
Delving into Cascaded Instability:
A Lipschitz Continuity View on Image Restoration and

Object Detection Synergy

Qing Zhao1 Weijian Deng2 Pengxu Wei1,5†

Ziyi Dong1 Hannan Lu3 Xiangyang Ji4 Lin Liang1,5

1Sun Yat-sen University 2Australian National University
3Harbin Institute of Technology 4Tsinghua University 5Peng Cheng Laboratory

{zhaoq78, dongzy6}@mail2.sysu.edu.cn, dengwj16@gmail.com,
weipx3@mail.sysu.edu.cn, luhannan@hit.edu.cn, xyji@tsinghua.edu.cn, linliang@ieee.org

Abstract

To improve detection robustness in adverse conditions (e.g., haze and low light),
image restoration is commonly applied as a pre-processing step to enhance image
quality for the detector. However, the functional mismatch between restoration and
detection networks can introduce instability and hinder effective integration—an
issue that remains underexplored. We revisit this limitation through the lens of
Lipschitz continuity, analyzing the functional differences between restoration and
detection networks in both the input space and the parameter space. Our analy-
sis shows that restoration networks perform smooth, continuous transformations,
while object detectors operate with discontinuous decision boundaries, making
them highly sensitive to minor perturbations. This mismatch introduces instability
in traditional cascade frameworks, where even imperceptible noise from restoration
is amplified during detection, disrupting gradient flow and hindering optimiza-
tion. To address this, we propose Lipschitz-regularized object detection (LROD),
a simple yet effective framework that integrates image restoration directly into
the detector’s feature learning, harmonizing the Lipschitz continuity of both tasks
during training. We implement this framework as Lipschitz-regularized YOLO
(LR-YOLO), extending seamlessly to existing YOLO detectors. Extensive experi-
ments on haze and low-light benchmarks demonstrate that LR-YOLO consistently
improves detection stability, optimization smoothness, and overall accuracy.

1 Introduction

Adverse imaging conditions introduce challenges for object detection by causing various image
degradations, including reduced contrast, blurred edges, and obscured object boundaries. A typical
way to alleviate this issue is to employ image restoration as a pre-processing step, aiming to improve
image quality before detection [1, 2, 3]. However, its effectiveness is limited by the functional
mismatch between restoration and detection networks. This inconsistency can introduce instability,
where imperceptible noise introduced during restoration is amplified during detection, leading to
unreliable predictions [4, 5]. Moreover, the underlying differences between these tasks remain
underexplored, hindering opportunities for better integration and enhanced robustness. To bridge this
gap, understanding their functional behaviors is crucial for achieving effective synergy. To this end,
we analyze the conventional Image Restoration→Object Detection cascade framework through the
lens of Lipschitz continuity, focusing on two aspects: the input space and the parameter space.

†Corresponding Author. Code available: https://github.com/diasuki/LR-YOLO

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/diasuki/LR-YOLO


(a) Image Restoration (b) Object Detection (c) Cascade (d) Ours

Figure 1: Visualization of network functional behaviors under input perturbations. (a) Image
Restoration networks exhibit smooth, continuous mappings, where input changes lead to gradual
adjustments. (b) Object Detection networks display sharp discontinuities due to abrupt decision
boundaries in classification and bounding box regression. (c) Cascade frameworks (Image Restoration
→ Object Detection) magnify instability, resulting in fragmented and non-smooth behavior. (d) Our
method integrates low-Lipschitz image restoration into the feature learning of high-Lipschitz object
detection, promoting smoother transitions and enhanced stability.

From the input space perspective, we leverage the concept of Lipschitz continuity, which characterizes
the sensitivity of a model’s output to input perturbations [6]. Networks with lower Lipschitz constants
exhibit smoother, more predictable changes, while higher constants indicate heightened sensitivity
and instability. By computing the Jacobian norm [7] with respect to haze density variations, we
observe that the Lipschitz constant of the object detection network is nearly an order of magnitude
larger than that of the restoration network, highlighting its substantially lower smoothness. This
disparity highlights the differences in their functional behaviors. Restoration networks exhibit smooth,
continuous mappings, where small input perturbations result in gradual and predictable adjustments
to the restored image. This smoothness stems from pixel-wise processing that consistently enhances
local regions and propagates changes smoothly across the image. In contrast, object detection
networks are inherently discontinuous, characterized by sharp decision boundaries in classification
and bounding box regression. Even minor pixel-level changes can cause abrupt shifts in class
predictions or bounding box coordinates, reflecting non-smooth, step-like transitions in the output.
This sharp contrast in behavior contributes to instability when the two networks are cascaded. To
further illustrate this disparity, we visualize the functional behaviors in Figure 1 (a) and (b), where
the smooth transitions of restoration sharply contrast with the abrupt shifts observed in detection.
This inconsistency introduces instability when the two networks are cascaded: imperceptible noise
introduced during restoration can be amplified during detection, resulting in overall non-smooth
behavior in the cascade framework, as shown in Figure 1 (c).

To further understand the instability observed in conventional Image Restoration→Object Detection
cascade framework, we extend our analysis to the parameter space of the networks, where Lipschitz
continuity characterizes the sensitivity of a model’s output to changes in its parameters. Our findings
reveal that image restoration networks maintain relatively low Lipschitz constants, resulting in smooth
and stable optimization trajectories during training. In contrast, object detection networks exhibit
substantially higher Lipschitz constants, leading to sharp gradient transitions and erratic convergence
paths. This imbalance disrupts gradient flow, introduces mutual interference, and destabilizes joint
optimization, further compounding the instability of traditional cascade frameworks.

Given the importance of network stability in adverse conditions, a key challenge lies in harmonizing
image restoration and object detection to address the inherent differences in Lipschitz continuity.
To address this, we propose Lipschitz-regularized object detection (LROD), a simple yet effective
framework that integrates image restoration directly into the detector’s feature learning. Unlike
conventional cascades, LROD harmonizes the Lipschitz continuity of both tasks during training,
smoothing out perturbations before they propagate through the detector’s discontinuous layers. This
coupling mitigates noise amplification, enhancing stability in challenging environments. Furthermore,
LROD introduces a parameter-space regularization term to stabilize gradient flows, ensuring smoother
optimization dynamics and improved robustness under varying degradation intensities.

We implement LROD into existing YOLO detectors, taking advantage of their real-time performance,
resource efficiency, and suitability for edge deployment. This integration yields an efficient model,
called Lipschitz-regularized YOLO (LR-YOLO), which can be seamlessly applied to YOLO series

2



detectors (e.g., YOLOv10 [8] and YOLOv8 [9]). As shown in Figure 1 (d), our Lipschitz-regularized
object detection achieves a smoother Lipschitz continuity compared to the cascade framework.
Extensive experiments on image dehazing and low-light enhancement benchmarks demonstrate that
LR-YOLO improves detection stability and robustness compared to traditional cascade frameworks.
In summary, our contributions are as follows:

• Lipschitz Continuity Analysis: we perform a detailed analysis of Lipschitz continuity in both the
input space and the parameter space of image restoration and object detection networks. Our analysis
uncovers a critical mismatch in smoothness between these tasks, which potentially introduces
instability and impedes effective integration. To our knowledge, this is the early work to provide a
detailed Lipschitz continuity analysis aimed at understanding the instability challenges in cascade-
based detection pipelines.

• Lipschitz-Regularized Framework: motivated by our analysis, we propose a simple and effective
object detection framework that integrates image restoration directly into the detector’s feature
learning, harmonizing the Lipschitz continuity of both tasks during training. This design enhances
smoothness and mitigates the instability inherent in traditional cascade-based methods.

2 Related Work

Object Detection Under Adverse Conditions. Existing research primarily focuses on cascade
frameworks, where image restoration techniques such as image dehazing [10, 11], low-light enhance-
ment [12, 13], and all-in-one restoration [14] are used as pre-processing steps to improve image
quality and enhance human trust in detection results compared to domain adaptation approaches [15].
ReForDe [2] uses adversarial training to generate detection-friendly labels for fine-tuning restoration
networks. SR4IR [16] introduces a training framework where image restoration is constrained by
object detection, and detection training utilizes restoration outputs Image-adaptive techniques [1, 3]
integrate differentiable image processing filters into the detection pipeline. FeatEnHancer [17] applies
hierarchical feature enhancement to improve detection performance. Despite these advancements, the
functional mismatch between restoration and detection networks is underexplored. Our work reports
that the large disparity in Lipschitz continuity between the two tasks exacerbates non-smoothness
when they are cascaded, leading to instability under varying degradation intensities. To address this,
we propose a Lipschitz-regularized framework that enhances the Lipschitz continuity of the detection
network, facilitating better harmonization between these two tasks.

Lipschitz Continuity Analysis. Lipschitz continuity is useful in analyzing the stability and robust-
ness of deep neural networks [18, 19, 20]. Models with lower Lipschitz constants tend to exhibit better
generalization performance, especially under adversarial conditions [21]. This has motivated further
research on regularization techniques that constrain the Lipschitz constant to enhance model robust-
ness. For instance, SN-GAN [22] controls the Lipschitz constant by restricting the spectral norm
of network parameters, while other Lipschitz-based regularization techniques have been proposed
to improve model stability [23]. Several studies have extended these ideas to network design [24],
highlighting the critical role of Lipschitz continuity in controlling the smoothness and stability of
neural networks. In our work, we analyze object detection stability under adverse conditions from
both the input and parameter spaces using Lipschitz continuity as the lens of investigation. We
demonstrate that the disparity in Lipschitz continuity between image restoration and object detection
networks is a primary source of non-smoothness and instability in cascade frameworks.

