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ABSTRACT

Active learning strategically selects informative unlabeled data points and queries
their ground truth labels for model updates. The prevailing assumption in the
active learning paradigm is that the acquisition of ground truth labels optimally
enhances model performance. However, this assumption may not always hold or
maximize learning capacity. Moreover, ground truth annotations incur significant
costs due to the need for intensive human labor. In contrast to traditional active
learning, this paper proposes salutary labeling, which automatically assigns the
most beneficial labels to the most informative samples without human annotation.
Specifically, we utilize the influence function, a tool for estimating sample influence,
to select newly added samples and assign their salutary labels by choosing the
category that maximizes their positive influence. This process eliminates the
need for human annotation. Extensive experiments conducted on nine benchmark
datasets demonstrate the superior performance of our salutary labeling approach
over traditional active learning strategies. Additionally, we provide several in-depth
explorations and practical applications including large language model fine-tuning.

1 INTRODUCTION

Active learning (Cohn et al., 1996; Zhan et al., 2022; Ren et al., 2021) is a specialized area in machine
learning that focuses on effectively updating models by enabling them to request the labeling of
particularly informative data points with a certain budget. This task arises from the challenge and
expense involved in obtaining labeled data, which is often a major bottleneck in machine learning
applications. To reduce labeling costs, active learning seeks to annotate only a small set of beneficial
samples, which makes it particularly valuable when the labeling process is costly and time-consuming.

Consequently, significant research efforts have been dedicated to active learning in various research
areas such as computer vision (Huang et al., 2018; Chai et al., 2021), natural language process-
ing (Zhang et al., 2022; Ma et al., 2023), and medical diagnosis (Biswas et al., 2023; Wang et al.,
2024). Traditionally, active learning methods select data points based on uncertainty and representa-
tiveness. The early uncertainty-based methods mainly measure the data uncertainty with the posterior
probability predicted by the model (Holub et al., 2008; Wang et al., 2016; Balcan et al., 2007), while
some recent approaches utilize auxiliary modules (Lakshminarayanan et al., 2017; Kee et al., 2018) to
estimate uncertainty. Solely focusing on the uncertainty might cause bias in sampling, therefore other
methods (Xu et al., 2003; Huang et al., 2018) aim to find the most representative subset of the full
data. Recently, some studies (Liu et al., 2021; Chhabra et al., 2024) attempt to estimate the effect of
integrating each data point on the training loss with the influence function (Cook & Weisberg, 1980).

The above active learning approaches show promising results but hinge on a critical assumption that
training with ground truth labels of the selected samples will optimally enhance model performance.
However, this assumption may not always hold, as some human-annotated labels can be incorrect or
misleading, potentially harming the model’s efficacy (Song et al., 2022; Chen et al., 2019). Moreover,
even the correct label might harm or limit the model performance (Kong et al., 2021). Besides, the
reliance on human-assigned labels in active learning inevitably incurs additional annotation costs.

Contributions. In this paper, we present salutary labeling, which aims to select the most informative
samples and automatically annotate them with the most beneficial labels, enhancing training efficacy
and eliminating the need for human intervention. We summarize our contribution as follows:
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• We consider a new task named salutary labeling, which integrates the querying and annotating
processes of active learning into a single autonomous step. To the best of our knowledge, this is
the first initiative aimed at both maximizing model performance and eliminating the need for
ground truth in active learning with an automatic labeling strategy.

• We adapt the influence function to calculate the sample influence, which serves as a criterion for
selecting the most influential sample for labeling. However, the label information is required
during calculating sample influence. Our salutary labeling ingeniously addresses this challenge
by assessing the impact of each sample across all possible labels and assigning the label that
yields the greatest positive influence. This simple strategy allows the model to automatically
select and label samples, maximizing their overall benefit without any human annotation.

• We validate the efficacy of our approach on nine benchmark datasets, comparing with seven
classical methods and two influence function-based methods in active learning. Beyond active
learning experiments, we also conduct various in-depth explorations to address key questions for
salutary labeling and extend its applications to other related tasks including LLM fine-tuning.

2 RELATED WORK

Our proposed salutary labeling introduces a new task that aims to query and annotate unlabeled
samples in one unified step without any human intervention, which intersects with several areas within
machine learning, particularly active learning (Cohn et al., 1996; Wei et al., 2015). Active learning
selectively queries the user to annotate data points that are likely to be most beneficial for improving
model performance, but contrasts with our method by relying on human annotations. Traditionally,
some strategies (Zhan et al., 2022; Ren et al., 2021; Li et al., 2024) select important data points with
indirect criteria such as uncertainty or representativeness. Uncertainty-based methods define sample
uncertainty in one of three main ways: the entropy of the posterior probability distribution (Settles
& Craven, 2008; Wu et al., 2022; Holub et al., 2008), the probability of the predicted class (Lewis
& Catlett, 1994; Wang et al., 2016; Nguyen et al., 2022), or the margin between the probabilities
of the highest two predicted classes (Joshi et al., 2009; Roth & Small, 2006; Balcan et al., 2007).
Beyond these, research works (Freytag et al., 2014; Gal & Ghahramani, 2016) utilize consensus
among multiple classifiers (Seung et al., 1992; Kee et al., 2018), or employ an auxiliary module (Yoo
& Kweon, 2019) to measure uncertainty. Another strand of active learning approaches focuses on
selecting the most representative samples (Xu et al., 2003; Huang et al., 2018; Sener & Savarese,
2018) through clustering (Nguyen & Smeulders, 2004) or by maximizing the distances between
selected samples (Hasan & Roy-Chowdhury, 2015). Alternatively, several methods (Guo, 2010;
Hasan & Roy-Chowdhury, 2015; Yang et al., 2015) attempt to identify the most diverse subset
to represent the full dataset. Recently methods (Kirsch et al., 2019; Ash et al., 2020) effectively
balance uncertainty and diversity by selecting data points that not only reduce model uncertainty but
also ensure a diverse representation within each queried batch. Unlike these uncertainty-based and
representativeness-based methods, our salutary labeling directly estimates each sample’s impact on
model performance with influence function.

