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ABSTRACT

Traditional analyses of gradient descent optimization show that, when the largest
eigenvalue of the loss Hessian - often referred to as the sharpness - is below a
critical learning-rate threshold, then training is ‘stable’ and training loss decreases
monotonically. Recent studies, however, have suggested that the majority of mod-
ern deep neural networks achieve good performance despite operating outside this
stable regime. In this work, we demonstrate that such instabilities, induced by large
learning rates, move model parameters toward flatter regions of the loss landscape.
Our crucial insight lies in noting that, during these instabilities, the orientation of
the Hessian eigenvectors rotate. This, we conjecture, allows the model to explore
regions of the loss landscape that display more desirable geometrical properties
for generalization, such as flatness. These rotations are a consequence of network
depth, and we prove that for any network with depth > 1, unstable growth in
parameters cause rotations in the principal components of the Hessian, which
promote exploration of the parameter space away from unstable directions. Our
empirical studies reveal an implicit regularization effect in gradient descent with
large learning rates operating beyond the stability threshold. We find these lead to
excellent generalization performance on modern benchmark datasets.

1 INTRODUCTION

Deep neural networks are widely successful across a number of tasks, but their generalization
performance is dependent on careful choices of hyperparameters which govern the learning process.
Gradient descent (including stochastic gradient descent and ADAM (Kingma & Ba, 2017)) is arguably
the most widely-used learning algorithm due to its simplicity and versatility. For such methods, the
descent lemma upper-bounds the choice of learning rate by the local curvature (or sharpness) to
guarantee stable optimization trajectories and provable decreases for convex training losses.

Recently, the ‘unstable’ learning-rate regime has been a focal point for research. Cohen et al. (2022)
have demonstrated that in practice, learning rates can go above the stability threshold as determined
by the descent lemma. Surprisingly, this appears not to destabilize training trajectories as expected,
but instead model sharpness continues near the stability limit while training loss improves. Large
learning rates have also been known to improve generalization performance. Our work builds on these
findings, showing that training instabilities, caused by large learning rates, drive model parameters
toward flatter regions of the loss landscape to improve generalization.

The main contribution of our work, detailed in Section 3, proposes that these instabilities are resolved
through rotations in the eigenvectors of the loss Hessian. We demonstrate that, for deep neural
networks, unstable training causes these eigenvectors to rotate away from their previous orientations,
whereas in the stable regime, the orientations are reinforced. These rotations allow the model to
explore regions of parameter space with an in-built bias for flatness. We term the accumulation of
this implicit regularization effect progressive flattening, which we validate empirically.

Throughout our experiments, learning rates allow direct control over the magnitude of these regu-
larization effects. Our empirical study in Section 4 explores the relationship between learning rates
and generalization, revealing a clear phase transition where generalization benefits only emerge for
learning rates beyond the stability threshold, solidifying the role of instabilities in regularization.
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Additionally, we show that starting with large learning rates have long-term benefits in generalization
performance, even when learning rates are reduced later in training. However, our findings also
challenge the reliability of sharpness as a metric for generalization, as the degree of eigenvector
rotation can, in some cases, be a more effective predictor. The code for reproducing the experiments
and results in this paper will be made available on GitHub upon publication.

2 BACKGROUND

2.1 GRADIENT DESCENT AND THE DESCENT LEMMA

We denote the loss function by L(θ) with parameters θ that are updated with gradient descent using
learning rate η, i.e. θt+1 = θt − η∇L(θt). The so-called sharpness S of the loss landscape is
typically estimated with the maximum curvature of the loss Hessian, i.e. S(θ) = λmax(H(θ)) =
λmax(∇2L(θ)). The descent lemma can be stated as:

Lemma. For a convex, l-smooth function L(θ), L(θt+1) ≤ L(θt)− η(1− ηl
2 )∥∇L(θt)∥

2
2

The proof uses the co-coercive property of l-smooth functions using the results of Baillon & Haddad
(1977). The decrease in loss is scaled by the quadratic η(1− ηl

2 ), which leads to the optimal learning
rate η = 1/l. However, any choice of 0 < η < 2/l guarantees a decrease in the loss function,
allowing convergence to the minima in the stable regime of training, leading to a popular rule for η
selection. On the other hand, choosing η > 2/l results in so-called instabilities, causing L and θ to
grow without bound. Additionally, when η > 1/l, parameters oscillate about the minima.

Although these bounds are derived from l, in practice η is chosen without knowing l, leading to
an empirical stability threshold of S(θ) given by S(θ) ≤ 2/η, beyond which training is thought to
destabilize. However, Cohen et al. (2022) showed that in practice, training is not destabilized as
expected. They identified two important phenomena for gradient descent:

Progressive Sharpening: So long as training is stable (S(θ) ≤ 2/η), gradient descent has an
overwhelming tendency to continually increase sharpness.

Edge of Stability: Once sharpness reaches the stability limit, it sits at, or just above, the stability
threshold. Additionally, although the descent lemma does not guarantee a decrease of training loss,
the training loss nonetheless continues to decrease, albeit non-monotonically.

In practice, loss functions extend beyond the quadratic and instabilities manifest as spikes in θ, L(θ),
and S(θ). Damian et al. (2023) introduced the progressive sharpening factor α = −∇L(θ) · ∇S(θ).,
where a positive α indicates that gradient updates promote sharpening. The authors hypothesized that
during instabilities, α > 0, meaning progressive sharpening is active and prolongs the instabilities.
However, our initial empirical results (see Appendix D) suggest that this effect, in its currently
formulation, plays a limited role during instability, and we posit that the primary driver of instability
is unstable growth in parameters, driven by S(θ) > 2/η true to the local quadratic approximation.

2.2 SHARPNESS AND GENERALIZATION

The notion that solutions with low sharpness, or flat minima, promotes generalization performance is
widely accepted. Hochreiter & Schmidhuber (1997) argued, using minimum description length, that
flatter solutions are less complex, thereby improving generalization through appeal to Occam’s Razor.
More recently, Keskar et al. (2017) and Jastrzębski et al. (2018) observed that deep neural networks
trained with small learning rates tend to generalize poorly because the minima they converged to
were narrow. The width of minima is measured through sharpness, S(θ), often defined as the largest
eigenvalue of the loss Hessian. However, Dinh et al. (2017) demonstrated that some output-preserving
transformations can lead to arbitrary values of S(θ), revealing a lack of scale-invariance. While this
observation weakens the absolute causality from sharpness to generalization, Jiang et al. (2019) found
that sharpness may still serve as a useful indicator of generalization performance.

