

(
L∏
i=1

ρi ‖Ai‖op

)2
 L∑
i=1

‖Ai‖
2
3
2,1

‖Ai‖
2
3
op

 3
2

 . (5)

Here b is an upper bound on inputs, ‖xi‖2 , ‖x′i‖2 ≤ b for i ≤ n. The full statement is given in
Section 4, Theorem 1. This bound can be regarded as a natural extension of the bounds of Bartlett
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et al. (2017) to the metric learning setting. Indeed, it uses the same parameters – the ‖A‖op and

‖A‖2,1 norms. The quantity
(∏L

i=1 ρi ‖Ai‖op
)

is the maximal Lipschitz constant of the mappings
in G, and it will typically be the dominant term in (5). One of the appealing properties of (5),
inherited from the bounds in Bartlett et al. (2017), is that it is dimension free, in the sense that the
depth L and the the layer widths ki do not enter the bound explicitly.

As noted above, for the case of classification, the bounds in Bartlett et al. (2017) are currently the
strongest known uniform bounds. However, we now show that in the metric learning setting, one
can improve the bound in some situations, by using the ‖A‖2,∞ = maxi≤k ‖A·i‖2 norm at the last
layer. In Theorem 2, Section 4, we show the following:

Rn (F) ≤ O

 k√
n
b2

(
ρL ‖AL‖2,∞

L−1∏
i=1

ρi ‖Ai‖op

)2
L−1∑
i=1

‖Ai‖
2
3
2,1

‖Ai‖
2
3
op

+ 1

 3
2

 . (6)

We refer to (5) as the sparse bound, and to (6) as the non-sparse bound. To compare the bounds,
and to see the relation to sparsity, let us first consider the simpler single layer setting, L = 1. In this
case, the bounds read

Rn (F) ≤ O
(
b2 ‖φ‖2Lip ‖A‖op ‖A‖2,1√

n

)
, (7)

and

Rn (F) ≤ O
(
kb2 ‖φ‖2Lip ‖A‖

2
2,∞√

n

)
, (8)

where A is the family of weights matrices, A ∈ Rd×k, φ an activation, and ‖A‖∗ = supA∈A ‖A‖∗
where ‖·‖∗ is one of ‖·‖2,1 , ‖·‖2,∞ , ‖·‖op. Consider first the case where A contains non sparse
matrices A ∈ A. These are the weights A where all k neurons have roughly the same norm, or
equivalently,

‖A‖2,1 ∼ k ‖A‖2,∞ . (9)
We refer to this condition as the dense regime. Note that (9) holds true for neural networks at
initialization, and in Section 5 we observe empirically that this also holds for SGD trained networks
on MNIST data. Next, when (9) holds, we also have that

‖A‖op ∼
√
k ‖A‖2,∞ . (10)

Indeed, one has ‖A‖op ≤
√
k ‖A‖2,∞ for any A, and (9) implies ‖A‖op ≥ const ·

√
k
d ‖A‖2,∞ (see

Lemma 3 in supplementary material A). The condition (10) will be also experimentally verified for
MNIST data. Now, substituting (9),(10) into (7) and (8), we obtain that in the non-sparse regime,
(8) is stronger than (7) by a factor of

√
k, a significant improvement. On the other hand, when A is

sparse, with most output neurons zeroed out (e.x. ‖A‖2,1 = ‖A‖op = ‖A‖2,∞), (7) will be much
stronger. Such sparse networks can be achieved by adding explicit sparsity regularization terms to
the cost. This will be the case for networks trained on the 20newsgroups dataset.

Finally, as evident from (5) and (6), for the multilayer case L > 1, the relation between the sparse
and non-sparse bounds is more involved. However, the asymptotics of the dependence on k is
similar: With all other ki fixed, (6) will be better by a factor of

√
k for non-sparse last layer AL, and

(5) will be better otherwise.