Technically, our work is inherently related to influence function (Cook & Weisberg, 1980), which
measures the change in a model’s output due to an infinitesimal perturbation of one training data
point. Following Koh & Liang (2017), significant research efforts (Giordano et al., 2019; Koh et al.,
2019; Pruthi et al., 2020; Chen et al., 2021) are dedicated to quantifying the impact of individual
or group of training samples on model performance. Recently, ISAL (Liu et al., 2021) extends the
influence function to active learning by utilizing pseudo labels to calculate the influence. Alternatively,
IBDS (Chhabra et al., 2024) incorporates an auxiliary regression module, which is specifically trained
on labeled data and their calculated influences, to estimate the impact of unlabeled samples. While
these methods avoid the requirement of labels in calculating influence function, they still rely on
human annotators to label the selected data. In contrast, our method eliminates the need for human
annotation, thereby avoiding the labor-intensive process of annotations and the potential inaccuracies
associated with detrimental ground truth labels.

In terms of problem setting, our work is also related to semi-supervised learning (Yarowsky, 1995)
and several data-centric topics (Hüllermeier & Beringer, 2005; Huggins et al., 2016; Kong et al.,
2021; Li & Liu, 2022). We discuss these topics in detail in Appendix A due to space limitations.
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3 MOTIVATION

Figure 1: Experimental results on Dia-
betes (Decencière et al., 2014) dataset with
ground truth and salutary labels. We select
300 labeled samples for traditional classi-
fication training and leave the remaining
samples as unlabeled data from active learn-
ing. In both figures, the X-axis represents
the sample influence with salutary labels.
According to this measurement, we divide
both labeled/unlabeled data into 20 equal-
sized bins. The red and dark blue solid
lines denote the performance of adding each
bin into the labeled data with ground truth
and salutary labels, respectively, and the
dashed blue line denotes the performance
when training with the original labeled data.

Conventional active learning methods aim to strategi-
cally select unlabeled samples for annotation, assum-
ing that correctly labeled samples inherently enhance
model performance. However, this assumption may
not always hold. Research in the realm of noisy la-
bels (Natarajan et al., 2013; Song et al., 2022) has
revealed that even a small subset of samples with noisy
labels can contribute positively to model improvement.
Our own observations, depicted in Figure 1 (top), fur-
ther substantiate this claim. Leveraging the influence
function, we discern the impact of individual samples
on model performance. Based on this analysis, we cal-
culate the sample influence with the most salutary label
adjustment, maximizing its impact on model perfor-
mance. Subsequently, we partition the entire training
set into 20 equally-sized bins and replace the labels of
samples within each bin with their optimal counterparts.
Notably, the red line in the figure illustrates the model’s
performance with the entire training set, but with the
labels of samples within each bin adjusted accordingly.
Note that the dots representing equally-sized samples
along the red line do not have uniform intervals and do
not align with the unevenly-sized histogram. Surpris-
ingly, for bins with high influence scores, retraining the
model with these adjusted labels results in a significant
performance improvement. For instance, in the last
bin, the accuracy increases from 69% to 74%. This
underscores the presence of salutary labels that surpass
ground truth labels in enhancing model performance.

Expanding on the concept of salutary labels, we apply it
within the framework of active learning, as depicted in
Figure 1 (bottom). Analogous to our previous protocol,
we sort the unlabeled samples based on their influence
when labeled with salutary labels, dividing the unla-
beled data into 20 equally-sized bins. The red and blue
lines represent the performance when each bin is added
to the labeled set with ground truth and salutary labels,
respectively. Our salutary labeling strategy consistently outperforms ground truth in most scenarios,
particularly notable for samples with high influence estimations, which exhibit a remarkable 5%
improvement over ground truth. It is noteworthy that the inclusion of bins with low influence leads to
a decrease in accuracy, highlighting the presence of detrimental samples. These findings motivate us
to pursue active learning with salutary labels, a strategy that not only enhances performance compared
to ground truth but also alleviates the need for costly annotation effort.

4 METHOD

4.1 PRELIMINARIES

Active learning. The active learning process begins with training a model on a small initial labeled
dataset L={(xi, yi)}NL

i=1. Guided by certain criteria, active learning selects a small amount of the
most informative unlabeled data points from a pool set U={xj}NU

j=1, queries their labels to obtain
B={(xj′ , yj′)}bj′=1, where b represents the querying budget in each iteration, and updates the model
with the newly labeled data L ∪B. These queried samples are then removed from the unlabeled pool
for subsequent iterations. This learning cycle is repeated for multiple rounds, gradually enhancing
model performance while minimizing labeling effort.

3
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Influence function. For a labeled training dataset {(xi, yi)}Ni=1 and a model with a con-
vex loss function ℓ(·, ·), the optimized parameters for empirical risk minimization can be
represented as θ̂=argminθ∈Θ

1
N

∑
i ℓ(xi, yi)+

λ
2 ∥θ∥

2
2. If one training point (xj , yj) is down-

weighted by infinitesimal ϵ during the training, the new optimized parameters change to
θ̂(xj ,yj);−ϵ=argminθ∈Θ

1
N

∑
i ℓ(xi, yi)−ϵℓ(xj , yj)+

λ
2 ∥θ∥

2
2. Without actually retraining the model,

the influence function (Cook & Weisberg, 1980) estimates the actual change by θ̂(xj ,yj);−ϵ − θ̂ =

−H−1

θ̂
∇θ̂ℓ(xj , yj), where Hθ̂=

1
N

∑
i=1 ∇2

θ̂
ℓ(xi, yi)+λI is the Hessian matrix for θ̂.

