
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FRACTAL-INSPIRED MESSAGE PASSING NEURAL NET-
WORKS WITH FRACTAL NODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for learning on
graph-structured data, but they struggle to balance local and global information pro-
cessing. While graph Transformers aim to address these issues, they often neglect
the inherent locality of Message Passing Neural Networks (MPNNs). Inspired by
the fractal nature of real-world networks, we propose a novel concept, ‘fractal
nodes’, that addresses the limitations of both MPNN and graph Transformer. The
approach draws insights from renormalization techniques to design a message-
passing scheme that captures both local and global structural information. Our
method enforces feature self-similarity into nodes by creating fractal nodes that
coexist with the original nodes. Fractal nodes adaptively summarize subgraph
information and are integrated into MPNN. We show that fractal nodes alleviate an
over-squashing problem by providing direct shortcuts to pass fractal information
over long distances. Experiments show that our method achieves comparable or
better performance to the graph Transformers while maintaining the computational
efficiency of MPNN by improving the long-range dependencies of MPNN.

1 INTRODUCTION

GNNs have emerged as powerful tools for learning on graph-structured data, in various domains such
as social network analysis, molecular property prediction, and recommendation systems (Defferrard
et al., 2016; Veličković et al., 2018; Chen et al., 2020a; Chamberlain et al., 2021). At the core of
this field lies the MPNN (Gilmer et al., 2017), which iteratively propagates information between
neighboring nodes. Recent research has focused on addressing the limitations of MPNN, such as
over-smoothing (Nt & Maehara, 2019) and over-squashing (Alon & Yahav, 2021). To overcome
these challenges, Transformer architectures (Vaswani et al., 2017) have been introduced to the graph
learning community, applying self-attention mechanisms to enable long-range interactions by treating
all nodes as tokens (Dwivedi & Bresson, 2021; Wu et al., 2021; Kreuzer et al., 2021b). While graph
Transformers have shown promise in capturing global information, they often neglect the inherent
locality of MPNNs (Xing et al., 2024). Although approaches such as GraphGPS (Rampášek et al.,
2022) attempt to combine MPNN and Transformer node representations to balance local and global
information, the computational complexity of Transformers remains a challenge.

Motivation. The limitations of both MPNN and graph Transformers motivate us to seek a novel
approach that balances local and global information processing while maintaining computational effi-
ciency. Our inspiration comes from the fractal nature (Mandelbrot, 1983) of real-world networks (Dill
et al., 2002; Kim & Kahng, 2010; Chen et al., 2020b). This fractality exhibits self-similarity over dif-
ferent scales, meaning that parts of the network resemble the whole. We approach this self-similarity
from two perspectives – the structural aspect, where structural patterns repeat across scales, and
the feature aspect, where we aim to enable consistent feature patterns on different network scales.
In fractal network analysis, a popular technique is renormalization (see Fig. 1(a)), which involves
replacing groups of nodes with “super-nodes” to study how network properties change in scales (Song
et al., 2005). The fractality properties and the concept of renormalization motivate us to ask: “Can we
design a message passing scheme inspired by fractal geometry and renormalization that effectively
captures both local and global structural information in graphs?” Our answer is “yes,” and we
introduce our main idea.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Coarsened (renormalized) graph (b) Graph where our fractal nodes are connected.

Figure 1: Heuristic comparison of renormalization and our fractal node process. (a) In renormalization,
the original graph is replaced by a single node according to each box-covering method, resulting
in a coarsened network. (b) After partitioning the original graph into subgraphs, we aggregate the
low and high-frequency information of each subgraph to create fractal nodes (A , A , A). Then,
we propagate the information to the original nodes (see our proposed FN). We also support the
long-distance interactions (orange dashed lines) between fractal nodes (see our proposed FNM).

Main idea: fractal nodes for enforcing self-similarity. We propose a novel concept called a
‘fractal node’, inspired by fractal nature and the renormalization process. Drawing on our perspective
of self-similarity, this approach aims to reflect the characteristics of larger structures in individual
network nodes while enforcing feature self-similarity, thus promoting efficient information flow.
Unlike renormalization, which replaces node groups with single nodes, our method partitions the
given graph into multiple subgraphs and creates fractal nodes for each subgraph that coexist with the
original nodes (see Fig. 1(b)). These fractal nodes represent the information of each subgraph while
maintaining connections to the original structure.

By incorporating subgraph features into each node within the given subgraph through direct connec-
tions with fractal nodes, our approach enables smaller units (nodes) to reflect the properties of larger
units (subgraphs), effectively enforcing feature self-similarity into the nodes. Specifically, we achieve
this by adaptively combining low-frequency (global) and high-frequency (local) components of node
features within each subgraph, where the low-frequency component captures common subgraph
features while a learnable parameter controls the contribution of high-frequency variations. This
process of combining node-specific features with subgraph characteristics enables the seamless
integration of fractal nodes into existing MPNNs. In addition, we ensure that the hidden vectors
of fractal nodes and original nodes are in the same latent space using the same MPNN layer. This
approach allows for the simultaneous consideration of local and global information while maintaining
computational efficiency. Each fractal node adaptively summarizes the information of nodes within
its corresponding subgraph, going beyond mean pooling to capture subgraph-level characteristics.

Assigning fractal node to each subgraph contributes to mitigate over-squashing problem. Each
fractal node has direct first-order connections to every node within the corresponding subgraph,
while preserving the rich node features aggregated across all nodes. This direct connection between
the fractal node and the orignal nodes serves as a shortcut pathway to facilitate the propagation
of the information across multi-hop distances, which has been considered as the primary cause of
over-squashing (Alon & Yahav, 2021). Additionally, we apply an MLP-Mixer (Tolstikhin et al., 2021)
at the last layer to flexibly mix the representations of fractal nodes. This enables inter-subgraph long
range interactions to globally exchange the subgraph context without passing through multiple edges
with potential risk of singal degradation as depth grows.

Contributions. We introduce a novel paradigm, fractal nodes1, for better propagation by enforcing
self-similarity at the subgraph level into individual nodes. Our main contributions are as follows:

• We propose fractal nodes, which can be integrated into MPNNs, inspired by the fractal nature of
networks (Section 3) and discuss the properties of our fractal nodes (Section 4).

• We theoretically and empirically show that fractal nodes alleviate the over-squashing problem
(Section 5.1) and improve the expressive power over MPNN (Section 5.2).

• Our experiments on various benchmark datasets demonstrate that MPNNs augmented with fractal
nodes achieve performance comparable to or better than state-of-the-art graph Transformer-based
models (Section 5.3), while maintaining computational efficiency (Section 5.4).
1Our source code is available here: https://sites.google.com/view/fractalnode/

2

https://sites.google.com/view/fractalnode/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND & RELATED WORK

In this section, we discuss MPNNs, their limitations, graph Transformers, augmented MPNNs and
discuss fractality and self-similarity in networks.

Message passing neural network. Given a graph G = (V, E), we use V and E to denote its nodes
and edges, respectively. The nodes are indexed by v and u such that v, u ∈ V , and an edge connecting
nodes v and u is denoted by (v, u) ∈ E . We consider the case where each node v has a hidden vector
h
(ℓ)
v ∈ Rd, where d is the size of the hidden dimension, and ℓ is the number of layers. MPNNs

iteratively update node representations using the following equation:

h(ℓ+1)
v = φ(h(ℓ)v , ψ(ℓ)({h(ℓ)u : u ∈ N (v)})), (1)

where ψ(ℓ) and φ(ℓ) are aggregation function and update function. Their different definitions result in
different architectures (Kipf & Welling, 2017; Xu et al., 2019a; Bresson & Laurent, 2017).

Limitations of MPNNs. In several studies, MPNN has been investigated for its expressive power
limitations and over-squashing problems. Simple MPNN is only as powerful as the 1-Weisfeler-
Leman graph isomorphism test (Xu et al., 2019b). The over-squashing problem occurs when MPNNs
struggle to propagate information along long paths, resulting in substantial loss of information when
aggregating from too many neighbors into a fixed-sized node feature vector (Alon & Yahav, 2021;
Di Giovanni et al., 2023). In such scenarios, local information spreading along the natural graph
circuits is insufficient to fully capture the local and global context of the graph. This leads to the
emergence of graph Transformers that use self-attention, thereby solving the over-squashing problem
of self-attention with its “everything is connected to everything”.

Graph Transformers. Because of successes of Transformers in natural language process-
ing (Vaswani et al., 2017), and computer vision (Zhou et al., 2021; Touvron et al., 2021), many
previous works have attempted to bring Transformer architecture to the graph domain (Dwivedi &
Bresson, 2021; Müller et al., 2023). Dwivedi & Bresson (2021) proposed the use of graph Laplacian
eigenvectors as node positional encodings. Subsequent research has explored various strategies to
enhance graph Transformer performance. Rampášek et al. (2022) proposed a general framework,
GraphGPS, that combine MPNN and graph Transformer including self-attentions and positional
or structure encoding. Ying et al. (2021) proposed Graphormer that uses attention mechanisms to
estimate several types of encoding, such as centrality, spatial, and edge endodings. Wu et al. (2021)
applies the MPNN directly to all nodes and then applies a Transformer, which is computationally
intensive. He et al. (2023) generalize ViT Dosovitskiy et al. (2021) to graphs and Ma et al. (2023)
show that adding inductive biases to graph Transformers removes the need for MPNN modules in
GraphGPS. Exphormer improves GraphGPS by using self-attention on expander graphs (Shirzad
et al., 2023).

One common belief of the advantage of the graph Transformer over MPNN is its capacity in capturing
long-range interactions while alleviating over-squashing in MPNN (Alon & Yahav, 2021; Di Giovanni
et al., 2023). While graph Transformers have shown promise in addressing the limitations of MPNNs,
they often come at the cost of increased computational complexity, typically scaling from O(|E|)
to O(|N |2), where |E| is the number of edges and |N | is the number of nodes. This computational
burden calls for more efficient architectures that can capture global information without the full
quadratic cost of attention mechanisms.

Augmented MPNNs. To improve information flow and address the limitations of standard MPNNs,
various strategies have been proposed (Di Giovanni et al., 2023; Shi et al., 2023; Choi et al., 2024).
One approach involves incorporating additional global graph features during the representation
learning process (Gilmer et al., 2017; Hu et al., 2020). Another effective method is rewiring the
input graph to enhance connectivity and alleviate structural bottlenecks (Gasteiger et al., 2019; Black
et al., 2023; Karhadkar et al., 2023; Nguyen et al., 2023). These adjustments allow for more effective
information flow within the network. Another example of graph augmentation is the virtual node,
which adds a new node to the graph to enhance information exchange between all pairs of nodes.
This heuristic, introduced by Gilmer et al. (2017), has been observed to improve performance on
various tasks. Further analysis by Hwang et al. (2022) and Cai et al. (2023) has explored the role of
virtual nodes in mitigating under-reaching and over-smoothing issues.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Subgraphs in graph learning. Several works introduce hierarchical clustering and coarsening for
learning on graphs (Dong et al., 2023). Chiang et al. (2019) use graph clustering to identify well-
connected subgraphs on large graphs. HC-GNN (Zhong et al., 2023) shows competitive performance
in node classification on large-scale graphs, using hierarchical community structures for message
passing. In graph Transformers, several hierarchical models (Zhao et al., 2022; Gao et al., 2022;
Zhu et al., 2023; He et al., 2023) attempt to manage computational complexity, though they still face
challenges with scalability as all nodes remain within the computational burden of the Transformer
architecture. However, our approach, the incorporation of fractal nodes to MPNN, can reduce this
computational cost while preserving structural information.

Fractality and self-similarity in networks. The concept of fractals, introduced by Mandelbrot
(1983), transformed our understanding of complex, irregular structures in nature by revealing self-
similarity across different scales. This insight has since been applied to various fields, including
network science, where many real-world networks have been shown to exhibit fractal structures and
scale-free properties (Song et al., 2005; Kim et al., 2007; Fronczak et al., 2024). For instance, social
networks, the World Wide Web, and even protein interaction networks have been found to have fractal
properties (Chen et al., 2020b).

In our work, we define fractality as the degree to which subgraph properties resemble those of the
entire graph when consistently partitioned. While traditional fractal analysis (e.g., renormalization
techniques) commonly uses box-covering algorithms (Kim et al., 2007), we bring this concept to the
constraints of benchmark datasets where absolute node positions are unknown. Instead, we construct
subgraphs through graph partitioning.