We now discuss an additional direction in which the bounds may be improved: Note that the de-
pendence of the bound on the coefficients of the weights in (5) and (6) is quadratic. As we show in
Section 4, this is in general unavoidable, due to the quadratic form of the metric (1). However, if the
highest activation, φL is bounded, such as for instance the sigmoid φ(x) = (1 + e−x)−1, then one
can obtain a linearly homogeneous dependence on the layer weights, thus potentially significantly
improving the bounds. These bounds are given in (18) and (21) in Theorems 1 and 2 respectively.
For comparison, in the single layer case the sparse and non-sparse bounded φL bounds are given by

Rn (F) ≤ O
(√

kb ‖φ‖∞ ‖φ‖Lip ‖A‖2,1√
n

)
and Rn (F) ≤ O

(
kb ‖φ‖∞ ‖φ‖Lip ‖A‖2,∞√

n

)
,

(11)
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where ‖φ‖∞ is the upper bound on the values of φ.

1.2 METHODS

The general proof strategy we take in this paper is to combine the covering number bounds for
the family G, due to Bartlett et al. (2017), Zhang (2002), with the analysis of the specific structure
induced by the metric learning problem, i.e. the structure of the family F(G), when G is fixed.

Theorems 1 and 2 exploit this structure differently. In Theorem 1 we directly estimate the covering
numbers of F in terms of those of G. Note that, for instance, F and G are function families on
different domains, and thus such estimates require some care. Once the estimates are obtained,
however, we bound Rn (F) using a standard Dudley entropy integral argument (Vershynin (2018)).

On the other hand, to prove Theorem 2, we use the special structure of the metric (1) as a sum.
This allows a decomposition of the problem into k problems, each of which has k = 1, and yields
bounds which depend on ‖A‖2,∞ and k, rather than on ‖A‖op , ‖A‖2,1. While this may seem as a
rougher bound at first glance, as discussed above it is in fact much stronger than Theorem 1 in some
situations.

Finally, we note that up to now generalization for metric learning was only studied in the linear case
(see Section 3 for a detailed discussion). In particular, uniform bounds were derived in Verma &
Branson (2015) and in Cao et al. (2016). Interestingly, already in the basic situation where L = 1
but φ(x) 6= x (i.e. a single layer but non-linear activation), one can not deduce our bounds (7) or
(8), for instance, from the bounds in Verma & Branson (2015) or Cao et al. (2016). Nor one can
use the methods employed in these works to obtain such bounds. The reason for this is that there
seems to be no simple principle that would “remove the linearity” (such as the Contraction Lemma,
Mohri et al. (2018) ) in the case of the cost (1). As a result, somewhat surprisingly, even to obtain
the linear instead of quadratic homogenity, as in (11) for L = 1, it appears that one already requires
the methods used in this paper.

To summarize, we have obtained the first uniform generalization guarantees for multilayer non-
linear metric learning. In particular, we introduced two types of bounds, which are appropriate for
sparse and non-sparse weightsAL. We have also shown that by using a bounded last layer activation,
one may avoid the quadratic dependence of the bound on the parameters, and we have empirically
verified that both sparse and dense regimes may occur in SGD optimized networks.

The rest of this paper is organized as follows: In Section 2 we overview the necessary background on
metric learning and generalization. Literature and related work are discussed in Section 3. In Section
4 we give the full formal statements of the results, and overview the main ideas involved in the
proofs. Full proofs are deferred to the supplementary material due to space constraints. Experiments
are described in Section 5 and concluding remarks are given in Section 6.

2 METRIC LEARNING BACKGROUND

In this paper we are assuming that the training data is given as a set {((xi, x′i), yi)}ni=1 of labeled
feature pairs, which we assume to be sampled independently form some distribution D on Rd ×
Rd × Y , where Y is some set of label values. It is usually sufficeint to take Y = {0, 1}. Note that
there may be dependence within the pair, i.e. x′i may depend on xi.

The quality of the embedding g on a data point ((x, x′), y) is measured via a loss function `, which
usually depends on ((x, x′), y) only through the metric. That is, given an embedding g ∈ G, let
f ∈ F be the corresponding distance function, f(x, x′) = ρg(x, x

′) (see (2)). We assume that there
is a fixed function ` : R × Y → [0, 1], such that the loss of the distance function f ∈ F on a
data point ((x, x′), y) is given by Lf ((x, x′), y) = `(f(xi, x

′
i), yi) = `(ρg(xi, x

′
i), yi). A typical

example of a loss ` is the following version of the margin loss:

`S,D(a, y) =

{
ReLU (a− S) if y = 1

ReLU (D − a) otherwise,
(12)

where ReLU(x) = max (0, x). As discussed in Section 1, this loss embodies the principle that
(x, x′) should be close iff y = 1, by penalizing distances above S when y = 1 and penalizing
distances below D otherwise.
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The overall loss on the data, or the empirical risk, is given by

R̂f =
1

n

n∑
i=1

Lf ((xi, x
′
i), yi). (13)

The expected risk is given by Rf = E((x,x′),y)∼DLf ((x, x′), y). The uniform generalization prob-
lem of metric learning is similar to the generalization problem of classification: One is interested in
conditions on the family F under which the gap between expected and empirical risks, Rf − R̂f , is
small for all f ∈ F .

