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ABSTRACT

Large language models (LLMs) deployed as agents solve user-specified tasks over
multiple steps while keeping the required manual engagement to a minimum. Cru-
cially, such LLMs need to ground their generations in any feedback obtained to
reliably achieve desired outcomes. We propose an end-to-end reinforcement learn-
ing method for teaching models to leverage execution feedback in the realm of
code synthesis, where state-of-the-art LLMs struggle to improve code iteratively
compared to independent sampling. We benchmark on competitive programming
tasks, where we achieve new start-of-the art results with both small (8B param-
eters) and large (70B) models while reducing the amount of samples required
by an order of magnitude. Our analysis of inference-time behavior demonstrates
that our method produces LLMs that effectively leverage automatic feedback over
multiple steps.

1 INTRODUCTION

The consistent increase in capabilities of Large Language Models (LLMs) has prompted researchers
and developers to benchmark and deploy them in increasingly complex environments (Brown et al.,
2020; |OpenAlL 2023; Al @ Meta, 2024). An emerging research direction is to employ LLMs as
agents to solve tasks in multiple steps with little to no human oversight, querying external com-
putation or data sources when needed or as dictated by manual scaffolding (Schick et al., |2023}
Kapoor et al., |2024). For example, such autonomous use of LLMs is of interest for ensuring ac-
curate answers to user queries with up-to-date information (Mialon et al., |2024)), interaction with
websites (Yao et al.l [2022) or generating code to implement software features from high-level de-
scriptions (Yang et al., 2024).

We posit that any decision-making agent offering a natural language interface has to possess two
skills. First, the ability to accurately deduce a user’s intent when prompted; for LLMs, this is
typically achieved by fine-tuning to follow instructions according to user preferences (Ouyang et al.,
2022; Rafailov et al.l 2023). Second, feedback on intermediate results of the agent’s actions has
to be taken into account to arrive at the desired outcome. For example, a web page containing a
necessary bit of information might have gone offline, requiring another search engine query. In the
context of code generation, feedback can provide information about implementation bugs as well as
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Figure 1: Solve rates of Llama 3.1 Models after RLEF training on CodeContests, compared to
previously reported results across sampling budgets (log scale).
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Figure 2: Left: Overview of reinforcement learning with execution feedback (RLEF). The LLM
is repeatedly prompted to implement code according to a problem description. Each attempt is
evaluated on a public test set; upon failure, feedback is inserted into the conversation. If public tests
are passing, or a specified turn limit is reached, execution on additional, private tests determines the
reward signal. The model is then updated to optimize the reward with PPO. Right: Example dialog
with two model responses. Execution feedback hints at an inefficient first solution, to which the
model responds to utilizing a cache. The code passing the public test sets will be evaluated on the
full test set.

constraints that are inefficient or cumbersome to specify in full detail, e.g., software and hardware
platform details or library dependencies. Intermediate feedback is therefore crucial to ground LLM
generations in the concrete situations encountered at inference time.

In this work, we aim to endow pre-trained LLMs with the aforementioned skills, task alignment and
grounding in inference-time feedback, in the domain of code synthesis from natural language de-
scriptions (Chen et al., 2021; |Roziere et al., 2023). Here, feedback is naturally provided as the result
of the execution of generated code in the form of error messages and unit test results. However, to
date, utilizing such feedback for code generation with LLM:s has failed to yield substantial improve-
ments when taking computational demands into account; indeed, obtaining samples independently
often results in higher accuracy for a fixed inference budget (Kapoor et al., [2024; Xia et al., [2024).
As atest-bed to investigate and improve grounding in execution feedback, we propose to frame code
generation as an iterative task, repeatedly asking an LLM to produce code according to a provided
natural language description (Fig.2). After each generation, code is evaluated on example test cases
and the resulting feedback is provided as additional context for subsequent attempts. We thus obtain
an interactive environment where actions correspond to code and observations correspond to exe-
cution feedback. Importantly, such a framing permits end-to-end optimization with reinforcement
learning (RL) algorithms to maximize a reward signal — here, a binary reward based on whether the
final code solution passes a set of held-out test cases.

We benchmark our training method incorporating repeated code actions and execution feedback in a
reinforcement learning context (RLEF) on CodeContests (Li et al.||2022), a challenging competitive
programming benchmark. Starting from Llama 3.1 models (Al @ Metal 2024), we achieve sub-
stantial performance improvements, surpassing previous state-of-the-art results while reducing the
amount of generations required by an order of magnitude (Fig. I). Our analysis shows that RLEF
training unlocks the capability to leverage inference-time machine feedback, rendering LLMs effec-
tive in iterative, multi-turn scenarios. Our improvements from RLEF on CodeContests further gen-
eralize to HumanEval+ and MBPP+, two popular benchmarks for code synthesis, and to increased
sample budgets compared to training time.
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2 METHOD

2.1 ITERATIVE CODE SYNTHESIS

We structure the task of code synthesis as a multi-turn conversation in which an LLM is repeatedly
prompted to generate a code solution to a natural language problem description. After each solution,
we provide an automatically generated response with results obtained by executing the solution’s
code against test cases. This setup is applicable to language models tuned for the common use-
case of interacting with users in a chat setting, and follows previous work on self-repair for code
generation (Shinn et al.| 2023} Olausson et al., [2024).

Crucially, we utilize two different sets of test cases: a public test yields execution feedback that can
be accessed during repeated attempts and forms the basis of selecting a final solution, whereas a
private test set ultimately determines the correctness of the final solution. Separate test sets provide
two main benefits. First, if test inputs and outputs are fixed, held-out tests guard against shortcuts
during the optimization procedure in which an LLM can copy expected test outputs in subsequent
answers, based on execution feedback. Second, running a full test suite may be computationally
demanding and a limited set of public tests can accelerate the iterative code generation procedure. It
may however be desirable to maximize test coverage for execution feedback at inference time, and

we verify that this can indeed improve performance (Appendix B.2).

Our conversation flow for code generation is depicted in Concretely, we start the dialog with
the problem description and query the LLM for an initial solution. The solution is verified against
the public test set, which yields results in the form of passed and failed test cases, as well as potential
syntax or runtime errors. If any public test fails, this execution feedback is formatted and appended
to the dialog The LLM is then queried for an updated code solution, with the original problem text,
previous solutions and their respective feedback provided in the prompt. If the solution passes all
public tests, or a specified turn limit is reached, it is considered to be final and will be submitted
for evaluation on the private test set. The kind reader is referred to for a listing of our
prompt and execution feedback templates.