By setting ϵ = 1/N , we can linearly approximate the change of θ̂ after removing a training sample,
as removing sample (xj , yj) is equivalent to down-weighting it with ϵ = 1/N . If the validation set V
is taken into consideration, let the validation loss be Lv = ℓ(V ; θ̂), the impact of a specific training
data point (xj , yj) on the validation loss can be estimated as follows (Koh & Liang, 2017):

I(xj , yj) = −∇θ̂L
⊤
v H

−1

θ̂
∇θ̂ℓ(xj , yj). (1)

Unlike traditional active learning methods that rely on indirect criteria such as uncertainty (Balcan
et al., 2007; Yang et al., 2015; Nguyen et al., 2022) or representativeness (Huang et al., 2010; Du
et al., 2015; Gu et al., 2021) to select informative samples, the influence function offers a more direct
and precise assessment of a data point’s importance to the model. By quantifying the effect of each
sample on the model loss on the validation set, the influence function provides a more accurate means
of selecting the most informative data points for labeling. Despite the potential benefits, the influence
function presents a crucial challenge in active learning. As shown in Eq. (1), the influence function
relies on having label information to estimate the impact of each data point, which poses a challenge
when dealing with pool samples in the active learning task where such labels are unavailable. Previous
influence-based methods use pseudo-labels or surrogate models to avoid directly addressing this
challenge. Instead, our approach introduces salutary labeling to overcome this obstacle, which is a
simple and effective labeling strategy and makes the influence function flexible for active learning.

4.2 SALUTARY LABELING FOR ACTIVE LEARNING

In this work, we propose salutary labeling for active learning, a novel approach that directly evaluates
the impact of each unlabeled sample and automatically assigns labels to the selected data without any
human annotation. Our method fulfills the requirement for ground truth labels in influence function
calculation, by systematically exploring all possible labels for each data point and calculating the
influence corresponding to each label. The label with the highest influence estimation is then
assigned to each sample as the salutary label. This salutary influence, estimated using the salutary
label, represents the maximum possible benefit when incorporating the data point into training.
Subsequently, our method selects the unlabeled samples with the highest salutary influence and
annotates them with salutary labels in a unified step, without requiring any human intervention. In
the following section, we introduce the notations and provide technical details of our method.

Training protocol and technical notations. In each iteration of active learning, the model is trained
on the labeled training set L with label space C. The optimized model parameters for the convex
training loss function ℓ(·, ·) are denoted as θ̂. To actively query the most beneficial samples from the
unlabeled pool set U = {xi}NU

i=1, our salutary labeling algorithm calculates the influence estimation
of every data point xi with its salutary label on the validation loss Lv = ℓ(V ; θ̂). The samples with
the highest influences are selected as the salutary set, denoted as B = {(xj , y

s
j )}bj=1, where ysj ∈ C

represents the salutary label of the queried data and the superscript ‘s’ represents the salutary label.
After forming the salutary set, it is removed from the pool U , thus updating U = U \B. Subsequently,
the model is re-trained on the expanded labeled set L = L ∪B for the next active learning cycle.

Salutary labeling with the influence function. With the concept of the salutary label, we can
handle the absence of label information when calculating the influence function. Specifically, for
an unlabeled sample, we compute the influence estimations for each label and pick the one with the
largest influence, ensuring the most beneficial label is chosen. Mathematically, it can be expressed as:

I(xj , y
s
j ) = I(xj , ĉ), where ĉ = argmax

c∈C
I(xj , c). (2)

4
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Autonomous active learning. Eq. (2) directly measures the impact of each unlabeled sample and
automatically assigns the salutary label, enabling our method to query and annotate the unlabeled
data without human intervention. Specifically, the model selects the top b samples with the highest
influences from the pool set U and annotates them with salutary labels, to form an active salutary set
B = {(xj , y

s
j )}bj=1. This salutary set is then removed from unlabeled set U and integrated into the

labeled training set L, to update the learning model.

We summarize the training protocol of salutary labeling in Algorithm 1 of the Appendix. The time
complexity of salutary labeling is bounded by the calculation of the influence function in Eq. (2). For
each label c ∈ C, the calculation of gradients for all unlabeled samples will take O(nd), where n is
the number of samples and d is the dimension of model parameter θ. Notice that the computation of
the Hessian matrix and its inverse only involves the label information of the validation set. Therefore,
these calculations only need to be performed once for all potential labels. The explicit computation
of Hessian takes O(nd2) and its inversion takes O(d3). We apply conjugate gradients and stochastic
estimations of Hessian-vector products (Koh & Liang, 2017), reducing the time complexity to O(nd).

5 EXPERIMENTS

In this section, we first introduce our experimental setup, then report the algorithmic performance of
extended active learning experiments, and finally provide in-depth analyses of salutary labeling.

5.1 EXPERIMENTAL SETUP

Datasets and baseline methods. We use six tabulate datasets from UCI Machine Learning Reposi-
tory (Dua et al., 2017) in our experiments. We also use the 39 pre-extracted features of CelebA (Liu
et al., 2015) as a tabulate dataset. Additionally, we include two vision dataset, MNIST (Deng, 2012)
and CIFAR10 (Krizhevsky & Hinton, 2009). We use a ResNet-34 (He et al., 2016), which is pre-
trained on the ImageNet (Deng et al., 2009), to extract 512 deep features for each image in both
datasets. We provide details of each dataset in Appendix B.

We include the nine baseline methods for active learning. Random sampling is the most intuitive
baseline which randomly queries samples from the pool set. Entropy sampling (Holub et al., 2008)
selects the unlabeled samples with the highest entropy of the current model’s predictions. Margin
sampling (Balcan et al., 2007) ranks all pool samples by the margin between the highest and second-
highest values from the soft-max logits predicted by the model. Uncertainty sampling (Nguyen
et al., 2022) queries by the classification uncertainty, which is determined by the probability of the
predicted class as assigned by the classifier. CoreSet (Sener & Savarese, 2018) focuses on selecting
the most representative and diverse subset of the data to query for labeling. BatchBALD (Kirsch
et al., 2019) utilizes Bayesian principles to maximize the expected reduction in uncertainty over
a batch by considering the mutual information of selected instances. BADGE (Ash et al., 2020)
selects points based on their expected information gain while maintaining diversity within each batch.
We also include two influence-based active learning methods, which choose the unlabeled data set
with influence estimation. ISLA (Liu et al., 2021) uses base model predictions as pseudo-labels to
compute influence. IBDS (Chhabra et al., 2024) uses an influence regressor, which is trained with
labeled training data and their influences calculated with Eq. (1), to predict the influence estimations
for the unlabeled data. It is important to note that while all baseline methods require human effort to
annotate the queried unlabeled samples, our approach is completely human annotation-free.