Finally, since {((xi, x′i), yi)}ni=1 are independent, standard results imply that to control the uniform
generalization bounds of the risk, it is sufficient to control the Rademacher complexity of the family
F . Specifically, we have that (see Mohri et al. (2018) Theorem 3.3 and Lemma 5.7) ,

sup
f∈F

Rf − R̂f ≤ 2 ‖`‖LipRn (F) +

√
log δ−1

2n

holds with probability at least 1 − δ. Here Rn (F) is the Rademacher complexity of F and ‖`‖Lip
is the Lipschitz constant of ` as a function of its first coordinate. In particular, we have ‖`‖Lip = 1
for losses defined by (12).

3 LITERATURE

General surveys of the field of metric learning can be found in Bellet et al. (2015) and Kulis (2012).
See also Chicco (2020) for a survey of recent applications in deep learning contexts. In these situa-
tions, the metric learning loss is sometimes referred to as a Siamese network.

Up to now, generalization guarantees in metric learning were only studied in the linear setting, i.e.
for embeddings of the form (3) where L = 1 and φ(x) = x. In particular, all literature cited in this
section deals with the linear case.

As discussed in Sections 1 and 2, in this paper we use the formal metric learning setting introduced
in Verma & Branson (2015), where we assume that the data comes as a set of iid feature pairs with
a label per pair, ((xi, x

′
i), yi)

n
i=1. In this setting, the empirical risk is given by (13). In the special

case where the data comes with a label per feature, (xi, li)
n
i=1, one can use an alternative notion of

empirical risk, given by

R̃f =
1

n(n− 1)

n∑
i=1

∑
j 6=i

Lf
(
(xi, xj),1{li 6=lj}

)
, (14)

which is viewed as a second order U-statistic, see Cao et al. (2016). That is, instead of considering
the input as a set of independently sampled pairs, which can be obtained from the (xi, li)

n
i=1 by,

for instance, creating pairs out of consecutive samples, in (14) one considers all possible pairs. On
one hand, compared to the risk R̂f defined by (13), for small datasets R̃f might make a somewhat
better use of the data. On the other hand, R̃f is less general, since the data does not necessarily
have to be generated by the label-per-feature setting. Indeed, consider the celebrated word2vec text
embedding technique, Mikolov et al. (2013b), Mikolov et al. (2013a). In word2vec, tokens x and
x′ should be mapped to similar vectors if x and x′ tend to appear as contexts of each other, and
should be mapped to distant vectors otherwise. Equivalently, similar token pairs are extracted from
“windows” of the text, while dissimilar pairs are sampled “contrastively”, i.e. i.i.d from a (version
of) the marginal distribution. Clearly one can model this using the general setting described in
Section 2, adopted in this paper. However, note that there are no labels l one can attach to the tokens
x such that the distribution ((x, x′), y) can be described via the label-per-feature as above, with i.i.d
samples (x, l). Moreover, even when the label-per-feature setting is applicable, evaluating (14) may
be computationally difficult since the number of terms in the sum is quadratic in dataset size.

The generalization framework considered in this paper is that of the uniform generalization bounds,
see Mohri et al. (2018). Alternatively, in Wang et al. (2019), Lei et al. (2020), the linear case of
metric learning was studied in the framework of algorithmic stability (Bousquet & Elisseeff (2002),
Feldman & Vondrak (2019), Bousquet et al. (2020)). In these works, stability, and consequently
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generalization bounds, were obtained for an appropriately regularized empirical risk minimization
(ERM) procedure. We note that these methods rely strongly on the (uniform) convexity of the un-
derlying problem, and are unlikely to be generalized to non linear settings. In Bellet & Habrard
(2015),Christmann & Zhou (2016), linear metric learning was studied in the framework of algorith-
mic robustness, Xu & Mannor (2012).