2.2 REINFORCEMENT LEARNING WITH EXECUTION FEEDBACK

The iterative code synthesis described in the previous section can be understood as a Markov Deci-
sion Process (MDP), and the language model as a policy (Sutton & Barto},2018)). For generality, we
assume a partially observable MDP as our reward function utilizes a held-out, private test set which
is not accessible to the policy (unless an exact textual representation of the desired program behav-
ior is provided in the problem description). Observations and actions are provided as tokenized text
sequences. Concretely, the initial observation og is the problem description and actions a; at each
step t are textual responses. Successive observations o; consist of past observations and actions,
including execution feedback obtained by evaluating the previous action a;—; on public test cases.
Episodes terminate when public test evaluation succeeds or a specified step limit is reached. At the
end of an episode, a scalar reward is provided corresponding to whether all public and private tests
are passing. We do not use reward discounting (i.e., v = 1).

For optimizing a policy in the above environment we employ Proximal Policy Optimization (PPO),
a common choice for fine-tuning large language models (Schulman et al.l 2017} Ziegler et al.| |2020;
Ouyang et al.l |2022). Following previous work, we include a KL penalty in our reward signal,
acting both as an entropy bonus and as regularization towards the distribution of the LLMs we start
from. In initial experiments we found that a possible failure mode concerns the generation of invalid
code in non-final responses, which we address by providing a small penalty for invalid responses.
Denoting the policy to be optimized with 7 and the initial policy with p, and abbreviating previous

observations and actions with ¢; = o0, ag, 01, a1, ..., 0, our reward function at step ¢ is
(arlcr) 1, if end of episode and all tests pass
T . . .
R(s¢,at) = 1(s¢, a) — Blog ﬁ, r(st,ar) = ¢ —1,  if end of episode and any test fails
plag|Ct

—0.2, if a; does not contain valid code

with a constant g trading off between task reward and KL. maximization. For PPO, we compute
policy gradients by incorporating a concurrently learned value function as a baseline, i.e., we train

the policy to maximize the advantage A; = —V (¢;) + Z?:t R(s;,a;); see|Appendix A.1
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We note that while the above MDP considers full responses as actions, the underlying policy and
value functions are implemented as language models outputting single tokens. Selecting a suitable
action space for optimization hence requires consideration in our setup, and a suitable choice may
depend on the concrete task at hand. We propose to model the policy at the token level while
learning a value function for whole turns; compared to optimizing both models at either the turn
or token level, this hybrid approach worked best in our early experiments. Hence, we predict the
value of a response a; from the last token of its respective prompt, and we use a single advantage
value for each token action within a response. Our response-based value estimation is closely related
to [Zhou et al.| (2024); however, we do not train an additional Q-function. For the KL penalty, we
found it beneficial to compute the probabilities of responses 7(a¢|c;) as the geometric mean rather
than product of token probabilities. This counteracts a possibly detrimental bias towards shorter
generations, in particular for non-final responses.

3 EXPERIMENTAL RESULTS

3.1 SETUP

We perform experiments on the CodeContests benchmark introduced by |Li et al.| (2022) which
requires generating a code solution to a problem specified in natural language along with a textual
description of public test cases. Problems are of high difficulty and used in human competitive
programming with a focus on algorithms, data structures and runtime efficiency. The correctness
of solutions is evaluated with private tests that are hidden from contestants, which we implement
in our setup by presenting feedback from public tests only. The CodeContests dataset consists of a
training set and two test sets, “valid” and “test”, consisting of 117 and 165 problems, respectively;
we use the former for model and hyperparameter selection. We optimize our models on the training
set, from which we discard 115 of the 13,328 problems due to missing public test cases. We prompt
and train all models to output Python 3 code.

The Llama 3 family of models (Al @ Meta, [2024) comprises our initial policies, specifically the
Instruct 8B and 70B parameter models of the 3.0 and 3.1 release. These models exhibit strong code
generation performance out of the box and are able to follow instructions in the prompt, alleviating
the need for an initial fine-tuning stage prior to RL training. During training and for evaluations,
unless noted, we set the turn limit to allow for 3 LLM attempts at solving each problem. We
perform 12,000 and 8,000 updates to the 8B and 70B models, respectively, and select checkpoints
based on valid set performance. Hyper-parameters and further experimental details are provided in
APP d A

We follow [Li et al.|(2022)) in reporting results as n@Fk average solve rates. The n@k metric represents
the expectation that any of n solutions, selected from & samples in total, is correct, i.e., passes all
tests. In our multi-turn setup, each turn counts as a sample. This allows for fair comparisons with
respect to sample budgets, which is particularly relevant when employing large LLMs with high
inference cost in agentic scaffoldings (Kapoor et al., 2024ﬂ

3.2 MAIN RESULTS

In[Table T]we list our solve rates on the CodeContest valid and test sets for iterative code generation
with up to three turns, along with previously reported results. When sampling from our models,
we use temperatures 0.2 for 1@3 and 1.0 for 10@100, and nucleus sampling with top-p 0.95 in all
cases (Holtzman et al.,|2020). Each solve rate is estimated on 200 rollouts, using the estimator de-
scribed in (Li et al.2022). We compare against AlphaCode (Li et al2022) and PPO with rewards
from test execution on the Code Llama 34B model from Xu et al.|(2024), which both report results
with a large number of samples. AlphaCodium (Ridnik et al.| [2024) and MapCoder (Islam et al.,
2024) are high-performing agentic frameworks built on top of the proprietary GPT models and com-
bine chain-of-thought prompting, code execution, program repair, and, in the case of AlphaCodium,
automatic test generation.