Implementation details and experimental protocol. We implement1 our method with Scikit-
learn (Pedregosa et al., 2011) and Pytorch (Paszke et al., 2019). All experiments are conducted
on our workstation equipped with one 24GB NVIDIA TITAN RTX GPU. In our experiments, we
divide all datasets into training set (60%), validation set (20%), and test set (20%), except for Bank,
CelebA and Diabetic datasets, which have predefined splits for training, validation, and testing. The
influence-based models, including ISAL, IBDS, and our methods, exclusively utilize the validation set
to compute influence estimations. This setup ensures that none of the methods access any information
from the test set, maintaining the testing data unseen to the models during the evaluation. All
experiments are repeated five times with different random seeds. In each run, we randomly choose
300 samples from the training set as the initial set and reserve the rest as the pool set.

1Our code is available at https://anonymous.4open.science/r/salutary-labeling-11CF.
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Table 1: Accuracy (%) of the logistic regression model on the test set after 10 rounds of active
learning in five runs. We report only the average accuracy in this table due to the space limits. The
standard deviations are presented in Figure 2 as well as in Table 4 in Appendix C.
Method Electric Bank Diabetic CelebA Musk_v2 Wine Waveform CIFAR10 MNIST

Init 63.85 65.89 56.43 73.33 73.45 44.76 79.11 46.74 77.75

Random 65.15 67.77 58.41 82.06 78.33 46.31 81.10 55.92 80.93
Entropy 2008 69.72 73.84 65.34 81.23 79.11 45.00 83.23 53.91 83.77
Margin 2007 69.72 73.84 65.34 81.23 79.11 47.30 82.26 56.95 83.72
Uncertainty 2022 69.72 73.84 65.34 81.23 79.11 44.53 83.33 55.47 83.63
ISLA 2021 67.98 64.41 61.38 84.71 77.72 47.15 79.40 53.91 79.35
IBDS 2024 67.66 65.14 64.35 82.49 78.15 44.84 82.91 54.61 80.05
CoreSet 2018 66.35 68.21 61.38 80.14 73.78 47.61 80.70 54.64 81.26
BatchBALD 2019 67.06 74.15 64.76 78.85 77.53 46.69 81.83 53.66 82.05
BADGE 2020 67.45 74.92 64.16 81.19 78.48 46.87 81.21 56.44 84.24

Ours w/ GT 70.92 66.45 68.31 83.03 77.34 48.23 83.74 55.92 86.12
Ours w/ SL 71.31 78.07 71.28 85.50 81.06 49.92 84.21 58.33 86.68

Diff. GT vs. SL 14 19 13 10 22 7 8 11 8

We choose a logistic regression classification model that satisfies the convex requirement of the
influence function. We initiate the process by training this model with the initial set. Subsequently,
we conduct active learning for R = 10 active rounds. In each round, the model queries 10 samples
from the pool dataset U . For baseline methods, the ground truth labels of these selected samples are
used, whereas our method automatically assigns salutary labels according to Eq. (2). After labeling,
the queried data points are integrated into the labeled set for re-training the model. After each round
of learning, we evaluate the model’s performance by measuring prediction accuracy on the test set.

We set the query budget b to 10 to maintain the distinction in performance between different models.
Using a larger budget, such as 1% of the pool set, might cause the model to reach the performance
ceiling on some datasets. We provide a detailed discussion and visualization on this in Appendix D.

5.2 ALGORITHMIC PERFORMANCE

We evaluate the performance of our salutary labeling method alongside the active learning baselines.
Note that the entropy, margin, and uncertainty samples yield the same results for the same random
initial/pool splits in binary classification datasets, as these three metrics have the same rank for
2-dimensional logits. We add our method with Ground Truth (GT) as a baseline, where the same
unlabeled samples queried by our method are annotated with ground truth labels for comparison. We
also compared the differences between the salutary labels (SL) and the ground truth labels, counting
how many of the 100 queried samples have discrepancies between the two sets of labels.

As shown in Table 1, our method shows significant improvements over the initial model despite a
limited querying budget and achieves the highest accuracy among all active learning methods. We
notice that the two influence-based baselines do not perform well on datasets like Diabetic and Wine.
This highlights the difficulties in estimating influence without access to label information, emphasizing
the challenges and limitations of current influence-based approaches in handling complex datasets
where salutary labeling shows a clear advantage. Our method with ground truth labels achieves
promising results, and salutary labeling further improves the accuracy across all datasets. Notably,
salutary labeling differs from ground truth in only a limited number of samples, as in the last row of
Table 1. The performance boost from this small set of different labels validates that salutary labeling
can identify key instances and assign more beneficial labels based on the validation set.

Moreover, we also present the accuracy change over 10 learning rounds for all methods in Figure 2.
Our method shows significant and steady improvements, particularly in challenging datasets like
Bank, Waveform, and Wine, where the baselines show limited progress. This indicates the efficiency
of salutary labeling in active learning, particularly noteworthy as it requires no human annotations.

In addition to logistic regression, we also conduct active learning experiments for ResNet-34 (He et al.,
2016) model on CIFRA10 and MNIST and achieve promising performance. We report the detailed
results in Appendix E. These results validate the ability of our method to perform autonomously
across different models and datasets, highlighting its potential for practical applications.
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Figure 2: Comparison of salutary labeling and baseline active learning methods on nine datasets over
10 rounds of learning cycle. In all figures, the X-axis represents the training iterations, where round
0 is the initial training. The shaded area is the standard deviation across 5 different random runs.
Notice that the entropy, margin and uncertainty sampling yield the same results for binary datasets.