Modern methods for efficiently computing eigenvalue-vector pairs of the Hessian utilize Pearlmutter
(1994)’s trick, which allows evaluation of the Hessian vector product without explicitly forming the
Hessian. In our work, we present an implementation in Jax (Bradbury et al., 2018) that also employs
matrix-power-kernel (MPK) re-orthogonalization (Yamazaki et al., 2024) to enhance numerical
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stability. Additionally, our study focuses on the similarity between eigenvectors, which can naturally
be compared with cosine-similarity in one-dimension. For comparisons between subspaces formed
by multiple eigenvectors, we use the cosine-Grassmanian distance (Ye & Lim, 2016). The code to
reproduce the results in this paper will be made available on GitHub upon publication.

3 REGULARIZATION THROUGH INSTABILITIES

We study the dynamics of gradient descent during instabilities - a phase of learning driven by unstable
growth in parameters and characterized by spikes in θ, L(θ) and S(θ). In this section, we introduce a
toy problem to demonstrate that unstable parameter growth cause rotations in the eigenvectors of
the loss Hessian. Adopting a reductionist approach, we attempt to explain the complex behavior of
the overall loss function by analyzing individual terms. To model the dynamics of one such term,
we utilize a Diagonal Linear Network (DLN), a simple neural network with non-trivial dynamics, as
studied in Pesme et al. (2021). The DLN’s multiplicative structure reflects a key feature of depth,
which weights are multiplied across vertically-stacked neural layers whenever depth d > 1. We
focus on a detailed study of a two-parameter DLN, and the derivation for a general n-parameter
model is provided in Appendix B. We then identify phases of η that match up exceedingly well with
established stability bounds, using these insights to conjecture how gradient descent instabilities
can be resolved through eigenvector rotations. Finally, we show that the cumulative effects of these
dynamics over extended periods of training can result in progressive flattening of the loss landscape.

3.1 ROTATIONS FROM PARAMETER GROWTH - A DLN MODEL

Consider a loss function L(Θ), where the parameter Θ is a multiplication of weights Θ =
∏n

i θi,
which is equivalent to a DLN. For any neural network with depth d > 1, the network outputs involve
terms that are the product of weights across layers. We focus on one such term, Θ, demonstrating
that parameter growth induces rotations in the sharpest Hessian eigenvectors. By examining the
two-parameter case, where exactly derivations are possible, we obtain key insights into these rotations.
The extension to a general n-parameter DLN is explored in detail in Appendix B.

Let L(Θ) be described by z(Θ), a non-negative convex polynomial with a unique minimum at
Θ = θ1θ2 = 0, which limits z(Θ) to even degree polynomials. Additionally, assume that the
parameters are not at the minimum, i.e. Θ ̸= 0. Writing z′ := ∂z

∂Θ , we get the loss Hessian H:

H(Θ) =

[
∂2L
∂θ2

1

∂2L
∂θ1θ2

∂2L
∂θ1θ2

∂2L
∂θ2

2

]
=

[
z′′θ22 z′′θ1θ2 + z′

z′′θ2θ1 + z′ z′′θ21

]
Additionally, denote the eigenvector-value pairs (λi,vi), i ∈ {1, 2} in the basis formed by θs:
vi := [wi,1, wi,2]

T . We solve exactly for n = 2 to get R, a ratio of coordinates (see Appendix A.1):

R =

∣∣∣∣w1,1

w1,2

∣∣∣∣ = β +
√
β2 + 1, where β =

∣∣∣∣ z′′(θ22 − θ21)

2(z′ + z′′Θ)

∣∣∣∣ (1)

We note that R is a monotonic function of β. Practically, R reflects a degree of alignment between
the sharpest eigenvector and the sharpest parameter, which we will use to characterize the orientation
of the sharpest eigenvector following gradient updates.

Consider an optimization trajectory initialised at [θ1, θ2]
T using a fixed learning rate η. Without loss

of generality, assume that θ22 > θ21 , which implies that L(Θ) is more sensitive to to changes in θ1 than
θ2, or that θ1 is the sharper parameter. Importantly, we note that R is sign-independent (see Appendix
A.1) and is invariant to exchanges in the magnitude of thetas. The gradient updates of θs are:

∆θ1 = η
dz

dθ1
= ηz′θ2; similarly ∆θ2 = ηz′θ1

Despite originating from the same loss function z, the updates to these parameters vary in scale owing
to the multiplicative nature of Θ. This leads to ∆θ1 > ∆θ2, leading to instabilities when η is too
large. Given these updates, the ratio of changes in β, γβ is:

γβ :=
β +∆β

β
≈
γ|θ2

2−θ2
1|

γΘ
=

∣∣∣∣ 1− η2z′2

1− ηz′k + η2z′2

∣∣∣∣ where k =

(
θ1
θ2

+
θ2
θ1

)
> 2 (2)
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Figure 1: Optimization trajectories in a 2-parameter DLN display rotations. We visualise 4 our
trajectories, initialised at (−0.1, 10) with z = Θ2 and choosing η ∈ {0.001, 0.0095, 0.011, 0.013},
where the stability limit (at initialization) is ηeos = 0.01. Left: the regimes of γβ . Middle: the loss
landscape. Right: map of eigenvector orientations (y-axis magnitudes amplified for clarity).

The regimes of γβ can be studied through the behavior of the denominator, γΘ. The function
asymptotes when γΘ → 0 at ηz′ ∈ {θ1/θ2, θ2/θ1}, where the first asymptote matches the sign
switch of θ1 and is exactly half of the stability limit. This guarantees the existence of the first
asymptote, and the function reaches γβ = 1 at:

ηγβ=1z
′ =

2θ1θ2
θ21 + θ22

=
2θ1
θ2

(
1− θ21

θ21 + θ22

)
= ηeos(1− ϵ)

where we define ϵ = θ21/(θ
2
1 + θ22). We can then characterize the regimes of γβ as a function of η:

1. From 0 ≤ η ≤ 2θ1
θ2z′ (1 − ϵ) is the stable regime of training1. This can be further divided

into the non-oscillatory and oscillatory regimes by 2θ1
θ2z′ (1− ϵ) through the sign of θ1. In

these regime, γβ > 1, which leads to increases in R, signifying increased alignment of the
sharpest eigenvector v1 to θ1, the sharper parameter. As ηz′ → θ1

θ2
, γΘ → ∞.