3 FRACTAL-INSPIRED MESSAGE PASSING WITH FRACTAL NODES

In this section, we propose our fractal nodes and explain how they contribute to overcome limitations
of existing MPNNs. We describe how to enfore self-similarity to a graph by assigning fractal nodes
and how to implement intra and inter-subgraph local and global interactions guided by fractal nodes.

Notaion. Let {V1, . . . ,VC} be the set of node subsets corresponding to C subgraphs, where C is
the number of subgraphs. Gc = (Vc, Ec) is the induced subgraph of G. We define h(ℓ)v,c as the hidden
vector of node v of the c-th subgraph in layer ℓ, and f (ℓ)c as the hidden vector of the fractal node of
the c-th subgraph in the ℓ-th layer.

Message passing with fractal nodes. We first introduce the message passing process, including frac-
tal nodes. The message passing process for both the node-level and fractal node-level representations
proceeds as follows:

h̃(ℓ+1)
v,c = φ(ℓ)(h(ℓ)v,c, ψ

(ℓ)(h(ℓ)u,c : u ∈ Nv)), (2)

f (ℓ+1)
c = φ

(ℓ)
FN(f

(ℓ)
c , ψ

(ℓ)
FN(h̃

(ℓ+1)
u,c : u ∈ Nv)), (3)

h(ℓ+1)
v,c = φ̃(ℓ)(h̃(ℓ+1)

v,c , f (ℓ+1)
c), (4)

where N (v) is the set of neighbors of node v. Equation (2) performs standard message passing at the
node level. If the graph is not partitioned into subgraphs, Equation (2) alone is equivalent to standard
MPNN. Equation (3) updates the fractal node representations. It aggregates hidden vectors from all
nodes in the subgraph, Vc, using the h̃(ℓ+1)

u,c , and then updates the fractal node representation. ψ(ℓ)
FN

and φ(ℓ)
FN are aggregate and update functions for fractal nodes, which will be explained in more detail.

The update function φ̃(ℓ) is the step that shows that the message f (ℓ+1)
c is propagated to h(ℓ)v,c.

How to create fractal nodes. As shown in Fig. 1(b), fractal nodes are created from partitioned
subgraphs. To partition into subgraphs, we consider the METIS (Karypis & Kumar, 1998) algorithm
for its computational efficiency. How we use METIS is discussed in more detail in Appendix B.1.
Following our dual perspective of self-similarity, each fractal node serves two purposes: (1) repre-
senting structural patterns of a subgraph that potentially mirror the whole graph’s topology and (2)
enabling feature self-similarity by integrating low and high-frequency components from the node

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

features within the subgraph. While graph partitioning preserves structural patterns, we focus on
achieving feature self-similarity by adaptively combining low-pass filtering (LPF) and high-pass
filtering (HPF). We first show that mean pooling captures only the direct current (DC) component
(i.e., the lowest frequency component) of the signal.
Theorem 3.1 (Mean pooling as a low-pass filter capturing the DC component). Let hv represent the
hidden state of node v in subgraph Vc and let Hc = [h1, h2, . . . , hn] ∈ Rn×d be the matrix of node
features for all nodes in Vc where n = |Vc| is the number of nodes in the subgraph. The mean pooling
operation applied to the node features is equivalent to extracting the DC or the lowest frequency
component of the signal in the frequency domain.

As shown in Theorem 3.1, mean pooling corresponds to extracting the lowest frequency component
— also known as the DC component — in the Fourier domain. This DC component capture the global
characteristic of the subgraph, but it ignores higher-frequency variations that represent local details.
A formal proof of Theorem 3.1 is provided in Appendix A.

While Theorem 3.1 shows that mean pooling only captures the DC component, fractal nodes go
beyond this limitation by using LPF and HPF. We adaptively rescale the high-frequency component,
and combine LPF and HPF together to form fractal nodes:

f (ℓ+1)
c = LPF(h(ℓ+1)

v,c) + ω(ℓ)
c HPF(h(ℓ+1)

v,c), (5)

where ω(ℓ)
c is a learnable parameter controlling the contribution of high-frequency components. We

use a learnable scalar parameter, ω(ℓ)
c ∈ R1, or a learnable vector parameter, ω(ℓ)

c ∈ Rd. The LPF is
computed by averaging the node features within the subgraph, so it can capture global information:

LPF(h(ℓ+1)
v,c) =

1

|Vc|
∑
v∈Vc

h(ℓ+1)
v,c . (6)

Equation (6) is analogous to mean pooling and represents the global, low-frequency component of
the subgraph. To capture the finer details, the HPF is applied by subtracting the low-pass filtered
output from the original node hidden vector. This allows the model to retain the local variations that
would otherwise be lost:

HPF(h(ℓ+1)
v,c) = h(ℓ+1)

v,c − LPF(h(ℓ+1)
v,c). (7)

Fractal Nodes mixing with MLP-Mixer. We can also allow fractal nodes to exchange messages,
as the coarsened network in Fig. 1(a) takes advantage of long-distance interactions. To do this, we
can apply the MLP-Mixer layer (Tolstikhin et al., 2021) to the fractal nodes in the last layer. This
means that we do not need to create a coarsened network, and the MLP-Mixer flexibly mix the
representations of fractal nodes:

F̃ = MLPMixer(F (L)), F (L) = [f
(L)
1 , f

(L)
2 , ..., f

(L)
C], (8)

where F (L) is the matrix of all fractal node representations at final layer L. The MLP-Mixer layer
consists of token-mixing and channel-mixing steps:

U = F (L) + (W2ρ(W1LayerNorm(F (L)))) ∈ RC×d (9)

F̃ (L) = U + (W4ρ(W3LayerNorm(UT)T) ∈ RC×d, (10)
where ρ is a GELU nonlinearity, LayerNorm(·) is layer normalization, and matrices W1 ∈
Rd1×C ,W2 ∈ RC×d1 ,W3 ∈ Rd2×d,W4 ∈ Rd×d2 are learnable weight matrices, where d1 and
d2 are the tunable hidden widths in the token-mixing and channel-mixing MLPs.

Instance of our framework. To better understand our framework, we show how to integrate fractal
nodes into MPNNs: GCN (Kipf & Welling, 2017), GINE (Xu et al., 2019a), and GatedGCN (Bresson
& Laurent, 2017). We will use these MPNNs for our experiments. The update equation for GCN +
FN is the following:

h̃(ℓ+1)
v,c = σ

(
h(ℓ)v,c +

∑
u∈N(v)

1√
degvdegu

h(ℓ)u,cW
(ℓ)
)
,

f (ℓ+1)
c = LPF(h̃(ℓ+1)

v,c) + ω(ℓ)
c · HPF(h̃(ℓ+1)

v,c),

h(ℓ+1)
v,c = h̃(ℓ+1)

v,c + f (ℓ+1)
c ,

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where σ a ReLU activation function, and degv and degu are their node degrees. Due to space
constraints, the update equations of GINE and GatedGCN can be found in Appendix B.2 and we
provide implementation details in Appendix B.

The method of applying the fractal nodes as in Equation (11) is called FN, and the method of using
the fractal nodes of the last layer by mixing (see Equation (8)) is called FNM from now on.

The output layer. Once the final representation hG is derived, we use a multi-layer perceptron
(MLP) as an output layer to predict graph-level outputs:

yG = MLP(hG), hG = MeanPool(H(L) for FN, F̃ (L) for FNM) ∈ Rd,

where yG is either a scalar for regression tasks or a vector for classification tasks, and H(L) =

[h
(L)
1 , ..., h

(L)
|V |] is the matrix of node representations at the final layer L for all nodes in the graph.

4 PROPERTIES OF FRACTAL NODES

In this section, we analyze why fractal nodes are effective and what properties they have, discuss the
model complexity, and compare them with previous work.

4.1 WHY FRACTAL NODES WORK?

Theoretical analysis. We provide theoretical analysis showing that fractal nodes help mitigate
oversquashing by reducing the effective resistance between nodes.
Theorem 4.1 (Resistance reduction). Let G be the original graph and Gf be the augmented graph
with fractal nodes. For any nodes u, v ∈ G, the effective resistance in Gf satisfies:

Rf (u, v) ≤ R(u, v), (12)

where Rf (u, v) is the effective resistance in Gf and R(u, v) is the original effective resistance in G.

This reduction in effective resistance directly improves signal propagation between distant nodes:
Theorem 4.2 (Signal propagation with fractal nodes). For a MPNN with fractal nodes, the signal
propagation between nodes u, v after ℓ layers satisfies:

∥h(ℓ)u − h(ℓ)v || ≤ exp(−ℓ/Rf (u, v))||h(0)u − h(0)v ||, (13)

where Rf (u, v) is the effective resistance in the augmented graph with fractal nodes.

Since Rf (u, v) ≤ R(u, v), fractal nodes improve the worst-case signal propagation bound compared
to the original graph. The proofs and detailed analysis can be found in Appendices L.2 and L.3.

−1.0 −0.5 0.0 0.5 1.0
Frequency

0

20

40

60

80

No
rm

al
ize

d
M

ag
ni

tu
de

GCN
Self-Attention
Mean Pooling
Fractal Node

Figure 2: Normalized frequency response
on PEPTIDES-STRUCT.

Frequency response analysis. We analyze the fre-
quency response of node representations to understand
the information encoding properties of fractal nodes.
Fig. 2 shows the normalized frequency response for
GCN, self-attention, mean pooling, and fractal nodes.
Self-attention shows a prominent response in low and
high frequencies but with a potential overemphasis on
global information. Mean pooling shows a minimal re-
sponse, primarily in the low-frequency domain, which
suggests an oversimplification of node representations
by losing local details. In contrast, fractal nodes show a
distinctive response for low and high frequencies. The
prominent low-frequency response captures the global
context of subgraphs, while the elevated high-frequency
response ensures the retention of fine-grained, local de-
tails. This unique combination highlights the ability of fractal nodes to encode subgraph-level patterns
while preserving node-level distinctions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 8 16 32
Number of Subgraphs

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Mean

Figure 3: Structural similarity of node
centrality distribution in PEPTIDES.

Self-similarity in structural patterns and feature repre-
sentations. Our fractal nodes work by using structural
and feature self-similarity. In structural perspective, we
observe it through node centrality distributions at various
scales. We use betweenness centrality (Freeman, 1977)
as it captures local and global structural importance, par-
ticularly in networks where even low-degree nodes can
be critical bridges (Kitsak et al., 2007). We partition the
graphs into different numbers of subgraphs and compare
the distributions between the original graph and its sub-
graphs (See Appendix C for more details). As shown in
Fig. 3, the structural similarity increases with the number of subgraphs.

From the feature perspective, our fractal nodes go beyond structural patterns by adaptively combining
LPF and HPF to represent both global and local features. By using the learnable parameter ω(ℓ)

c ,
fractal nodes can represent multi-scale feature effectively. While mean pooling only retains global
information through DC components, our approach preserves global patterns and local variations
in the feature space. This dual consideration allows our method to better capture the inherent
self-similarity of real-world networks.

Expressive power of fractal nodes. The expressive power of fractal nodes can be understood
through the lens of existing theoretical results on subgraph-based approaches. The methods have
been shown to increase expressive power beyond MPNNs. Encoding local subgraphs is stronger
than 1-WL and 2-WL tests (Zhao et al., 2022, Theorem 4.3). In the context of subgraph WL (SWL)
test (Zhang et al., 2023), fractal nodes achieve expressive power comparable to SWL with additional
single-point aggregation and potentially approach SWL with additional global aggregation (Zhang
et al., 2023, Theorem 4.4), as the fractal nodes implicitly perform a form of global aggregation within
each subgraph. We will empirically verify expressive power in Section 5.2.