"For simplicity, we consider a full LLM response as a single sample in our evaluations. We also note that
for iterative code generation, the allocated sample budget may not be fully utilized as a successful public test
run will result in early termination of a dialog.
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Model Source n@Qk Valid Set  Test Set
AlphaCode 9B Li et al.| (2022) 10@1000 16.9 13.3
AlphaCode 41B + clustering Li et al.|(2022) 10@1000 21.0 16.4
Code Llama 34B + PPO Xu et al.| (2024) 10@1000 19.7 22.4
AlphaCodium gpt-3.5-turbo-16k  |Ridnik et al[(2024) 5@100 25 17
AlphaCodium gpt-4-0613 Ridnik et al[(2024) 5@100 44 29
MapCoder gpt-3.5-turbo-1106 Islam et al.|(2024) 1@23 - 12.7
MapCoder gpt-4-1106-preview  |Islam et al.[(2024) 1@19 - 28.5
Llama 3.0 8B Instruct Ours 1@3 4.1 3.2

+ RLEF Ours 1@3 12.5 12.1
Llama 3.1 8B Instruct Ours 1@3 8.9 10.5

+ RLEF Ours 1@3 17.2 16.0
Llama 3.1 70B Instruct Ours 1@3 25.9 27.5

+ RLEF Ours 1@3 37.5 40.1
Llama 3.1 8B Instruct Ours 10@100 21.7 24.8

+ RLEF Ours 10@100 29.8 28.7
Llama 3.1 70B Instruct Ours 10@100 50.2 50.3

+ RLEF Ours 10@100 54.5 54.5

Table 1: Results on CodeContests of our initial and RLEF-trained models compared to prior work.
The sample budget k in n@Fk refers to the number of LLM responses, e.g., 1@3 for our results
corresponds to a single rollout with up to three model responses. Best results per sample budget (up
to 10, up to 100) in bold. The 70B model obtains state-of-the-art results after RLEF, and signifi-
cantly outperforms AlphaCodium and MapCoder generally, and on the test set with a fraction of the
samples. The RLEF-trained 8B model outperforms AlphaCodium with 100 samples and MapCoder
(gpt-3.5-turbo) with 3 samples.

With RLEF training we improve markedly on the original Llama 3.1 models and outperform prior
works by a significant margin. Notably, on the test set the 70B model beats AlphaCodium with
GPT-4, the previous state-of-the-art, with a single rollout compared to 5 solutions from 100 samples
(38.0 and 29). Likewise, the 8B model with RLEF is slightly ahead compared to the similar-sized
AlphaCode 9B model (16.0 and 13.3), but with a sample budget of 3 in our case and 1,000 for
AlphaCode. While we cannot compare directly to the more recent AlphaCode 2 (AlphaCode Team)
2023)), a performance estimate of 34.2 on the valid set for 10@100 puts our 70B model ahead (37.5)
with just 3 samplesﬂ When considering a larger budget of 100 samples — corresponding to 33
rollouts — the stock 70B model beats all previously reported results, including AlphaCodium on the
valid set. With RLEF training, we obtain further improvements to 54.5 on the valid and test set.
The relative improvements over the initial models, while still significant, are reduced in the 10@100
setting as compared to the 1@3 setting. |Kirk et al.| (2024) observe that RL training of LLMs can
reduce the diversity of outputs and we interpret our results as further evidence of their hypothesis.

also highlights that the released Llama 3.1 models offer competitive performance on Code-
Contests from the start, which we attribute to a focus on coding capabilities during instruction tun-
ing (Al @ Meta, [2024). However, our RLEF method is also highly effective on the previously
released 3.0 8B model, improving 1@3 solve rates from 4.1 to 12.5 and 3.2 to 12.1 on the valid
and test set, respectively. Thus, RLEF may be useful as a partial substitute for instruction tuning for
tasks where automatic evaluation is possible.

3.3 INFERENCE-TIME BEHAVIOR

In we first take a closer look at single- and multi-turn performance with a fixed budget
of 3 LLM generations (1@3). This corresponds to our iterative setup with up to three model re-
sponses, or three independent responses for single-turn results. We further consider generalization
to two popular code generation benchmarks, HumanEval+ and MBPP+ (Liu et al.l 2023b), which

ZAlphaCode Team| (2023) train and evaluate on non-disclosed competition problems but report a sample
efficiency increase of 10,000x over AlphaCode, which achieves a 10@ 1M solve rate of 34.2 on the valid set.
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Model CC. Test HumanEval+ MBPP+
ST MT ST MT ST MT
Llama 3.1 8B Instruct 11.8 10.5 65.3 63.9 58.3 60.5
+ RLEF 9.7 16.0 67.5 69.5 57.0 63.1
Llama 3.1 70B Instruct 262 274 73.2 75.0 66.9 70.2
+ RLEF 30.3 40.1 78.6 80.4 67.6 722
gpt-40-2024-05-13 253 243 82.8 80.7 68.8 71.7

Table 2: 1@3 solve rates in single-turn (ST) and multi-turn (MT) setups for base and RLEF models.
On CodeContests, iterative code generation yields modest gains at best and drops in performance at
worst, unless RLEF training is employed. Improvements from RLEF on CodeContests in the multi-
turn setting carry over to HumanEval+ and MBPP+, which require a slightly different execution
feedback formatting. Solve rates estimated on 20 rollouts per problem, temperature 0.2.
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Figure 3: Behavior analysis of initial and RLEF-trained models with respect to public test results,
for 8B (top) and 70B (bottom) models. Within 20 rollouts per problem (5640 in total) we count
errors in the initial solution (turn 1); errors turned into correct code in turn 2 and 3; code changes
across successive solutions according to the chrF metric. RLEF-trained models make fewer errors
initially, can fix errors more reliably and perform larger code edits; initial models frequently repeat
previous solutions. With random execution feedback, error recovery is severely impaired.

we modify to match our iterative code generation setup with “base” tests for inference-time execu-
tion feedback and “plus” tests for solve rate estimation (see for details). Our results
demonstrate that, when considering a fixed sample budget, base models rarely benefit from access
to faulty solutions and execution feedback in the multi-turn code generation setup. This also applies
to gpt-40-2024-05-13, which shows stronger performance when sampling solutions independently
on CodeContests and HumanEval+. After RLEF training, the 8B and 70B Llama 3.1 model both
benefit from execution feedback and can therefore achieve larger gains on top of improved single-
turn scores, with the exception of the 8B model on CodeContests and MBPP+ where single-turn
performance drops. While multi-turn gains from RLEF are most pronounced on CodeContests, the
training domain of our models, we also observe notable improvements on HumanEval+ and MBPP+.