Finally, uniform bounds for the linear case were studied in Verma & Branson (2015), and similar
results for the version of risk as in (14) were obtained in Cao et al. (2016). In particular it was shown
in Verma & Branson (2015) that

Rn (F) ≤
b2 sup(A1)∈A ‖A1A

t
1‖F√

n
, (15)

where ‖·‖F is the Frobenius norm. Interestingly, when φ(x) = x, one can derive the single layer
inequalities (7) and (8) from (15). Indeed, since ‖·‖F is a matrix norm, Bhatia (1997), we have
‖AAt‖F ≤ ‖A‖op ‖At‖F = ‖A‖op ‖A‖F for any A. This in turn can be bounded either as
‖A‖op ‖A‖F ≤ ‖A‖op ‖A‖2,1 or as ‖A‖op ‖A‖F ≤

√
k ‖A‖2,∞ ·

√
k ‖A‖2,∞. 2 However, as

discussed in Section 1.2, there likely is no way to obtain the general (i.e. non-linear) statements (7)
and (8) directly from the purely linear (15).

The bound (15) itself is derived in Verma & Branson (2015) using a relatively short elegant argument
involving only the Cauchy Schwartz inequality. However, again, this argument can only be applied
when φ is the identity. Similarly to the situation in classification, for the non-linear settings other
arguments are required.

4 RESULTS

In this Section we introduce the full statements of the main results, Theorems 1 and 2, and overview
the main ideas of the proofs. The full proofs are given in supplementary material Sections B and C.

4.1 NOTATION

We begin with some necessary notation. For a vector v = (v1, . . . , vm) ∈ Rm, the `p norm is

denoted by ‖v‖p =
(∑m

j=1 |vj |
p
)1/p

. For a matrix A ∈ Rd×k, and 1 ≤ p, s ≤ ∞, denote

‖A‖p,s =
∥∥∥(‖A·1‖p , . . . , ‖A·k‖p)∥∥∥

s
. That is, one first computes the p-th norm of the columns and

then the s-th norm of the vector of these norms. Note that ‖A‖2,2 = ‖A‖2 is the Frobenius norm.
Denote by ‖A‖op the spectral norm of A. Throughout φ : R → R will denote an activation/non-
linearity, with Lipschitz constant ‖φ‖Lip and such that φ(0) = 0.

The input features {(xi, x′i)}ni=1 ⊂ Rd × Rd, (see Sections 1,2) may be alternatively organized as
two matrices, X,X ′ ∈ Rn×d, with rows xi and x′i respectively. If F is a family of functions from
Rd × Rd to R, the Rademacher complexity of F given the inputs X,X ′ is defined by

Rn (F) = Rn (F , X,X ′) =
1

n
Eσ sup

f∈F

n∑
i=1

σif(xi, x
′
i), (16)

where σi are independent Bernoulli variables with P (σi = 1) = P (σi = −1) = 1
2 .

Finally, recall that if A is a family of matrix tuples, A = (A1, . . . , AL), and ‖·‖∗ some norm on
matrices, then for i ≤ L, ‖Ai‖∗ is defined as ‖Ai‖∗ = supA∈A ‖Ai‖∗.

4.2 STATEMENTS AND DISCUSSION

We have the following bound:

2‖A‖op ≤
√
k ‖A‖2,∞ is shown in supplementary material Section A
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Theorem 1. Let A = {(A1, . . . , AL)} be a family of matrix tuples, Ai ∈ Rki−1×ki , such that
k0 = d and kL = k. Denote W = max1≤i≤L ki. Let G be the associated family of embeddings
(3), and F the associated family of distance functions, (2). Let {(xi, x′i)}ni=1 be inputs, such that
‖xi‖2 , ‖x′i‖2 ≤ b for all i ≤ n. Set αi = ‖Ai‖op, βi = ‖Ai‖2,1 and ρi = ‖φi‖Lip for i ≤ L. Then

Rn (F) ≤ O

 1

n
+

log(2W )
[
log n+ 2 log(4b

(∏L
i=1 ρiαi

)
)
]

√
n

b2

(
L∏
i=1

ρiαi

)2( L∑
i=1

β
2
3
i

α
2
3
i

) 3
2

 .