3 Lipschitz Continuity Perspective

3.1 Input Space Analysis: Model Stability in Adverse Conditions

Object detection in adverse conditions, such as haze or low light, is highly sensitive to variations
in degradation intensity, including changes in haze density and luminance fluctuations. Traditional
Image Restoration→Object Detection cascade framework struggles with such variations, leading to
unstable detection results. As shown in Figure 2 (a), even when partially mitigated by restoration,
minor perturbations still cause significant shifts in detector features, exposing the framework’s
instability. To understand this, we analyze the problem through the lens of Lipschitz continuity, which
quantifies a model’s sensitivity to input changes. Our findings reveal that the Lipschitz constant of

3



Cascade Ours

(a) Distribution of Detector Features Under Minor Variations (b) Box-Plot Distribution of Per-Sample Jacobian Norms

Image Restoration Object Detection

Ja
co

b
ia

n
 N

o
rm

Ja
co

b
ia

n
 N

o
rm

𝒙
𝒙 + ∆𝒙

𝒙
𝒙 + ∆𝒙

Restoration

Cascade

Ours

Detection

Cascade

Ours

Figure 2: Impact of haze density variations on feature stability and Lipschitz continuity. (a)
Distribution of the detector backbone’s features between two haze inputs x and x+∆x under minor
haze density variations ∆x on Pascal VOC [26] with synthetic haze. In the cascade framework,
nearly half of the features shift under slight haze density variations, while our Lipschitz-regularized
object detection remains stable. (b) Box-plot distribution of Jacobian norms ∥∇xfθ(x)∥ at each
sample x between image restoration and object detection task on Pascal VOC [26] with synthetic
haze. The Lipschitz constant of the object detection network is nearly an order of magnitude larger
than that of the restoration network. This large disparity in Lipschitz continuity between the two
tasks exacerbates the non-smoothness in the cascade framework. Our method constrains the Lipschitz
constant of object detection to harmonize these two tasks better. ConvIR [11] and YOLOv8 [9] are
taken as restoration and detection methods, respectively.

the detection network is nearly an order of magnitude larger than that of the restoration network,
amplifying noise and disrupting stability under adverse conditions.

We begin by recalling the definition of Lipschitz continuity: A network f(·; θ) : RD 7→ RK , defined
on some domain dom(f) ⊆ RD with parameters θ, is called C-Lipschitz continuous if there exists a
real constant C > 0 such that ∀x1,x2 ∈ dom(f) : ∥f(x1; θ) − f(x2; θ)∥p ≤ C∥x1 − x2∥p. For
simplicity, we will compute the 2-norm, denoted as ∥ · ∥, throughout the rest of the paper, which can
be easily generalized to other norms. Using Theorem 1 in [25], we know that for a differentiable, C-
Lipschitz continuous network f(·; θ) : RD 7→ RK , the Lipschitz constant of f(·; θ) can be expressed
as Cx(f(x; θ)) = supx∈dom(f) ∥∇xf(x; θ)∥∗ = supx∈dom(f) ∥∇xf(x; θ)∥, where ∇xf(x; θ) is
Jacobian of f w.r.t. input x and ∥ · ∥∗ denotes the dual norm (The dual norm of the 2-norm is itself).

To quantitatively assess the Lipschitz constant of the image restoration and object detection network,
we compute the above Jacobian norm for each sample x in the Pascal VOC dataset [26], considering
variations in haze density. As shown in Figure 2 (b), we observe that the Jacobian norm of the
image restoration network ranges from 1 to 3.5 per sample, while the Jacobian norm of the object
detection network is nearly an order of magnitude larger than that of the image restoration network.
This indicates that object detection has a higher Lipschitz constant compared to image restoration.
Therefore, the large disparity in Lipschitz continuity between the two tasks leads to an unstable
framework when they are directly cascaded. Specifically, even slight variations will inevitably be
amplified by the restoration network since its Jacobian norm per sample exceeds 1, and further
destabilized by the high-Lipschitz constant of the detection network within the cascade framework.
Remark 1. Image restoration networks exhibit smooth and continuous mappings, while object
detection networks are more non-smooth from the perspective of Lipschitz continuity. This large
disparity in Lipschitz continuity between the two tasks exacerbates the non-smoothness when they are
directly cascaded, leading to instability under variations in degradation intensities.

3.2 Parameter Space Analysis: Training Stability

The disparity in Lipschitz continuity between restoration and detection networks extends beyond
the input space, impacting their training stability. To understand this, we analyze the parameter
space of the networks to capture how gradient updates influence model stability during optimization.
Our analysis shows that restoration networks, with lower Lipschitz constants, maintain smooth
optimization trajectories, while detection networks, with substantially higher Lipschitz constants,
experience sharp gradient transitions and unstable convergence. This imbalance disrupts gradient
flow, contributing to training instability in cascade-based designs.

4



Cascade Ours

Im
ag

e 
Re

st
or

at
io

n
O

bj
ec

t D
et

ec
tio

n

Cascade Ours

(b) Optimization Trajectory

Im
ag

e 
Re

st
or

at
io

n
O

bj
ec

t D
et

ec
tio

n

(a) Loss Landscape

Figure 3: Parameter-space smoothness and optimization stability comparison between the
cascade framework and our Lipschitz-regularized object detection. (a) Loss landscapes of
restoration and detection tasks: restoration networks demonstrate smooth trajectories, while detection
networks encounter sharp gradient transitions, indicating instability. (b) The cascade framework
amplifies this imbalance, leading to inefficient convergence and oscillatory optimization paths. (c)
Our method introduces Lipschitz regularization to smooth the parameter space of object detection,
enhancing stability and harmonizing it with restoration. ConvIR [11] and YOLOv8 [9] are used as
representative restoration and detection methods, respectively.

We extend the Lipschitz continuity analysis to the parameter space: A network f(x; θ) defined
on some parameter space Θ is called Lipschitz continuous in the parameter space if there exists
Cθ(f(x; θ)) > 0 such that ∀θ1, θ2 ∈ Θ, ∥f(x; θ1) − f(x; θ2)∥ ≤ Cθ(f(x; θ))∥θ1 − θ2∥. Due to
the symmetry between x and θ, an analogous result holds when the two variables are interchanged:
The Lipschitz constant in the parameter space of f(x; θ), defined on the parameter space Θ, can
be expressed as Cθ(f(x; θ)) = supθ∈Θ ∥∇θf(x; θ)∥, where ∇θf(x; θ) represents the gradient of
network parameters in the parameter space.

Given that the network is trained using the gradient descent optimization algorithm, expressed as
θ ← θ − µ · ∇θf(x; θ) (µ denotes the learning rate), the Lipschitz constant in the parameter space is
crucial for ensuring training stability. This is because the Lipschitz constant in the parameter space
acts as an upper bound for the gradients of the network parameters during training.

The Lipschitz continuity in parameter space reflects the sensitivity of the model’s output to variations
in its parameters. To illustrate this, we visualize the loss landscape by perturbing parameters along
two directions, revealing their impact on optimization smoothness and stability. Specifically, we use
the visualization method in [27]: let θ represent the fixed model parameters, we select two normalized
direction vectors δ and η in the parameter space, and plot the function f(α, β) = L(θ+αδ+ βη) on
the surface, where L is the loss function, and α and β are the coordinates on the surface.

As shown in Figure 3 (a), the loss landscape of the image restoration network exhibits a smooth loss
function, while the loss landscape of the object detection network is notably rough. This reflects
differences in their Lipschitz constants in parameter space: restoration networks tend to have lower
Lipschitz constants, giving smoother gradients, while detection networks exhibit higher Lipschitz
constants, showing sharper transitions, and increased sensitivity to parameter changes. Figure 3 (b)
further illustrates the optimization trajectories, where restoration follows stable paths, while detection
experiences frequent shifts, indicating instability. This imbalance disrupts gradient flow during joint
training, resulting in unstable convergence and reduced optimization efficiency.

Remark 2. Image restoration networks with lower Lipschitz constants exhibit smooth optimization
trajectories, while object detection networks with higher Lipschitz constants experience sharp
gradient transitions and unstable convergence. This imbalance in the parameter space between these
two tasks results in training instability and reduced optimization efficiency in cascade-based designs.

5



4 Lipschitz-Regularized Object Detection

The analysis in Section 3 reveals the disparities in Lipschitz continuity between restoration and
detection networks, manifesting in both the input space and the parameter space. Driven by this,
we propose lipschitz-regularized object detection (LROD), a simple and effective framework that
harmonizes restoration and detection through targeted Lipschitz regularization. Specifically, LCOD
introduces two core mechanisms: 1) Lipschitz regularization via low-Lipschitz restoration to constrain
the Lipschitz constant of object detection in the input space, and 2) Lipschitz regularization via
parameter-space smoothing to constrain the Lipschitz constant in the parameter space.

4.1 Lipschitz Regularization via Low-Lipschitz Restoration

Lipschitz continuity analysis in input space (Section 3.1) shows that image restoration networks
exhibit smooth, continuous mappings, while object detection networks are more non-smooth. By
leveraging the low-Lipschitz properties of the restoration task, we integrate restoration learning into
the detector backbone’s feature learning, constraining the Lipschitz constant of the object detection
task in the input space. This better harmonizes the detection task with the low-Lipschitz restoration.
Remark 3 (Lipschitz Regularization via Low-Lipschitz Restoration). Let: fθb,θd = fθd ◦ fθb denote
the object detection model, where fθb(·; θb) is the backbone network parameterized by θb, and
fθd(·; θd) is the detection head parameterized by θd. Similarly, let: gθb,θr = fθr ◦ fθb represent the
image restoration model, where fθr (·; θr) is the restoration head parameterized by θr, sharing the
same backbone fθb . Given a weighted combination of the detection loss and the restoration loss:

L(θb, θd, θr) = Ldet(fθb,θd) + λ · Lres(gθb,θr ), λ > 0

Let Lip(fθb) := supx ∥Jfθb (x)∥ be the Lipschitz constant of fθb defined by jacobian norm. If:

1. Lres is Lipschitz continuous and ∥∇θbLres(gθb,θr )∥ ≤ G for G < ∥∇θbLdet(fθb,θd)∥;
2. There exists a training sample x⋆ and γ > 0 such that:

〈
∇θb∥Jfθb (x

⋆)∥,∇θbLres(gθb,θr )
〉
≥ γ,

then under continuous-time gradient descent θb
(t+1) ← θb

(t) − µ · ∇θbL(θb, θd, θr) (µ denotes the
learning rate), the evolution of the Lipschitz constant satisfies:

d

dt
[Lip(fθb)] ≤ −λ · γ + ξ(t)

where ξ(t) :=
〈
∇θb∥Jfθb (x

⋆)∥,∇θbLdet(fθb,θd)
〉

is the unconstrained change induced by the
detection loss and γ is the regularization via the restoration task.