4.2 MODEL COMPLEXITY

Our fractal nodes show improvements in computational efficiency compared to Transformer-based
models such as graph Transformers (Dwivedi & Bresson, 2021) and GraphGPS (Rampášek et al.,
2022). The time complexity of our FN method is O(L(|V|+ |E|)), where L is the number of layers,
|V| is the number of nodes, and |E| is the number of edges. The FNM introduces an additional mixing
step through the MLP-Mixer, leading to a time complexity of O(L(|V| + |E|) + Cd2). C is the
number of subgraphs and d is the hidden dimension. Given that C is much smaller than |V|, this
term does not dominate the overall complexity, preserving the efficiency of the model. In contrast,
graph Transformers incur a time complexity of O(L(|V|2)), due to the quadratic cost of computing
self-attention over all node pairs, which is expensive for large graphs. Similary, GraphGPS combines
MPNNs with self-attention, resulting in comparable quadratic complexity O(L(|V|2)). Thus, fractal
nodes offer a computational advantage over graph Transformer-based methods.

4.3 COMPARISON WITH PRIOR WORK

Comparison to graph coarsening methods. Coarformer (Kuang et al., 2022) tries to use coarsened
and original graphs as separate views, where the coarsened graph is input to the Transformer, while
ANS-GT (Cai et al., 2021) feeds a sequence of node representations to the graph Transformer
by combining original, global, and coarsened node representations formed via adaptive sampling.
Our method, on the other hand, incorporates fractal nodes representing subgraph information into
the MPNN and enables fractal nodes to exchange messages with the original nodes and exchange
information between fractal nodes via MLP-Mixer.

Comparison to virtual node. If we do not split into subgraphs, there will be only one fractal node.
This can be compared to a virtual node (Gilmer et al., 2017; Hwang et al., 2022; Cai et al., 2023),
which is known to have the information of a global node. While both approaches facilitate global or
subgraph-level global information exchange, the key difference lies in how they process information.
Virtual nodes aggregate global information from the entire graph, whereas fractal nodes operate at a
subgraph level. A virtual node has its own update and aggregation functions that process messages

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

from all graph nodes, while regular nodes incorporate both their local neighborhood messages and
the virtual node’s message. In contrast, our fractal nodes adaptively decompose and process both
low and high frequency components of subgraph features. This allows fractal nodes to capture richer
information at the subgraph level compared to virtual node implementations that typically aggregate
global information.

5 EXPERIMENTS

To evaluate the effectiveness of our proposed fractal nodes, we conduct extensive experiments on
various tasks. We aim to answer the following key questions: (Q1.) Can fractal nodes mitigate
over-squashing compared to MPNNs? (Q2.) Do fractal nodes improve expressiveness compared to
MPNNs? (Q3.) How do fractal nodes compare to MPNNs and other graph Transformers in terms of
performance on various benchmark datasets? (Q4.) Does the lower theoretical complexity of fractal
nodes lead to faster run time? Through this experiment, we aim to determine if fractal nodes provide
meaningful benefits. Afterwards, we perform a series of ablation and sensitivity analyses.

5.1 ANALYSIS ON OVER-SQUASHING (Q1.)

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GCN
GCN + FNM

Figure 4: The amount of sig-
nal propagated across the graphs
w.r.t. the normalized Rtot in
PEPTIDES-FUNC. More results
are in Appendix F.

Singal propagation and effective resistance. The signal prop-
agation of MPNNs is inversely proportional to the total effective
resistance Rtot (Di Giovanni et al., 2023). Consistent with our
theoretical analysis in Theorems 4.1 and 4.2, this motivates us to
check if adding fractal nodes help maintain signal flow across a
graph with high Rtot. Rtot is the total effective resistance between
all pairs of nodes in a graph. The theoretical details of effective
resistance and signal propagation are provided in Appendix F.
The results in Section 5.1 validate our theoretical predictions –
GCN+FN mitigates the decay of signal propagation with higher
Rtot compared to GCN. GCN fails to maintain the magnitude of
signal flow under severe bottleneck structure, indicated as higher
total effective resistance. In contrast, GCN+FNM demonstrates resilience to over-squashing and
maintains higher levels of signal propagation even under the highest Rtot. This improvement can
be attributed to fractal nodes, which serve as single-hop shortcuts to connect all nodes and enable
efficient long-range interactions by exchanging the features across them through MLP-Mixer layer.

2 3 4 5 6 7 8
r (the problem radius)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GCN
GINE
GatedGCN
GCN+FNM

GINE+FNM

GatedGCN+FNM

Figure 5: Test accuracy in the
TREENEIGHBOURMATCH problem.

Fractal nodes alleviates over-squashing. We evaluate
our fractal nodes on the TREENEIGHBOURSMATCH pro-
posed by Alon & Yahav (2021), which has tree structures
that show fractal-like properties. The dataset helps evalu-
ate over-squashing. In this dataset, each example consists
of a binary tree of depth r, with the task of predicting the
label for target node by matching its degree of neighbors
with a leaf node. As shown in Fig. 5, standard MPNNs
(i.e., GCN, GINE, GatedGCN) fail to generalize for r > 4,
while our fractal nodes mitigate over-squashing and gener-
alize well up to r = 7. We empirically show that MPNNs
augmented with fractal nodes can directly propagate long-
distance information, avoiding the over-squashing problem.

5.2 EXPRESSIVE POWER OF FRACTAL NODES (Q2.)
Table 1: Synthetic results (Accuracy ↑)

Method CSL SR25 EXP

GCN 10.00 6.67 52.17
GINE 10.00 6.67 51.35
GatedGCN 10.00 6.67 51.25

GCN + FNM 39.67 100.0 86.40
GINE + FNM 47.33 100.0 95.58
GatedGCN + FNM 49.67 100.0 96.50

We experimentally evaluate the expressive power of fractal
nodes on 3 simulated datasets: CSL (Murphy et al., 2019),
EXP (Abboud et al., 2021), and SR25 (Balcilar et al.,
2021). Each dataset contains graphs that are indistinguish-
able by the 1 to 3-WL test, and detailed descriptions are
provided in Appendix D.1. Table 1 shows that our model

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test performance on two peptide datasets from LRGB (Dwivedi et al., 2022) and four other
benchmark datasets (Hu et al., 2020; Dwivedi et al., 2023). ↑ denotes the higher the better and ↓
denotes the lower the better. Top three models are colored by first, second, third.

Method PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MOLTOX21

AP ↑ MAE ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑

GCN 0.6328±0.0023 0.2758±0.0012 0.9269±0.0023 0.5423±0.0056 0.7529±0.0098 0.7525±0.0031
GINE 0.6405±0.0086 0.2780±0.0021 0.9705±0.0023 0.6131±0.0035 0.7885±0.0034 0.7730±0.0064
GatedGCN 0.6300±0.0029 0.2778±0.0017 0.9776±0.0017 0.6628±0.0017 0.7874±0.0119 0.7641±0.0057

GT - - 0.9083±0.0016 0.5975±0.0029 0.7350±0.0040 0.7500±0.0060
GraphiT - - - - 0.7460±0.0100 0.7180±0.0130
Graphormer - - - - 0.7930±0.0040 0.7730±0.0800
Transformer + LapPE 0.6326±0.0126 0.2529±0.0016 0.9083±0.0016 0.5975±0.0029 - 0.7323±0.0057
SAN + LapPE 0.6384±0.0121 0.2683±0.0043 - - 0.7775±0.0061 0.7130±0.0080
EGT - - 0.9817±0.0009 0.6870±0.0041 - -
GraphGPS 0.6534±0.0091 0.2509±0.0014 0.9805±0.0013 0.7230±0.0036 0.7880±0.0101 0.7570±0.0040
GRIT 0.6988±0.0082 0.2460±0.0012 0.9811±0.0011 0.7647±0.0089 - -
Graph-ViT/MLP-Mixer 0.6970±0.0080 0.2449±0.0016 0.9846±0.0009 0.7158±0.0009 0.7997±0.0102 0.7910±0.0040
Exphormer 0.6527±0.0043 0.2481±0.0007 0.9841±0.0035 0.7469±0.0013 - -
GECO 0.6975±0.0025 0.2464±0.0009 - - 0.7980±0.0200 -

CRaWl 0.6963±0.0079 0.2506±0.0022 0.9794±0.0050 0.6901±0.0026 0.7707±0.1490 -
PNA - - 0.9794±0.0012 0.7035±0.0063 0.7905±0.0132 -
GNN-AK+ 0.6480±0.0075 0.2736±0.0012 - 0.7219±0.0013 0.7961±0.0119 -
SUN 0.6730±0.0115 0.2498±0.0008 - - 0.8003±0.0055 -
CIN - - - - 0.8094±0.0057 -

GCN + FN 0.6802±0.0043 0.2530±0.0004 0.9393±0.0084 0.6006±0.0070 0.7564±0.0059 0.7670±0.0073
GINE + FN 0.6815±0.0059 0.2515±0.0020 0.9790±0.0012 0.6584±0.0069 0.7890±0.0104 0.7751±0.0029
GatedGCN + FN 0.6778±0.0056 0.2536±0.0019 0.9826±0.0012 0.7125±0.0035 0.7967±0.0098 0.7759±0.0054

GCN + FNM 0.6787±0.0048 0.2464±0.0014 0.9455±0.0004 0.6413±0.0068 0.7866±0.0034 0.7882±0.0041
GINE + FNM 0.7018±0.0074 0.2446±0.0018 0.9786±0.0004 0.6672±0.0068 0.8127±0.0076 0.7926±0.0021
GatedGCN + FNM 0.6950±0.0047 0.2453±0.0014 0.9848±0.0005 0.7526±0.0033 0.8097±0.0047 0.7922±0.0054

achieves perfect accuracy on all 3 datasets while MPNNs fail (see detailed result in Appendix M).
Our results are empirical but align with our discussion in Section 4.1.

5.3 EXPERIMENTS ON GRAPH BENCHMARKS (Q3.)

Experimetnal setting and baselines. We evaluate our method on two different types of tasks:
graph-level prediction and large-scale node classification. For graph-level tasks, we use six benchmark
datasets: two peptide datasets from LRGB (Dwivedi et al., 2022), two graph-level super-pixel image
datasets from Benchmarking GNNs (Dwivedi et al., 2023), and two molecular datasets from OGB
dataset (Hu et al., 2020). We compare our fractal nodes to MPNNs, graph Transformer-based
models, and other state-of-the-art models: GCN (Kipf & Welling, 2017), GINE (Xu et al., 2019a),
GatedGCN (Bresson & Laurent, 2017), GT (Dwivedi & Bresson, 2021), GraphiT (Mialon et al., 2021),
Graphormer (Ying et al., 2021), Transformer + LapPE, SAN (Kreuzer et al., 2021a), EGT (Hussain
et al., 2022), GraphGPS (Rampášek et al., 2022), GRIT (Ma et al., 2023), GraphViT/MLPMixer (He
et al., 2023), Exphormer (Shirzad et al., 2023), GECO (Sancak et al., 2024), GNN-AK+ (Zhao
et al., 2022), SUN (Frasca et al., 2022), CIN (Bodnar et al., 2021), CraWl (Tönshoff et al., 2023),
and PNA (Corso et al., 2020). Detailed experimental settings for graph-level tasks are provided
in Appendix D, while the setup and baseline comparisons for the large-scale node classification
experiments are described separately in Appendix K.

Results on graph-level tasks. Our proposed fractal nodes (FN and FNM) consistently enhance
the performance of baseline MPNNs on all benchmark datasets, often surpassing graph Transformer
models. In Table 2, for instance, on PEPTIDES-FUNC dataset, GINE+FNM achieves an average
precision (AP) of 0.7018, outperforming both Exphormer and GraphGPS. The capabilities of base
MPNN impact performance outcomes. Our fractal nodes framework is model-agnostic and augments
various MPNNs. Our fractal nodes capture global information at the subgraph level through low
and high-pass filtering and enable long-range interactions without self-attention layers. The superior
performance of GRIT on CIFAR10 stems from its self-attention, positional encoding, and degree
scalers. Our comparable performance with Graph-ViT and Exphormer on MNIST shows that fractal
nodes can effectively capture local and global information without self-attention layer.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results on large-scale graphs. The effectiveness of our method is particularly evident in large-
scale graph experiments in Table 16 of Appendix K. On ogbn-arxiv, GCN+FN improves accuracy
from 71.74% to 73.03%, while on ogbn-product, GraphSAGE+FNM demonstrates a substantial
improvement from 78.29% to 83.11%. These improvements are achieved while maintaining the
computational efficiency of MPNNs, offering a more practical alternative to graph Transformers for
large-scale graph learning tasks.