5.3 IN-DEPTH EXPLORATIONS

We would like to answer the following questions for salutary labeling in our in-depth explorations:
• The influence function has been demonstrated as an accurate estimation for leave-one-out

influence (Koh & Liang, 2017), which estimates the impact of removing a training sample. On
the contrary, salutary labeling adapts this function to assess the effect of adding a sample unseen
during model training, raising the question: How accurate is this estimation?

• As salutary labeling does not require human annotation, there is no budget constraint. Is it
possible to achieve better performance when training with more pool samples?

• The influence function requires the learning model to be convex, which limits its applied
scenarios. Can we circumvent the convex requirement of influence function and extend the
salutary labeling to applications involving non-convex deep models?

Influence estimation vs. add-one-in retraining. We empirically verify how accurate is the influence
function when estimating the impact of adding a new data point on three datasets, namely Diabetic,
CelebA, and Bank. For each dataset, we compare the predicted influence estimations with the actual

7
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Figure 3: Influence estimation vs. actual loss difference of add-one-in retraining on Diabetic (left),
CelebA (middle), and Bank (right) datasets. In all plots, the horizontal axes represent the estimated
influence on validation loss, while the vertical axes show the actual loss change. Their correlation is
quantified with the Spearman’s rank correlation coefficient (Spearman-r). We randomly selected 300
samples in each plot to ensure clarity in visualization.

changes in loss observed after adding a sample and re-training the model. Using the initial set,
we train a logistic regression model θ̂ and compute the influence I(xj , yj) for every data point in
the pool set. Consequently, we individually add each pool sample (xj , yj) to the training set and
update the model parameters θ̂j . We compare influence estimation I(xj , yj) and the validation loss
difference after add a sample ℓ(V ; θ̂j)− ℓ(V ; θ̂). As shown in Figure 3, The influence estimation for
new samples does not perfectly match the actual loss change, likely because they were unseen during
initial training. Still, the influence estimations are highly correlated with actual loss differences, as
measured by Spearman’s rank correlation coefficient. Therefore, the influence function provides an
accurate indication of each sample’s relative impact.

Salutary labeling with more data points. In Section 5.2, we demonstrated the efficacy of salutary
labeling. The fact that salutary labeling requires zero human intervention allows our method to
query even more unlabeled samples without incurring any annotation costs. Therefore, we conduct
additional experiments to evaluate the effectiveness of our method with more pool samples. Following
the setup described in Section 5.2, we split the data into an initial set for training the initial logistic
regression model, along with a pool set, validation set, and test set. For each data set, the model
queries and automatically annotates 10 samples from the pool set with salutary labeling in each active
learning iteration. We allow the model to query up to 50% samples from the pool set and choose the
iteration that has the best predicting accuracy on the validation set as the final model.

In addition to evaluating our salutary labeling, we report the test accuracy obtained after training
the model with all labeled data from both the initial and pool sets. This provides a reference point
to the maximum achievable accuracy when the model is supervised by all available data. We also
include two semi-supervised learning (SSL) methods, namely, self-training (Yarowsky, 1995) and
FixMatch (Sohn et al., 2020), as they similarly leverage a small labeled dataset alongside a larger
pool of unlabeled data to enhance model performance.

As demonstrated in Table 2, our method consistently outperforms the SSL baselines across all
datasets, showing that salutary labeling benefits from utilizing the validation set. Moreover, our
method achieves higher accuracy than supervised learning on four datasets, validating that salutary
labels can provide superior guidance compared to ground truth labels under certain conditions. On
Musk_v2 (Chapman & Jain, 1994), Wine (Cortez et al., 2009), and Waveform (Breiman & Stone,
1988) datasets, the fully supervised model only leads our method by a narrow margin of less than
1%. On CIFAR10 (Krizhevsky & Hinton, 2009) and MNIST (Deng, 2012), our method trails the fully
supervised model by about 3.5%, but it still boosts the accuracy by over 15% compared to the initial
model. Notably, these gains are achieved without any human annotation, illustrating the effectiveness
of our salutary labeling in utilizing unlabeled data.

Salutary labeling for LLM fine-tuning. In this section, we aim to expand our salutary labeling
method to practical applications with complex model structures. Specifically, we conduct the active
learning experiments in the LLM fine-tuning with a non-convex RoBERTa (Liu et al., 2019) model
on three datasets of GLUE (Wang et al., 2018) repository, namely, WNLI (Levesque et al., 2011),
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Table 2: Accuracy (%) of the logistic regression model on the test set after querying 50% of the pool
set. The standard deviations (less than 0.3% for all datasets) are omitted due to space limits.
Method Electrical Bank Diabetic CelebA Musk_v2 Wine Waveform CIFAR10 MNIST

Initial 63.85 65.89 56.43 73.33 73.45 44.76 79.11 46.74 77.75
Fully Supervised 70.08 80.14 72.27 85.07 85.75 52.53 85.60 65.67 95.36

Self-Training 1995 64.85 72.22 59.4 77.07 74.48 46.84 83.50 47.24 77.86
FixMatch 2020 66.47 73.83 60.14 76.82 76.52 47.65 82.85 51.85 82.38
Ours 72.25 81.21 73.26 85.89 85.68 52.38 85.50 62.05 92.06

Figure 4: Accuracy of the final model after 10 rounds of active learning for LLM fine-tuning on
WNLI (left), MRPC (middle) and RTE (right) datasets of GLUE repository.

MRPC (Dolan & Brockett, 2005) and RTE (Bentivogli et al., 2017). We simulate an active learning
scenario for fine-tuning the RoBERTa model, denoted by g ◦ h, where g represents the transformer
layers and h represents the classification head. Following the setting of Section 5.1, we divide each
dataset into the initial set, pool set, validation set, and test set.

During the whole training, we fix the transformer layers g in RoBERTa and fine-tune the non-convex
classification head h. Initially, we train the model using the initial set. Subsequently, in each learning
cycle, we use the 768-dimensional hidden state extracted by g, along with predictions from h, to train
a surrogate logistic regression model h′(·; θ̂). This surrogate model was then used to identify and
annotate 10 samples from the pool set, as detailed in Algorithm 1. The newly annotated samples are
used to update the classification head h. We provide the training details in Appendix F.