This suggests that integrating the image restoration task directly into the detector’s feature learning
by sharing the detector’s backbone helps suppress the model’s sensitivity to input perturbations
during training, effectively acting as a Lipschitz regularization. The detailed proof is in Appendix A.

Specifically, we extract low-level features from the first three stages of the detector backbone, which
preserve essential spatial and textural information for image restoration. These features are then
passed through a restoration-specific head to obtain the restored images. By leveraging the inherently
smoother Lipschitz continuity of the image restoration task, this restoration loss implicitly regularizes
the feature representations used for object detection during training, thereby constraining the Lipschitz
constant of the detection network in the input space. As shown in Figure 2 (a) and (b), our Lipschitz-
regularized object detection exhibits smoother Lipschitz continuity compared to both the original
object detection and the cascade framework, with lower Lipschitz constants and more stable detector
features under varying degradation intensities.

4.2 Lipschitz Regularization via Parameter-Space Smoothing

Lipschitz continuity analysis in parameter space (Section 3.2) shows that low-Lipschitz restoration
networks maintain smooth optimization trajectories, while high-Lipschitz detection networks ex-
perience sharp gradient transitions and unstable convergence. To improve harmony between these
tasks and ensure training stability, we constrain the Lipschitz constant of the detection networks in
the parameter space. We introduce a parameter-space regularization term to stabilize gradient flows,
promoting smoother optimization dynamics.

6



Remark 4 (Lipschitz Regularization via Parameter-Space Smoothing). Let θ = θb ∪ θd is the full
parameter set of the detection model. The parameter-space regularization term is defined as the
gradient norm with respect to the model parameters, denoted by ∥∇θfθ(x)∥.

Full framework. The Lipschitz-regularized object detection (LROD) framework incorporates the
above two regularizations to ensure stable and efficient training. The total loss function is defined as:

Ltotal = Ldet + λ · Lres + λp · ∥∇θfθ(x)∥ ,

where Ldet is the detection loss, Lres is the restoration loss, computed as a Charbonnier loss [28]
between the restored image and the ground truth clean image, and ∥∇θfθ(x)∥ is the regularization
term. The weights λ and λp are used to balance the restoration and regularization terms, respectively.

We implement this framework as Lipschitz-regularized YOLO (LR-YOLO), which builds upon YOLO
detectors. As illustrated in Figure 3, ConvIR [11] and YOLOv8 [9] are employed as representative
restoration and detection methods, respectively. LR-YOLO smooths the loss landscape of object
detection compared to traditional cascade frameworks, better aligning with image restoration during
training. This results in smooth gradient flow, improved stability, and more efficient optimization.

5 Experiments

5.1 Experimental Settings

Dataset. Datasets cover two challenging conditions: hazy weather and low-light environments. For
both settings, we use Pascal VOC [26] and COCO [29] datasets for training and validation following
the degradation setting from [1, 2, 5], and real-world datasets for out-of-domain evaluation.

1) Training and Validation Data: a) VOC_Haze_Train and VOC_Haze_Val consist of 8, 111 and
2, 734 images respectively. Haze is synthesized online during training using the atmospheric scattering
model with β ∈ [0.5, 1.5], while validation images are synthesized offline once for reproducibility; b)
VOC_Dark_Train and VOC_Dark_Val consist of 12, 334 and 3, 760 images respectively. Low-light
is simulated online during training and offline for validation via gamma correction with γ ∈ [1.5, 5].
The classes in both the training and validation datasets for haze and low-light conditions align with
those in the real-world datasets; c) COCO_Haze_Train and COCO_Dark_Train consist of 118, 287
training images, and COCO_Haze_Val and COCO_Dark_Val contain 5, 000 validation images.

2) Real-world Test Data. We adopt two benchmark datasets for the out-of-domain evaluation: a)
RTTS [30] contains 4, 322 real-world hazy images annotated with 5 object categories, i.e., Person,
Car, Bus, Bicycle, and Motorbike; b) ExDark [31] contains 2, 563 real-world low-light images labeled
with 10 categories, i.e., People, Car, Bus, Bicycle, Motorbike, Boat, Bottle, Chair, Dog, and Cat.

Evaluation Metrics. We evaluate object detection performance using mean Average Precision (mAP)
at an IoU threshold of 50%, which excludes difficult objects by default. Additionally, we report
mAPdifficult, which includes all objects, including challenging cases (e.g., occluded targets) on the
Pascal VOC [26] and RTTS [30] datasets. For the COCO dataset [29], we adopt standard COCO-style
metrics, including mAP averaged over IoU thresholds from 0.5 to 0.95 (in 0.05 increments), along
with AP50, AP75, and scale-specific scores: APS (small), APM (medium), and APL (large).

Implementation Details: We adopt YOLOv10-s and YOLOv8-s as the baseline detectors. For
training, the loss weights are set to λ = 10 and λp = 0.01. We use the SGD optimizer with an initial
learning rate of 1× 102 and a weight decay of 5× 10−4. The model is trained on an RTX 4090 GPU
for 100 epochs with a batch size of 16, requiring approximately 8 hours. Input images are resized
to 640× 640, and standard YOLO data augmentation techniques (e.g., random flipping and affine
transformation) are applied. For experiments on the COCO dataset, we use 8 RTX 4090 GPUs with a
batch size of 16 per GPU. Training is conducted for 300 epochs and takes approximately 48 hours.

5.2 Object Detection under Adverse Conditions

Table 1 presents a method comparison of object detection under two adverse conditions: hazy weather,
evaluated on the VOC_Haze_Val and RTTS [30] datasets, and low-light environments, evaluated
on the VOC_Dark_Val and ExDark [31] datasets. We compare various image restoration methods,
including SFNet [10], ConvIR [11], LLFormer [12], and RetinexFormer [13], all of which are trained

7



Methods
Datasets (Haze Weather)

VOC_Haze_Val RTTS [30]
mAP mAPdifficult mAP mAPdifficult

YOLOv10 [8] 50.5 44.7 42.6 33.8
SFNet [10]→YOLOv10 77.9 70.1 45.5 35.9
SFNet [10]→YOLOv10† [2] 79.1 72.1 46.6 37.1
SFNet [10]→YOLOv10‡ [16] 79.3 71.7 45.8 36.0
ConvIR [11]→YOLOv10 79.9 72.2 46.1 36.0
ConvIR [11]→YOLOv10† [2] 80.1 72.9 46.6 37.2
ConvIR [11]→YOLOv10‡ [16] 80.5 72.6 46.5 36.5
IA [1]→YOLOv10 79.9 72.0 45.4 35.8
GDIP [3]→YOLOv10 79.2 70.9 47.2 37.0
FeatEnHancer [17]→YOLOv10 79.8 71.6 46.7 36.2
LR-YOLOv10 (Ours) 82.5 74.4 49.2 38.5
YOLOv8 [9] 54.3 48.3 45.3 36.2
SFNet [10]→YOLOv8 79.2 71.1 48.9 38.4
SFNet [10]→YOLOv8† [2] 80.8 73.8 49.1 39.3
SFNet [10]→YOLOv8‡ [16] 80.3 72.8 49.3 39.2
ConvIR [11]→YOLOv8 80.5 72.8 49.3 38.7
ConvIR [11]→YOLOv8† [2] 80.9 74.1 49.5 39.0
ConvIR [11]→YOLOv8‡ [16] 81.4 74.0 50.1 39.9
IA [1]→YOLOv8 80.6 73.0 47.7 37.3
GDIP [3]→YOLOv8 81.0 73.1 50.3 39.8
FeatEnHancer [17]→YOLOv8 81.2 73.4 48.4 38.8
LR-YOLOv8 (Ours) 83.3 76.5 53.2 42.4

Methods
Datasets (Low-Light Environment)
VOC_Dark_Val ExDark [31]

mAP mAPdifficult mAP
YOLOv10 [8] 62.1 55.0 49.2
LLFormer [12]→YOLOv10 65.6 58.0 46.3
LLFormer [12]→YOLOv10† [2] 64.7 57.5 47.0
LLFormer [12]→YOLOv10‡ [16] 66.3 59.2 49.5
Retinexformer [13]→YOLOv10 66.3 58.6 47.6
Retinexformer [13]→YOLOv10† [2] 66.0 58.4 45.8
Retinexformer [13]→YOLOv10‡ [16] 66.9 59.2 47.5
IA [1]→YOLOv10 66.0 58.7 50.4
GDIP [3]→YOLOv10 65.8 58.5 48.9
FeatEnHancer [17]→YOLOv10 67.6 59.9 50.9
LR-YOLOv10 (Ours) 70.6 62.7 53.8
YOLOv8 [9] 63.4 55.8 50.0
LLFormer [12]→YOLOv8 66.2 58.7 46.6
LLFormer [12]→YOLOv8† [2] 66.2 58.8 47.9
LLFormer [12]→YOLOv8‡ [16] 66.2 59.2 48.6
Retinexformer [13]→YOLOv8 67.8 59.5 47.6
Retinexformer [13]→YOLOv8† [2] 67.7 60.0 49.5
Retinexformer [13]→YOLOv8‡ [16] 68.6 61.0 49.5
IA [1]→YOLOv8 66.5 59.2 49.6
GDIP [3]→YOLOv8 68.9 61.2 51.2
FeatEnHancer [17]→YOLOv8 68.7 60.8 51.8
LR-YOLOv8 (Ours) 71.7 63.9 54.5

Table 1: Comparison under two adverse conditions: haze weather and low-light environment.
Left: Results on VOC_Haze_Val and RTTS [30], with models trained on VOC_Haze_Train. Right:
Results on VOC_Dark_Val and ExDark [31], with models trained on VOC_Dark_Train. In the
cascade framework, † indicates adversarial training [2], and ‡ denotes alternating training [16].