5.4 RUNTIME COMPARISON (Q4.)
Table 3: Runtime and memory con-
sumption on PETIDES-FUNC.

Time/epoch Memory

GCN 4.04 s 250 MB
Trans.+LapPE 10.01 s 6,661 MB
GraphGPS 12.01 s 6,904 MB

GCN + FN 5.03 s 512 MB
GCN + FNM 6.17 s 667 MB

As we discussed in Section 4.2, our fractal nodes provide ben-
efits in capturing long-range dependencies without increasing
computational complexity. As shown in Table 3, GCN+FN re-
sults in only a slight runtime increase compared to base MPNNs.
This efficiency extends to large-scale graphs (see Appendix J.2)
— on ogbn-arxiv, GCN+FN maintains identical computational
requirements to GCN. Even with FNM , the overhead remains
minimal and far below graph Transformers such as GraphGPS
and Exphormer. Our empirical analysis of graph partitioning algorithms (detailed in Table 14) shows
that using METIS withO(|E|) complexity enables efficient fractal node creation even for large graphs
such as ogbn-arxiv and ogbn-products. Given these results shown in Table 16, we believe our method
achieves a balance between accuracy and computational efficiency.

5.5 ABLATION, SENSITIVITY, AND ADDITIONAL STUDIES

We report ablation studies for ω(ℓ)
c and HPF in Appendices E.1 and E.2. We report results when ω(ℓ)

c is
zero, that is, without HPF, and when we use either a scalar parameter (denoted ‘SC’) or a learnable vec-
tor parameter (denoted ‘VC’). We also report sensitivity studies onC, i.e., the number of fractal nodes,
and additional analyses on a variant of message passing between fractal nodes in Appendices E.5
and E.6. Analysis of the use of partitioning algorithms other than METIS is reported in Appendix I.

Table 4: Comparison to rewiring methods

Method PEPTIDES-FUNC PEPTIDES-STRUCT

AP ↑ MAE ↓
GCN 0.5930±0.0023 0.3496±0.0013

+ FoSR 0.5947±0.0035 0.3473±0.0007

+ GTR 0.5075±0.0029 0.3618±0.0010

+ SDRF 0.5947±0.0126 0.3478±0.0013

+ BORF 0.5994±0.0037 0.3514±0.0009

+ PANDA 0.6028±0.0031 0.3272±0.0001

+ LASER 0.6440±0.0010 0.3043±0.0019

+ FN 0.6445±0.0057 0.2535±0.0012

Fractal nodes vs. augmented MPNNs. We com-
pare our fractal nodes to 6 augmented MPNNs includ-
ing graph rewiring methods: DIGL (Gasteiger et al.,
2019), SDRF (Topping et al., 2022), FoSR (Karhad-
kar et al., 2023), BORF (Nguyen et al., 2023),
GTR (Black et al., 2023), PANDA (Choi et al., 2024),
and LASER (Barbero et al., 2023) (see Appendix E.3
for detail setup). If there is only one fractal node and
no subgraph is created, our method can be reduced to
the virtual node method, so we compare our fractal
nodes and virtual nodes in Appendix E.4.

6 CONCLUDING REMARK

We introduced the fractal nodes to enforce self-similarity into MPNNs, inspired by the fractal
nature of real-world networks. Our method effectively combines local and global graph information,
addressing limitations of both MPNNs and graph Transformers. Experimental results on 6 benchmark
datasets show the superiority of our approach, consistently improving the performance of MPNNs
and competing advantageously with state-of-the-art graph Transformers-based methods.

Limitations and future directions. While fractal nodes are effective, they are currently designed
to extend MPNN architectures. Although efficient and widely used, the use of METIS for subgraph
partitioning may not be optimal for all types of graphs. While alternative partitioning methods
could be used for large-scale graphs, the computational efficiency of METIS limits our options for
more computationally intensive partitioning approaches. Future work could explore better ways to
construct subgraphs at scale, and it may be worthwhile to investigate extending our fractal nodes in
ways better suited for graph Transformers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICAL STATEMENTS

In terms of the broader impact of this research on society, we do not see the very negative impacts
that might be expected.

REPRODUCIBILITY STATEMENT

To ensure reproducibility and completeness, we have included appendices in this paper. Appendix A
provides a proof of Theorem 3.1. We provide details of our experiments presented in the paper in
Appendix D. Only a part of the source code that reproduces the experiments is available at https:
//sites.google.com/view/fractalnode/. We plan to make all the code available after
acceptance.

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence (IJCAI), 2021.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i80OPhOCVH2.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pp. 599–608. PMLR, 2021.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
GNNs through the lens of effective resistance. In International Conference on Machine Learning,
2023. URL https://proceedings.mlr.press/v202/black23a.html.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in neural
information processing systems, 34:2625–2640, 2021.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=uxpzitPEooJ.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. In International Conference on Machine Learning, pp. 3408–3430. PMLR, 2023.

Benjamin Paul Chamberlain, James Rowbottom, Maria Goronova, Stefan Webb, Emanuele Rossi,
and Michael M Bronstein. GRAND: Graph neural diffusion. In International Conference on
Machine Learning, 2021.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=8KYeilT3Ow.

11

https://sites.google.com/view/fractalnode/
https://sites.google.com/view/fractalnode/
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://proceedings.mlr.press/v202/black23a.html
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=8KYeilT3Ow

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020a.

Ying Chen, Rongpeng Li, Zhifeng Zhao, and Honggang Zhang. On the capacity of fractal d2d social
networks with hierarchical communications. IEEE Transactions on Mobile Computing, 20(6):
2254–2268, 2020b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266,
2019.

Jeongwhan Choi, Sumin Park, Hyowon Wi, Sung-Bae Cho, and Noseong Park. PANDA: Expanded
width-aware message passing beyond rewiring. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=J1NIXxiDbu.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
2016.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=hmv1LpNfXa.

Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance.
Journal of Physics: Complexity, 3(2):025008, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M.
Bronstein. On over-squashing in message passing neural networks: The impact of width,
depth, and topology. In International Conference on Machine Learning, 2023. URL https:
//proceedings.mlr.press/v202/di-giovanni23a.html.

Stephen Dill, Ravi Kumar, Kevin S McCurley, Sridhar Rajagopalan, Daksh Sivakumar, and Andrew
Tomkins. Self-similarity in the web. ACM Transactions on Internet Technology (TOIT), 2(3):
205–223, 2002.

Honghua Dong, Jiawei Xu, Yu Yang, Rui Zhao, Shiwen Wu, Chun Yuan, Xiu Li, Chris J Maddison,
and Lei Han. Megraph: capturing long-range interactions by alternating local and hierarchical
aggregation on multi-scaled graph hierarchy. Advances in Neural Information Processing Systems,
36:63609–63641, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=in7XC5RcjEn.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

12

https://openreview.net/forum?id=J1NIXxiDbu
https://openreview.net/forum?id=hmv1LpNfXa
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://openreview.net/forum?id=in7XC5RcjEn
https://openreview.net/forum?id=in7XC5RcjEn

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. In Advances in Neural Information
Processing Systems, volume 35, pp. 31376–31390, 2022.

Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pp. 35–41,
1977.

Agata Fronczak, Piotr Fronczak, Mateusz J Samsel, Kordian Makulski, Michał Łepek, and Maciej J
Mrowinski. Scaling theory of fractal complex networks. Scientific Reports, 14(1):9079, 2024.

Han Gao, Xu Han, Jiaoyang Huang, Jian-Xun Wang, and Liping Liu. Patchgt: Transformer over
non-trainable clusters for learning graph representations. In Learning on Graphs Conference, pp.
27–1. PMLR, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in neural information processing systems, 2019.

Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a graph. SIAM
review, 50(1):37–66, 2008.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International conference on machine learning, pp.
12724–12745. PMLR, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems (NeurIPS), 33:22118–22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-LSC:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of virtual
nodes in graph neural networks for link prediction (extended abstract). In The First Learning on
Graphs Conference, 2022. URL https://openreview.net/forum?id=dI6KBKNRp7.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral rewiring for
addressing oversquashing in GNNs. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=3YjQfCLdrzz.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Jin Seop Kim, Kwang-Il Goh, Byungnam Kahng, and Doochul Kim. Fractality and self-similarity in
scale-free networks. New Journal of Physics, 9(6):177, 2007.

Pureun Kim and Byungnam Kahng. Fractal network in protein interaction network model. Journal of
the Korean Physical Society, 56(3):1020–1024, 2010.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

13

https://openreview.net/forum?id=dI6KBKNRp7
https://openreview.net/forum?id=3YjQfCLdrzz

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maksim Kitsak, Shlomo Havlin, Gerald Paul, Massimo Riccaboni, Fabio Pammolli, and H Eugene
Stanley. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on
real networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(5):056115,
2007.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. In Advances in Neural Information Processing
Systems, volume 34, pp. 21618–21629, 2021a.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021b.

Weirui Kuang, Zhen WANG, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer
for large graph via graph coarsening, 2022. URL https://openreview.net/forum?id=
fkjO_FKVzw.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems, volume 34, pp. 20887–
20902. Curran Associates, Inc., 2021.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Benoit B Mandelbrot. The fractal geometry of nature/revised and enlarged edition. New York, 1983.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR,
2019.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International Con-
ference on Machine Learning, 2023. URL https://proceedings.mlr.press/v202/
nguyen23c.html.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org.

Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self-attention vs. virtual nodes. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AcSChDWL6V.

Kaan Sancak, Zhigang Hua, Jin Fang, Yan Xie, Andrey Malevich, Bo Long, Muhammed Fatih Balin,
and Ümit V Çatalyürek. A scalable and effective alternative to graph transformers. arXiv preprint
arXiv:2406.12059, 2024.

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
GNNs: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023.

14

https://openreview.net/forum?id=fkjO_FKVzw
https://openreview.net/forum?id=fkjO_FKVzw
https://proceedings.mlr.press/v202/nguyen23c.html
https://proceedings.mlr.press/v202/nguyen23c.html
http://www.rdkit.org
https://openreview.net/forum?id=AcSChDWL6V

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023.

Chaoming Song, Shlomo Havlin, and Hernan A Makse. Self-similarity of complex networks. Nature,
433(7024):392–395, 2005.

Carsten Thomassen. Resistances and currents in infinite electrical networks. Journal of Combinatorial
Theory, Series B, 49(1):87–102, 1990.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=vgXnEyeWVY.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=7UmjRGzp-A.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning (ICML), pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems (NeurIPS), volume 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018.

Zong-Wen Wei, Bing-Hong Wang, and Xiao-Pu Han. Renormalization and small-world model of
fractal quantum repeater networks. Scientific reports, 3(1):1222, 2013.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (graph) transformers induced by energy constrained diffusion. In The Eleventh Interna-
tional Conference on Learning Representations, 2023a. URL https://openreview.net/
forum?id=j6zUzrapY3L.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2023b.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing
problem in graph transformers. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=uKmcyyrZae.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019a. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

15

https://openreview.net/forum?id=vgXnEyeWVY
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=uKmcyyrZae
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019b. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems (NeurIPS), volume 34, pp. 28877–28888, 2021.

Enikő Zakar-Polyák, Marcell Nagy, and Roland Molontay. Towards a better understanding of the
characteristics of fractal networks. Applied Network Science, 8(1):17, 2023.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In International Conference on
Machine Learning, pp. 41019–41077. PMLR, 2023.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=Mspk_WYKoEH.

Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. Hierarchical message-passing graph neural networks.
Data Mining and Knowledge Discovery, 37(1):381–408, 2023.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and
Jiashi Feng. DeepViT: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer for
scalable graph learning. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pp. 4702–4710, 2023.