2. As η > 2θ1
θ2z′ (1 − ϵ), we enter the unstable regime. In this regime, γβ < 1, which leads

to decreases in R, implying that the alignment of the sharpest eigenvector v1 rotates away
from θ1, the sharper parameter.

The existence of the unstable regime along θ1 requires that the assumption on relative magnitudes
is upheld, i.e. ηeos < ηγβ=0 = 1/z′ =⇒ θ22 > 2θ21 , which is a mild constraint on the relative
magnitudes of parameters, especially when considering the ill-conditioning of deep neural networks
in practice (Papyan, 2019). In Figure 1, we observe different behaviors in the orientation of the
sharpest eigenvector for different choices of η (using a quadratic z). For stable ηs, the non-oscillatory
trajectory (η = 0.001) takes an almost straight-line path to the local minima at θ1 = 0 while the
oscillatory trajectory (η = 0.0095) reaches a distant minima with a reduced value in θ2, though the
final eigenvectors are similarly oriented toward θ1. These minima represent the attractors accessible
to different choices of ηs as θ1 → 0.

For unstable ηs, the trajectories share a common initial stage during which the sharpest eigenvector
moves away from θ1. While both these trajectories return to stability later on, η = 0.011 does to as a
faster rate. These choices of η are able to return to stability in our model because the assumptions
imply convexity on the parameters, which means that any optimization step, even during instabilities,
leads to optimizations in other parameters which brings us closer toward the global minimum. As the
parameter Θ is adjusted so that loss is improved, S(θ) translates downwards, which (smoothly) leads
to a flat region of parameter space within which stable optimization resumes. These behaviors are
mirrored in the general n-parameter model through Rn (Eqn. 13).

1 When z is a quadratic function, θ1
θ2z′

= 1/λ, so the above thresholds are equal to the 1/λ and 2/λ bounds.
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Figure 2: During instabilities, the sharpest eigenvectors of the Hessian rotate away smoothly
and monotonically (Top), while stable training reverts these rotations (Bottom). We track the
similarity of the sharpest Hessian eigenvectors across epochs through three instabilities. Left: L(θ)
and S(θ). Top: similarities of the k-th eigenvectors (colored) and of subspaces formed by the top
3 eigenvectors (black) during instabilities. Bottom: similarity of subspaces formed by the top 3
eigenvectors to the baseline (black) across various timings (colored) when η reduction begins.

3.2 RESOLUTION OF INSTABILITIES

The DLN model illustrates the gradient descent trajectory for an individual term in the loss function,
modelled as a product of individual weights. Crucially, we identified different directions of rotation
among the sharpest Hessian eigenvectors, which we build upon to characterize the empirical behavior
of deep neural networks during instabilities. We train a multi-layer perceptron (MLP) on fMNIST
(Xiao et al., 2017). The rotation of the sharpest Hessian eigenvectors is tracked in Figure 2, and the
landscape along the gradient of L(θ) and S(θ) is shown in Figure 3.

Figure 2 shows the degree of rotation among the sharpest Hessian eigenvectors at three snapshots of
instability, where we compared eigenvector similarities to baselines defined at the beginning of each
snapshot. Focusing on the top panel, we observe gradual and monotonic rotations as L(θ) approaches
its peak values as predicted by the DLN model. Notably, these rotations do not involve sudden
changes in any single eigenvector but reflect a general decrease in similarity across all eigenvectors,
conforming to behaviors of the DLN. Interestingly, even after the instability is resolved, the similarity
among individual eigenvectors fall while the subspace comparison remain largely similar. As the
subspace of top eigenvectors is heavily constrained by the problem, the observation of re-orientations
suggest that new combinations of these eigenvectors can be beneficial toward flatness. In the bottom
pane, we intervene to enforce stability by setting ηlow = 0.2ηs before the instability is resolved. As
these models have undergone periods of instability, the eigenvectors are rotated away from their
original orientations, but these rotations are immediately reversed once η reduction takes place.
This reflects an important feature of eigenvectors during instabilities - that stability and instability
encourages monotonic rotations in opposite directions.

Although the rotation of eigenvectors follows theoretical expectations, the curvature during the
resolution of instabilities displays distinct characteristics. In Figure E, we visualize the landscape of
L(θ) and S(θ) along the gradient through a complete instability cycle from epoch 119 to 158. As the
parameters grow, it moves beyond the region approximated by low-order Taylor Expansions at the
minima and the influence of higher-order terms are revealed.

At epoch 119, when S(θ) < 2/η, we observe a steady increase in S(θ) while L(θ) decreases. This
is progressive sharpening. During this phase, the curvature of both L(θ) and S(θ) sharpens. While
sharpening in L(θ) is well-documented (as an increase in S(θ)), the sharpening of S(θ) indicates
the increased influence of higher-order terms in the local Taylor-expansion, and that a higher-order
derivative is increased (while parameters approach the minima). After epoch 131, when S(θ) > 2/η,
the curvature of both L(θ) and S(θ) remains largely constant, but parameter growth forces the
model to explore wider ridges of the local minima along the unstable directions. We expect this to
eventually lead to model divergence, but significant changes to the S(θ) curve are observed after
epoch 149, and fortunately a flatter curve is found by epoch 154. At this point, the reduction in
S(θ), as a result of a flatter S(θ) curve, outweighs the increased steps as a result of large parameters,
resulting in optimization steps toward stability in the following epochs while the orientations of the
top eigenvectors are reinforced through stability. We observe these effects as a ‘cooling’ of L(θ) and
S(θ), before progressive sharpening eventually drives the model back toward instability to repeat the
cycle. The full epoch-by-epoch progression is shown in the Appendix E.
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Figure 3: Parameter growth along the sharpest Hessian eigenvectors leads to exploration of
the peripheries of the local minima, driving up L(θ) and S(θ) in the process. As the instability
develops, the S(θ) curve undergoes large changes until a flat region is found to enable a return
to stability. We show snapshots along the instability cycle taken along the direction of the gradient.
The dotted/solid vertical lines indicate the positions of previous/current parameters, respectively.

