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ABSTRACT
Recent work has shown great progress in integrating spatial conditioning to con-
trol large, pre-trained text-to-image diffusion models. Despite these advances,
existing methods describe the spatial image content using hand-crafted condi-
tioning inputs, which are either semantically ambiguous (e.g., edges) or require
expensive manual annotations (e.g., semantic segmentation). To address these
limitations, we propose a new label-free way of conditioning diffusion models to
enable fine-grained spatial control. We introduce the concept of neural semantic
image synthesis, which uses neural layouts extracted from pre-trained foundation
models as conditioning. Neural layouts are advantageous as they provide rich de-
scriptions of the desired image, containing both semantics and detailed geometry
of the scene. We experimentally show that images synthesized via neural seman-
tic image synthesis achieve similar or superior pixel-level alignment of semantic
classes compared to those created using expensive semantic label maps. At the
same time, they capture better semantics, instance separation, and object orienta-
tion than other label-free conditioning options, such as edges or depth. Moreover,
we show that images generated by neural layout conditioning can effectively aug-
ment real data in various perception tasks.

1 INTRODUCTION

Controllable image synthesis enables users to specify the desired image content, while relying on
a generative model to fill in details that align with the distribution of natural images. This has
been popularized by large-scale text-to-image (T2I) diffusion models (mid, 2023; Ramesh et al.,
2022; Balaji et al., 2022; Rombach et al., 2022) that express content through natural language.
Recent work (Li et al., 2023b; Zhang & Agrawala, 2023; Zhao et al., 2023a; Mou et al., 2023; Qin
et al., 2023) introduced additional adapters to integrate spatial conditioning control into the diffusion
process for direct image content specification. These methods have shown that it is possible to
employ segmentation, edge, depth, and normal maps as well as skeletal poses of a reference image
as description of the image’s content. Given this variety, it is natural to ask what descriptor is best
suited to specify the spatial and semantic contents of scenes. We argue that two properties are key
to the general applicability of a descriptor: richness of semantic and spatial content and the ease to
obtain descriptor-image pairs for fine-tuning pre-trained text-to-image (T2I) diffusion models.

Semantic segmentation maps are a popular descriptor choice (Xue et al., 2023; Wang et al., 2022;
Saharia et al., 2022), being interpretable high-level abstractions. However, creating them for real
images requires costly and tedious pixel-wise manual annotation. Even more so, segmentation maps
do not contain full information about the object pose, orientation, or geometry. On the other hand,
image edge and depth can be easily obtained from unlabeled images (e.g., by using pretrained de-
tectors (Xie & Tu, 2015; Ranftl et al., 2022)) to cheaply create descriptor-image pairs (Zhang &
Agrawala, 2023). However, they contain limited spatial information and are ambiguous in terms
of the object semantics. For example, both “cat” and “blanket” are plausible interpretations for the
object boundaries seen in Fig. 2. Similarly for depth maps, the semantics can be misinterpreted. In
short, existing conditioning descriptors can not satisfy both desired properties at once.

In this work, we propose a new way of conditioning T2I diffusion models to enable fine-grained
spatial control which does not require expensive human annotations. We introduce the concept of
neural semantic image synthesis, which derives its conditioning from dense neural features extracted
from large-scale foundation models (FMs). Recent work Zhou et al. (2022); Oquab et al. (2023);
Zhao et al. (2023b); Li et al. (2023a) has shown that these features preserve the semantic content
and geometry of the images well, and thus are well-suited for being rich spatial descriptors of the
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Figure 2: Comparison of images generated by ControlNet with different conditioning types on
ADE20k and COCO-Stuff. Neural layouts provide rich description of the desired images, while
other inputs contain limited spatial information and are semantically ambiguous.

desired scene. However, these features encode nuisance appearance variations which must be re-
moved to ensure diverse synthesis. Therefore, we introduce an semantic separation step using PCA
decomposition to extract only the desired information. We refer to these compressed features as a
“neural layout” (see Fig. 1).