16

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=Mspk_WYKoEH

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Supplementary Materials for “Fractal-Inspired Message Passing
Neural Networks with Fractal Nodes”

Table of Contents
A Proof of Theorem 3.1 18

B Implementation Detail 18
B.1 Metis Partitioning for Fractal Node Creation 18
B.2 Instance of Our Framework . 19
B.3 Positional Encoding . 19

C Structural Self-Similarity and Node Centrality 20

D Experimental Details 20
D.1 Dataset Description . 20
D.2 Hardware Specifications and Libraries . 21
D.3 Setup & Hyperparameters . 22

E Ablation, Sensitivity and Additional Studies 24
E.1 Impact of HPF . 24

E.2 Impact of type of ω(ℓ)
c . 24

E.3 Comaprison to Graph Rewiring Methods . 24
E.4 Comaprison to Virtual Node Methods . 25
E.5 Sensitivity to C . 25
E.6 Additional Results on All-layer Fratal Node Message Passing 26

F Effective Resistance and Signal Propagation 26

G Distribution Analysis of Subgraph Size Ratio 27

H Connection to Renormalization Techniques 31

I Different Partitioning Algorithms 31

J Scalability Analysis of of Fractal Node 33
J.1 Profiling Results on Synthetic Graphs . 33
J.2 Profiling Results on Large-Scale Real-world Graphs 33

K Large-scale Node Classification 33

L Theoretical Analysis 36
L.1 Effective Resistance with Fractal Nodes . 36
L.2 Proof of Theorem 4.1 . 36
L.3 Proof of Theorem 4.2 . 37
L.4 Total Resistance Analysis . 38

M Detailed Discussion on Section 5.2 39

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 3.1

Theorem 3.1 (Mean pooling as a low-pass filter capturing the DC component). Let hv represent the
hidden state of node v in subgraph Vc and let Hc = [h1, h2, . . . , hn] ∈ Rn×d be the matrix of node
features for all nodes in Vc where n = |Vc| is the number of nodes in the subgraph. The mean pooling
operation applied to the node features is equivalent to extracting the DC or the lowest frequency
component of the signal in the frequency domain.

Proof. The mean pooling operation aggreagated the features of all nodes in the subgraph or graph by
computing the average,

fmean
c =

1

n

∑
v∈Cc

hv. (14)

To understand this operation in the frequency domain, we use discrete Fourier transform (DFT),
which transforms the node feature matrix Hc into its frequency domain. The DFT of a signal hv is
represented as:

F(hv) = DFT · hv, (15)

where DFT ∈ Cn×n is the Fourier matrix. The rows of the Fourier matrix are given by the Fourier
basis vectors, which are complex exponential functions. These basis vectors represent different
frequencies, and each row in the DFT corresponds to a specific frequency component. The first row of
the Fourier matrix DFT corresponds to the DC component, which is the lowest frequency component
of the signal. This row is a vector of ones:

DFT[1, :] =
1√
n
· [1, 1, . . . , 1]. (16)

This row corresponds to the mean or average of the signal. Therefore, when we project the input
signal onto this basis vector, we are effectively extracting the global, smooth structure of the signal.

The DC component of the DFT is then expressed as:

DC[x] = DFT−1diag(1, 0, . . . , 0)DFTx =
1

n
11⊺x. (17)

This operation corresponds to projecting the input signal x onto the vector of ones, effectively
averaging all elements of x, which is exatly the result of mean pooling:

fDC
c =

1

n
11⊺Hc =

1

n

∑
v∈Cc

hv. (18)

Therefore, mean pooling captures the DC component of the signal, which is the lowest frequency
component. This corresponds to extracting the global, smooth node features of the subgraph, but it
does not retain higher-frequency variations, which represent the local details.

Thus, mean pooling is equivalent to applying a low-pass filter that only retains the DC component of
the signal.

B IMPLEMENTATION DETAIL

B.1 METIS PARTITIONING FOR FRACTAL NODE CREATION

To create fractal nodes, we employ METIS (Karypis & Kumar, 1998), a graph clustering algorithm
known for its excellent balance between accuracy and computational efficiency. METIS partitions a
graph into a pre-defined number of clusters, maximizing within-cluster connections while minimizing
between-cluster links. This approach effectively captures the community structure of the graph.

However, using non-overlapping partitions could result in the loss of important edge information,
particularly at the boundaries between partitions. To address this issue and retain all original edges,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

we introduce overlapping subgraph. After the initial METIS partitioning, we expand each partition to
include nodes from neighboring partitions.

Formally, we first apply METIS to partition a graph G into C non-overlapping subgraphs:
{V1, . . . ,VC} such that V = {V1 ∪ . . . ∪ VC} and Vi ∩ Vj = ∅,∀i ̸= j, where C is the num-
ber of fractal nodes or subgraphs. Then, we expand these subgraphs to include k-hop neighborhoods:

Vi ← Vi ∪ {Nk(j)|j ∈ Vi}, (19)

where Nk(j) defines the k-hop neighbourhood of node j. This expansion ensures that each subgraph
retains information about its immediate surroundings. The choice of k allows us to control the degree
of overlap between subgraphs. A larger k value increases the overlap, potentially capturing more
global information but at the cost of increased computational complexity. This overlapping subgraph
approach allows our fractal nodes to capture both local structural details and broader subgraph-level
information, enhancing the model’s ability to learn multi-scale representations of the graph structure.

B.2 INSTANCE OF OUR FRAMEWORK

We describe update equations for how our fractal node is applied to MPNN. The update equation for
GatedGCN + FN is the following:

h̃(ℓ+1)
v,c = σ

(
Ω(ℓ)h(ℓ)v,c +

∑
u∈N(v)

gate(ℓ)(h(ℓ)v,c, h
(ℓ)
u,c)⊙ h(ℓ)u,cW

(ℓ)
1

)
,

f (ℓ+1)
c = LPF(h̃(ℓ+1)

v,c) + ω(ℓ) · HPF(h̃(ℓ+1)
v,c),

h(ℓ+1)
v,c = h̃(ℓ+1)

v,c + f (ℓ+1)
c ,

gate(ℓ)(h(ℓ)v,c, h
(ℓ)
u,c) = sigmoid(W2(ℓ)h(ℓ)v,c +W

(ℓ)
3)h(ℓ)u,c,

(20)

where σ is a ReLU activation function, W (ℓ)
0 , W (ℓ)

1 , W (ℓ)
2 , W (ℓ)

3 are learnable weight matrices,
gate(ℓ) is a gating mechanism that controls the information flow between nodes.

The update equation for GINE + FN is the following:

h̃(ℓ+1)
v,c = MLP(ℓ)

(
(1 + ϵ(ℓ)) · h(ℓ)v,c +

∑
u∈N(v)

σ(h(ℓ)u,c + e(ℓ)uv)
)
,

f (ℓ+1)
c = LPF(h̃(ℓ+1)

v,c) + ω(ℓ)
c · HPF(h̃v, c(ℓ+1)),

h(ℓ+1)
v,c = h̃(ℓ+1)

v,c + f (ℓ+1)
c ,

(21)

where ϵ(ℓ) is a learnable scalar parameter, and e(ℓ)uv is a edge hidden vector between node u and v.

Note that the positional encoding scheme and readout function schemes can also be applied to
MPNNs with fractal nodes.

B.3 POSITIONAL ENCODING

When we integrate our fractal node to MPNN, we incorporate two distinct positional encodings (PE):
an absolute PE for individual nodes and a relative PE for fractal nodes.

For node-level encoding, we consider dataset-specific approaches. We utilize random-walk structural
encoding (RWSE) for molecular graphs and Laplacian eigenvector encodings for super-pixel image-
based tasks. To enhance robustness, we randomly flip the sign of Laplacian eigenvectors during
training.

Let M ∈ {0, 1}C×|V| be a binary matrix where each row corresponds to a fractal node and each
column to an original graph node. Mij = 1 if node j belongs to fractal node i, and 0 otherwise. Then,
the coarsened adjacency matrix is computed as AC =MM⊤. This operation effectively counts the
number of connections between fractal nodes, where AC

ij represents the number of edges between
fractal nodes i and j in the original graph. We then derive a positional encoding pv ∈ Rdp for each

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

fractal node from this coarsened adjacency matrix. This encoding is incorporated into the fractal
node representation through a linear transformation:

f (L)
v = Tpv +Of (L)

v + b ∈ Rd, (22)

where T ∈ Rd×dp and O ∈ Rd×d are learnable transformation matrices, and b ∈ Rd is a learnable
bias vector.

By incorporating relative positional information between fractal nodes, we enable the FNM variant
to better use the hierarchical structure of the graph.

C STRUCTURAL SELF-SIMILARITY AND NODE CENTRALITY

In this section, we describe how we calculate the self-similarity of a network by comparing the node
centrality distributions between the original graph and its subgraphs using betweenness centrality.
Specifically, we use the Kolmogorov-Smirnov (KS) test to measure the similarity between these
distributions.

Fractality definition. We define the fractality of a graph as the degree to which the properties of
the subgraphs resemble those of the original graph when the graph is partitioned consistently. In
this work, we focus on how the betweenness centrality distribution of the original graph compares to
those of its subgraphs.

Let Ψ(x) represent the node centrality distribution function for the original graph, and let
Ψ0(x), . . . ,Ψ32(x) represent the centrality distributions for each of the subgraphs obtained by
partitioning the original graph into 32 subgraphs. We aim to quantify the similarity between Ψ(x)
and the subgraph distributions using the KS test.

Kolmogorov-Smirnov test. The KS test is a non-parametric test that compares the empirical
cumulative distribution function (CDF) Ψn(x) of the sample (subgraph centrality) with the CDF
Ψ(x) of the reference distribution (original graph centrality). The KS test statistic D is defined as:

D = sup
x
|Ψn(x)−Ψ(x)|, (23)

where D represents the maximum distance between the two CDFs. A smaller D value indicates
higher similarity between the two distributions.

Similarity metric. We define the similarity between the original graph and a subgraph as 1−D,
where D is the KS test statistic. Therefore, a higher 1−D value implies greater similarity. For each
graph, we compute the similarity for all C subgraphs, yielding C similarity values.

Fractality calculation. In our fractality evaluation, it is sufficient to identify the subgraph whose
centrality distribution is most similar to that of the original graph. This is because not all subgraphs
need to exhibit self-similarity for the graph to be considered fractal-like; the presence of one or more
highly similar subgraphs is indicative of fractality. Thus, we take the maximum of the C similarity
values (1−D) as the self-similarity score for the graph:

Self-Similarity Score = max
i

(1−Di), (24)

where Di is the KS test statistic for the i-th subgraph. This approach allows us to compute a self-
similarity score for a single graph based on betweenness centrality. The comparison according to the
number of subgraphs is shown in Fig. 6.

D EXPERIMENTAL DETAILS

In this section, we provide further details about our experiments.

D.1 DATASET DESCRIPTION

We provide the descriptions and statistics of all datasets used in our experiments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

4 8 16 32
Number of Subgraphs

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Mean

(a) k = 0

4 8 16 32
Number of Subgraphs

0.4

0.6

0.8

Si
m

ila
rit

y

Mean

(b) k = 1

4 8 16 32
Number of Subgraphs

0.3

0.4

0.5

0.6

0.7

Si
m

ila
rit

y

Mean

(c) k = 2

Figure 6: Similarity of node centrality distribution in PEPTIDE-STRUCT.

PEPTIDES-FUNC & PEPTIDES-STRUCT. (CC BY-NC 4.0 License) (Dwivedi et al., 2022): These
datasets comprise 16K atomic peptide graphs from SAT-Pdb, with residues as nodes. They differ
in their graph-level tasks: PETIDES-FUNC is a multi-label classification task with 10 nonexclusive
functional classes, while PEPTIDES-STRUCT involves regression on 11 3D structural properties.
Dataset splitting utilizes meta-class holdout based on original peptide labels.

MNIST & CIFAR10. (CC BY-SA 3.0 and MIT License): These datasets adapt popular image
classification tasks to graph classification. Images are converted to graphs using super-pixels,
representing homogeneous intensity regions. Both are 10-class classification tasks following standard
splits: 55K/5K/10K for MNIST and 45K/5K/10K for CIFAR10 (train/validation/test).

MOLHIV & MOLTOX21. (MIT License) (Hu et al., 2020): These molecular property prediction
datasets use common node and edge features representing chemophysical properties, pre-processed
with RDKit (RDKit, online). Molecules are represented as graphs with atoms as nodes and chemical
bonds as edges. Node features are 9-dimensional, including atomic number, chirality, and other
properties. Predefined scaffold partitions are used: MOLTOX21 6K/0.78K/0.78K and MOLHIV
32K/4K/4K for training/validation/test.

CSL. CSL (Murphy et al., 2019) is a synthetic dataset testing GNN expressivity, containing 150
4-regular graphs in 10 isomorphism classes. These graphs, indistinguishable by 1-WL tests, form
cycles with skip-links. The task is to classify them into their respective isomorphism classes.