(17)
Alternatively,

Rn (F) ≤ O

 1

n
+

√
k ‖φL‖∞ b log(2W )

[
log n+ 2 log(4

√
k ‖φL‖∞)

]
√
n

(
L∏
i=1

ρiαi

)(
L∑
i=1

β
2
3
i

α
2
3
i

) 3
2

 .

(18)

The general structure of this bound is inherited from the covering number bounds of G in Bartlett
et al. (2017). In contrast to the bounds in classification, note that the dependence on the coefficients
of Ai and on b is quadratic. This can not in general be improved upon. Indeed, consider the special
case of RelU activations, φi(x) = max {0, x}. Then the family G is positively homogeneous with
respect to the matrix weights: Let u = (u1, . . . , uL) be a tuple of scalars, ui ≥ 0, and if A =
(A1, . . . , AL) denote by uA the matrix tuple (u1A1, . . . , uLAL). Recall that gA is the embedding
induced by A, given by (3). Then we have

guA =

(
L∏
i=1

ui

)
gA. (19)

Since the definition ofF involves the squared norm, it follows from (19) that fuA =
(∏L

i=1 ui

)2

fA

and thus Rn (F) must be quadratically homogeneous in each of ui.

On the other hand, as discussed in Section 1.1, when φL is bounded, it is possible to avoid the
quadratic dependence. In this case we have the inequality (18) in Theorem 1.

We now briefly sketch the proof of Theorem 1. The argument is based on bounding the covering
numbers N (FX,X′ , ε) of the set FX,X′ ⊂ Rn – the restriction of F to the input. As mentioned
in Section 1.2, given such bounds, we bound Rn (F) by the Dudley entropy integral. To bound
N (FX,X′ , ε), we represent FX,X′ as (a subset of) a Lipschitz image of the Cartesian product GX ×
GX′ , i.e. GX × GX′ Ψ7−→ FX,X′ for an appropriate mapping Ψ. Here GX and GX′ are the restrictions
of G to the inputs. The covering numbers of GX where estimated in Bartlett et al. (2017), and
using these estimates we derive bounds on the coverings of GX × GX′ and consequently of FX,X′ .
The full details are given in Section B. Here we note that the Lipschitz constant of the mapping
GX × GX′ 7→ FX,X′ can be estimated in two different ways, depending on whether φL is bounded,
which result in the bounds (17) and (18).

We now state our second main result.
Theorem 2. Let A = {(A1, . . . , AL)} be a family of matrix tuples, Ai ∈ Rki−1×ki , such that
k0 = d and kL = k. Denote W = max1≤i≤L ki. Let G be the associated family of embeddings
(3), and F the associated family of distance functions, (2). Let {(xi, x′i)}ni=1 be inputs, such that
‖xi‖2 , ‖x′i‖2 ≤ b for all i ≤ n. Set αi = ‖Ai‖op, βi = ‖Ai‖2,1 and ρi = ‖φi‖Lip for i ≤ L. In
addition, set a = ‖AL‖2,∞. Then

Rn (F) ≤ O

8bk

n

(
ρLa

L−1∏
i=1

ρiαi

)
+

8kb2 log(2W ) log n√
n

(
ρLa

L−1∏
i=1

ρiαi

)2(L−1∑
i=1

β
2
3
i

α
2
3
i

+ 1

) 3
2

 .

(20)

Rn (F) ≤ O

8 ‖φL‖∞ k

n
+

8 ‖φL‖∞ kb log(2W ) log n√
n

(
ρLa

L−1∏
i=1

ρiαi

)(
L−1∑
i=1

β
2
3
i

α
2
3
i

+ 1

) 3
2

 .

(21)
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Figure 2: Dense and Sparse Regimes Demonstrated on MNIST and 20newsgroups Data

The approach we take here in Theroem 2 is as follows: Note that every element f ∈ F can be
written as a sum

fA(x, x′) = ‖gA(x)− gA(x′)‖22 =

k∑
j=1

fj,A(x, x′), (22)

where fj(x, x′) = (g(x)j − g(x′)j)
2 ∈ R is the squared difference on the j-th coordinate. For a

fixed j ≤ k, denote by G′j the family of the coordinate functions, gj : Rd → R, where g ∈ G,
and by F ′j the corresponding family of differences fj(x, x′). Note that G′j is induced by the same
matrix tuples A as the full G, with the exception of the last layer. Similarly to the arguments in
Theorem 1, we can obtain bounds on Rn

(
G′j
)

from the results in Bartlett et al. (2017). However,
then we proceed differently. We first bound Rn

(
F ′j
)

in terms of Rn

(
G′j
)

(Lemma 9, supplementary
material), and then use the decomposition (22) to obtain that Rn (F) ≤ ∑k

j=1 Rn

(
F ′j
)
. The full

details are given in supplementary material Section C.