Theoretical and empirical evidence suggests that rotations play a crucial role in resolving instabilities.
In the DLN model, reductions in S(θ) were caused by adjustments in Θ toward the global minimum,
which gradually relaxed the stability limit. In contrast, empirical observations showed that S(θ)
decreased quickly and abruptly. Additionally, the post-instability training losses did not significantly
differ from trajectories with stable ηs, implying minimal movement of parameters towards minima
with lower training loss. However, stable training reinforces the sharpest Hessian eigenvectors while
instability disrupts them, creating an implicit bias toward flatness. When S(θ) > 2/η, rotations allow
the model to explore different orientations of eigenvectors, resulting in varying curvatures of S(θ). In
this process, flat (with respect to S(θ)) eigenvectors are reinforced while sharp ones are discarded.
We conjecture that gradient descent, through rotations in Hessian eigenvectors during instability,
implicitly biases the parameters toward flatter regions of the loss landscape.

3.3 PROGRESSIVE FLATTENING

While a reduction in S(θ) would be sufficient to achieve stability, our empirical study revealed that
instabilities may also reduce higher order derivatives (the curvature of curvatures), leading to a
phenomenon we term progressive flattening. This effect manifests through a reduction in progressive
sharpening, whose effects on the S(θ) curve are indirect (see Appendix D). The degree of progressive
sharpening can be tracked over extended periods of stable training and measuring the eventual
maximum sharpness S(θ)max that is reached.

In Figure 4, we track S(θ)max (for MLPs on fMNIST) as η reductions, set to ensure stability, are
applied at different stages. S(θ)max decreases as η reductions are delayed, and larger initial η0 used,
suggesting that prolonged training with larger learning rates intensifies the regularization effects.

Our findings highlight a strong link between training with large learning rates and the resulting flatness
of local parameter space. In Section 4, we use the connection between S(θ) and generalization to
show that large learning rates contribute to improved generalization through progressive flattening.

Figure 4: Progressive flattening in fMNIST. We plot the eventual maximum S(θ)max of MLPs
trained with a constant large initial learning rate η0 before reducing to ηsmall = 0.01 at indicated
epochs. The larger and longer phase with η0, the more we observe a reduction in S(θ)max.
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4 EFFECT ON GENERALIZATION PERFORMANCE

Section 3 highlighted progressive flattening, the implicit regularization from instabilities which seeks
flatter minima, that can be increased with larger learning rates and with longer duration. In this
section, our empirical study validates the benefit of large learning rates toward generalization.

Generalization refers to the ability for neural networks to perform well on data not used in training.
The generalization gap is defined as the difference between performance on training data (in-sample)
and on unseen test data (out-of-sample). To standardize measurements, models in this section are
trained to completion, defined as achieving > 99% accuracy on the training set. Consequently, test
accuracy serves as a direct indicator of the generalization gap.

Some of our experiments in this section are conducted on the CIFAR10 image classification dataset
(Krizhevsky, 2009) using small VGG (Simonyan & Zisserman, 2015) networks. While the instability
phenomena occur for many choices of error functions (Cohen et al., 2022), we found training to be
more stable with cross-entropy loss compared to mean squared error loss, which motivates the use of
cross-entropy loss in our experiments. These experiments are performed in a fully non-stochastic
setting, with full-batch gradient descent and eschewing common data augmentation techniques such
as random flips and crops (Krizhevsky et al., 2012). Additionally, since batch normalization (Ioffe &
Szegedy, 2015) benefits deep convolutional architectures, we use the non-stochastic GhostBatchNorm
(Hoffer et al., 2018) computed over fixed batch size 1024, maintaining the default ordering of data in
CIFAR10. To ensure the robustness of our study, we trained hundreds of models, but due to budget
constraints our experiments in this section are conducted on a reduced 5k (10%) subset of the full
dataset. In Section 4.4, we remove these constraints and benchmark our observations on the full 50k
dataset, and introduce non-stochastic augmentations to achieve performance near the state-of-the-art.
For further details of our network architecture and experimental setup, see Appendix C.

4.1 LARGE LEARNING RATES

(a) MLP on fMNIST (b) VGG10 on CIFAR10-5k

Figure 5: Generalization performance improves past the stability limit. We train models until
completion and plot validation accuracy against the learning rate η0. The X/O markers differentiate
η0s below/above the stability limit (dotted line), and the color spectrum from dark purple to light
yellow marks the different learning rates from low to high.

We study the effects of learning rates (η0s) on generalization performance training MLPs on fMNIST
and small VGG10s on CIFAR10-5k. To cover a broad range, η0s are sampled on an exponential scale
starting with η = [0.01, 0.0005] (leading to stable trajectories) and scaling factors m = [1.1, 1.6] for
each task, respectively. Sampling continues until models diverge, and each model is tested over 5
random initializations, resulting in a total of [235, 120] models for each task.

Validation accuracy across learning rates are shown in Figure 5. For both tasks, the mean accuracy
remains relatively flat until η goes past the stability threshold, where it sharply improves. This shift
highlights the immediate impact of instabilities, which provide notable generalization benefits, as
described in earlier sections. Performance eventually falls, indicating that excessive learning rates
can be detrimental. These results suggest a Goldilocks zone for learning rates.

The impact on generalization varies between datasets. As CIFAR10 is considered relatively more
challenging, regularization plays a more critical role. Nevertheless, the improvements on fMNIST
indicate that the regularization effect is present even in simpler, nearly linearly separable problems.
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4.2 LEARNING RATE REDUCTION

(a) Progressive Flattening (b) Generalization Performance

Figure 6: Training with larger learning rates for longer leads to more progressive flattening and
improved generalization. We train small VGG10s on CIFAR10-5k with large initial learning rates,
switching to ηsmall = 0.021 at various points of training, until completion.

As discussed in Section 3.3, reducing learning rates removes the limit on sharpness to reveal the degree
of progressive flattening. We begin training small VGG10s with large learning rates η >= 0.086,
which we later reduce to ηsmall = 0.021. The final sharpness and validation accuracies are plotted in
Figure 6. As large initial learning rates are applied for increasing amounts of time, the at-completion
sharpness of models are reduced, which is indicative of progressive flattening. For the majority of
models, being flatter improves generalization performance. Additionally, the marginal efficiency of
large learning rates diminish, but they remain positive for most models.

With extremely large learning rates, switching to a lower η for the final 20% of training (from ∼ 90%
accuracy) may improve generalization. This approach is consistent with the popular choice of learning
rate reduction towards the end of training, but the benefits of this strategy can be sensitive to timing.