EXP. EXP (Abboud et al., 2021) consists of 600 graph pairs that 1&2-WL tests fail to distinguish,
aiming to classify these into two categories.

SR25. SR25 (Balcilar et al., 2021) consists of 15 strongly regular graphs (3-WL indistinguishable)
with 25 nodes each, forming a 15-way classification problem.

TREENEIGHBOURMATCH. Proposed by Alon & Yahav (2021), this synthetic dataset highlights
over-squashing in MPNNs. It uses binary trees of depth r (problem radius), requiring information
propagation from leaves to a target node for label prediction, thus demonstrating over-squashing
issues.

D.2 HARDWARE SPECIFICATIONS AND LIBRARIES

We have implemented our method using PYTORCH-GEOMETRIC, and built on the source code of
Rampášek et al. (2022)2 and He et al. (2023)3. All experiments were performed using the following
software and hardware environments: UBUNTU 18.04 LTS, PYTHON 3.7.13, PYTORCH 1.12.1,
PYTORCH GEOMETRIC 2.5.2, , TORCH-SCATTER 2.1.0, TORCH-SPARSE 0.6.16, NUMPY 1.24.3,
METIS 0.2a5, CUDA 11.3, NVIDIA Driver 465.19, i9 CPU, NVIDIA RTX 3090/A6000.

2https://github.com/rampasek/GraphGPS
3https://github.com/XiaoxinHe/Graph-ViT-MLPMixer

21

https://github.com/rampasek/GraphGPS
https://github.com/XiaoxinHe/Graph-ViT-MLPMixer

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.3 SETUP & HYPERPARAMETERS

We use the same learning rates and weight decay to GCN, GINE, and GatedGCN, and the hyperpa-
rameters we considered are shown in Tables 5 to 7. The experimental results of MPNN are the same
as the results using positional encoding, and we use the setup of He et al. (2023).

In Tables 5 to 7, we report the hyperparameters used in our experiments.

Table 5: Hyperparameter search space of fractal nodes for benchmark datasets

Hyperparameters Search Space

ω
(ℓ)
c {SC, VC}
C {4, 8, 16, 32}

HPF {True, False}
k-hop {0, 1, 2}
L {2, 3, 4, 5, 6, 7, 8}
LM {1, 2, 4}

Table 6: Best hyperparameter of FN for PEPTIDES-FUNC, PEPTIDES-STRUCT, MNIST, CIFAR10,
MOLHIV, and MOLTOX21.

Hyperparameter Method PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MOLTOX21

ω
(ℓ)
c

GCN VC SC VC VC VC SC
GINE SC VC VC VC SC SC
GatedGCN SC VC VC VC VC SC

C
GCN 32 32 32 32 32 32
GINE 32 32 32 32 32 32
GatedGCN 32 32 32 32 32 32

HPF
GCN True True True True True True
GINE True True True True True True
GatedGCN True True True True True True

k-hop
GCN 1 1 1 1 1 1
GINE 1 1 1 1 1 1
GatedGCN 1 1 1 1 1 1

L
GCN 4 4 4 7 2 4
GINE 4 4 4 7 2 4
GatedGCN 4 4 4 7 2 4

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Best hyperparameter of FNM for PEPTIDES-FUNC, PEPTIDES-STRUCT, MNIST, CIFAR10,
MOLHIV, and MOLTOX21.

Hyperparameter Method PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MOLTOX21

ω
(ℓ)
c

GCN VC SC VC VC VC VC
GINE SC VC VC VC VC SC
GatedGCN VC SC VC VC VC VC

C
GCN 32 32 32 32 32 32
GINE 32 16 32 32 32 32
GatedGCN 32 32 4 4 32 32

HPF
GCN True True True True True True
GINE True True True True True True
GatedGCN True True False True True True

k-hop
GCN 1 1 1 1 2 1
GINE 1 1 1 1 2 1
GatedGCN 1 1 1 1 2 1

L
GCN 4 4 4 7 2 5
GINE 4 4 4 7 2 4
GatedGCN 4 4 4 8 2 5

LM

GCN 2 2 4 1 2 4
GINE 2 2 4 1 2 4
GatedGCN 2 2 4 1 2 4

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E ABLATION, SENSITIVITY AND ADDITIONAL STUDIES

E.1 IMPACT OF HPF

We use both LPF and HPF to create fractal nodes, as shown in Equation (5). We analyze the cases
when ω(ℓ)

c is 0, i.e., with and without HPF. Our results are reported in Table 8, and we obtain the best
performance when using HPF in almost all cases.

Table 8: Ablation study on HPF

Method HPF
PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MOLTOX21

AP ↑ MAE ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑

GCN + FN
True 0.6802±0.0043 0.2530±0.0004 0.9393±0.0084 0.6006±0.0070 0.7564±0.0059 0.7670±0.0073
False 0.6768±0.0016 0.2547±0.0023 0.9383±0.0102 0.5993±0.0081 0.7551±0.0084 0.7608±0.0093

GINE + FN
True 0.6815±0.0059 0.2515±0.0020 0.9790±0.0012 0.6584±0.0069 0.7882±0.0050 0.7751±0.0029
False 0.6749±0.0111 0.2524±0.0021 0.9788±0.0008 0.6584±0.0069 0.7861±0.0054 0.7702±0.0045

GatedGCN + FN
True 0.6778±0.0071 0.2536±0.0019 0.9826±0.0012 0.7125±0.0035 0.7967±0.0098 0.7759±0.0054
False 0.6661±0.0103 0.2609±0.0016 0.9801±0.0015 0.7010±0.0031 0.7908±0.0084 0.7674±0.0024

GCN + FNM
True 0.6787±0.0048 0.2464±0.0014 0.9455±0.0004 0.6413±0.0070 0.7866±0.0034 0.7882±0.0041
False 0.6778±0.0056 0.2461±0.0022 0.9448±0.0007 0.6130±0.0080 0.7689±0.0124 0.7874±0.0080

GINE + FNM
True 0.7018±0.0074 0.2446±0.0018 0.9786±0.0004 0.6672±0.0068 0.8127±0.0076 0.7926±0.0021
False 0.6647±0.0052 0.2484±0.0018 0.9744±0.0007 0.6670±0.0056 0.7959±0.0079 0.7895±0.0067

GatedGCN + FNM
True 0.6950±0.0047 0.2453±0.0014 0.9836±0.0010 0.7526±0.0033 0.8097±0.0047 0.7922±0.0054
False 0.6900±0.0055 0.2477±0.0005 0.9848±0.0005 0.7501±0.0042 0.7930±0.0057 0.7883±0.0067

E.2 IMPACT OF TYPE OF ω
(ℓ)
c

When creating a fractal node, we can use a learnable scalar parameter (denoted as ‘SC’) or a learnable
vector parameter (denoted as ‘VC’) to make the contribution of high frequency components. We
report the results in Table 9.

Table 9: Sensitivity study on ω(ℓ)
c

Method ω(ℓ)
c

PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MOLTOX21

AP ↑ MAE ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑

GCN + FN
SC 0.6797±0.0056 0.2530±0.0004 0.9377±0.0080 0.6003±0.0075 0.7553±0.0061 0.7670±0.0073
VC 0.6802±0.0043 0.2535±0.0033 0.9393±0.0084 0.6006±0.0070 0.7564±0.0059 0.7667±0.0045

GINE + FN
SC 0.6815±0.0059 0.2534±0.0016 0.9784±0.0010 0.6548±0.0088 0.7882±0.0050 0.7751±0.0029
VC 0.6796±0.0024 0.2515±0.0020 0.9790±0.0012 0.6584±0.0069 0.7849±0.0047 0.7672±0.0009

GatedGCN + FN
SC 0.6778±0.0071 0.2546±0.0020 0.9813±0.0018 0.7083±0.0032 0.7910±0.0090 0.7759±0.0054
VC 0.6647±0.0052 0.2536±0.0019 0.9826±0.0012 0.7125±0.0035 0.7967±0.0098 0.7662±0.0090

GCN + FNM
SC 0.6773±0.0039 0.2464±0.0014 0.9444±0.0008 0.6405±0.0065 0.7762±0.0089 0.7882±0.0041
VC 0.6787±0.0048 0.2485±0.0016 0.9455±0.0004 0.6413±0.0070 0.7866±0.0034 0.7862±0.0037

GINE + FNM
SC 0.7018±0.0074 0.2451±0.0011 0.9735±0.0009 0.6655±0.0066 0.8070±0.0084 0.7924±0.0019
VC 0.6926±0.0105 0.2446±0.0018 0.9786±0.0004 0.6672±0.0068 0.8127±0.0076 0.7926±0.0021

GatedGCN + FNM
SC 0.6932±0.0056 0.2453±0.0014 0.9836±0.0010 0.7495±0.0051 0.8097±0.0047 0.7922±0.0054
VC 0.6950±0.0047 0.2461±0.0009 0.9836±0.0009 0.7526±0.0033 0.8025±0.0087 0.7885±0.0043

E.3 COMAPRISON TO GRAPH REWIRING METHODS

We compare our fractal nodes to no graph rewiring and 4 other state-of-the-art rewiring methods:
DIGL (Gasteiger et al., 2019), SDRF (Topping et al., 2022), FoSR (Karhadkar et al., 2023), and
BORF (Karhadkar et al., 2023). We also add the recent method, PANDA (Choi et al., 2024) to
alleviate over-squashing without rewiring and the state-of-the-art method, LASER (Barbero et al.,
2023). We replicate the experimental settings of Dwivedi et al. (2022) and use the results from
Barbero et al. (2023). We choose the hidden dimension to respect the 500k parameter budget. In our
fractal node, we opt out the positional encodings for a fair comparison.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E.4 COMAPRISON TO VIRTUAL NODE METHODS

To provide a comprehensive comparison with existing virtual node method, we compare with the two
virtual node methods by Hu et al. (2020) (denoted as ‘virtual node’) and Rosenbluth et al. (2024)
(denoted as ‘VN’). As shwon in Table 10, both FN and FNM outperform the GCN and GIN models
augmented with virtual nodes from Hu et al. (2020) on MOLHIV and MOLTOX21. On the Peptides
datasets, our methods show competitive results with the VN method of Rosenbluth et al. (2024).

Table 10: Comparison to virtual node methods.

Method PEPTIDES-FUNC PEPTIDES-STRUCT MOLHIV MOLTOX21

AP ↑ MAE ↓ ROCAUC ↑ ROCAUC ↑
GCN + virtual node - - 0.7599±0.0119 0.7551±0.0100

GIN + virtual node - - 0.7707±0.0149 0.7621±0.0062

GCN + VN 0.6732±0.0066 0.2505±0.0022 - -
GatedGCN + VN 0.6823±0.0069 0.2475±0.0018 - -

GCN + FN 0.6802±0.0043 0.2530±0.0004 0.7564±0.0059 0.7670±0.0073

GINE + FN 0.6815±0.0059 0.2515±0.0020 0.7890±0.0104 0.7751±0.0029

GatedGCN + FN 0.6778±0.0056 0.2536±0.0019 0.7967±0.0098 0.7759±0.0054

GCN + FNM 0.6787±0.0048 0.2464±0.0014 0.7866±0.0034 0.7882±0.0041

GINE + FNM 0.7018±0.0074 0.2446±0.0018 0.8127±0.0076 0.7926±0.0021

GatedGCN + FNM 0.6950±0.0047 0.2453±0.0014 0.8097±0.0047 0.7922±0.0054

E.5 SENSITIVITY TO C

The analysis of sensitivity to the number of fractal nodes (C) reveals distinct performance patterns
in various datasets. As shown in Fig. 7, for PEPTIDES-FUNC and PEPTIDES-STRUCT, there is
relatively stable performance across different C values, with GINE+FNM consistently outperforming
the baseline GINE+FN. In MNIST, both GINE variants show an upward trend as C increases, with
GINE+FNM achieving peak accuracy at C = 32.

The optimal results are typically achieved at C = 32, which indicates that graph tasks benefit from
finer-grained subgraph partitioning and additional mixing operations in FNM . Overall, the results
indicate that larger C values (16 or 32) generally yield better performance for most datasets.