As illustrated in Figure 4, our method outperforms all baseline approaches in all three tasks after 10
learning cycles. The performance advantage is consistent across most rounds, with detailed per-round
results displayed in Figure 6 of the Appendix F. These findings underscore the potential of our method
in practical applications, highlighting the adaptability and effectiveness of our approach in real-world
settings, even when the model is not strictly convex.

6 CONCLUSION

In this paper, we delved into the realm of active learning and proposed a novel concept called salutary
labeling, which seamlessly merges the querying and annotating processes of active learning into a
single autonomous step. Unlike traditional methods, our approach eliminates the need for human
annotation; instead, it automatically assigns a salutary label, i.e., the label category that maximizes
model performance. Technically distinct from conventional active learning approaches that rely on
indirect measurements such as uncertainty and representativeness to select samples for labeling,
we utilized the influence function to directly compute sample influence. However, a significant
challenge arises when dealing with pool samples in active learning tasks, as label information may be
unavailable. Our salutary labeling method adeptly overcomes this hurdle by evaluating the impact
of each sample across all possible labels and assigning the label that generates the greatest positive
influence. Extensive experimental results underscored the efficacy and advantages of our salutary
labeling approach across various scenarios.
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APPENDIX

A RELATED WORKS

Semi-supervised learning. Semi-supervised learning (SSL) leverages both labeled and unlabeled data
to improve model performance. Early semi-supervised learning methods like self-training (Yarowsky,
1995) and co-training (Blum & Mitchell, 1998) use iterative self-labeling and multi-view learning to
exploit unlabeled data. Pseudo-labeling (Lee, 2013) extends this idea by assigning high-confidence
predictions to unlabeled examples, though it encountered challenges related to label noise. Consis-
tency regularization techniques, such as Pi-models (Laine & Aila, 2022) and VAT (Miyato et al.,
2019), address this by enforcing prediction stability under data perturbations. Ensemble methods
like Mean Teacher (Tarvainen & Valpola, 2017) improved SSL by refining predictions through a
stable teacher model. Recent advances, such as FixMatch (Sohn et al., 2020; Zhang et al., 2021)
and FlexMatch (Zhang et al., 2021) combine strong data augmentation with pseudo-labeling, further
enhancing SSL performance by enforcing consistency between weak and strong augmentations.

Other data-centric topics. Data relabeling methods (Yang & Yu, 2023; Kong et al., 2021) seek
to relabel the harmful training samples for better model performance, while partial label learn-
ing (Hüllermeier & Beringer, 2005; Lyu et al., 2020; Gong et al., 2022) aims to train a classifier to
accurately predict the ground-truth label using partially labeled data, where each training instance
is associated with multiple candidate labels. Although both tasks involve automatically assigning
labels to data points, neither of them is designed to query unseen samples for further improving
model performance. Data-efficient learning (Huggins et al., 2016; Munteanu et al., 2018; Coleman
et al., 2019; Paul et al., 2021) aims to accelerate model training by selecting a minimum subset of
the data, which requires ground truth labels for all available data. Antidote data (Li & Liu, 2022;
Rastegarpanah et al., 2019) overlaps with our method as it generates additional training data to modify
specific model behaviors such as fairness or robustness. However, these data-centric approaches do
not primarily focus on the active learning task.

B DATASETS

We use the seven tabulate datasets and two vision datasets in our experiments. Bank (Moro et al.,
2014) dataset has a total of 30,488 records of bank telemarketing phone calls. Each sample contains
51 features which are used to predict if a client will subscribe to a term deposit or not. Diabetic (De-
cencière et al., 2014) dataset contains 1,151 retina images of patients for predicting if the patients
suffer from Diabetes or not. We use 19 features extracted by Antal & Hajdu (2014). CelebA (Liu et al.,
2015) has a total of 104,163 samples of face images with 39 features from each sample image and we
treat the features as tabulated data to predict if the person is smiling or not. Musk_v2 (Chapman &
Jain, 1994) dataset contains 6,598 instances of molecules, and 166 features to represent the low-energy
conformations of the molecules, which is used to learn to predict whether new molecules will be
musks or non-musks. Electrical (Arzamasov, 2018) dataset contains 10,000 points and 11 attributes
such as power consumption and price in a 4-node star electrical grid system, which is used to predict
if the system is stable or not. Wine (Cortez et al., 2009) dataset consists of the physicochemical test
results for 4,898 variants of the Portuguese “Vinho Verde” wine. We use it to predict the quality
scores (from 3 to 9) based on 11 physicochemical attributes, such as acidity, density, and alcohol
rate. Waveform (Breiman & Stone, 1988) dataset contains 5,000 instances of waveform records, each
described by 21 attributes. We use it to classify each record into one of the three waveform classes.
MNIST (Deng, 2012) is a collection of 70,000 handwritten digit images (0 through 9). We use a
ResNet-34 (He et al., 2016), which is pre-trained on the ImageNet (Deng et al., 2009), to extract 512
deep features for each image. CIFAR10 (Krizhevsky & Hinton, 2009) consists of 60,000 real-life
images in 10 classes, with 6,000 images per class. Similar to the MNIST dataset, we also extract 512
features with the pre-trained ResNet-34.