4.3 FLATNESS, ROTATIONS, OR JUST LARGE LEARNING RATES?

(a) MLP on fMNIST
constant η

(b) VGG10 on CIFAR10-5k
constant η

(c) VGG10 on CIFAR10-5k
η reduction

η0 S(θ) ρ

MLP on fMNIST; const. η 0.595 -0.593 -0.610
VGG10 on CIFAR10-5k; const. η 0.9523 -0.9450 -0.9499

VGG10 on CIFAR10-5k; η reduction 0.7263 -0.7763 -0.8200

Figure 7: Generalization performance with S(θ) and ρ. We aggregate models from Figure 5 and 6,
adding an additional dimension ρ. Rank correlation with validation error are listed in the table below.

Our experiments in Sections 4.1 and Sections 4.2 have demonstrated that the generalization perfor-
mance of models can be improved through the choice of η0s. Larger η0s bring about models with
lower S(θ) and more rotations. What are the relative importance of these factors, η0, S(θ), and
similarity of eigenvectors ρ, toward generalization?

In Figure 7, we outline the association with each metric with validation accuracy, where the evidence
demonstrates a clear correlation with generalization for each candidate metric. This effect is more
pronounced in CIFAR10 than fMNIST, though across these tasks the strengths of these associations
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(a) Left: ρ, Right: S(θ). Top: Fit of 2D normal distribution on
each set of 5 points, drawn to 1σ. Bottom: Rank correlation to
generalization, dashed line indicates the mean of correlations.

corr
η0 n.a.
S(θ) -0.100
ρ -0.430

(b) Mean rank correlation
with generalization

Figure 8: Across weight initialization, ρ is a better predictor than S(θ) on generalization when ηs
is controlled. We group models of the same η into subsets of 5, each differing only by initialization.

are hard to separate under the constant η regime, and ρ slightly outperforms alternatives in the η
reduction regime. With η reduction, the models undergo varying degrees of regularization depending
on initial learning rates η0 and the timing of reduction, with more regularized models tending to
prefer stable regimes of training due to progressive flattening. Changes to S(θ) during stable phases
of training are dominated by progressive sharpening, while the orientation of eigenvectors are quickly
attracted to fixed points. These differences could explain some of the observed gap.

In our experiments, we explicitly varied learning rates to indirectly control S(θ) and ρ. This approach
is equivalent to assuming the causal precedence of η, which we can leverage to compare the effects
of S(θ) and ρ on generalization. Assuming no additional confounding factors, the isolated effects
of S(θ) and ρ can be measured by controlling for η. In Figure 8, we group VGG models trained on
CIFAR10-5k into sets of 5 that share the same learning rates, where randomness is introduced through
weight initialization. The mean correlation of validation accuracy reveals a stronger relationship for
ρ than S(θ), though the overall effect is not conclusive. In this case, the lack of scale-invariance of
S(θ) limits its ability to compare generalization performance across models when learning rates are
controlled for. Our findings highlight a scenario where S(θ) is not effective, while ρ provides a better,
albeit inconclusive, predictor of generalization across models.

4.4 BENCHMARK ON THE FULL DATASET

Section 4.1 suggested a Goldilocks zone for η and Section 4.2 suggested that some η-reduction
toward the end of can be beneficial toward generalization. We benchmark these suggestions on the
full CIFAR10 dataset, removing constraints imposed on earlier experiments. First, we train small
VGG19s on CIFAR10-50k without data augmentations. Next, we introduce non-stochastic data
augmentations (crops and flips) by constructing a statically sampled, 10x augmented CIFAR10-500k
dataset, which has shown promising results with prior studies (Geiping et al., 2022). Finally, we
evaluate ResNet20s (He et al., 2015) on the augmented CIFAR10-500k dataset, with the resulting
validation accuracies across various ηs shown in Figure 9.

The evidence suggests improved generalization with large learning rates. For these models, the
stability limits for η were not computed due to computational constraints, but the chosen values of

η 0.1 0.2 0.4 0.8 1.6 3.2
VGG19 on CIFAR10-50k 67.09 68.36 70.53 73.41 72.70 73.56

VGG19 on CIFAR10-500k 78.12 80.63 81.73 82.88 84.01 84.07
ResNet20 on CIFAR10-500k 83.66 85.62 86.06 86.53 86.95 87.32

ResNet20 on CIFAR10-500k; ηsmall at 90% acc. n.a. n.a. 83.01 83.52 84.56 84.98
ResNet20 on CIFAR10-500k; ηsmall at 98% acc. n.a. n.a. 85.57 85.90 86.66 86.92

Figure 9: Larger learning rates improve generalization on the unconstrained CIFAR10 datasets.
Learning rate reduction with ResNet20s uses ηsmall = 0.021 until completion.
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ηs were intentionally large to ensure instabilities, as more complex datasets are typically sharper.
At η = 6.4, we observed model divergence, which creates a notable gap between this value and
the last functioning learning rate, η = 3.2, within which the optimal η resides. This highlights a
limitation of the exponential sampling method used for learning rates. Nevertheless, our results
suggest that the Goldilocks zone for η lies much closer to the divergence boundary than the stability
limit - typically within one order of magnitude of the former and several orders of magnitude from
the latter. Consequently, in practice, we recommend using learning rates much higher than what is
derived from the descent lemma.

Finally, we explored learning rate reduction in ResNet20s trained on CIFAR10-500k, switching to
ηlow = 0.1 at 90% and 98% training accuracies. The observed decline in performance suggests that
finding optimal timing for η reductions can be challenging in practice.

5 RELATED WORK

Elements of progressive flattening are observed in the literature. Keskar et al. (2017) and Jastrzębski
et al. (2018) found that larger learning rates led to more reductions in sharpness which provided
benefits toward generalization, while our builds additionally limits these effects to learning rates that
induce instabilities. Moreover, we found that varying the duration of instability can result in different
degrees of flattening, aligning with Andriushchenko et al. (2023b)’s observation of loss stabilization,
where phases of large initial learning rates are shown to promote generalization.

Mechanisms toward the resolution of instabilities have also been studied. Lewkowycz et al. (2020)
identified a regime of learning rates, above the stability limit, that can catapult models into flatter
regions. We identify the potential role of rotations in the catapult effect. Damian et al. (2023) showed
that, considering one unstable eigenvalue, gradient descent has a tendency to self stabilize due to
the cubic term in the local Taylor expansion. While acknowledging the importance of higher-order
terms, the effects we identify are present without requiring sharpening factor α > 0, which was also
rarely observed in empirical studies (see Appendix D). Arora et al. (2022) demonstrated that gradient
descent can lead to alignment between gradient the sharpest eigenvector of the Hessian v1. Our
model predicts, and we observe, this alignment during stable phases of training when eigenvectors
are reinforced, but during instabilities, the orientations of v1 are disrupted.