4 8 16 32
C (Number of Fractal Nodes)

65

70

AP

GINE + FN GINE + FNM

(a) PEPTIDE-FUNC

4 8 16 32
C (Number of Fractal Nodes)

0.24

0.25

0.26

0.27

M
AE

GINE + FN GINE + FNM

(b) PEPTIDE-STRUCT

4 8 16 32
C (Number of Fractal Nodes)

96

97

98

99

Ac
cu

ra
cy

GINE + FN GINE + FNM

(c) MNIST

4 8 16 32
C (Number of Fractal Nodes)

65

66

67

Ac
cu

ra
cy

GINE + FN GINE + FNM

(d) CIFAR10

4 8 16 32
C (Number of Fractal Nodes)

78

80

82

RO
CA

UC

GINE + FN GINE + FNM

(e) MOLHIV

4 8 16 32
C (Number of Fractal Nodes)

76

78

80

RO
CA

UC

GINE + FN GINE + FNM

(f) MOLTOX21

Figure 7: Sensitivity to C with GINE.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E.6 ADDITIONAL RESULTS ON ALL-LAYER FRATAL NODE MESSAGE PASSING

While our main FNM design uses an MLP-Mixer in the final layer for fractal node interactions, we
also explored an alternative approach with message passing between fractal nodes across all layers
(denoted as FNA). This analysis aims to empirically validate our architectural choice.

Table 11 compares 3 variants: i) FN: is a base MPNN with no explicit fractal node interactions; ii)
FNA is an all-layer message passing between fractal nodes; and iii) FNM is MLP-Mixer in final layer
only (our proposed approach). The results show that while FNA shows some improvements over
the base FN model in certain cases (e.g., MOLHIV accuracy improves from 0.7564 to 0.7783 for
GCN), it consistently underperforms compared to our proposed FNM design. This pattern holds
across different base architectures (GCN, GINE, GatedGCN) and datasets.

These empirical results validate our design choice of using MLP-Mixer in the final layer rather than
implementing message passing between fractal nodes throughout all layers. This result indicates that
the flexible mixing capabilities of the MLP-Mixer provide more effective fractal node interactions
compared to explicit message passing approaches.

Table 11: Comparison on FN, FNA and FNM

Method PEPTIDES-FUNC PEPTIDES-STRUCT MOLHIV MOLTOX21

AP ↑ MAE ↓ ROCAUC ↑ ROCAUC ↑
GCN + FN 0.6802±0.0043 0.2530±0.0004 0.7564±0.0059 0.7670±0.0073

GCN + FNA 0.6582±0.0032 0.2531±0.0008 0.7783±0.0164 0.7600±0.0037

GCN + FNM 0.6787±0.0048 0.2464±0.0014 0.7866±0.0034 0.7882±0.0041

GINE + FN 0.6815±0.0059 0.2515±0.0020 0.7890±0.0104 0.7751±0.0029

GINE + FNA 0.6660±0.0067 0.2530±0.0011 0.8025±0.0100 0.7680±0.0056

GINE + FNM 0.7018±0.0074 0.2446±0.0018 0.8127±0.0076 0.7926±0.0021

GatedGCN + FN 0.6778±0.0056 0.2536±0.0019 0.7967±0.0098 0.7759±0.0054

GatedGCN + FNA 0.6658±0.0048 0.2531±0.0009 0.7898±0.0065 0.7642±0.0050

GatedGCN + FNM 0.6950±0.0047 0.2453±0.0014 0.8097±0.0047 0.7922±0.0054

F EFFECTIVE RESISTANCE AND SIGNAL PROPAGATION

Effective resistance and signal propagation. Derived from the field of electrical engineering, the
effective resistance between two nodes u and v in an electrical network is defined as the potential
difference induced across the edges when a unit current is injected at one of each end (Ghosh et al.,
2008). Intuitively, it provides a physical measure of the ease of signal flow from one end to the other.
Rayleigh’s monotonicity principle, which says that adding paths or shortening existing paths can
only decrease the effective resistance between two nodes (Thomassen, 1990), leads to the following
interpretation: more and shorter disjoint paths connecting the nodes u and v lead to a lower resistance
between them (Black et al., 2023; Devriendt & Lambiotte, 2022). Therefore, edges with higher
effective resistance have fewer alternative paths or shortcuts for signals passing through that edge and
thus, struggle to propagate information, causing bottlenecks. The total effective resistance Rtot, the
sum of the effective resistance among all pairs of nodes (see Equation (26)), is a key measure for
measuring the overall degree of over-squashing across a graph.

Total effective resistance. The resistance between nodes u and v in the graph is given by

Ru,v = (1u − 1v)
TL+(1u − 1v), (25)

where L is a Laplacian matrix, 1v and 1u are indicator vectors for node u and v, respectively.
Total effective resistance, Rtot, is defined as the sum of effective resistance between all pairs of
nodes (Ghosh et al., 2008; Black et al., 2023):

Rtot =
∑
u>v

Ru,v = n · Tr(L+) = n

n∑
i

1

λi
, (26)

where λi is the i-th eigenvalues of L and L+ is the pseudoinverse of L.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Signal propagation w.r.t. effective resistance. Here, we outline the experimental details for
measuring signal propagation with respect to the normalized total effective resistance of the graphs.
First, we randomly select a source node v ∈ V , an entire node set, and assign d-dimensional feature
vector to it, while all other nodes are initialized with zero vectors. Then, the amount of signal that has
been propagated over the graph by the randomly initialized model with ℓ layers is given by

h
(ℓ)
⊙ =

1

dmaxu̸=v kG(u, v)

d∑
t=1

∑
u ̸=v

h
(ℓ),t
u

∥h(ℓ),tu ∥
kG(u, v), (27)

where h(ℓ),tu is the t-th feature of d-dimensional feature vector of node u at layer ℓ and kG(u, v) is the
distance between two nodes u and v, computed as a shortest path. Every unitary signal h(ℓ),tu /∥h(ℓ),tu ∥
propagated across the graph G from the source node v is weighted by the normalized propagation
distance kG(u, v)/maxu ̸=v dG(u, v) for all nodes u ̸= v and then averaged over entire d output
channels. To estimate the total effective resistance of the graph, 10 nodes are randomly sampled from
each graph and total effective resistance of the graph is estimated for each source node. The final
h
(ℓ)
⊙ and total resistance of the graph are obtained by averaging across the 10 sampled nodes. The

experiment is repeated for every graph in the dataset and the signal propagation measured for each
graph is plotted against the normalized total effective resistance of the corresponding graph.

In Figs. 8 to 10, we report the results of this analysis.

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GCN
GCN + FNM

(a) GCN

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GINE
GINE + FNM

(b) GINE

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GatedGCN
GatedGCN + FNM

(c) GatedGCN

Figure 8: The amount of signal propagated across the graphs w.r.t. the normalized Rtot in PEPTIDES-
STRUCT.

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GCN
GCN + FNM

(a) GCN

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GINE
GINE + FNM

(b) GINE

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GatedGCN
GatedGCN + FNM

(c) GatedGCN

Figure 9: The amount of signal propagated across the graphs w.r.t. the normalized Rtot in MOLHIV.

G DISTRIBUTION ANALYSIS OF SUBGRAPH SIZE RATIO

We analyze the distribution of subgraph size ratios produced by METIS partitioning across different
numbers of partitions (C) and datasets.

In generally, as C increases from 2 to 32, the average subgraph size ratio naturally decreases since
each partition contains a smaller portion of the original graph. The width of the distributions generally
increases with C, indicating more variance in partition sizes with finer granularity. Most datasets
show roughly normal or slightly skewed distributions around the expected mean ratio of 1/C.

As shwon in Fig. 11, PEPTIDE-FUNC/STRUCT show relatively tight, symmetric distributions. In
indicates that METIS creates balanced partitions for molecular graphs. CIFAR10 and MNIST

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GCN
GCN + FNM

(a) GCN

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GINE
GINE + FNM

(b) GINE

0 0.2 0.4 0.6 0.8 1
Normalized Rtot

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 P

ro
pa

ga
tio

n GatedGCN
GatedGCN + FNM

(c) GatedGCN

Figure 10: The amount of signal propagated across the graphs w.r.t. the normalized Rtot in
MOLTOX21.

show distinct bimodal patterns, especially at C = 16 and C = 32, likely due to the regular grid-like
structure of superpixel graphs (See Fig. 12 and Fig. 13). As shown in Fig. 14 and Fig. 15, MOLHIV
and MOLTOX21 show broader distributions, particularly at higher C values, reflecting the more
heterogeneous nature of these molecular graphs.

The consistent distributions for molecular datasets indicate METIS partitioning is well-suited for
these graph types. The bimodal distributions in image-based graphs indicate the natural clustering
of superpixels into regions of different sizes. Higher C values (i.e., 16, 32) generally maintain
reasonable balance while allowing for more fine-grained capture of graph structure.

0.44 0.46 0.48 0.50 0.52 0.54 0.56
Subgraph Size Ratio

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

(a) C = 2

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34
Subgraph Size Ratio

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

(b) C = 4

0.060.080.100.120.140.160.180.200.22
Subgraph Size Ratio

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

(c) C = 8

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Subgraph Size Ratio

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

(d) C = 16

0.00 0.02 0.04 0.06 0.08 0.10
Subgraph Size Ratio

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

(e) C = 32

Figure 11: Similarity of node centrality distribution in PEPTIDE-FUNC/STRUCT.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.48 0.49 0.50 0.51 0.52
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

(a) C = 2

0.23 0.24 0.25 0.26 0.27 0.28
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

(b) C = 4

0.10 0.11 0.12 0.13 0.14 0.15
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

(c) C = 8

0.0500.0550.0600.0650.0700.0750.080
Subgraph Size Ratio

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

(d) C = 16

0.020 0.025 0.030 0.035 0.040 0.045
Subgraph Size Ratio

0

2000

4000

6000

8000

10000

12000

14000

Fr
eq

ue
nc

y

(e) C = 32

Figure 12: Similarity of node centrality distribution in CIFAR10.

0.46 0.48 0.50 0.52 0.54
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

(a) C = 2

0.22 0.24 0.26 0.28
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

(b) C = 4

0.10 0.11 0.12 0.13 0.14 0.15 0.16
Subgraph Size Ratio

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

(c) C = 8

0.04 0.05 0.06 0.07 0.08
Subgraph Size Ratio

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

(d) C = 16

0.0150.0200.0250.0300.0350.0400.045
Subgraph Size Ratio

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

(e) C = 32

Figure 13: Similarity of node centrality distribution in MNIST.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.44 0.46 0.48 0.50 0.52 0.54 0.56
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

(a) C = 2

0.1500.1750.2000.2250.2500.2750.3000.325
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

(b) C = 4

0.00 0.05 0.10 0.15 0.20
Subgraph Size Ratio

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y

(c) C = 8

0.0000.0250.0500.0750.1000.1250.1500.175
Subgraph Size Ratio

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

(d) C = 16

0.0000.0250.0500.0750.1000.1250.1500.175
Subgraph Size Ratio

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

(e) C = 32

Figure 14: Similarity of node centrality distribution in MOLHIV.

0.4000.4250.4500.4750.5000.5250.5500.5750.600
Subgraph Size Ratio

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(a) C = 2

0.15 0.20 0.25 0.30 0.35 0.40
Subgraph Size Ratio

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

(b) C = 4

0.00 0.05 0.10 0.15 0.20
Subgraph Size Ratio

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

(c) C = 8

0.0000.0250.0500.0750.1000.1250.1500.1750.200
Subgraph Size Ratio

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

(d) C = 16

0.00 0.05 0.10 0.15 0.20
Subgraph Size Ratio

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

(e) C = 32

Figure 15: Similarity of node centrality distribution in MOLTOX21.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

H CONNECTION TO RENORMALIZATION TECHNIQUES

Our fractal nodes method draws inspiration from renormalization group techniques in physics,
where complex systems are analyzed on different scales. While this connection is conceptual, the
fundamental idea of scale transformation provides intuition for our approach. The renormalization
involves replacing groups of interacting components with effective units. Similarly, our fractal nodes
summarize subgraph information, though we maintain these summary units as fractal nodes alongside
the original graph structure rather than replacing them.