Methods COCO_Haze_Val COCO_Dark_Val
mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

YOLOv8 [9] 20.3 28.8 22.0 9.1 22.8 29.1 31.3 45.2 33.5 16.5 34.2 45.1
InstructIR [14]→YOLOv8 33.8 47.7 36.6 15.6 37.2 50.3 31.1 44.8 33.3 15.0 33.7 46.5
InstructIR [14]→YOLOv8† [2] 33.4 47.7 36.1 15.2 36.8 49.0 30.2 43.8 32.3 14.3 32.9 44.5
InstructIR [14]→YOLOv8‡ [16] 35.0 49.7 37.9 17.0 38.9 51.1 30.4 43.8 32.7 15.5 32.9 45.2
IA [1]→YOLOv8 36.4 51.4 39.5 18.0 39.8 51.6 33.3 47.8 36.0 17.7 36.1 48.2
GDIP [3]→YOLOv8 36.6 51.8 39.4 18.1 40.6 51.5 33.4 47.6 36.0 17.5 35.9 47.6
FeatEnHancer [17]→YOLOv8 36.7 52.2 39.7 18.3 40.5 52.1 34.1 49.2 37.1 17.9 37.0 48.5
LR-YOLOv8 (Ours) 37.7 53.3 40.6 19.5 41.6 52.7 35.3 50.5 37.9 19.0 38.3 49.7

Table 2: Comparison on COCO_Haze_Val and COCO_Dark_Val datasets under haze and low-
light conditions. All models are trained from scratch on COCO_Haze_Train and COCO_Dark_Train,
respectively. The † indicates adversarial training [2] and ‡ denotes alternating training [16].

Methods SFNet [10] ConvIR [11] LLFormer [12] Retinexformer [13] InstructIR [14] IA [1] GDIP [3] FeatEnHancer [17] Ours
Params (M) 13.27 5.53 24.55 1.61 31.15 0.17 138.24 0.14 0.52
Flops (G) 775.17 42.10 22.52 15.57 123.90 12.32 40.37 44.29 11.32

Table 3: Computational complexity comparison. Our method shows lower computational complex-
ity in terms of the number of parameters (Params) and floating point operations (FLOPs).

on degraded images and used to restore inputs before detection. We further consider two joint training
strategies: 1) Adversarial training [2], where restoration networks are fine-tuned to generate detection-
friendly images; 2) Alternating training [16], where restoration is supervised using detection-driven
perceptual losses and detection is trained on restored outputs. Furthermore, we include end-to-end
methods for comparison, including IA [1], GDIP [3], and FeatEnHancer [17]. They are trained
directly on degraded inputs. All models are trained from scratch on the VOC_Haze_Train and
VOC_Dark_Train datasets, respectively. Our method outperforms other methods when using both
YOLOv10 and YOLOv8 as object detectors, achieving mAP improvements of 2.0 and 2.9 on RTTS,
and 2.9 and 2.7 on ExDark, respectively. Table 2 shows a comparison on COCO_Haze_Val and
COCO_Dark_Val datasets, trained on COCO_Haze_Train and COCO_Dark_Train, respectively.
We compare the all-in-one restoration method InstructIR [14]. Our method consistently improves
performance across all evaluation metrics, achieving mAP improvements of 1.0 and 1.2, respectively.

5.3 Evaluation and Analysis

Computational Complexity Evaluation. Table 3 presents a comparison of parameters (Params) and
floating point operations (FLOPs), showcasing the inference efficiency of our framework.

Lipschitz Regularization Ablation Study. We evaluate the impact of two Lipschitz regularization
parts (low-Lipschitz restoration learning Lres and parameter-space smoothing ∥∇θfθ(x)∥). The
evaluation is conducted on the RTTS and ExDark for out-of-domain performance, as presented in

8



Lres ∥∇θfθ(x)∥ RTTS [30] ExDark [31]

Y
O

L
O

v1
0 46.0 50.6

✓ 48.1 52.7
✓ 47.2 51.5

✓ ✓ 49.2 53.8
Y

O
L

O
v8 49.3 51.6

✓ 51.3 53.6
✓ 50.1 52.4

✓ ✓ 53.2 54.5

Table 4: Lipschitz regularization ablation study.
We evaluate the effect of two Lipschitz regulariza-
tion parts Lres and ∥∇θfθ(x)∥.

w/o Restoration Learning w Restoration Learning

Fe
at

u
re

 M
ap

D
et

e
ct

io
n

 R
e

su
lt

Figure 4: Feature visualization. We visualize
the feature maps in the backbone of our model
trained without and with Lres.

Table 4. Incorporating both restoration learning and parameter space smoothing during training
improves synergy between detection and restoration, leading to mAP gains of 3.2 for YOLOv10 and
3.9 for YOLOv8 in RTTS, and 3.2 and 2.9 on ExDark, respectively, compared to baseline methods.

Restoration Learning Analysis. We visualize the backbone features of our model trained with
and without restoration learning Lres as shown in Figure 4. Integrating restoration learning into the
detector’s feature learning facilitates the enhancement of degraded image features in the backbone,
resulting in improved detection (e.g., complete detections of objects like the stop sign and motorcycle).

Method Baseline SNR [22] PGD [32] Ours

RTTS 49.3 50.1 40.8 53.2

Table 5: Alternative regularization
ablation study.

Alternative Regularization Ablation Study. We com-
pare our method with two alternative regularization
strategies—Spectral Norm Regularization (SNR [22])
and adversarial training via PGD [32]—by training on
VOC_Haze_Train and evaluating out-of-domain on RTTS.
As presented in Table 5, our approach attains the best RTTS
performance, surpassing both SNR and PGD. Unlike SNR, which constrains weights globally, our
method penalizes ∥∇θfθ(x)∥, reducing output sensitivity to parameter changes and enabling input-
aware smoothness. Compared to PGD-based adversarial training, which requires generating perturbed
inputs and increases training cost, our approach achieves implicit robustness without adversarial
examples, resulting in more stable and efficient training and no observed degradation on clean inputs.

Sharing Baseline F1–F2 F1–F3 (Ours) F1–F4

RTTS 49.3 51.9 53.2 52.8

Table 6: Alternative variants abla-
tion study.

Architectural Variants Ablation Study. We ablate how
deeply to share the encoder between detection and restora-
tion by varying the number of shared stages, training on
VOC_Haze_Train and evaluating out-of-domain on RTTS.
As summarized in Table 6, shallower sharing (F1–F2)
provides insufficient regularization, while deeper sharing
(F1–F4) introduces task interference, supporting our design choice of the first three stages (F1–F3).

λ 0 10 10 10 20 5
λp 0 0.005 0.02 0.01 0.01 0.01

RTTS 49.3 52.9 53.0 53.2 53.1 52.8

Table 7: Regularization coefficients
ablation study.

Regularization Coefficients Ablation Study. We ab-
late the input-space and parameter-space regularization
strengths by sweeping λ ∈ {0, 5, 10, 20} and λp ∈
{0, 0.005, 0.01, 0.02}, training on VOC_Haze_Train and
evaluating out-of-domain on RTTS. As reported in Table 7,
our method consistently outperforms the baseline across a
range of coefficient values, with only minor performance
variation over the sweep, demonstrating robustness to the choice of regularization magnitudes.

Lipschitz Continuity Analysis. We analyze changes in Lipschitz continuity in both the input and
parameter spaces during training. Specifically, we monitor the upper bound of the Jacobian norm
supx∈dom(f) ∥∇xfθ(x)∥ in the input space, where dom(f) represents the domain of input images
from Pascal VOC. Additionally, we track the gradient norm ∥∇θfθ(x)∥ in the parameter space.
As shown in Figure 5, LR-YOLOv8 trained with Lres reduces the Lipschitz constant in both the
input and parameter spaces compared to ConvIR→YOLOv8 and YOLOv8 during training. Training
with ∥∇θfθ(x)∥ further promotes Lipschitz continuity in the input and parameter spaces.

Generalization on Other Detection Paradigm. We further validate the generalizability of our
LROD by integrating it into the shared backbones of a transformer-based detector (RT-DETR [33])

9



IterationEpoch

Ja
co

b
ia

n
 N

o
rm

 (
U

p
p

er
 B

o
u

n
d

)

G
ra

d
ie

n
t

N
o

rm

ConvIR→YOLOv8

YOLOv8

LR-YOLOv8* (Ours)

LR-YOLOv8 (Ours)

ConvIR→YOLOv8
YOLOv8

LR-YOLOv8* (Ours)

LR-YOLOv8 (Ours)

Input Space Parameter Space

Figure 5: Comparison of changes in Lipschitz continuity in both the input space and parameter
space during training. Methods include ConvIR→YOLOv8 (Cascade), YOLOv8 (Baseline), LR-
YOLOv8* (only trained with Lres), and LR-YOLOv8 (trained with both Lres and ∥∇θfθ(x)∥).

Method RT-DETR [33] Faster R-CNN [34]

VOC_Haze_Val RTTS VOC_Haze_Val RTTS

Baseline 51.5 43.7 69.1 43.2
ConvIR [11] 76.0 43.7 78.5 44.1
IA [1] 76.8 43.6 78.6 41.3
GDIP [3] 72.6 43.5 76.6 44.5
FeatEnHancer [17] 73.3 42.4 77.7 39.4
LROD (Ours) 78.9 45.1 80.2 45.9

Table 8: Generalization on other detection
paradigm. We integrate our LROD into RT-
DETR [33] and Faster-RCNN [34].