Next, we seek to determine where the gains of RLEF training stem from. Based on the improved
single-turn results in we hypothesize that, for the 70B model, these are partly due to train-
ing on the specific domain of competitive programming questions. More importantly, higher scores
in the iterative setting for both the 8B and 70B model could be attributed to either an increased
capability of sampling diverse solutions within a rollout, or more targeted self-repair based on ex-
ecution feedback. For probing the sensitivity of our models to the observed feedback, we perform
inference-time ablations with random execution feedback. We implement random feedback by exe-
cuting a faulty solution to an unrelated problem but still end the dialog if the current solution passes

public tests (details in[Appendix C.2))

In[Fig. 3]we consider errors on public tests (to which the execution feedback relates) over 20 rollouts
on the valid and test set combined. We observe that after RLEF training, both the 8B (top row) and
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Figure 4: (a) Pass@1 and pass@10 across turn limits with RLEF-trained models, providing either
true or random execution feedback (temperature 0.2). With random feedback pass@1 is reduced
while pass@ 10 suffers only slightly, indicating that programs can be repaired less consistently. (b)
Impact of turn limits on 10@k solve rates per sample budget (top: 8B model, bottom: 70B model)
with temperature 1.0. With RLEEF, iterative code generation can leverage up to 5 turns to achieve
compute-optimal performance.

70B (bottom row) models produce fewer wrong outputs in their initial response but are more prone
to exceeding the allocated time limit. In subsequent responses, recovery from all error categories is
significantly improved. With random feedback, however, we see a clear impairment of self-repairs,
demonstrating that RLEF allows LLMs to effectively leverage the provided feedback. We further
gauge changes from one response to the next by computing the a character n-gram F-Score (Popovic}
2015 chrF) among successive codes right). This underscores a shortcoming of the Instruct
models without RLEF in that they perform only minimal code edits; indeed, we observe that they
frequently output the same code solution despite inline feedback pointing out errors.

The analysis of above suggests that, with RLEF, samples within a rollout are of higher diver-
sity (less similar codes) but that edits are also targeted in that random execution feedback results in
fewer successful repairs. This finding is echoed in in which we compare models with true
and random feedback across different turn limits. Here, we compare pass@1 and pass@ 10 metrics,
irrespective of different sample budgets due to varying turn limits (Chen et al.,[2021). While pass@1
captures the precision with which we arrive at a correct final solution, pass@ 10 reflects the ability
to recall a correct solution (i.e., whether any of 10 solutions passes the private tests). On both valid
and test sets, random feedback results in a drop in pass@1 which is amplified as the turn limit is
increased. This provides further evidence for less targeted repair capabilities with random feedback,
as programs can be repaired less reliably. Notably, with ground truth feedback, the probability of
producing a correct solution keeps increasing with higher turn limits. For pass@10, the difference
between true and random execution feedback is less pronounced. As this metric can be optimized by
sampling many diverse candidate solutions within a dialog, these results indicate that with random
feedback, our models resort to sampling a succession of diverse, potentially correct solutions.

Finally, we evaluate the generalization across turn limits with respect to a given sample budget.
In we perform rollouts with temperature 1.0 to emphasize performance at higher sample
budgets by increasing the diversity of generations. We compute 10Q@Q%k solve rates by distributing k
samples equally across rollouts with different turn limits. For the 8B model (top row), prior to RLEF
training, best performance can be obtained with independent samples (1 turn), with the exception of
the test set above 30 samples. The initial 70B model performs better with 3 or 5 turns, although,
for small budgets, single turn performance is competitive. After RLEF, we observe that 3, 5 and 10
turns yield a consistent improvement over independent sampling, with best performance obtained
with 5 turns. In all cases, increasing the turn limit to 10 provides no benefits under a fixed sample
budget.
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Model Method  Valid Test Model Training Valid Test

8B Instruct  — 8.9 105 ST MT ST MT
Few-Shot 85 85 8B\ - 94 89 116 105
SFT 10.3 10.0 Instruct ST 10.3 102 99 109
RLEF 172 16.0 MT 162 172 95 16.0

70B Instruct — 259 275 70B\ - 25.6 259 259 275
Few-Shot  22.5 20.3 [Instruct ST 283 31.1 273 329
SFT 277 272 MT 25.8 37.5 30.3 40.1
RLEF 37.5 40.1

(b)
(@

Table 3: 1@3 solve rates starting from Llama 3.1 models, temperature 0.2. (a) Comparison of
different methods for acquiring the iterative code synthesis capabilities. RLEF is the most effec-
tive training method, followed by supervised fine-tuning (SFT). We find few-shot prompting to be
detrimental to Instruct models. (b) Conventional single-turn (ST) compared to our multi-turn (MT)
training with our RL loop. MT training yields larger improvements compared to ST, and improve-
ments carrying over to multi-turn over single-turn inference is restricted to the 70B model.

3.4 ABLATION STUDIES

3.4.1 LEARNING ITERATIVE CODE SYNTHESIS

We investigate whether LLMs can, apart from our RL training, be effective in multi-turn code gen-
eration using few-shot prompting (Brown et al.l |2020) and supervised fine-tuning (SFT). Lacking
suitable ground truth training examples for SFT, we mine rollouts on the CodeContests training set
with Llama 3.1 70B Instruct and filter them based on the correctness of final solutions. We then fine-
tune Base and Instruct versions of the Llama 3.1 8B and 70B parameter models on the mined corpus
and also source it for few-shot examples (Appendix A.3). The results in [Table 3a] show that few-
shot prompting is detrimental to the instruction-tuned models. In[Appendix B.I| we report few-shot
1@3 solve rates for pre-trained models and find that they achieve lower performance compared to
zero-shot prompting for instruction models (1.2 and 1.8 for 8B, 4.6 and 5.8 for 70B on valid and test
set, respectively). Supervised fine-tuning improves Instruct model performance on the validation set
only; we do not see improvements on the test set. For pre-trained models, we see improvements
from SFT but lower scores compared to instruction-tuned models (Appendix B.T). With RLEF we
obtain significantly higher solve rates compared to SFT models, underscoring the efficacy of our RL
training loop.