Our empirical work contributes to the growing body of research toward assessing sharpness as a
metric for generalization. While the lack of scale-invariance is a weakness for sharpness Dinh et al.
(2017), remedies have been proposed (e.g. (Kwon et al., 2021)). Kaur et al. (2023) suggest that the
pathological nature of these transforms may not arise with standard optimizers. However, recent
results by Andriushchenko et al. (2023a) on modern benchmarks further challenges the sharpness-
generalization link, suggesting that the right measure of sharpness may depend on features of the
dataset. Our study indicates that once learning rates are controlled and differentiated through weight
initialization, sharpness can fail to discriminate between models. Given the crucial role of Hessian
eigenvectors rotations in resolving instabilities, we encourage further exploration of their role in the
dynamics of gradient descent.

Lastly, Geiping et al. (2022) demonstrated that state-of-the-art performance on CIFAR10 can be
achieved using full-batch gradient descent. Our results, also in a non-stochastic setting, replicate their
performance (without explicit regularization), using only learning rates for regularization.

6 CONCLUSION

Our work highlights a significant implicit bias in gradient descent that favors flatter minima, an
effect frequently conjectured in the deep learning literature. We identify the rotations of Hessian
eigenvectors as the primary mechanism driving such exploration, which can lead to progressive
flattening of the loss landscape. Using learning rates above the stability threshold, deep neural
networks can realize substantial benefits in generalization, reinforcing the already prevalent use of
large learning rates among practitioners. Our experiments are conducted in a fully non-stochastic
setting, and we encourage further work to determine whether these effects can extend to stochastic
gradient descent. We hope our work inspires future efforts toward addressing the role of rotations of
the Hessian eigenvectors for a better understanding of optimization with gradient descent.
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A DETAILS TO THE 2 PARAMETER DLN STUDIED IN SECTION 3

A.1 FROM THE LOSS HESSIAN TO R(β)

From Section 3, we have the loss Hessian:

H(Θ) =

[
∂2L
∂θ2

1

∂2L
∂θ1θ2

∂2L
∂θ1θ2

∂2L
∂θ2

2

]
=

[
z′′θ22 z′′θ1θ2 + z′

z′′θ1θ2 + z′ z′′θ21

]
(3)

We solve the characteristic equation in two dimensions, Hv = λv to get:

λ1,2 =
z′′(θ21 + θ22)±

√
z′′2(θ21 − θ22)

2 + 4(z′ + z′′Θ)2

2
(4)

Assume for now that θ1 > 0 and θ2 > 0. We compute the ratio of coordinates:

w1,1

w1,2
=
λ1 − z′′θ21
z′ + z′′Θ

=
z′′(θ22 − θ21) +

√
z′′2(θ22 − θ21)

2 + 4(z′ + z′′Θ)2

2(z′ + z′′Θ)

From the assumptions on z we get z′′ > 0. Let us define r1 = θ22 − θ21 and r2 = 2(z′+z′′Θ)
z′′ to get:

w1,1

w1,2
= g(r1, r2) =

r1 +
√
r21 + r22
r2

When r1 = 0 < − > θ21 = θ22 , we have w1,1 = w1, 2, which indicates that the sharpest eigenvector
is aligned equally to both θs. The sign of r1 depends on the relative magnitudes of θs, while the sign
of r2 takes the same sign as Θ. We get the conditions:

r1 > 0, 1 <

∣∣∣∣w1,1

w1,2

∣∣∣∣ < 1 +

∣∣∣∣2r1r2
∣∣∣∣ ; r1 < 0,

∣∣∣∣w1,1

w1,2

∣∣∣∣ < 1

which shows the sign-indifference of
∣∣∣w1,1

w1,2

∣∣∣ to r2. Since g(r1, r2)g(−r1, r2) = 1, we can get the
sign-independent measure of ratios R:

R(β) = β +
√
β2 + 1; where β =

∣∣∣∣r1r2
∣∣∣∣ = ∣∣∣∣ z′′(θ22 − θ21)

2(z′ + z′′Θ)

∣∣∣∣ (5)

A.2 FROM GRADIENT UPDATES TO γβ

Let ∆x denote the update xt+1 = xt +∆x, and γx denote the ratio xt+1

xt
= xt+∆x

xt
.

∆θ1 = η
dz

dθ1
= ηz′θ2; similarly ∆θ2 = ηz′θ1

γr1 = 1− η2z′2

r2 = 2(
z′

z′′
+Θ) =

{
2Θ, when x→ 0

cΘ, when x→ ∞,where 2 < c ≤ 4 is a constant

Given the constant scaling to Θ in both limits, we approximate the ratio of change γr2 with γrΘ :

γr2 ≈ γΘ = 1− kηz′ + η2z′2, where k = (
θ1
θ2

+
θ2
θ1

) > 2

=⇒ γβ =
γr1
γr2

≈ γr1
γΘ

=
1− η2z′2

1− ηz′k + η2z′2
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B ROTATIONS IN A GENERAL n-PARAMETER DLN

Let loss L(Θ) be described by z(Θ), a non-negative convex polynomial with a unique minimum at
Θ = 0, limiting z(Θ) to even-degree polynomials. Further define:

vi := (wi,1, wi,2, ..., wi,n)

D := z′′Θ2 + z′Θ

Ci :=

n∑
j

(z′′Θ2 + z′Θ)wi,jθ
−1
j = D

n∑
j

wi,jθ
−1
j

Using Hvi = λivi, we get:

H(Θ)jk = (z′′Θ2 + z′Θ)θ−1
j θ−1

k − z′Θθ−1
j θ−1

k δ(j = k)

= Dθ−1
j θ−1

k − z′Θθ−1
j θ−1

k δ(j = k)

For each coordinate of vi, we have:

λiwi,k = (

n∑
j

Dwi,jθ
−1
j θ−1

k )− z′Θwi,kθ
−2
k (6)

(λi +
(z′Θ)

θ2k
)wi,k =

n∑
j

(z′′Θ2 + z′Θ)wi,jθ
−1
j θ−1

k =
Ci

θk
,

Ci = (λi +
z′Θ

θ2k
)wi,kθk (7)