Method Motion Blur Rain Snow Haze + Rain

YOLOv8 [9] 50.8 53.1 60.8 50.1
ConvIR [11]→YOLOv8 [9] 80.1 79.9 80.5 79.2
IA [1]→YOLOv8 [9] 79.6 79.9 80.3 78.0
GDIP [3]→YOLOv8 [9] 80.1 79.6 80.4 78.3
FeatEnHancer [17]→YOLOv8 [9] 80.2 79.6 79.6 78.9
LR-YOLOv8 (Ours) 82.3 82.5 83.0 81.6

Table 9: Generalization on other degradation. We
assess the robustness of our method under motion
blur, rain, snow, and a haze–rain mixture.

and a two-stage detector (Faster R-CNN [34]). All models are trained on VOC_Haze_Train and
evaluated on both the synthetic VOC_Haze_Val and real-world RTTS dataset. As shown in Table 8,
LROD consistently outperforms other methods when using other detection paradigms, achieving
mAP improvements of 1.4 on RTTS, supporting LROD as a plug-and-play regularization framework.

Generalization on Other Degradation. We further assess robustness under additional adverse con-
ditions—motion blur, rain, snow, and a haze–rain mixture—by constructing matched train/validation
splits for each degradation and retraining all methods per setting. As reported in Table 9, our method
consistently outperforms existing methods, achieving mAP gains of 2.1, 2.6, 2.5, and 2.4, respectively.
These results highlight the versatility and robustness of our method across diverse degradation.

6 Conclusion

In this paper, we revisit the integration of image restoration and object detection under adverse
conditions through the lens of Lipschitz continuity in both the input and parameter spaces. Our
analysis reveals that the inherent mismatch in Lipschitz continuity between these tasks introduces
instability and non-smoothness when directly cascaded. To address this, we propose a Lipschitz-
regularized framework that harmonizes the two tasks by constraining the Lipschitz continuity of
object detection. This is achieved through low-Lipschitz restoration learning to smooth perturbations
before detection, alongside parameter-space regularization to stabilize gradient flows during training.
We implement this approach as Lipschitz-Regularized YOLO (LR-YOLO), which extends to existing
YOLO detectors with minimal overhead. Extensive experiments on haze and low-light benchmarks
show that our method improves detection stability and optimization smoothness, contributing to more
robust performance in challenging environments.

Limitation and Future Direction. While our method has been validated across a range of adverse
conditions—including haze, rain, snow, low-light, and mixed weather—a current limitation is that
each input is assumed to contain only a single type of degradation. A valuable future direction would
be to extend our framework to handle inputs affected by multiple, concurrent degradations. Another
promising direction is to extend our Lipschitz-continuity analysis to camouflaged object detection
(COD [35, 36]), as COD involves detecting objects with ambiguous, low-contrast boundaries, posing
challenges similar to those in cascaded systems under adverse conditions.

10



Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (NSFC) under
Grant Nos. 62376292, 62325605, and U21A20470; the Guangdong Provincial General Fund under
Grant No. 2024A1515010208; and the Guangzhou Science and Technology Program Project under
Grant Nos. 2025A04J5465 and 2024A04J6365.

References

[1] W. Liu, G. Ren, R. Yu, S. Guo, J. Zhu, and L. Zhang, “Image-adaptive yolo for object detection
in adverse weather conditions,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2022.

[2] S. Sun, W. Ren, T. Wang, and X. Cao, “Rethinking image restoration for object detection,”
Advances in Neural Information Processing Systems, 2022.

[3] S. Kalwar, D. Patel, A. Aanegola, K. R. Konda, S. Garg, and K. M. Krishna, “Gdip: Gated
differentiable image processing for object detection in adverse conditions,” in IEEE International
Conference on Robotics and Automation (ICRA), 2023.

[4] C. Li, H. Zhou, Y. Liu, C. Yang, Y. Xie, Z. Li, and L. Zhu, “Detection-friendly dehazing: Object
detection in real-world hazy scenes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[5] J. Wu and Z. Jin, “Unsupervised variational translator for bridging image restoration and
high-level vision tasks,” in European Conference on Computer Vision, 2024.

[6] S. Bubeck and M. Sellke, “A universal law of robustness via isoperimetry,” Advances in Neural
Information Processing Systems, 2021.

[7] G. Khromov and S. P. Singh, “Some fundamental aspects about lipschitz continuity of neural
networks,” International Conference on Learning Representations, 2024.

[8] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han et al., “Yolov10: Real-time end-to-end
object detection,” Advances in Neural Information Processing Systems, 2024.

[9] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” https://github.com/ultralytics/
ultralytics, 2023.

[10] Y. Cui, Y. Tao, Z. Bing, W. Ren, X. Gao, X. Cao, K. Huang, and A. Knoll, “Selective frequency
network for image restoration,” in International Conference on Learning Representations, 2023.

[11] Y. Cui, W. Ren, X. Cao, and A. Knoll, “Revitalizing convolutional network for image restoration,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[12] T. Wang, K. Zhang, T. Shen, W. Luo, B. Stenger, and T. Lu, “Ultra-high-definition low-light
image enhancement: A benchmark and transformer-based method,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2023.

[13] Y. Cai, H. Bian, J. Lin, H. Wang, R. Timofte, and Y. Zhang, “Retinexformer: One-stage
retinex-based transformer for low-light image enhancement,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023.

[14] M. V. Conde, G. Geigle, and R. Timofte, “Instructir: High-quality image restoration following
human instructions,” in European Conference on Computer Vision, 2024.

[15] R. Zhao, H. Yan, and S. Wang, “Revisiting domain-adaptive object detection in adverse weather
by the generation and composition of high-quality pseudo-labels,” in European Conference on
Computer Vision, 2024.

[16] J. Kim, J. Oh, and K. M. Lee, “Beyond image super-resolution for image recognition with
task-driven perceptual loss,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

[17] K. A. Hashmi, G. Kallempudi, D. Stricker, and M. Z. Afzal, “Featenhancer: Enhancing
hierarchical features for object detection and beyond under low-light vision,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023.

[18] L. Meunier, B. J. Delattre, A. Araujo, and A. Allauzen, “A dynamical system perspective for
lipschitz neural networks,” in International Conference on Machine Learning, 2022.

11

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


[19] A. Araujo, A. Havens, B. Delattre, A. Allauzen, and B. Hu, “A unified algebraic perspective on
lipschitz neural networks,” International Conference on Learning Representations, 2023.

[20] R. Wang and I. Manchester, “Direct parameterization of lipschitz-bounded deep networks,” in
International Conference on Machine Learning, 2023.

[21] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization bounds for deep nets via
a compression approach,” in International Conference on Machine Learning, 2018.

[22] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative
adversarial networks,” International Conference on Learning Representations, 2018.

[23] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural networks,” in International
Conference on Machine Learning, 2021.

[24] X. Qi, J. Wang, Y. Chen, Y. Shi, and L. Zhang, “Lipsformer: Introducing lipschitz continuity to
vision transformers,” International Conference on Learning Representations, 2023.

[25] F. Latorre, P. Rolland, and V. Cevher, “Lipschitz constant estimation of neural networks via
sparse polynomial optimization,” International Conference on Learning Representations, 2020.

[26] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes challenge: A retrospective,” International Journal of Computer
Vision, 2015.

[27] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural
nets,” Advances in Neural Information Processing Systems, 2018.

[28] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/kanade meets horn/schunck: Combining local
and global optic flow methods,” International Journal of Computer Vision, 2005.

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in European Conference on Computer Vision.
Springer, 2014.

[30] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking single-image
dehazing and beyond,” IEEE Transactions on Image Processing, 2018.

[31] Y. P. Loh and C. S. Chan, “Getting to know low-light images with the exclusively dark dataset,”
Computer Vision and Image Understanding, 2019.

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” International Conference on Learning Representations, 2018.

[33] Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and J. Chen, “Detrs beat yolos on
real-time object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with
region proposal networks,” Advances in Neural Information Processing Systems, 2015.

[35] D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, and L. Shao, “Camouflaged object detection,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.

[36] X. Hu, S. Wang, X. Qin, H. Dai, W. Ren, D. Luo, Y. Tai, and L. Shao, “High-resolution iterative
feedback network for camouflaged object detection,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

[37] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of
deep features as a perceptual metric,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

12



Appendix

A Detailed Proofs

Remark 3 (Lipschitz Regularization via Low-Lipschitz Restoration). Let: fθb,θd = fθd ◦ fθb
denote the object detection model, where fθb(·; θb) is the backbone network parameterized by θb, and
fθd(·; θd) is the detection head parameterized by θd. Similarly, let: gθb,θr = fθr ◦ fθb represent the
image restoration model, where fθr (·; θr) is the restoration head parameterized by θr, sharing the
same backbone fθb . Given a weighted combination of the detection loss and the restoration loss:

L(θb, θd, θr) = Ldet(fθb,θd) + λ · Lres(gθb,θr ), λ > 0

Let Lip(fθb) := supx ∥Jfθb (x)∥ be the Lipschitz constant of fθb defined by jacobian norm. If:

1. Lres is Lipschitz continuous and ∥∇θbLres(gθb,θr )∥ ≤ G for G < ∥∇θbLdet(fθb,θd)∥;
2. There exists a training sample x⋆ and γ > 0 such that:

〈
∇θb∥Jfθb (x

⋆)∥,∇θbLres(gθb,θr )
〉
≥ γ,

then under continuous-time gradient descent θb
(t+1) ← θb

(t) − µ · ∇θbL(θb, θd, θr) (µ denotes the
learning rate), the evolution of the Lipschitz constant satisfies:

d

dt
[Lip(fθb)] ≤ −λ · γ + ξ(t)

where ξ(t) :=
〈
∇θb∥Jfθb (x

⋆)∥,∇θbLdet(fθb,θd)
〉

is the unconstrained change induced by the
detection loss and γ is the regularization via the restoration task.