3.4.2 SINGLE-TURN TRAINING

In we compare our iterative code generation setup to traditional, single-turn generation
where the model is not presented with inference-time feedback. We use the same training loop for
single generations, albeit without the penalty for invalid code as this is subsumed by
the reward signal for incorrect solutions. For Llama 3.1 Instruct 8B, single-turn training (ST) hurts
performance on the test set. The 70B model benefits from single-turn training and improves over
multi-turn SFT results in Moreover, we observe transfer in that applying the single-turn
model in a multi-turn setting improves 1@3 solve rates. We attribute this to the existent but com-
parabily weak multi-turn capabilities of the vanilla 70B Instruct model. Overall, we see strongest
performance with the RLEF method employing multiple turns at training and inference time.

Further ablations can be found in the appendix. In we evaluate the effect of training
a dedicated repair model on outputs of the single-turn 8B training run in similar to (Le
et al., [2022). Together, the single-turn and repair model obtain 1@3 solve rates of 14.8 on the
validation set and 12.6 on the test set; an improvement over the single-turn model alone (10.2 and
10.9) but significantly below the corresponding multi-turn model (17.2 and 16.0). In
we show that withholding public test execution feedback during training results in significantly
worse performance. Finally, in [Appendix B.3| we experimentally validate the design choice of a
turn-level value function (Section 2.2J).
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4 RELATED WORK

Generating program code with LLMs to automate and assist software development has been studied
extensively in recent years, with evaluations predominantly focusing on code synthesis from natural
language descriptions (Clement et al.l 2020; (Chen et al.| 2021} |Austin et al.| 2021)). A major boost
in performance is obtained by including large quantities of source code in pre-training and selecting
or generating suitable data for subsequent fine-tuning for instruction following (Li et al., 2023}
Gunasekar et al.| 2023 Roziere et al., 2023 Al @ Meta, [2024)).

More recently, several works investigated prompting and flow engineering techniques to improve
performance at inference time, including the verification of generated code via compilation and exe-
cution, followed by re-prompting. |Shinn et al.|(2023)) and |Chen et al.| (2024b) use feedback from unit
tests to correct previously wrong generations and found it crucial to include model-generated error
analysis in the prompt for successive generations. LDB (Zhong et al.| [2024), AlphaCodium (Rid-
nik et al., [2024) and MapCoder (Islam et al., 2024)) can be regarded as agentic frameworks as they
provide rich manual scaffolding for code generation, chaining several LLM calls (e.g., for chain-
of-thought planning, test generation, and program repair) combined with code execution. These
approaches are effective on difficult benchmarks, such as the CodeContests dataset we consider in
this work, but significantly increase inference cost by requiring dozens of LLM calls per solution.

Recent works highlight further issues with scaffolds like AlphaCodium or MapCoder. (Olausson et al.
(2024) show that sampling code solutions independently is competitive to repairing faulty code, that
large models are required to provide effective feedback on errors, and that multiple rounds of repair
are not effective. |[Kapoor et al| (2024) focus on inference cost and demonstrate that independent
sampling beats the approaches from |Shinn et al.| (2023) and Zhong et al.| (2024)) when considering
equal sampling budgets. With our method, the self-repair capabilities of LLMs can be dramatically
enhanced, resulting in superior performance of iterative code generation for both small and large
sample budgets. At the same time, we propose to trade complex, domain-specific prompt engineer-
ing and scaffolding for domain-specific fine-tuning.

Fine-tuning large language models with reinforcement learning is a popular method for aligning their
output to user preferences (Ziegler et al., [2020; Touvron et al., 2023 |(OpenAl, |2023; IDeepSeek-Al
et al.| 2024; Al @ Meta, [2024). Here, the learning signal is provided by special-purpose reward
models. For code synthesis, however, rewards can be determined by executing LLM generations
against available test cases (Le et al., 2022; |Shojaee et al., 2023; |Dou et al., 2024; |Yu et al., |2024)).
Le et al.|(2022) pre-train an LLM for code generation and subsequently fine-tune it with both policy
gradients and next-token loss on rewards from execution. From the rollouts obtained during fine-
tuning, they train further models for predicting test outcome labels and for mapping incorrect to
ground truth solutions, which allows for inference-time code correct based on test results (“critic
sampling”), albeit without explicitly presenting the output from execution. Subsequently, [Liu et al.
(2023a) extends this work with an extended, fine-grained reward function. Finally, |Xu et al.[(2024)
fine-tune a stronger, code-specific LLM in a simpler setup with a binary reward from unit tests and
observe substantial improvements from RL on the difficult competitive programming benchmark
we consider here. We likewise propose a simple setting without extra inference scaffolding or usage
of ground truth solutions. Crucially, we expand the natural-language-to-code setting to an iterative
environment where execution feedback is not only provided as a scalar reward but also in textual
form. This allows us to acquire both code synthesis and code repair capabilties with a single model,
and to shift focus from large-sample inference regimes to obtaining high accuracy with low sample
budgets.

Concurrently to our work, Kumar et al.| (2024) propose a two-stage RL method (SCoRe) to improve
the self-correction capabilities of LLMs and train them to output two successive solutions. In con-
trast to our method, SCoRe does not leverage execution feedback at inference time and instead asks
the model to reconsider its initial solution. While this approach allows for potential applications to
domains where automatic feedback is not available, it cannot benefit from the information provided
in the feedback message. Furthermore, inference-time feedback can help the model generalize to
new environments after training. Finally, Chen et al.| (2024a) address code generation with human
feedback and develop an appropriate supervised fine-tuning strategy based on training a separate
code repair model. In our work, we effectively leverage automatically generated feedback, format-
ted in natural language, with a single model only.
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Past work on applying reinforcement learning to LLMs on longer-horizon decision-making tasks
placed an emphasis on acquiring the necessary grounding in the environment. |Carta et al.| (2023)
report that RL tuning with PPO (Schulman et al.,|2017) is superior to supervised training for ground-
ing in text-based navigation games as measured by successful task completions. [Zhou et al.| (2024)
propose a family of RL algorithms for LLMs and test them in text games (versus an oracle LLM)
and for buying produces using a simplified web shop API, and [Zhai et al.|(2024) tackle environ-
ments with visual observations, adapting the parameters of a pre-trained vision LLM. While our
work follows similar motivations, we address a fundamentally different domain — code synthesis —
which features a significantly larger action space compared to previous work, i.e., the space of valid
Python programs.