Figure 1: LUMEN uses dense features from
foundation models (FMs) to extract neural
layouts as conditioning for a ControlNet.

To showcase the benefits of neural layout condi-
tioning, we propose the LUMEN model which
stands for Label-free neUral seMantic imagE
syNthesis. LUMEN builds upon Control-
Net (Zhang & Agrawala, 2023) and uses neural lay-
outs extracted from an image’s Stable Diffusion fea-
tures (Rombach et al., 2022) for conditioning (see
Fig. 1). We show that images generated by LU-
MEN achieve similar or superior alignment in se-
mantic layout to the reference image when compared
to those created using expensive semantic label maps
(see Table 2). In comparison to other label-free con-
ditioning inputs such as edges or depth, images gen-
erated with neural layouts capture better the seman-
tics and geometry of the scene (see Fig. 2). Further-
more, we experimentally verify that LUMEN im-
ages can serve effectively for data augmentation in
perception tasks such as semantic segmentation, depth estimation and object detection (see Table 3).

2 METHOD

In this section, we introduce the concept of neural semantic image synthesis. Instead of using ad-hoc
conditioning to describe the desired output, neural semantic image synthesis makes use of neural
layouts derived from the dense features of pretrained foundation models.
Dense Feature Extraction. Modern foundation models make heavy use of self-attention (SA) and
cross-attention (CA) (Vaswani et al., 2017). It was noted by several works (Amir et al., 2021;
Zhang et al., 2023) that these activation can serve as dense features useful for downstream tasks.

Semantic Separation. Retaining the entire dense feature map f would reveal too detailed informa-
tion about the reference image xref . Neural semantic image synthesis would then typically lead to
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Reference Sample → banana truck → burning truck + winter + in rainy weather

Original caption: A semi truck is driving down a street.

Figure 3: Image manipulation through prompt editing on the COCO-Stuff validation set. We show
an unedited sample, and then show results from either replacing the underlined words in the original
caption (→) or appending additional words at its end (+).

COCO-Stuff ADE20K
Conditioning Label-free mIoU ↑ SI Depth ↓ FID ↓ LPIPS ↑ TIFA ↑ mIoU ↑ SI Depth ↓ FID ↓ LPIPS ↑ TIFA ↑
Edges (Canny) ✓ 44.4 24.7 13.2 0.48 0.84 35.1 25.0 19.1 0.49 0.86
Edges (HED) ✗ 49.3 21.4 12.1 0.39 0.74 41.8 21.1 17.4 0.37 0.73
Depth (MiDaS) ✗ 45.3 24.0 14.3 0.53 0.88 34.0 22.1 21.2 0.52 0.87
Sem. Seg. (GT) ✗ 43.3 28.8 15.3 0.65 0.88 35.1 27.1 22.6 0.63 0.85
Neural Layout ✓ 52.9 21.1 11.8 0.36 0.66 45.7 21.1 16.1 0.33 0.67

Table 2: Comparison of different ControlNet conditioning. Neural layout outperforms all other
options in terms of image quality (FID), as well as semantic and spatial alignment (mIoU, SI).

samples that are highly similar to xref , lacking diversity. To prevent this, it is preferable to sepa-
rate semantic and geometric features from those that encode appearance details. Based on existing
works Oquab et al. (2023), we hypothesize that the principal directions of variation in the dense
features should at least partially correspond to what humans intuitively understand as spatial and
semantic image content. Thus, we implement Principal Component Analysis (PCA) to obtain a lin-
ear projector that can remove nuisance variations. To obtain the neural layout ci as conditioning,
we retain only the information in the top N PCA components. In practice, we perform PCA with
N = 20 on a random sample of 40, 000 feature vectors extracted from images in the training set.
Foundation Model Backbones. After a thorough ablation, shown in Table 1, we select Stable
Diffusion as the default foundation model backbone. Following Zhang et al. (2023), we extract
the intermediate activations from layer 2, 5, and 8 of SD’s U-Net and upsampled them to match the
resolution of layer 8. All activations are then concatenated across the channel dimension. According
to Zhang et al. (2023), SD features have a strong sense of spatial layout, which makes them a
promising candidate for neural layouts.
3 EXPERIMENTS