This suggests that integrating the image restoration task directly into the detector’s feature learning
by sharing the detector’s backbone helps suppress the model’s sensitivity to input perturbations
during training, effectively acting as a Lipschitz regularization.

Proof. Using Theorem 1 in [25], the Lipschitz constant of fθb is:

Lip(fθb) = sup
x
∥Jfθb (x)∥

Let x⋆ be the input that attains or approximates this supremum. Then, during continuous-time
gradient descent:

d

dt
[Lip(fθb)] =

d

dt
∥Jfθb (x

⋆)∥ =
〈
∇θ∥Jfθb (x

⋆)∥2,−∇θbL(θb, θd, θr)
〉

Substituting the joint loss:

d

dt
[Lip(fθb)] = −

〈
∇θb∥Jfθb (x

⋆)∥,∇θbLdet(fθb,θd) + λ · ∇θbLres(gθb,θr )
〉

Breaking into two components:

d

dt
[Lip(fθb)] = −

〈
∇θb∥Jfθb (x

⋆)∥,∇θbLdet(fθb,θd)
〉
− λ ·

〈
∇θb∥Jfθb (x

⋆)∥,∇θbLres(gθb,θr )
〉

By Assumption 2, the second term is lower bounded:

⟨∇θ∥Jfθ (x⋆)∥2,∇θLres(gθb,θr )⟩ ≥ γ

Define the first term as ξ(t), then:

d

dt
[Lip(fθ)] ≤ −λγ + ξ(t)

which completes the proof.

13



YOLO

Neck

YOLO

Backbone

Low-Level Features

F1

F2

F3

CSPLayer

CSPLayer

CSPLayerUpsample

Downsample CSPLayer

CSPLayer

CSPLayer

YOLO

Head

YOLO

Head

YOLO

Head

Low-Lipschitz Restoration Module 

Degraded Image Detection Results

Restored Image
Feature

Extraction

YOLO Detector 𝓛𝒅𝒆𝒕

𝓛𝒓𝒆𝒔

Figure 6: The overall architecture of Lipschitz-Regularized YOLO (LR-YOLO).

Dataset image person bicycle car bus motorbike Total

VOC_Haze_Train 8111 13256 1064 3267 822 1052 19561
VOC_Haze_Val 2734 4528 337 1201 213 325 6604
VOC_Haze_Val (all objects) 2734 5136 389 1528 254 367 7674
RTTS [30] 4322 7950 534 18413 1838 862 29577
RTTS (all objects) 4322 11366 698 25317 2590 1232 41203

Table 10: Statistics of haze datasets in terms of image count and object annotations per class.

B Detailed Model

To efficiently and effectively harmonize image restoration and object detection, we integrate image
restoration learning into the feature extraction process of the object detection backbone. This
integration implicitly enforces Lipschitz continuity during training, thereby enhancing the stability
of the detector under varying degradation intensities. As illustrated in Figure 6, we extend existing
YOLO detectors by extracting low-level features from the first three stages of the backbone without
modifying the original network architecture. These features are then processed by a lightweight
restoration-aware module, which reconstructs a clean version of the input image and facilitates the
learning of smoother and more stable representations within the detection network.

YOLO Detector. The YOLO architecture is a one-stage object detection framework that performs
detection in a single forward pass, achieving high efficiency and speed. It consists of three main
components, i.e., the Backbone, which extracts visual features from the input image; the Neck, which
aggregates multi-scale features to enhance representation; and the Head, which predicts bounding
boxes, class scores, and objectness. Due to its high computational efficiency and ease of deployment
on edge devices, YOLO is widely used in real-time detection applications.

Low-Lipschitz Restoration Module. To improve the stability of object detection under adverse
imaging conditions, we introduce a Restoration-Aware Module integrated into the YOLO framework.
As illustrated in Figure 6, we extract low-level features from the first three stages of the YOLO
backbone (denoted as F1, F2, and F3), which preserve rich spatial and textural information essential
for image restoration. Inspired by the design of the YOLO Neck and Head, these features are passed
through a restoration-specific neck and decoder composed of multiple Cross Stage Partial layers
(CSPLayer). The module adopts a densely connected architecture that facilitates multi-scale feature
fusion, which is crucial for effective restoration learning. By progressively refining the low-level
representations, the module reconstructs a restored version of the input image that is less affected
by visual degradation. This restoration-aware module not only contributes to the stability of YOLO
detectors during training due to the inherently smoothness of restoration, but also enhances the
low-level features used by the detector for downstream detection tasks.

14



Dataset image person bicycle car bus motorbike boat bottle cat chair dog Total

VOC_Dark_Train 12334 13256 1064 3267 822 1052 1140 1764 1593 3152 2025 29135
VOC_Dark_Val 3760 4528 337 1201 213 325 263 469 358 756 489 8939
VOC_Dark_Val (all objects) 3760 5183 389 1533 254 367 393 646 368 1268 529 10930
ExDark 2563 2235 418 919 164 242 515 433 425 609 490 6450

Table 11: Statistics of low-light datasets in terms of image count and object annotations per class.

C Detailed Datasets

Datasets cover two challenging conditions: hazy weather and low-light environments. For both
settings, we use real-world datasets for out-of-domain evaluation and construct synthetic train-
ing/validation sets based on PASCAL VOC [26], following IA-YOLO [1], ReForDe [2] and Vat [5]:

1) Training and Validation Data: We construct synthetic datasets by selecting PASCAL VOC [26]
images containing the relevant object categories:

• VOC_Haze_Train and VOC_Haze_Val consist of 8, 111 and 2, 734 images respectively. Haze is
synthesized online during training using the atmospheric scattering model with β ∈ [0.5, 1.5], while
validation images are synthesized offline once for reproducibility.

• VOC_Dark_Train and VOC_Dark_Val consist of 12, 334 and 3, 760 images respectively. Low-light
is simulated online during training and offline in validation via gamma correction with γ ∈ [1.5, 5].

2) Real-world Test Data. We adopt two benchmark datasets for the out-of-domain evaluation:

• RTTS [30]: contains 4, 322 real-world hazy images annotated with 5 object categories, i.e., Person,
Car, Bus, Bicycle, and Motorbike.

• ExDark [31]: contains 2, 563 real-world low-light images labeled with 10 categories, i.e., People,
Car, Bus, Bicycle, Motorbike, Boat, Bottle, Chair, Dog, and Cat.

The object annotations per class in the above datasets are presented in Table 10 and Table 11.

D Detailed Detection Results

We report the average precision for each category on the VOC_Haze_Val and RTTS datasets, as shown
in Table 12, and on the VOC_Dark_Val and ExDark datasets, as presented in Table 14.

E Image Restoration Evaluation

We evaluate the restoration performance of our LR-YOLO under haze and low-light conditions using
peak signal-to-noise ratio (PSNR) for pixel-level fidelity and learned perceptual image patch similarity
(LPIPS) [37] for perceptual similarity. Table 13 presents the restoration results on VOC_Haze_Val
and VOC_Dark_Val. We compare our method with the image dehazing technique ConvIR [11],
low-light enhancement method Retinexformer [13], and image adaptive methods IA [1] and GDIP [3].
Our full model achieves the best LPIPS score and competitive PSNR on both VOC_Haze_Val and
VOC_Dark_Val, outperforming the baseline YOLOv8 and image adaptive pipelines. Additionally,
our restoration-only variant (LR-YOLOv8 (Restoration-Only) trained only with restoration learning)
achieves a balanced improvement in reconstruction fidelity.

F Qualitative Comparison

Figure 2 (a) illustrates that the detector features of the cascade method are highly sensitive to
minor haze density variations ∆x, while our Lipschitz-regularized framework maintains stability. A
qualitative comparison of detection result stability is presented in Figure 7. When two haze inputs
x and x+∆x with slight haze density variations ∆x are fed into the model, the detection results
of the cascade method (ConvIR→YOLOv8) exhibits significant instability even though those haze
can be mitigated by the image dehazing method. For example, a car is detected in one case but

15



Methods VOC_Haze_Val RTTS [30]
mAP Person Car Bus Bicycle Motorbike mAP Person Car Bus Bicycle Motorbike