5 CONCLUSION

In this work, we proposed reinforcement learning from execution feedback (RLEF), a fine-tuning
method for LLMs that endows them with a crucial capability for autonomous operation: ground-
ing future generations in environment feedback. We applied RLEF to iterative code synthesis and
obtained substantial improvements in solve rates on the CodeContests competitive programming
benchmark while reducing the required sample budget for inference. The RLEF-trained models
further generalize to increased turn limits and to HumanEval+ and MBPP+, two popular code gen-
eration benchmarks that exhibit simpler programming questions and different execution feedback
formatting. Our in-depth analysis revealed that, while an increase in correct first-turn generations
and in the diversity of successive generations offers a major contribution of performance, our models
also meaningfully take execution feedback into account and resolve errors over multiple turns.

Limitations. While our results demonstrate effective usage of inference-time feedback, the code
synthesis task we consider is limited to improving a single solution to a given problem. Generalizing
our method to environments with larger tasks that require decomposition, either via manual scaffold-
ing or, eventually, in a self-directed manner, remains the subject of further research. Iterating on the
execution results of unit tests naturally requires test cases, which may not be readily available. We
regard a potential combination with automatic unit test generation (Watson et al., |2020; [Jain et al.,
2024) as an interesting avenue for further experiments.

Broader Impact. Successful grounding of LLMs for code generation execution feedback will
amplify their utility when applied to impactful tasks such as assisting software development and
performing quality control. In general, however, increasing the capabilities of LLMs, now widely
deployed in a range of applications, requires quality control and guard-railing to promote safety and
minimize potentially harmful output. We limit our study to the generation of source code, where we
confine the execution of model-generated output to local sandboxes. We believe the framework of
Shavit et al.| (2023) regarding the governance of Al agents to be a useful resource for practitioners.

Reproducibility Statement. We perform all experiments with publicly available models and
datasets. describes the dataset and pre-processing steps, the exact Llama model ver-
sions used, and details our evaluation metric. The loss function and hyper-parameters for training,
as well as a description of the compute infrastructure can be found in[Appendix A.1| |Appendix A.3|
describes (narrow) hyper-parameter ranges for supervised fine-tuning, and [Appendix A.2| contains
notes regarding code execution during training and evaluation. All prompts are listed in[Appendix C|
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A EXPERIMENTAL DETAILS

A.1 RLEF

We initialize separate policy and value function networks from pre-trained and instruction-tuned
LLMs as indicated in the respective experiments; for the value function, we replace the output layer
with a randomly initialized linear projection. For PPO, we use a AdamW (Loshchilov & Hutter,
2019) with a learning rate of 2e 7, weight decay of 0.1, and a linear warm-up over 50 steps. We
set the KL regularization factor /3 of the reward term to 0.05 (Section 2.2). All models are trained
with an online, asynchronous training infrastructure that decouples inference and optimization. We
incorporate importance sampling in PPO’s clipped surrogate objective (Schulman et al., 2017} Eq.7):

mo(at|ct)

. T (at|0t)
ri(0) = o (arlcs) stop_grad <m1n (7ﬁi(at|ct)’ 1))
L7(0) = E, [min (rt(O)At, clip (¢(6),1 — €, 1+ ) At)}

for model parameters 6, normalized advantage A,, and the behavior policy m,. We set € = 0.2.

For optimizing the value function, we use a clipped value loss. With value model parameters v and

reward function R(s¢, a;) (see[Section 2.2)) we have
T .
Rt = Z’YZ_tR(Si, CLZ')
i=t

¥ () = B | e (Volen) = ) (clip (Vo). Vi () — . Vi) + ) = o))

where we set the discount factor v to 1 and the value clipping threshold « to 0.2.

During training, we perform inference with a temperature of 1.0; we use neither nucleus (top-p) nor
top-k sampling. We collect 1024 rollouts and perform 4 updates on 256 sequences each. Models are
evaluated every 800 updates, and we select the final model based on validation set performance. We
train our models on NVidia H100 GPUs; a training run takes approx. 20 wall time hours. With the
above parameters we use 288 (128 for traning, 160 for inference) and 2304 (1024 for training, 1280
for inference) GPUs for 8B and 70B models, respectively.

A.2 CoODE EXECUTION

We evaluate candidate solutions with the accompanying code-base of |Li et al. (2022 using Python
3.10. All problems in the validation and test set specify a memory limit, and only a few problems
define a time limit. If specified, we apply these limits for RLEF training and evaluations; otherwise,
we use a 1GB memory limit and maximum wall clock time of 10 seconds per test case.

A.3 SUPERVISED FINE-TUNING

We perform supervised fine-tuning (SFT) for the ablations in In order to assemble a
training dataset, we perform iterative code generation with our proposed setup on the CodeContests
training set with the Llama 3.1 70B Instruct model. We set top-p to 0.95 and sample a temperature
for each response in U(0.1,1.0). For each problem in the training set we collect 100 multi-turn
rollouts and obtain 313,639 successful trajectories.

We fine-tune models for next-token prediction, computing losses on the last response only (i.e., on
responses passing both public and private tests); this produced slightly better models compared to
training on all responses. We sweep over learning rates 5¢ ¢ and 2e %, and 2 and 3 epochs with
a batch size of 64 and sequence length 8192. A linear warmup is performed over 10 steps, and
learning rates are annealed according to a cosine schedule. Weight decay is set to 0.1. Models are
evaluated after 200 optimizer steps with AdamW and we select final parameters based on validation
set performance.

Shttps://github.com/google—-deepmind/code_contests
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Model Method Valid Test Method (8B) Valid Test
8B Base Few-Shot 1.2 1.8 RLEF 17.2 16.0
SFT 6.9 3.5 No Execution Feedback 12.2 10.9
70B Base  Few-Shot 46 58 Token-level Value Function 13.1 13.7
SFT 11.1 109 Single-turn RL 102 109
@ Single-turn w/ Repair 148 12.6

a

(b)

Table 4: (a) 1@3 solve rates for few-shot prompting and supervised fine-tuning (SFT) with Llama
3.1 Base models on CodeContests. (b) Further results from Llama 3.1 Instruct 8B (1@3): withhold-
ing execution feedback from public training during RL; learning a value function on the token level;
training a dedicated code repair model and applying it to outputs of the single-turn RL model.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PRE-TRAINED MODELS

In|Table 4a] we list solve rates for few-shot prompting and supervised fine-tuning from pre-trained
Llama 3.1 models. We observe significantly lower performance compared to the Instruct models in

all cases (Table 3a).