We summarize some key statistics of the nine datasets we use in Section 5.2 in Table 3. For all
datasets, we conduct five runs of experiments with different random seeds. In each run, we fix the
validation set and test set, then randomly choose 300 samples from the training samples as the initial
set, and reserve the rest as the pool set. All datasets are publicly available with CC BY 4.0 license.
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Table 3: Dataset Statistics

Dataset # of Train # of Val # of Test # of Classes # of Dim Data Type

Bank 2014 18,292 6,098 6,098 2 51 tabulate
Diabetic 2014 950 100 100 2 19 tabulate
CelebA 2015 62,497 20,833 20,833 2 39 tabulate
Musk_v2 1994 3,958 1,320 1,320 2 166 tabulate
Electrical 2018 6,000 2,000 2,000 2 12 tabulate
Waveform 1988 3,000 1,000 1,000 3 21 tabulate
Wine 2009 3,896 1,300 1,300 7 11 tabulate
MNIST 2012 54,000 6,000 10,000 10 512 vision
CIFAR10 2009 45,000 5,000 10,000 10 512 vision

C DETAILED ALGORITHMIC PERFORMANCE WITH STANDARD DEVIATION

We do not include the standard deviation in Table 1 for better visualization. Here we report the
full experimental results with standard deviation in Table 4, which includes the active learning
experiments in Section 5.2 and the LLM fine-tuning experiments in Section 5.3. Our salutary labeling
method outperforms all baseline methods across multiple datasets in the standard active learning
setting for both convex logistic regression and non-convex LLM fine-tuning, all without requiring any
human annotation. Notably, our method not only achieves the highest final predicting accuracy across
all datasets but also maintains relatively small standard deviations, keeping consistent performance
across different experimental runs. These results highlight the efficacy of our method, emphasizing
its potential in practical applications.

Table 4: Accuracy (%) for all datasets on the test data after 10 learning cycles, alongside the standard
deviations across five experimental runs with different random seeds. This table includes the results
of all experimental in Section 5.2 and LLM fine-tuning in Section 5.3.

Method Electrical Bank Diabetic CelebA Musk_v2 Wine

Init 63.85 65.89 56.43 73.33 73.45 44.76

Random 65.15±0.40 67.77±0.61 58.41±0.93 82.06±0.13 78.33±1.30 46.31±0.16

Entropy 2008 69.72±0.55 73.84±1.33 65.34±0.11 81.23±2.11 79.11±0.60 45.00±0.41

Margin 2007 69.72±0.55 73.84±1.33 65.34±0.11 81.23±2.11 79.11±0.60 47.30±0.25

Uncertainty 2022 69.72±0.55 73.84±1.33 65.34±0.11 81.23±2.11 79.11±0.60 44.53±0.67

ISLA 2021 67.98±0.74 64.41±0.54 61.38±0.80 84.71±0.41 77.72±0.14 47.15±0.65

IBDS 2024 67.66±0.94 65.14±0.15 64.35±0.46 82.49±0.36 78.15±0.64 44.84±0.64

CoreSet 2018 66.35±0.56 68.21±0.68 61.38±0.15 80.14±0.52 73.78±0.14 47.61±0.09

BatchBALD 2019 67.06±0.94 74.15±0.20 64.76±0.33 78.85±0.18 77.53±0.06 46.69±0.06

BADGE 2020 67.45±0.16 74.92±0.86 64.16±0.28 81.19±0.89 78.48±0.09 46.87±0.04

Ours 71.31±0.04 78.07±0.92 71.28±1.68 85.50±0.12 81.06±0.39 49.92±0.61

Method Waveform CIFAR10 MNIST WNLI MRPC RTE

Init 79.11 46.74 77.75 40.69 60.13 52.87

Random 81.10±0.39 55.92±0.52 80.93±0.30 40.77±1.33 61.51±1.31 55.23±1.76

Entropy 2008 83.23±0.44 53.91±0.46 83.77±0.13 42.25±3.04 63.95±0.40 54.73±1.19

Margin 2007 82.26±0.59 56.95±0.64 83.72±0.38 41.32±1.75 63.89±0.38 54.78±1.24

Uncertainty 2022 83.33±0.23 55.47±1.01 83.63±0.50 41.31±1.64 63.93±0.42 54.99±1.48

ISLA 2021 79.40±0.80 53.91±0.87 79.35±1.87 46.01±2.39 60.21±0.45 53.54±1.02

IBDS 2024 82.91±0.41 54.61±0.60 80.05±2.28 45.98±1.32 63.88±1.02 55.95±1.02

CoreSet 2018 80.70±0.45 45.21±0.18 79.45±0.19 48.61±0.07 63.81±0.14 54.23±0.12

BatchBALD 2019 81.94±0.09 53.13±0.41 81.00±0.26 52.61±0.17 64.11±0.29 54.21±0.33

BADGE 2020 81.83±0.06 56.77±0.10 82.74±0.25 51.77±0.05 62.08±0.09 56.53±0.09

Ours 84.21±0.40 58.33±0.33 86.68±0.42 55.86±0.66 68.59±0.53 59.44±0.17

D CHOICE OF QUERY BUDGET b

We set a relatively small query budget b to maintain clear performance distinctions between different
models. In our preliminary exploration stage, we found that a larger budget, such as 1% of the
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pool set, allows models to reach the performance ceiling on datasets like CelebA (Liu et al., 2015),
Waveform (Breiman & Stone, 1988), and Electrical (Arzamasov, 2018). As shown in Figure 5, such
a budget causes different active learning methods to perform very similarly after several rounds.
Consequently, we opted for a smaller budget in our experiments to better evaluate the distinct
capabilities of each model.

Figure 5: Prediction accuracy of salutary labeling and baseline methods with b set at 1% of the pool
samples on CelebA (left), Waveform (middle), and Electrical (right) datasets.

E EXPERIMENTAL RESULTS FOR RE-TRAINING THE NEURAL NETWORK

Table 5: Accuracy (%) for CIFAR10
and MNIST datasets on ResNet-34
after re-training the full model for 10
active learning cycles.

Method CIFAR10 MNIST

Init 11.8 15.68

Random 25.09 58.95
Entropy 2008 39.15 61.42
Margin 2007 40.25 62.89
Uncertainty 2022 40.25 63.04
ISLA 2021 36.64 64.41
IBDS 2024 40.13 62.64
CoreSet 2018 39.27 58.53
BatchBALD 2019 40.16 64.64
BADGE 2020 39.95 65.13

Ground Truth (GT) 40.02 65.45
Ours 41.61 66.32

We also conduct experiments with deep ResNet-34 (He
et al., 2016) on raw images of MNIST (Deng, 2012) and
CIRAR10 (Krizhevsky & Hinton, 2009), where we re-train
the full neural network after acquiring additional annotations.
Following the experimental protocol outlined in Section 5.2,
we start with training the ResNet-34 model with 300 labeled
samples and query 10 unlabeled samples in each of the to-
tal 10 learning rounds. For influence-based methods, we
use a surrogate logistic regression model to calculate the
influence function. This surrogate model is trained on the
512-dimensional representations extracted by the ResNet-34
and the predicted labels from its classification layer. Our
method still outperforms the active learning baselines by a
small margin, further demonstrating the potential of salutary
labeling in practical settings, even with non-convex models.