YOLOv10 50.5 55.3 63.5 46.3 48.1 39.5 42.6 70.7 48.9 20.8 41.0 31.5
SFNet→YOLOv10 77.9 79.2 82.4 76.5 76.1 75.3 45.5 72.2 53.2 23.9 42.6 35.4
SFNet→YOLOv10† 79.1 80.5 83.6 77.4 76.9 77.3 46.6 73.4 54.8 24.9 42.1 38.0
SFNet→YOLOv10‡ 79.3 80.4 83.2 77.8 77.5 77.7 45.8 72.4 54.5 24.1 41.7 36.2
ConvIR→YOLOv10 79.9 80.5 83.7 79.2 77.8 78.1 46.1 72.6 53.9 24.3 43.7 36.3
ConvIR→YOLOv10† 80.1 80.9 84.4 79.2 77.3 78.6 46.6 73.2 55.3 25.0 42.4 37.0
ConvIR→YOLOv10‡ 80.5 81.1 83.9 80.1 78.3 79.0 46.5 72.5 54.7 24.4 43.7 37.2
IA→YOLOv10 79.9 79.9 83.8 76.3 81.4 78.1 45.4 72.0 55.4 22.5 42.3 34.6
GDIP→YOLOv10 79.2 79.3 83.4 76.8 79.4 77.4 47.2 73.2 54.6 24.6 45.3 38.1
FeatEnHancer→YOLOv10 79.8 79.2 82.9 78.4 80.0 78.6 46.7 72.0 53.4 22.9 43.8 36.6
LR-YOLOv10 (Ours) 82.5 82.0 86.6 79.7 83.4 81.8 49.2 74.1 58.5 27.7 44.9 42.0
YOLOv8 54.3 58.2 65.6 51.8 52.3 43.7 45.3 73.3 53.4 21.1 45.6 33.3
SFNet→YOLOv8 79.2 80.3 83.8 75.9 78.9 77.1 48.9 75.2 59.0 23.9 48.7 37.8
SFNet→YOLOv8† 80.8 82.0 85.2 78.2 79.4 78.9 49.1 75.6 59.2 25.2 47.3 38.0
SFNet→YOLOv8‡ 80.3 81.6 84.8 77.5 79.4 78.0 49.3 75.6 59.8 24.4 48.3 38.4
ConvIR→YOLOv8 80.5 81.3 84.8 78.2 79.7 78.5 49.3 75.3 59.5 24.2 48.9 38.5
ConvIR→YOLOv8† 80.9 82.1 85.6 77.3 79.7 79.6 49.5 75.3 59.9 25.7 47.7 39.0
ConvIR→YOLOv8‡ 81.4 82.4 85.9 77.9 81.3 79.9 50.1 75.6 60.1 25.8 49.4 39.5
IA→YOLOv8 80.6 81.6 85.5 77.2 80.8 78.0 47.7 73.3 58.7 25.6 44.6 36.5
GDIP→YOLOv8 81.0 81.7 85.9 78.1 79.9 79.3 50.3 75.8 59.7 27.8 49.9 38.0
FeatEnHancer→YOLOv8 81.2 81.4 85.3 77.0 81.8 80.4 48.4 74.8 57.9 26.1 47.1 40.7
LR-YOLOv8 (Ours) 83.3 83.7 87.6 79.3 84.4 82.8 53.2 76.0 62.9 30.0 50.2 46.9

Methods VOC_Haze_Val (all objects) RTTS (all objects) [30]
mAP Person Car Bus Bicycle Motorbike mAP Person Car Bus Bicycle Motorbike

YOLOv10 48.3 52.6 54.3 45.9 47.9 40.6 36.2 56.3 43.3 17.2 37.5 26.5
SFNet→YOLOv10 71.1 73.9 73.6 67.5 70.5 70.1 38.4 58.1 46.1 19.5 39.1 29.1
SFNet→YOLOv10† 73.8 77.1 76.7 70.4 71.5 73.3 39.3 60.4 48.3 20.7 38.0 28.9
SFNet→YOLOv10‡ 72.8 76.7 75.2 69.1 71.3 71.6 39.2 60.3 48.7 19.8 38.4 29.1
ConvIR→YOLOv10 72.8 76.4 75.0 69.3 71.5 71.6 38.7 58.1 46.4 19.9 40.0 29.4
ConvIR→YOLOv10† 74.1 77.5 76.9 70.0 71.9 74.1 39.0 59.7 48.9 20.6 37.6 28.3
ConvIR→YOLOv10‡ 74.0 77.3 77.0 69.3 72.3 74.2 39.9 60.2 49.0 20.2 39.8 30.2
IA→YOLOv10 73.0 76.5 75.7 69.4 72.6 70.9 37.3 56.5 45.8 19.8 35.6 28.7
GDIP→YOLOv10 73.1 76.4 75.4 69.5 71.0 73.0 39.8 60.5 46.6 22.6 39.8 29.5
FeatEnHancer→YOLOv10 73.4 76.4 75.5 68.7 72.9 73.4 38.8 59.3 45.3 20.7 37.7 31.0
LR-YOLOv10 (Ours) 76.5 79.2 79.1 71.1 75.5 77.4 42.4 60.9 51.4 23.9 40.0 36.0
YOLOv8 44.7 50.2 53.8 41.7 42.1 35.6 33.8 54.2 40.8 15.1 33.5 23.4
SFNet→YOLOv8 70.1 72.7 71.7 68.2 69.4 68.6 35.9 55.7 41.6 18.8 35.7 27.9
SFNet→YOLOv8† 72.1 75.5 74.4 69.0 69.5 71.9 37.1 58.0 44.6 19.9 33.9 28.9
SFNet→YOLOv8‡ 71.7 75.1 73.2 68.9 69.5 71.4 36.0 55.9 42.6 19.1 34.4 28.2
ConvIR→YOLOv8 72.2 75.3 73.3 70.5 70.8 70.9 36.0 55.7 42.0 19.3 35.8 27.3
ConvIR→YOLOv8† 72.9 76.2 75.0 70.6 70.2 72.5 37.2 57.8 45.1 20.2 34.6 28.4
ConvIR→YOLOv8‡ 72.6 76.0 73.7 70.2 70.8 72.5 36.5 55.9 42.8 19.4 35.3 29.0
IA→YOLOv8 72.0 74.5 74.0 68.1 72.8 70.8 35.8 55.5 43.4 18.3 34.3 27.8
GDIP→YOLOv8 70.9 72.7 72.6 68.1 70.2 70.7 37.0 56.1 42.7 19.7 37.0 29.2
FeatEnHancer→YOLOv8 71.6 72.7 72.7 69.8 71.6 71.2 35.8 55.2 41.7 18.3 35.6 28.1
LR-YOLOv8 (Ours) 74.4 77.5 76.7 71.3 75.0 74.6 38.5 59.1 45.9 21.3 37.3 33.0

Table 12: Detailed results on VOC_Haze_Val and RTTS [30], with models trained on
VOC_Haze_Train.

Methods VOC_Haze_Val
LPIPS ↓ PSNR ↑

ConvIR [11]→YOLOv8 0.180 25.44
IA [1]→YOLOv8 0.270 13.12
GDIP [3]→YOLOv8 0.234 15.75
YOLOv8 (Baseline) 0.382 13.51
LR-YOLOv8 (Restoration-Only) 0.195 23.72
LR-YOLOv8 (Ours) 0.133 22.72

Methods VOC_Dark_Val
LPIPS ↓ PSNR ↑

Retinexformer [13]→YOLOv8 0.293 21.46
IA [1]→YOLOv8 0.195 20.73
GDIP [3]→YOLOv8 0.189 18.82
YOLOv8 (Baseline) 0.315 12.00
LR-YOLOv8 (Restoration-Only) 0.245 21.19
LR-YOLOv8 (Ours) 0.179 21.05

Table 13: Restoration results on VOC_Haze_Val and VOC_Dark_Val.

not in another, and a person is suddenly undetected. This highlights the instability inherent in the
cascade framework. Visual examples in Figure 8 (haze condition) and Figure 9 (low-light condition)
qualitatively illustrate the effectiveness of our method in improving detection accuracy and perceptual
quality, thereby enhancing human trust in detection results.

16



Methods VOC_Dark_Val
mAP Person Car Bus Bicycle Motorbike Boat Bottle Chair Dog Cat

YOLOv10 62.1 68.7 72.9 69.0 70.2 67.1 56.2 47.0 43.0 61.7 65.3
LLFormer→YOLOv10 65.6 72.6 78.0 71.8 74.0 70.7 59.0 46.9 46.2 66.1 70.3
LLFormer→YOLOv10† 64.7 73.9 77.4 69.7 73.5 71.7 56.4 47.2 43.1 65.0 68.6
LLFormer→YOLOv10‡ 66.3 73.2 78.2 71.8 73.7 71.7 60.1 50.0 46.0 67.5 70.6
RetinexFormer→YOLOv10 66.3 73.3 78.8 73.6 72.9 70.7 59.8 49.7 46.0 66.4 71.7
RetinexFormer→YOLOv10† 66.0 74.8 78.5 72.7 75.4 72.7 57.2 49.5 45.2 64.9 69.2
RetinexFormer→YOLOv10‡ 66.9 74.9 78.6 72.4 75.2 72.6 60.3 49.6 46.5 67.4 71.8
IA→YOLOv10 66.0 73.1 78.5 68.2 74.5 69.4 60.6 52.0 48.2 67.1 68.0
GDIP→YOLOv10 65.8 74.3 77.9 71.2 77.4 72.5 56.5 49.4 45.4 67.0 66.8
FeatEnHancer→YOLOv10 67.6 75.3 79.1 73.6 76.7 73.8 59.6 52.3 49.2 68.3 68.6
LR-YOLOv10 (Ours) 70.6 77.6 82.5 76.3 78.3 75.9 65.6 56.3 52.1 69.3 72.5
YOLOv8 63.4 70.2 76.1 69.3 72.1 67.4 59.9 45.9 44.2 63.4 65.9
LLFormer→YOLOv8 66.2 74.5 80.0 71.5 74.3 71.7 59.0 45.4 47.2 67.9 70.3
LLFormer→YOLOv8† 66.2 76.3 80.6 71.9 75.1 71.7 59.2 45.8 46.2 65.3 70.0
LLFormer→YOLOv8‡ 66.2 75.0 80.7 71.6 75.7 72.7 59.5 47.4 45.3 65.5 68.4
RetinexFormer→YOLOv8 67.8 76.5 81.1 73.5 73.8 71.0 62.9 49.8 47.7 69.4 72.2
RetinexFormer→YOLOv8† 67.7 77.5 80.9 72.8 74.8 73.6 61.6 48.6 49.6 67.3 70.2
RetinexFormer→YOLOv8‡ 68.6 77.4 81.6 75.2 75.2 74.3 61.3 51.0 49.4 68.5 71.8
IA→YOLOv8 66.5 73.2 79.8 70.7 73.1 73.0 61.6 50.1 48.6 66.5 68.4
GDIP→YOLOv8 68.9 77.1 81.6 73.1 76.2 75.0 61.9 51.4 49.9 69.2 73.3
FeatEnHancer→YOLOv8 68.7 75.8 79.7 73.2 76.9 76.7 60.6 52.5 51.0 69.6 71.3
LR-YOLOv8 (Ours) 71.7 78.5 82.9 77.2 79.7 78.3 62.9 60.1 52.6 70.3 74.3