5 EXPERIMENTS

In this section we are interested in the following question: How do the matrices AL – the weight
matrices of the last layer of the network – look for networks trained on standard datasets, with
standard training procedures. In particular, do we obtain sparse or dense weights?

Recall that the notion of “dense” in this paper refers the specific condition that

‖A‖2,1 ≥ const · k · ‖A‖2,∞ and ‖A‖op ≥ const′ ·
√
k · ‖A‖2,∞ (23)

holds over a range of values k. That is, we look at several neural networks trained with the metric
learning cost (12) on a fixed dataset, where all networks have the same architecture except the size
of the output layer k. If the condition (23) holds3 for a range of values k, we say that the problem
is in the dense regime. For such a problem, the bounds of Theorem 2 would asymptotically be
stronger than the bounds of Theorem 1. If the condition (23) fails, that is, for instance, the ratio
‖A‖2,1 /(k · ‖A‖2,∞) exhibits strong decay with k, then we say that the problem is in the sparse
regime, and the bounds of Theorem 1 would be better.

We demonstrate that for MNIST data, trained with SGD and no regularization, i.e. the standard deep
learning training procedure, the weights are dense to a good approximation. On the other hand, for
the 20newsgroup dataset, trained with `2 regularization, the weights are sparse.

MNIST (mnist Dataset (2005)) is the standard dataset of handwritten digits and the 20newsgroups
(20newsgoups Dataset (2010)) consists of newsgroups emails, labeled according to the group. To
make computation and illustrations simpler, 20newsgroups is restricted to the first 10 labels.

To perform the optimization, we sample feature/label pairs (x, l), (x′, l′) independently from the
train set, and minimize the loss using SGD on batches of such pairs, until convergence. The precise

3As discussed in Section 1.1, we have shown that the first condition in (23) implies the second, for large k.
Nevertheless, as a sanity check, in what follows we evaluate both conditions.
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loss that we use is

`(x, x′, l, l′) = 9 · ρ(x, x′) · 1{l=l′} +ReLU(1− ρ(x, x′)) · 1{l 6=l′}, (24)

where ρ(x, x′) is the distance after the embedding, given by (1). This loss is a version of the loss
`S,D(a, y) introduced in Section 2, with S = 0, D = 1, where the same class case is weighted by 9,
to compensate for the fact that {l 6= l′} pairs appear 9 time more frequently in the data. Additional
details on the setting and the experiments, as well as the implementation source code, are given in
supplementary material Section D.

We now describe the results in more detail. Consider first the single layer architecture, L = 1, with
relu activation. That is, we train single layer networks of size d×k, where d is the problem’s original
feature dimension, and k varies in the range 50 to 5000. For each trained network, we evaluate the
quantities of interest – the ratios ‖A‖2,1 /(k · ‖A‖2,∞) and ‖A‖op /(

√
k · ‖A‖2,∞) for MNIST, and

unnormalized ratios ‖A‖2,1 / ‖A‖2,∞ and ‖A‖op / ‖A‖2,∞ for 20newsgroups (see details below).
These experiments are represented by orange lines in Figures 2a,2b.

Figure 2a represents the results for the MNIST dataset. In particular, the solid orange line shows the
ratio ‖A‖2,1 /(k · ‖A‖2,∞) and the punctuated orange line shows the ratio ‖A‖op /(

√
k · ‖A‖2,∞).

To simplify the comparison, since we are only interested in change w.r.t k, all curves are normalized
to have value 1 at k = 50. In such plot, the perfect dense regime behaviour would look as a straight
horizontal line with value 1 for all k. While the actual lines exhibit some decay, this decay is slow.
Compared to k = 50, at k = 5000 the orange lines drop by a factor of 2.5, while k grows by a
factor of 100. Thus we conclude that in this case the norms are well described by the dense regime.