Evaluation Metrics. We measure the image synthesis quality of our method using FID (Heusel
et al., 2017) for perceptual quality, average LPIPS (Zhang et al., 2018) between generated samples
for diversity, and TIFA (Hu et al., 2023) for text controllability. We additionally evaluate how well
each conditioning captures the semantic composition and geometry of the scene. For alignment with
semantic layouts, we use mIoU between ground truth segmentation label and those predicted by a
pretrained segmenter. However, since mIoU does not contain 3D information, we use the scale-
invariant depth error (SI depth) (Eigen et al., 2014) as a metric for geometric consistency.

3.1 NEURAL LAYOUT DESIGN SPACE

We explore the design space of neural layouts on the diverse COCO-Stuff dataset (Caesar
et al., 2018) to determine how to best extract descriptive semantic and spatial information
from a given reference image. In Table 1, we compare the quality of image generated from
DINO, DINOv2, CLIP, and SD features. We observe that SD features provide the best percep-
tual image quality and also retain the semantic content best, and DINOv2 is a close second.

Feat. mIoU ↑ SI Depth ↓ FID ↓ LPIPS ↑ TIFA ↑
CLIP 41.7 25.7 15.6 0.58 0.84
DINO 49.5 22.2 12.8 0.41 0.77
DINOv2 51.1 22.0 12.8 0.42 0.78
SD 51.4 21.5 12.2 0.42 0.79

Table 1: Comparison of different FMs for
extracting neural layouts on COCO-Stuff.

Although CLIP conditioning can generate more var-
ied images, this diversity is due to the weak seman-
tic and spatial constraints imposed during synthesis.
Since CLIP is trained with an image-level objective,
it is less suitable to capture precise pixel-level in-
formation without further processing. Therefore, we
choose to base our neural layout on SD features.

3.2 COMPARISON TO EXISTING CONDITIONING

We evaluate the effects that different conditioning have on image synthesis using the challenging
COCO-Stuff (Caesar et al., 2018) and ADE20k (Zhou et al., 2017) datasets. As Table 2 shows, neural
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layout as the condition results in images that best preserve the semantic content, outperforming
others in terms of both mIoU and SI Depth while achieving better image quality. Surprisingly, Sem.
Seg. achieves only similar or worse results in terms of mIoU compared to all other conditioning.
We believe this is due to the large number of difficult semantic classes in COCO-Stuff and ADE20k
with sometimes semantically ambiguous labels, and due to the long tail distribution on rare classes.
We also see that HED edges performs the best among the existing conditions in terms of FID, mIoU,
and SI Depth, as it well encodes the object boundaries with additional image details being captured
by soft edges. However, the semantic class of the object within the boundary can be ambiguous,
resulting in a lower mIoU (see Table 2).

Note that we observe again the trade-off between information content constraining the image and
the diversity and editability of the results. Canny edge and depth have low semantic content and
Sem. Seg. does not constrain appearance or geometry, consequently, they often achieved the best
LPIPS and TIFA at the cost of worse alignment, geometry or image quality. We also observe that
despite the lower TIFA, LUMEN still responds well to a variety of out-of-distribution prompt edits
(see Fig. 3). Therefore, text-prompting creates additional variations for data synthesis.

3.3 DOWNSTREAM APPLICATIONS

Training Data for Multiple Tasks. As neural layout specifies both semantic and spatial concepts
in an image, the same synthesized data can reuse all annotations to train downstream networks for
different tasks. We experimented with this capability by synthesizing data using the 2975 training
images from Cityscapes (Cordts et al., 2016) as reference, and reuse the semantic segmentation la-
bels, the depth disparity maps, and 3D bounding boxes of vehicles (Gählert et al., 2020) for training.