Methods VOC_Dark_Val (all objects)
mAP Person Car Bus Bicycle Motorbike Boat Bottle Chair Dog Cat

YOLOv10 55.8 63.8 66.2 61.5 64.0 61.5 46.1 36.7 33.9 60.6 64.3
LLFormer→YOLOv10 58.7 69.6 70.1 64.1 67.3 65.5 46.3 36.1 36.6 63.9 67.8
LLFormer→YOLOv10† 58.8 70.3 71.0 64.6 67.2 66.1 45.7 36.9 36.6 61.9 67.6
LLFormer→YOLOv10‡ 59.2 70.3 71.1 64.4 67.7 67.2 46.9 37.8 36.5 63.0 67.4
RetinexFormer→YOLOv10 59.5 70.2 70.9 66.0 65.3 64.5 48.4 38.6 37.2 64.5 69.4
RetinexFormer→YOLOv10† 60.0 71.5 71.5 65.1 67.4 67.8 47.5 38.7 38.5 62.8 69.0
RetinexFormer→YOLOv10‡ 61.0 71.4 72.2 67.1 69.1 68.8 48.3 40.9 38.6 64.6 69.4
IA→YOLOv10 59.2 68.5 70.5 64.7 65.4 66.9 48.0 40.1 38.4 62.9 66.9
GDIP→YOLOv10 61.2 71.3 71.9 65.1 68.6 68.4 49.2 41.9 39.5 65.0 71.5
FeatEnHancer→YOLOv10 60.8 69.7 69.9 65.6 69.3 70.0 47.0 41.9 40.7 65.4 68.9
LR-YOLOv10 (Ours) 63.9 72.3 73.3 70.1 72.3 71.6 49.0 48.2 42.3 67.1 72.7
YOLOv8 55.0 62.3 64.2 61.7 62.9 60.9 42.9 37.5 34.4 58.7 64.2
LLFormer→YOLOv8 58.0 67.3 68.1 64.7 66.3 64.1 45.3 37.5 36.9 62.1 67.6
LLFormer→YOLOv8† 57.5 68.0 67.9 63.8 65.3 64.9 43.4 37.9 34.7 61.5 67.4
LLFormer→YOLOv8‡ 59.2 70.3 71.1 64.4 67.7 67.2 46.9 37.8 63.5 63.0 67.4
RetinexFormer→YOLOv8 58.6 68.3 68.5 65.7 64.9 63.3 45.9 40.0 36.8 62.9 70.1
RetinexFormer→YOLOv8† 58.4 68.9 68.3 65.0 66.8 66.5 43.7 40.1 36.9 61.0 67.1
RetinexFormer→YOLOv8‡ 59.2 68.8 68.7 65.5 67.8 65.8 46.6 39.5 37.3 63.4 69.1
IA→YOLOv8 58.7 68.5 68.8 62.0 67.8 64.1 47.7 41.9 67.9 63.2 64.9
GDIP→YOLOv8 58.5 68.5 68.0 64.1 69.1 67.1 44.4 39.3 36.5 62.9 65.2
FeatEnHancer→YOLOv8 59.9 69.1 69.0 65.5 68.5 68.2 45.7 41.1 40.0 64.2 67.3
LR-YOLOv8 (Ours) 62.7 71.5 72.4 68.1 71.1 70.1 50.1 45.6 41.3 66.2 71.1

Methods ExDark [31]
mAP Person Car Bus Bicycle Motorbike Boat Bottle Chair Dog Cat

YOLOv10 50.0 55.5 52.4 63.3 58.9 31.8 42.0 48.4 42.2 58.0 47.5
LLFormer→YOLOv10 46.6 50.7 47.6 55.2 58.0 30.5 41.0 48.2 38.8 52.5 43.7
LLFormer→YOLOv10† 47.9 53.5 50.6 57.9 60.7 32.7 39.6 49.3 38.4 52.2 43.8
LLFormer→YOLOv10‡ 48.6 53.9 49.6 57.9 60.9 33.3 41.7 50.0 40.0 52.6 45.9
RetinexFormer→YOLOv10 47.6 51.3 49.4 58.1 57.3 31.4 41.6 50.6 39.2 54.1 43.2
RetinexFormer→YOLOv10† 49.5 54.5 51.6 60.6 60.8 34.6 42.5 50.6 40.0 53.3 46.5
RetinexFormer→YOLOv10‡ 49.5 55.1 50.2 58.5 60.7 34.4 41.9 51.0 42.6 55.0 45.8
IA→YOLOv10 49.6 56.5 52.0 60.0 60.8 32.1 43.0 48.9 41.5 55.8 45.1
GDIP→YOLOv10 51.2 57.1 51.0 61.7 65.1 36.0 44.8 47.7 43.6 57.1 48.4
FeatEnHancer→YOLOv10 51.8 55.5 50.0 63.6 61.7 36.5 43.5 51.1 45.7 59.5 50.9
LR-YOLOv10 (Ours) 54.5 60.2 56.3 66.9 66.6 37.9 43.7 54.9 44.8 61.6 52.1
YOLOv8 49.2 53.1 50.0 63.8 58.9 34.0 43.8 46.3 43.6 53.8 44.8
LLFormer→YOLOv8 46.3 49.3 45.6 56.2 60.5 34.2 41.9 42.3 40.3 50.9 42.0
LLFormer→YOLOv8† 47.0 51.7 46.8 58.1 62.6 37.4 40.5 43.2 38.9 50.2 41.0
LLFormer→YOLOv8‡ 49.5 54.3 47.9 60.0 63.9 37.0 44.3 46.0 42.0 53.9 45.6
RetinexFormer→YOLOv8 47.6 50.4 46.8 59.3 58.5 34.4 43.6 44.2 42.0 52.7 44.4
RetinexFormer→YOLOv8† 45.8 49.8 46.9 55.6 60.9 35.3 41.6 42.9 39.0 47.7 38.2
RetinexFormer→YOLOv8‡ 47.5 52.2 46.7 57.0 61.4 35.1 43.4 44.0 40.8 51.6 42.9
IA→YOLOv8 50.4 55.9 50.1 64.2 61.9 34.5 45.5 48.5 43.1 54.1 46.2
GDIP→YOLOv8 48.9 51.7 47.8 63.4 61.1 36.7 42.3 43.7 39.1 55.5 47.9
FeatEnHancer→YOLOv8 50.9 54.0 48.9 65.9 61.8 37.1 45.4 45.4 43.0 58.3 49.4
LR-YOLOv8 (Ours) 53.8 57.2 53.7 69.0 66.3 40.3 44.3 53.3 44.7 59.6 49.4

Table 14: Detailed results on VOC_Dark_Val and ExDark [31], with models trained on
VOC_Dark_Train.

17



𝒙
𝒙
+
∆
𝒙

Input ConvIR→YOLOv8 LR-YOLOv8

Input

𝒙
𝒙
+
∆
𝒙

ConvIR→YOLOv8 LR-YOLOv8

Figure 7: Qualitative comparison of detection result stability between the cascade method
(ConvIR→YOLOv8) and our LR-YOLOv8.

YOLOv8 ConvIR→YOLOv8 IA→YOLOv8 GDIP→YOLOv8 LR-YOLOv8 (Ours)

Figure 8: Qualitative comparisons on both VOC_Haze_Val and RTTS between our LR-YOLOv8 and
other methods.

YOLOv8 Retinexformer→YOLOv8 IA→YOLOv8 GDIP→YOLOv8 LR-YOLOv8 (Ours)

Figure 9: Qualitative comparisons on both VOC_Dark_Val and ExDark between our LR-YOLOv8
and other methods.

18



G Broader Impacts

Improving object detection in adverse weather and low-light environments has significant implications
for safety-critical applications, such as autonomous driving, traffic surveillance, and search-and-
rescue missions. In particular, autonomous vehicles often operate under unpredictable environmental
conditions. Failure to accurately detect pedestrians, vehicles, or obstacles in foggy or nighttime
scenarios can lead to life-threatening consequences. Our method aims to fill this gap by jointly
enhancing visual clarity and detection accuracy, offering a potential safety upgrade to existing
perception pipelines.

Nevertheless, this line of research also entails broader considerations. First, the deployment of
advanced visual detection systems could increase surveillance capabilities in urban and rural areas.
While this may improve public security, it also raises concerns about privacy and the potential for
misuse by authoritarian entities.

Second, performance across different demographic and geographic contexts should be evaluated.
Adverse weather conditions may vary significantly between regions (e.g., smog vs. marine fog), and
ensuring that models generalize fairly across different environments and communities is crucial to
avoid biased deployment outcomes.

Lastly, we acknowledge that improved detection in low-visibility environments might be repurposed
for military or security applications. While the proposed method is designed for civilian safety and
transportation enhancement, dual-use risks exist.

19



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a section discussing limitations.

20



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: This paper provides the proof in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides PyTorch-like codes for reproducibility in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

21



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: This paper does not provide open access to data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper specifies all relevant training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper provides details on the type of compute workers (GPUs), memory
requirements, and time of execution for each experiment, ensuring reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

23



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper includes a section discussing potential positive impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.

24

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators and original owners of the assets used,
and the licenses and terms of use are explicitly mentioned and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not include experiments and research with human subjects.

25

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper describes the potential risks to study participants, confirms that
these risks were disclosed, and states that IRB approval was obtained for the user study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Lipschitz Continuity Perspective
	Input Space Analysis: Model Stability in Adverse Conditions
	Parameter Space Analysis: Training Stability

	Lipschitz-Regularized Object Detection
	Lipschitz Regularization via Low-Lipschitz Restoration
	Lipschitz Regularization via Parameter-Space Smoothing

	Experiments
	Experimental Settings
	Object Detection under Adverse Conditions
	Evaluation and Analysis

	Conclusion
	Detailed Proofs
	Detailed Model
	Detailed Datasets
	Detailed Detection Results
	Image Restoration Evaluation
	Qualitative Comparison
	Broader Impacts