B.2 FEEDBACK FROM PRIVATE TESTS

Our main evaluations on CodeContests match our training setting, i.e., we provide inference-time
feedback on public test cases and estimate solve rates on private (and the dataset’s generated) tests.
The number of public test cases in the CodeContests validation and test sets vary between 1-7, with
a median of 1; typically, a higher number of private tests and a large number of generated tests are
available per problem.

We verify whether our RLEF-trained models can benefit from larger test sets during inference by
including feedback from private and generated tests. Specifically, we test each model response
against 20 available test cases, including private tests, and provide execution feedback for up to 8
failed test cases. Comparing 1@3 solve rates (temperature 0.2) with a turn limit of 3, the 8B RLEF
model can improve from 17.2 to 18.1 on the valid set, whereas on the test set we see a drop from
16.0 to 14.4. For the 70B RLEF model, validation set performance improves from 37.5 to 40.4, and
on the test set we obtain 41.2 compared to 38.0 with feedback limited to public tests.

B.3 EXTRA REPAIR MODEL

Le et al.|(2022) implements program repair on top of an RL-trained LLM with two extra models: a
“critic” predicts the joint outcome of all unit tests (e.g., success, failure, runtime error) and can be
used for ranking and determining promising prefixes, and a “repair’” model maps wrong solutions to
ground truth solutions. In this spirit, we evaluate the effect of a dedicated repair model to improve

the single-turn 8B model from [Section 3.4.2]as follows.

During the RL training procedure, we collect all generations that do not pass the public unit tests.
For the training duration of 12,000 gradient steps, this amounts to 1.48M samples. Next we construct
training dialogues with the original prompt (as described in[Appendix C.I)), the wrong generation,
and a random correct generation for the respective problem from the CodeContest training set. We
apply additional processing to the CodeContest solutions by making sure they do indeed pass the
provided unit tests and unifying their indentation. We then train repair models via supervised fine-
tuning of Llama 3.1 8B Instruct, sweeping over learning rates 5¢ %, 2¢76, and 1e~°, and 1 or 2
epochs with a batch size of 64 and a sequence length of 8192.

For evaluations, we estimate 1@3 solve rates by generating an initial program with the RL-trained
model followed by up to two independent samples from the repair model. Similar to our main RLEF
setting, we refrain from (further) repair if the latest solution passes the public tests. We evaluate
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all models from the sweep in intervals of 400 gradient steps and select the best checkpoint based
on validation set performance. This checkpoint achieves, in combination with the single-turn RL
model, a 1@3 solve rate of 14.8 on the validation set and 12.6 on the test set, which is a significant
increase over the single-turn RL model alone (10.2 and 10.9, respectively; but falls short
of the corresponding RLEF-trained model which combines code synthesis and code repair (17.2 and

16.0, respectively;

B.4 RL TRAINING WITHOUT PUBLIC TEST EXECUTION FEEDBACK

We validate our setup consisting of inline execution feedback and early stopping based on public
tests with an ablation where we withhold information from public tests. Concretely,
we remove execution feedback from the prompt for subsequent solutions (Appendix C.I)), starting
directly with “Give it another try”. We always ask the model for two follow-up solutions this way
(i.e., for a total of three solutions). We do keep our reward definition from but do not
end episodes when public tests are passing.

The resulting model, starting from Llama 3.1 8B Instruct, obtains a 1@3 solve rate of 12.2 on the
validation and 10.9 on the test set (Table 4b). This is better than the initial instruct model (8.9 and
10.2, respectively) but significantly below the corresponding RLEF-trained model (17.2 and 16.0,
respectively).

B.5 TOKEN-LEVEL VALUE FUNCTION

Here we do not train a value function the level of responses (Section 2.2| [Appendix A.I)) but rather
predict a value for each token of a response. Our reward formulation remains unchagned; conse-
quently, due to the discount factor being set to 1, the value function target (reward-to-go) for each
token of a response is the same. However, we now compute separate per-token advantages.

With this approach and otherwise identical settings, we achieve a 1@3 solve rate of 13.1 on the
validation and 13.7 on the test set, starting from Llama 3.1 8B Instruct (Table 4b). This is below the
17.2 and 16.0 results with the turn-level value function (Table TJ.

C PROMPTS

C.1 CODECONTESTS

In the initial prompt, we substitute ${problem} by the original problem description as-is.

Initial Prompt

Provide a Python solution for the following competitive programming
question: \${problem}.

Your code should be enclosed in triple backticks like so: ‘!
YOUR CODE HERE ‘‘'‘. Use the backticks for your code only.

python

In the execution feedback prompt below, we show templates for the four different error types we
consider: wrong answer, exception, timeout, and out of memory. We then show the respective
feedback for each failing test.
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Execution Feedback

Your code failed the following tests:

- input ‘${input} ‘' failed:

Expected output ‘${expected_output}' but got ‘${observed_output}’
- input ‘${input} ‘' failed:

S{stacktrace}

- input ‘${input}‘ failed: Execution took too long.

— input ‘${input}‘ failed: Out of memory.

Give it another try.
Your code should be enclosed in triple backticks like so:
YOUR CODE HERE ‘'‘'. Use the backticks for your code only.

AURNRY

python

C.2 RANDOM FEEDBACK ABLATION

In[Section 3.3| we test RLEF-trained models with random execution feedback. For each problem, we
sample a different problem from the respective test set that contains incorrect solutions. We obtain
unrelated feedback by evaluating one of these incorrect solutions, chosen at random, against the
corresponding public tests and present the resulting feedback to the model. If none of the incorrect
solutions fail the public tests, we evaluate raise NotImplementedError (). In this case, the
feedback will contain backtraces pointing to this error. Otherwise our dialog proceeds as usual, i.e.,
if the code solution produced by the LLM passes the true public tests of the problem in questions
we stop and evaluate the solution all test cases.

C.3 FEW-SHOT PROMPTING

For the few-shot ablations in we select successful trajectories from the Llama 3.1 70B
Instruct model on problems from the CodeContests training set. We select trajectories with both
2 and 3 successful attempts to as demonstrations for successful multi-turn code generation. For
instruction models, we initialize the dialog with the few-shot examples, separating them with an
empty assistant message. For few-shot experiments with pre-trained models (Appendix B.T), we
use a dialog format in which each message is either prefixed by [USER] or [ASSISTANT]. The
token for | |, an invalid symbol in Python, is used as a message delimiter.