SegFormer TaskPrompter (3D)
Method mIoU ↑ RMSE ↓ mDS ↑
Baseline 67.90 4.78 0.19
Edges (Canny) 67.08 5.26 0.16
Edges (HED) 67.40 4.96 0.19
Depth (MiDaS) 68.00 4.96 0.17
SemSeg (GT) 68.48 4.99 0.20
Neural Layout 68.54 4.89 0.20

Table 3: Using generated data for training
multiple downstream tasks on Cityscapes.

Using this, SegFormer (Xie et al., 2021) is trained
for semantic segmentation and TaskPrompter (Ye &
Xu, 2023) for predicting depth and 3D detection of
vehicle. The results are shown in Table 3 and the
exact setup is detailed in the supplementary materi-
als. As 3D annotation is available, we follow prior
work (Ye & Xu, 2023) and report root-mean-square
error (RMSE) of the estimated disparity and the
mean detection score (mDS) (Gählert et al., 2020)
to evaluate the quality of the 3D tasks. Neural layout performs better or equal to existing condition-
ing on all tasks simultaneously. It also improves upon the mIoU and mDS compared to a baseline
that uses only real data. This demonstrates that neural layout is a more universal conditioning and
the data generated using it can be applied across different tasks.

Method CS Rain Fog Snow Night Avg.

Baseline (CS) 67.9 50.2 60.5 48.9 28.6 47.0
PnP-Diffusion 67.8 50.6 63.5 50.4 30.3 48.7
FreestyleNet 69.7 52.7 69.0 54.3 32.9 52.2
ControlNet [Sem. Seg.] 68.3 55.3 67.3 55.4 34.6 53.2
LUMEN (Ours) 68.5 53.4 67.4 55.6 35.1 52.9

Table 4: Quantitative comparison of syn-
thetic data augmentation techniques for do-
main generalization from Cityscapes (train)
to ACDC (unseen).

Domain Generalization. By choosing to use Con-
trolNet as our backbone generator, we can use the
text prompt to control the domain (mainly appear-
ance) of the synthesized images while using neural
layout to control the semantic and geometric con-
tent. We use this to perform domain generalization
experiments from the daytime only Cityscapes to
ACDC (Sakaridis et al., 2021), containing adverse
weather and lighting conditions. As shown in Ta-
ble 4, we verified that images generated by LUMEN
can significantly improve the model’s generalization ability upon the baseline, which is trained only
on Cityscapes. We compare against other diffusion-based methods PnP-Diffusion (Tumanyan et al.,
2023), FreestyleNet (Xue et al., 2023), as well as ControlNet (Zhang & Agrawala, 2023) with Sem.
Seg. conditioning. The prompt editing of PnP-Diffusion cannot generalize well to the image domain
of Cityscapes, leading to little benefits for domain generalization. Both ControlNet with semantic
segmentation and FreestyleNet require manual annotation to train the image generator, in contrast
to our label-free LUMEN. Yet, our method outperforms FreestyleNet and is overall on par with
ControlNet using Sem. Seg.

4 CONCLUSION

We introduced the concept of neural semantic image synthesis and established LUMEN as a strong
label-free baseline that can simultaneous specify semantic and spatial concepts of the outputs.
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Nils Gählert, Nicolas Jourdan, Marius Cordts, Uwe Franke, and Joachim Denzler. Cityscapes 3d:
Dataset and benchmark for 9 dof vehicle detection. arXiv preprint arXiv:2006.07864, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
2017.

Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
Smith. TIFA: Accurate and interpretable text-to-image faithfulness evaluation with question an-
swering. arXiv preprint arXiv:2303.11897, 2023.

Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
Mask dino: Towards a unified transformer-based framework for object detection and segmenta-
tion. In CVPR, 2023a.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In CVPR, 2023b.

Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. arXiv preprint arXiv:2302.08453, 2023.
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