λ1 is maximised through C1, which we can maximise with constrained optimization:

maximise F (w1) =
C1

D
=

n∑
j

w1,j

θj
(8)

subject to

n∑
j

(w1,j)
2 − 1 = 0, (normalization constraint)

which is maximised by the solution set of w∗
1s:

ψ : = w∗
1,jθj =

1√∑n
k θ

−2
k

< θ1 (9)

n∑
j

w∗
1,j

θj
= ψ

n∑
j

θ−j 2 = ψ−1

The set of w∗
1s are fixed for each set of θjs, and each pair w∗

1,jθj is equal to a constant ψ. However,
this analytical solution is only an approximation because the constancy constraints were ignored:

subject to ∀j,(λ1 + z′Θθ−2
j )w1jθj = C1 = const, (constancy constraint)

Let ŵ∗
1s be the solution set with additional constancy constraints. Clearly,

∑n
j

ŵ∗
1,j

θj
≤

∑n
j

w∗
1,j

θj
. Let:

ŵ∗
1,j = w∗

1,j(1 + ϵ1,j)

Applying the normalization constraint, we get:

n∑
j

(w∗,2
1,j )(1 + ϵ1,j)

2 − 1 = 0 (10)
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Define B =
∑n

w∗,2
1,j ϵ and C =

∑n
w∗,2

1,j ϵ
2, we substitute in 10 to get:

n∑
j

w∗,2
1,j + 2B + C − 1 = 0 → C = −2B

Using Cauchy-Schwarz: B2 ≤ (

n∑
j

w∗,2
1,j )C = C → −2 ≤ B ≤ 0

n∑
j

w∗
1,j(1 + ϵ1,j)

θj
= ψ

n∑
j

1 + ϵ1,j

θ−2
j

= (1 +B)ψ−1

We can rewrite the constancy constraints as:

∀j, (λ̂1 +
z′Θ

θ2j
)(1 + ϵ1,j)w

∗
1,jθj = D(1 +B)ψ−1,−2 ≤ B ≤ 0 (11)

Where we use λ̂1 to denote sharpness that may be different from λ1 obtained from w∗
1,j (only

using the normalization condition). Empirically, we find that B → 0−, which is consistent with
the maximization setting and that these additional constraints are mild. We now assume that the
parameters of the network are ill-conditioned, i.e. ∃m : θ2m >> θ21 , as is commonly observed with
deep neural networks (Papyan, 2019) and (Granziol et al., 2021). Using Eqn. 11 we get:

j = 0, (λ̂1+
z′Θ

θ21
)(1 + ϵ1,1)w

∗
1,1θ1 = D(1 +B)ψ−1

j = m : θ2m >> θ21, (λ̂1+
z′Θ

θ2m
)(1 + ϵ1,m)w∗

1,mθm = D(1 +B)ψ−1

→ (λ̂1 +
z′Θ

θ21
)(1 + ϵ1,1)w

∗
1,1θ1 = (λ̂1 +

z′Θ

θ2m
)(1 + ϵ1,m)w∗

1,mθm (12)

→ (λ̂1 +
z′Θ

θ20
) ≈ λ̂1(1 + ϵ1,m)

Using the j = m case, λ̂1(1 + ϵ1,m)ψ = D(1 +B)ψ−1 ≈ Dψ−1 = λ1ψ

→λ̂1(1 + ϵ1,m) = λ1

substituting into Eqn 12: ϵ1,m ≈ z′Θ

θ21λ̂1
=
z′Θ(1 + ϵ1,m)

θ21λ1
=
z′Θ(1 + ϵ1,m)

θ21Dψ
−2

0 < ϵ1,m <
z′Θ

z′′Θ2

where 0 < z′Θ
z′′Θ2 ≤ 1, taking equality to 1 for a quadratic z. Note that this implies:

λ1 > λ̂1 > 0,

λ̂1 > λ̂1ϵ1,m ≈ z′Θ

θ21
Applying the constancy constraints we can get a ratio of parameters of the sharpest eigenvector, v1:

Rn(k) =

∣∣∣∣ w1,1

w1,k>1

∣∣∣∣ =
∣∣∣λ̂1θk + z′Θ/θk

∣∣∣∣∣∣λ̂1θ1 + z′Θ/θ1

∣∣∣
=

|θk|
|θ1|

λ̂1 + z′Θ/θ2k

λ̂1 + z′Θ/θ21
=
f(θk)

f(θ1)
(13)

Since λ̂1 > 0 and z′Θ > 0, the function |θ|(λ̂1 + z′Θ/θ2) is positive and has positive derivatives
when |θ| > θcrit = (λ̂1/z

′Θ)−0.5. The bound λ̂1 > z′Θ/θ21 implies ∀j : |θj | > θcrit, which makes
this a monotonically increasing function in |θ| for our domain, implying Rn ≥ 1. Additionally, write:

∀k : θ2k = r2kθ
2
1 → Θ = θn1

n∏
k

|rk|, r2k ≥ 1
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By the symmetry of eigenvectors(i.e. multiplying each θ by a constant should not reorient the Hessian
eigenvectors)2, we have:

dRn(k)

dθ1
= 0

but:

dRn(k)

drk
=
xf ′(rkθ1)f(θ1)

f(θ1)2
> 0

The interpretation of Rn is similar to R(β) from the n = 2 case (Eqn. 5) - a large Rn indicates
strong alignment to the unstable parameter, and vice versa. With the above results, we find that
Rn yields remarkably similar behavior to R(β). Define (relatively) sharp and flat parameters
θs, θf : θ2f/θ

2
s = rf/s > 1, we characterize the phases of learning:

1. In the stable phase of learning, the ratio of parameters rf/s increases, which leads to an
increase in Rn, This signifies increased alignment of the sharpest eigenvector v1 to θ1, the
unstable parameter.

2. During an instability, the ratio of parameters rf/s falls, leading to a decrease in Rn. This
implies that the v1 rotates away from θ1, the unstable parameter

A detailed phase-analysis based on η can be conducted with a strategy similar to that employed in the
n = 2 case.