We also notice that training the full network achieves worse
accuracy than only training the logistic regression model with
extracted representations. This can happen because a very
small training set is insufficient for training deep neural networks due to the risk of overfitting and
the inability to generalize effectively to unseen data (Shorten & Khoshgoftaar, 2019). Deep networks
thrive on vast and diverse data, as their numerous parameters need large datasets to capture complex
patterns. In contrast, using a logistic regression model on pre-trained, fixed representations reduces
the risk of overfitting, as simpler models require fewer parameters to train and utilize the extracted
features more efficiently (Kornblith et al., 2019).

F TRAINING DETAILS FOR ACTIVE LLM FINE-TUNING

We conduct our LLM fine-tuning experiments on three datasets of GLUE (Wang et al., 2018) reposi-
tory, namely, WNLI (Levesque et al., 2011), MRPC (Dolan & Brockett, 2005) and RTE (Bentivogli
et al., 2017). WNLI is a reading comprehension dataset, where the authors construct sentence pairs
by replacing the ambiguous pronoun in the original sentence with each possible referent. This dataset
is used for predicting whether the sentence with the pronoun substituted is entailed by the original
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sentence or not. MRPC is a corpus of sentence pairs automatically extracted from online news
sources, and we use it to predict whether the sentences in the pair are semantically equivalent or not.
RTE are constructed based on news and Wikipedia text. The task is to classify each sample into one
of the two classes assigned by human annotators.

Figure 6: Comparison of salutary labeling and baseline methods on three datasets of GLUE (Wang
et al., 2018) repository over 10 rounds of learning cycle in LLM fine-tuning application.

For each dataset, we randomly select 100 samples from the predefined training split to form the
initial set and use the remaining data as the pool set. Half of the predefined validation split serves as
the validation set for salutary labeling, with the other half used as the test set. We use the Hugging
Face (Wolf et al., 2020) implementation of RoBERTa (Liu et al., 2019), denoted by g ◦ h. We fix
the transformer layers g while fine-tuning the classification head h, which is a two-layer multilayer
perceptron model with dropout before both layers and tahn activation function between the two
layers. Initially, the model is trained with the initial set. In each of the 10 active learning cycles, it
annotates 10 samples. For sampling methods like entropy, margin, and uncertainty, the output of
h determines the pool set queries. For influence-based methods including ISAL (Liu et al., 2021),
IBDS (Chhabra et al., 2024) and our method, we train a surrogate logistic regression model h′(·; θ̂)
using the 768-dimensional hidden states extracted by g and predictions from h. This surrogate model
was then used to calculate the influence function and query pool samples for model re-training. We
compute the accuracy on the test set after each round and plot the results in Figure 6.

G BROADER IMPACT AND LIMITATIONS

This paper presents work whose goal is to advance the field of machine learning. We broaden the
scope of active learning with a novel approach called salutary labeling, which integrates the querying
and annotating processes of active learning into a single, autonomous step. The proposed salutary
labeling method eliminates human annotation and maximizes benefits from queried data. Beyond the
impact mentioned above, there are also other potential societal consequences of our work, none of
which we feel must be specifically highlighted here.

One potential limitation of our method stems from the influence function, one key component
of salutary labeling. The influence function requires the model to be convex, ensuring that its
Hessian matrix is positive definite, and invertible after training to convergence. Despite the ongoing
discussions (Basu et al., 2020; Bae et al., 2022; Epifano et al., 2023) on the accuracy of the influence
function on non-convex models, many research works have successfully applied the influence function
across various applications (Fang et al., 2020; Han et al., 2020; Chen et al., 2023). In this work, we
adopt the same strategy as in the work of Li & Liu (2022), which uses a surrogate convex model on
the embeddings extracted by the non-convex model, and achieve promising results as illustrated in
Section 5.3. Further exploring the application of the influence function to non-convex models is not
the focus of this study, so we defer this topic to future work.
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H CODE AND REPRODUCIBILITY

The code for the implementation of our method will be publicly available in the following repository:
https://anonymous.4open.science/r/salutary-labeling-11CF.

All experiments were conducted on a Linux workstation running Ubuntu 20.04.6 LTS. The CPU used
was an Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz. Any experiments requiring GPU (such as
multi-class influence calculation and LLM fine-tuning) were conducted with one NVIDIA TITAN
RTX GPU with 24 VRAM and CUDA version 11.4.

All codes are written in Python, and utilize basic libraries such as NumPy (Harris et al., 2020),
scikit-learn (Pedregosa et al., 2011), PyTorch (Paszke et al., 2019), Pandas (Wes McKinney, 2010),
etc. Detailed package information will be provided in the code repository.

ALGORITHM

Algorithm 1 Salutary Labeling for Active Learning
Input: Labeled training set L, unlabeled pool set U , validation set V and model parameters θ.
Parameters: Total active training round R and the query budget b.

1: Train the model and obtain the optimized parameters θ̂ with loss term 1
NL

Σ(xi,yi)∈Lℓ(xi, yi).
2: for r = 1 to R do
3: for xj ∈ U do
4: Calculate the sample influence with its salutary label I(xj , y

s
j ) by Eq. (2).

5: end for
6: Select b samples with the highest influence as salutary set B = {(xj , y

s
j )}bj=1.

7: Update the labeled training set as L = L ∪B.
8: Remove the salutary set from the pool set as U = U \B.
9: Re-train the model with L and update θ̂.

10: end for
Output: The final optimized model parameters θ̂ after R rounds of active learning.
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