C.4 HUMANEVAL+

HumanEval problem prompts consist of starter code, with a docstring and example tests following
the function declaration.

Initial Prompt

Write a solution to the following problem and make sure that it
passes the tests:
${problem}

We then provide the problem prompt again at the start of each model response for completion.

The tests in HumanEval+ consist of a single function with several assert statements. In order
to obtain execution feedback for individual tests, we extract them from original test function (for
computing pass rates, we use the original test code). We further transform assert statements
into matching function calls of Python’s built-in unittest.TestCase class. This way, test
failures will result in more informative AssertionError exceptions with run-time values; these
are provided as assertion_error to the template. We also show successful test cases.
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Execution Feedback

Your code failed some test cases:

- Failure: ‘S${test}‘:
‘${assertion_error}®

- Failure: ‘${test}‘:
S{stacktrace}

- Failure: ‘${test}‘:
Execution took too long.
- Success: ‘${test}®

Give it another try.

C.5 MBPP+

Each MBPP prompt consists of a problem description and a single example test.

Initial Prompt

Provide a Python solution for the following problem: ${problem}
Your code should pass these tests:

S{test}

AURANRY

Your code should be enclosed in triple backticks like so:
YOUR CODE HERE ‘‘'‘. Use the backticks for your code only.

python

Execution feedback follows the HumanEval+ format from [Appendix C.4] with additional formatting
guidelines.

Execution Feedback

Your code failed some test cases:

- Failure: ‘S${test}‘:
‘S{error}®

- Failure: ‘S${test}‘:
S{stacktrace}

— Failure: ‘S$S{test}‘:
Execution took too long.
- Success: ‘${test}®

Give it another try.
Your code should be enclosed in triple backticks like so: ‘'‘python
YOUR CODE HERE ‘‘'‘'. Use the backticks for your code only.

D EXAMPLES

The following examples are selected from the valid set of CodeContests with the RLEF-trained
70B model, using temperature 0.2 and top-p 0.95. We apply some light re-formatting of the initial
prompts for better readability.

In the first example, the first model response is on the right track, but the first print () statement
outputs a wrong value. The second response implements the requested algorithm naively, but the
code is inefficient due to the loop from [ to r; it would take about two minutes for the last line in the
public test. Finally, the third response contains code that is both correct and fast.
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Initial Prompt

Provide a Python solution for the following competitive programming question: You are given two

integers 1 and r, 1 < r. Find the largest possible value of a mod b over all pairs (a, b) of integers
for which r > a>b > 1.

As a reminder, a mod b is a remainder we get when dividing a by b. For example, 26 mod 8 = 2.

Input

Each test contains multiple test cases.

The first line contains one positive integer t (1 < t < 1074), denoting the number of test cases.
Description of the test cases follows.

The only line of each test case contains two integers 1, r (1 <1< r<1079).

Output

For every test case, output the largest possible value of a mod b over all pairs (a, b) of integers
for which r > a >b > 1.

Example
Input

4

11

999999999 1000000000
8 26

1 999999999

Output

0

1

12
499999999

Note

In the first test case, the only allowed pair is (a, b) = (1, 1), for which a mod b = 1 mod 1 = 0.

In the second test case, the optimal choice is pair (a, b) = (1000000000, 999999999), for which a mod
b=1..

Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the
backticks for your code only.

Model Response

python
t = int (input())

for _ in range(t):
1, r = map(int, input().split())

ifr // 2+ 1> 1:
print ((r // 2))
else:
print(r % 1)

Execution Feedback

Your code failed the following tests:

- input ‘4

11

999999999 1000000000
8 26

1 999999999

* failed:

Expected output ‘0
1

12

499999999

' but got ‘0

1

13

499999999

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the
backticks for your code only.
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Model Response

python
t = int (input())

for _ in range(t):
1, r = map(int, input().split())

max_mod = 0
for b in range(l, r + 1):

a=rxr
mod = a % b
max_mod = max (max_mod, mod)

print (max_mod)

Execution Feedback

Your code failed the following tests:

- input ‘4

11

999999999 1000000000

8 26

1 999999999

v failed:

Execution took too long

Give it another try.

Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the
backticks for your code only.

Model Response

Vo

python
t = int (input())

for in range(t):
1, r = map(int, input().split())

Passes public and private tests.
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In the second example, the first code solution does not reset the value for p;. The second and
correct attempt fixes this. Note that both solutions contain an unused variable, curr in the first
and curr_a in the second response. For this question, an approach with dynamic programming that
starts initializes py from py_; would be preferred; however, the second solution passes all test cases,
too.

Initial Prompt

Provide a Python solution for the following competitive programming question: You have an array a
consisting of n distinct positive integers, numbered from 1 to n. Define p_k as $$$p_k => {1 < i, J

< k} a_i mod a_j, where x \bmod y denotes the remainder when x is divided by y. You have to find and
print p_1, p_2, \ldots, p_n$s$$.

Input

The first line contains n - the length of the array (2 <n<2 - 1075).

The second line contains n space-separated distinct integers a_l, ..., a_n (1 <ai<3 - 10°5, a_i #
a_j if i # 3).

Output

Print n integers p_l, p_2, ..., p_n.

Examples

Input

4
6273

Output
0212 22
Input

3
321

Output
® 3 8o

Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the
backticks for your code only.

Model Response

DR

python
int (input ())
list (map(int, input().split()))

n
a

p=20
result = []
for k in range(n):
curr = alk]
for i in range(k + 1):
for j in range(k + 1):
p += alil % alj]
result.append(p)

for num in result:

print (num, end=" ")
Vo
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Execution Feedback

Your code failed the following tests:

- input ‘4

6273

‘ failed:

Expected output ‘0 2 12 22
* but got ‘0 2 14 36

- input '3

321

* failed:

Expected output ‘0 3 5

‘ but got ‘0 3 8

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the
backticks for your code only.

Model Response

python
n = int (input())
a = list (map(int, input().split()))

result = []
total = 0
for k in range(n):

curr_total = 0

curr_a = al[:k+1]

for i in range(k+1):

for j in range (k+1):
if 1 != 3J:
curr_total += a[i] % al[3j]
result.append(curr_total)

for num in result:
print (num, end=" ")

Result

Passes public and private tests.
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