C TECHNICAL DETAILS OF EXPERIMENTS

A large number of experiments were conducted in this work. All of our models are small, considering
the large quantity of models trained with an academic budget. These models are trained in a fully
non-stochastic setting, using full-batch gradient descent. Moreover, we refrained from the use of
common techniques promoting stability, such as momentum and RMSProp (Kingma & Ba, 2017),
and explicit regularizers, such as weight decay. We employed the following experimental settings:

1. Figure 1 used a toy 2-parameter DLN model.

2. MLPs on fMNIST: The MLPs consisted of 4 hidden layers, each of width 32, for a total of
28480 parameters. This model was trained on 1, 000 samples of fMNIST and evaluated on
200. The dataset was pre-processed with standard normalization. This setting was used in
Figures 2, 3, 4, 5a), 7a), 10, 11, and 12.

3. Small VGG10s on CIFAR10-5k: The VGG10s consisted of 3 VGG blocks with Ghost-
BatchNorm computed at fixed batch size 1, 024 and no dropout. The VGG blocks had 3
convolutional layers, with each block increasing in width 8, 16, 32, leading to a total of
47, 892 parameters (including BatchNorm params). During training, a fixed 100 epochs were
dedicated to a linear warmup schedule for learning rates. This model was trained on 5, 000
samples of CIFAR10 and evaluated on 1, 000, pre-processed with standard normalization.
This setting was used in Figures 5 b), 6, 7b) c), 8.

4. Small VGG19s and ResNet20s on CIFAR10-50k and CIFAR10-500k: The VGG19s
consisted of 6 VGG blocks with 3 convolutional layers, with each block increasing in width
16, 32, 64, 128, 256, 512, leading to a total parameter count of 335, 277. The ResNet follows
the standard architecture outlined He et al. (2015), where the identity function is used as
residual connections as per the original paper, using 271, 117 parameters. Both models
used GhostBatchNorm in place of BatchNorm computed at fixed batch size 1, 024 and no
dropout. During training, a fixed 100 epochs were dedicated to a linear warmup schedule
for learning rates. These models were trained on 50, 000 and 500, 000 samples of CIFAR10,
and evaluated on the full 10, 000 samples available, using the default train-test split and
pre-processed with standard normalization. The 500k dataset uses static data augmentations,
where each sample from the original 50k is used to generate 10 fixed augmentations, using
a combination of random crop and horizontal flips. This setting was used in Figure 9.
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Figure 10: Magnitude of oscillations divides stable and unstable phases of training. The turning
points of |θ − θ∗|, distance to mean oscillation parameters, are used to demarcate phases of learning
on an MLP trained on fMNIST with FBGD.

D DRIVERS OF INSTABILITY

We present an exploration of the training dynamics with gradient descent to pinpoint the sources
of instability. The Edge of Stability is reached when S(θ) rises to 2/η early in training through
progressive sharpening. At this stage, the model exhibits unstable behavior characterized by sudden
spikes in training loss and S(θ), dubbed instabilities. To clearly illustrate these dynamics, we train
a multi-layer perceptron (MLP) on the fMNIST dataset (Xiao et al., 2017), a simple model on a
straightforward task.

Classical theories of stability posits that once past the stability limit, oscillations in parameters become
unstable, leading to an increase in magnitude to eventually leads to numerical errors. However, recent
findings suggest that deep neural networks can operate at the Edge of Stability for an extended, if not
the entire, duration of training. Figure 10 presents a snapshot of a typical training trajectory. Damian
et al. (2023) formalised the notion of progressive sharpening by defining a sharpening parameter,
α = −∇L(θ) · ∇S(θ).3 This is plotted alongside |θ − θ∗|, the latter estimating the distance to mean
oscillation parameters. In examining the trajectory, we delineate distinct phases of learning through
the ascent and descent of |θ− θ∗|. As gradient descent nears the stability boundary of 2/η, parameter
oscillations become more pronounced, driving the system toward instability Notably, the peaks in
L(θ) and S(θ) coincide with peaks in oscillation magnitude. On the other hand, this contrasts with
the progressive sharpening factor, α, which remains predominantly negative, indicating that minor
gradient adjustments often lead to a reduction in S(θ), contrary to the expected qualitative effects
suggested by progressive sharpening and of instability. This evidence suggests that unstable parameter
oscillations, rather than progressive sharpening, are critical drivers of instability.

A more compelling argument arises when we intervene by suppressing parameter updates along
unstable directions, setting learning rates to ηu = 0 specifically for these directions. The modified
dynamics, shown in Figure 11, reveal that S(θ) follows a trajectory similar to that when observed
under a globally small learning rate, reflecting a training trajectory completely conducted in the stable
regime. This behavior is characterized by slow and gradual increases to S(θ), which we identify as
progressive sharpening, since the latter also exist during stable phases of training. Similarly, reducing
the learning rate along unstable directions to achieve effective stability, i.e. ηu < 2/S(θ), reproduces
this behavior up until the stability threshold is reached, reinforcing the limited role of progressive
sharpening toward the formation of instabilities. Conversely, when gradient updates are restricted
solely to the directions of the sharpest eigenvectors, unstable oscillations are re-introduced, though
the trajectory of S(θ) significantly changes.

These findings underscore the fundamental differences between progressive sharpening and unstable
oscillations. Progressive sharpening primarily describes the increases in S(θ), the curvature along
the sharpest eigenvector, as a consequence of updates in other directions of the Hessian. In contrast,
unstable oscillations are driven specifically by parameter updates along these unstable directions.
Our results demonstrate that unstable parameter oscillations play a critical role in the formation of
instabilities, challenging the view that progressive sharpening plays the primary role. This distinction
is important to why the generalization performance of deep neural networks is improved when trained

3This can be computed with the Hessian trick.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

with sufficiently large learning rates (which is observed in Section 4), despite the increases in S(θ) -
for all choices of learning rates - due to progressive sharpening.

Figure 11: Limiting step sizes along unstable directions promote stable training, while restricting
updates to only unstable directions lead quickly to instability. We plot the evolution of S(θ) and
sharpness of the top 8 eigenvectors on the same instabilities used in Figure 2. The stable gradient-flow
trajectory is plotted with a dashed line.
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E COMPLETE EVOLUTION OF INSTABILITY VISUALIZED IN FIGURE 3

Figure 12: Parameter growth along the sharpest Hessian eigenvectors leads to exploration of
the peripheries of the local minima, driving up L(θ) and S(θ) in the process. As the instability
develops, the S(θ) curve undergoes large changes until a flat region is found to enable a return
to stability. We show snapshots along the instability cycle taken along the direction of the gradient.
The dotted/solid vertical lines indicate the positions of previous/current parameters, respectively.
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