Next, Figure 2b represents the results for the 20newsgroups dataset. While MNIST is generally
nicely behaved, the 20newgroups is not. In particular, it consists of about n = 7500 samples in
dimension d = 15000 > n, and unregularized SGD training would severely overfit the train data.
Thus in this case we use the simplest possible regularization term, the `2 regularization λ·‖A1‖2,2 /k
, with λ = 0.01 in all experiments.

The orange lines in Figure 2b describe the ratios ‖A‖2,1 / ‖A‖2,∞ (solid) and ‖A‖op / ‖A‖2,∞
(punctuated). Note that these ratios are not normalized by k. The curves are still normalized to be
1 at k = 50. Thus, the approximately straight lines we observe in Figure 2b indicate that the above
norm ratios practically do not change as k grows, implying that the problem is firmly in the sparse
regime.

The blue lines in Figure 2 describe similar experiments for a two layer architecture, L = 2. In these
experiments, the size of the first layer A1 was fixed, d × 500, with leaky relu(0.2) activation. The
second layer, A2, was of size 500 × k ,varying with k. The regualrization term for 2-newsgroups
was λ

(
‖A1‖2,2 /500 + ‖A2‖2,2 /k

)
, again with λ = 0.01. The ratios in Figure 2 were this case

computed for the second layer, A2. One can see that the conclusions for L = 2 are similar: MNIST
is in the dense regime, while 20newsgroups is sparse.

Each experiment was repeated 6 times, and every value in Figure 2 is a mean over 6 outcome values.
Every value also has an error bar which indicates the magnitude of the standard deviation around
the mean. However, in most cases, these bars are small compared to the magnitude of the mean are
not visible in the figures.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have obtained the first generalization guarantees for multilayer non-linear metric
learning. We have introduced two types of bounds, which are appropriate for sparse and non-sparse
regimes of the weightsAL, and we have empirically shown that both regimes may occur in common
SGD training settings.

We conclude with an open question: When there are two different bounds on the same quantity, it is
natural to ask whether there is a third bound, that interpolates both bounds (i.e. is as strong as both
of them) and has a simple form. As discussed in Section 3, for the linear case there indeed is such a
bound. It thus would be of interest to understand whether one can obtain a similar strengthening for
the non linear multilayer case.
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Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 9(1):1–151, 2015.

R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer New York, 1997.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2002.

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable
algorithms. In Conference on Learning Theory, pp. 610–626. PMLR, 2020.

Qiong Cao, Zheng-Chu Guo, and Yiming Ying. Generalization bounds for metric and similarity
learning. Machine Learning, 102(1):115–132, 2016.

Davide Chicco. Siamese neural networks: An overview. Artificial Neural Networks, pp. 73–94,
2020.

Andreas Christmann and Ding-Xuan Zhou. On the robustness of regularized pairwise learning
methods based on kernels. Journal of Complexity, 37:1–33, 2016.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th international conference on Machine learning, pp.
209–216, 2007.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algo-
rithms with nearly optimal rate. COLT, 2019.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

Brian Kulis. Metric learning: A survey. Foundations and trends in machine learning, 5(4):287–364,
2012.

Yunwen Lei, Antoine Ledent, and Marius Kloft. Sharper Generalization Bounds for Pairwise Learn-
ing. In Advances in Neural Information Processing Systems, 2020.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 2008.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013b.

mnist Dataset. Mnist dataset. https://keras.io/api/datasets/mnist/, 2005.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
The MIT Press, second edition edition, 2018.

10

https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset
https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset
https://keras.io/api/datasets/mnist/


Under review as a conference paper at ICLR 2022

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Nakul Verma and Kristin Branson. Sample complexity of learning mahalanobis distance metrics.
In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 28, 2015.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge University Press, 1 edition, 2018.

Boyu Wang, Hejia Zhang, Peng Liu, Zebang Shen, and Joelle Pineau. Multitask metric learning:
Theory and algorithm. In Proceedings of Machine Learning Research, volume 89 of Proceedings
of Machine Learning Research. PMLR, 2019.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res., 10, 2009.

Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423,
2012.

Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of
Machine Learning Research, 2(Mar):527–550, 2002.

11