From a complex network perspective, fractal nodes facilitate a transition from scale-free fractal
networks to small-world networks. Similar to the renormalization techniques described by Wei
et al. (2013), our FNM method introduces long-range interactions between the fractal nodes, giving
small-world properties to the network (Albert & Barabási, 2002). We extend beyond renormalization
in 3 aspects: (i) preserving the original structure while adding fractal nodes, (ii) enabling adaptive
information flow through learned parameters, and (iii) maintaining exchange between local and global
scales.

This architecture enables efficient information propagation through several mechanisms. The fractal
nodes act as “shortcuts” in the network, reducing the effective distance information must traverse.
Maintaining local and summarized representations enables simultaneous processing at multiple scales
while preserving local network characteristics. This multi-scale processing capability addresses the
over-squashing problem by facilitating efficient global information flow without sacrificing local
structural information.

The key differences between our approach and classical renormalization highlight the factors we
introduce specifically for graph learning tasks. While traditional renormalization uses fixed transfor-
mation rules in a unidirectional manner (fine to coarse), our method learns adaptive representations
through trainable parameters and enables bidirectional information exchange. This creates a more
flexible framework that captures complex relationships in graph-structured data while maintaining
computational efficiency.

I DIFFERENT PARTITIONING ALGORITHMS

To verify the effectiveness of partitioning other than METIS partitioning, we conduct experiments ap-
plying FN and FNM to GINE on PEPTIDES-FUNC, PEPTIDES-STRUCT, MOLHIV, and MOLTOX21
datasets using random partitioning and Louvain (Blondel et al., 2008) and Girvan-Newman (Girvan
& Newman, 2002) partitioning.

In Table 12, our results provide a comprehensive comparison of different graph partitioning methods
for GINE with FN and FNM architectures on multiple molecular and peptide datasets. METIS
consistently shows superior or competitive performance on all datasets. It achives the best results in
most cases, such as 0.6815 AP on PEPTIDES-FUNC with GINE+FN and 0.7018 AP with GINE+FNM .
While random partitioning shows surprisingly competitive performance, particularly on MOLHIV
where it achieves 0.8039 ROCAUC with GINE+FN, community detection algorithms such as Louvain
and Girvan-Newman generally underperform compared to METIS and random partitioning. The
performance gap between different partitioning methods becomes more pronounced when using
FNM compared to FN. METIS shows more stable performance with lower standard deviations across
all metrics. For molecular property prediction tasks, the choice of partitioning method appears less
critical. However, on PEPTIDES-FUNC and PEPTIDES-STRUCT, METIS shows clear advantages
with consistently lower MAE scores. These findings validate our choice of METIS as the default
partitioning algorithm while suggesting that the optimal partitioning strategy may depend on the
specific graph structure and task requirements.

In Table 13, the analysis of results on ogbn-arxiv provides additional insights into partitioning methods
on large scale graph datasets. The performance differences between partitioning methods are relatively
small, with scores ranging between 72.46% and 73.03% accuracy. For GCN+FN, METIS achieves
the best performance at 73.03%, while random partitioning performs best for GCN+FNM at 73.01%.
GraphSAGE shows slightly lower performance compared to GCN across all partitioning strategies,
with Louvain partitioning achieving the best results at 72.76% for GraphSAGE+FN. Interestingly,
the Girvan-Newman algorithm consistently times out on this dataset, indicating scalability issues

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

with larger graphs such as ogbn-arxiv. The standard deviations are generally smaller for GraphSAGE
compared to GCN, suggesting more stable performance across different random seeds. These results
further support that METIS remains competitive.

Table 12: Comparison of different graph partitioning methods for GINE with FN and FNM architec-
tures on PEPTIDES-FUNC/STRUCT and molecular property prediction tasks. Best results for each
metric are shown in bold.

Method Partitioning PEPTIDES-FUNC PEPTIDES-STRUCT MOLHIV MOLTOX21

AP ↑ MAE ↓ ROCAUC ↑ ROCAUC ↑

GINE + FN

METIS 0.6815±0.0059 0.2515±0.0020 0.7882±0.0050 0.7751±0.0029

Random 0.6533±0.0103 0.2688±0.0014 0.8039±0.0078 0.7653±0.0065

Louvain 0.6044±0.0068 0.2799±0.0015 0.7844±0.0050 0.7701±0.0026

Girvan-Newman 0.6528±0.0051 0.2628±0.0045 0.7837±0.0078 0.7630±0.0060

GINE + FNM

METIS 0.7018±0.0074 0.2446±0.0018 0.8127±0.0076 0.7926±0.0021

Random 0.6680±0.0066 0.2538±0.0013 0.8090±0.0061 0.7867±0.0045

Louvain 0.6164±0.0120 0.2789±0.0022 0.7629±0.0164 0.7510±0.0118

Girvan-Newman 0.6514±0.0064 0.2655±0.0037 0.7763±0.0174 0.7579±0.0097

Table 13: Comparison of different graph partitioning methods for GCN/GraphSAGE with FN and
FNM on ogbn-arxiv dataset. Results show accuracy (%) and best results for each metric are shown in
bold.

ogbn-arxiv GCN + FN GCN + FNM GraphSAGE + FN GraphSAGE + FNM

METIS 73.03±0.37 72.93±0.35 72.70±0.11 72.54±0.30

Random 72.79±0.37 73.01±0.41 72.46±0.20 72.46±0.27

Louvain 72.73±0.57 72.95±0.26 72.76±0.15 72.56±0.58

Girvan-Newman Time-out Time-out Time-out Time-out

Table 14 demonstrates the empirical runtime performance of different graph partitioning algorithms
across various graph-level tasks, providing evidence for the practicality of our approach. While
all algorithms show comparable performance on smaller datasets like Peptides (with runtimes in
microseconds), noticeable differences emerge starting with medium-sized datasets like MNIST.

The distinction becomes particularly pronounced on large-scale datasets like ogbn-arxiv. We opt for
METIS as our default partitioning algorithm due to its theoretical time complexity of O(|E|) and
superior empirical performance. METIS efficiently partitions large graphs such as ogbn-arxiv in
under 9 seconds, and even handles massive graphs like ogbn-products around 15 minutes.

In contrast, the Louvain algorithm requires over 50 seconds for ogbn-arxiv, while the Girvan-Newman
algorithm encounters runtime limitations, making it impractical for large-scale graphs like ogbn-arxiv
and ogbn-products. These results validate our choice of METIS as the primary partitioning algorithm,
as it provides an effective balance between computational efficiency and partition quality across
different graph scales.

Table 14: Empirical runtime of partitioning algorithms.

Algorithm PEPTIDES-FUNC/STRUCT MNIST MOLHIV ogbn-arxiv ogbn-product

METIS 0.71 µs 0.36 s 0.71µs 8.57 s 923.27 s
Louvain 1.19 µs 0.36 s 1.19µs 52.12s 119 m
Girvan-Newman 1.19 µs 0.36 s 0.72µs Time-out Time-out

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

J SCALABILITY ANALYSIS OF OF FRACTAL NODE

J.1 PROFILING RESULTS ON SYNTHETIC GRAPHS

To evaluate the efficiency and scalability of our FN integrated GCN model, we conducted experiments
on synthetic Erdos-Renyi (Erdos et al., 1960) graphs with node counts ranging from 1,000 to 100,000.
The edge probability in the Erdos-Renyi network is set to achieve an average node degree of
approximately 5, with the node feature dimension fixed at 100.

Fig. 16(a) represents that the GPU memory usage of GCN+FN increases linearly with the graph
size and validates its linear space complexity. Fig. 16(b) shows the training time for both GPU
and CPU implementations. The GPU training time exhibits a sub-linear growth trend as the graph
size increases. This means the ability of fractal nodes to effectively use GPU parallelism for large-
scale graph computations. In contrast, the CPU training time grows linearly with the graph size
and indicates the sequential nature of CPU computations and its limitations in handling large-scale
parallel graph operations.

The results demonstrate that the GPU device (RTX A6000 used in our experiments) efficiently handles
the computational workload on varying graph sizes. These observations validate the scalability and
practicality of our proposed GCN+FN model, particularly for large-scale graph learning tasks where
both memory efficiency and computational speed are critical.

103 104 105

Nodes

10−2

10−1

100

GP
U

M
em

or
y

(G
B)

GPU Memory Usage (GB)

(a) Memory Usage vs. Graph Size

103 104 105

Nodes

10−2

10−1

Tr
ai

ni
ng

 T
im

e
(s

) GPU Training Time (s)
CPU Training Time (s)

(b) Training Time vs. Graph Size

Figure 16: GPU memory usage and training time of GCN+FN on synthetic graphs.

J.2 PROFILING RESULTS ON LARGE-SCALE REAL-WORLD GRAPHS

Table 15 shows the profiling results of various models in terms of training time per epoch and memory
usage on the large-scale ogbn-arxiv dataset. Note that we perform full batch training for a fair
comparison of computational requirements.

The results show that our fractal node approach maintains efficiency. When integrated with base
MPNNs, fractal nodes introduce trivial computational overhead — GCN+FN maintains identi-
cal training time (1.27s) and memory usage (16.49GB) compared to the vanilla GCN. Similarly,
GraphSAGE+FN shows only a marginal increase in computational cost (0.57s vs 0.55s) while pre-
serving the same memory efficiency (7.74GB). Our method uses common MPNN operations without
introducing complex additional computations.

In contrast, graph Transformers (e.g., GraphGPS, Exphormer) require substantially more computa-
tional resources (38.91GB and 34.04GB memory, respectively) due to their attention mechanisms.
This empirical evidence indicates that our fractal node approach achieves a favorable balance between
model accuracy and computational efficiency in practice.

K LARGE-SCALE NODE CLASSIFICATION

Large-scale graphs. We consider a collection of large graphs released recently by the Open Graph
Benchmark (OGB) (Hu et al., 2021): ogbn-arxiv and ogbn-products with node numbers 0.16M and
2.4M, respectively. We maintain all the OGB standard evaluation settings.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 15: Training time and GPU memory usage on large graphs

Model ogbn-arxiv

Train/Epoch (s) Mem. (GB)

GCN 1.27 16.49
GraphSAGE 0.55 7.74

GraphGPS 1.32 38.91
Exphormer 0.74 34.04
NodeFormer 1.20 16.30
DiffFormer 0.77 24.51
PolyNormer 0.31 16.09

GCN + FN 1.27 16.49
GCN + FNM 1.27 16.49
GraphSAGE + FN 0.57 7.74
GraphSAGE + FNM 0.58 7.76

Baselines. Our main focus lies on classic MPNNs: GCN (Kipf & Welling, 2017),
and GraphSAGE (Hamilton et al., 2017); the state-of-the-art scalable graph Transformers:
GraphGPS (Rampášek et al., 2022), NAGphormer (Chen et al., 2023), Exphormer (Shirzad et al.,
2023), NodeFormer (Wu et al., 2022), DiffFormer (Wu et al., 2023a), PolyNormer (Zakar-Polyák
et al., 2023), and SGFormer (Wu et al., 2023b); hierarchical methods: HC-GNN (Zhong et al., 2023),
ANS-GT (Cai et al., 2021), and HSGT (Zhu et al., 2023); MLP-based method: LINKX (Lim et al.,
2021).

Setting. We conduct hyperparameter tuning on classic MPNNs, which is consistent with the
hyperparameter search space of Deng et al. (2024). Specifically, we use the Adam optimizer with a
learning rate from {0.001, 0.005, 0.01} and an epoch limit of 2500. We tune the hidden dimension
from {64, 256, 512}. We consider whether to use batch or layer normalization, residual connections,
and dropout rates from {0.2, 0.3, 0.5, 0.7}, the number of layers from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
and C from {32, 64, 128}.

Implementation. While our main experiment focuses on graph-level tasks, our fractal node method
can be naturally extended to node classification tasks. The key distinction lies in how we use the
processed fractal node representations from the MLP-Mixer layer to make node-level predictions
rather than graph-level ones.

For graph-level tasks, as shown in Equation (8), the fractal nodes are mixed through the MLP-Mixer
to produce

F̃ = MLPMixer(F (L)), F (L) = [f
(L)
1 , f

(L)
2 , ..., f

(L)
C]. (28)

These mixed representations are then used directly for graph-level prediction via global pooling.

For node classification, however, we need to propagate this mixed global information back to
individual nodes. After the MLP-Mixer processes the C fractal nodes according to Equations (9)
and (10), we obtain F̃ (L) ∈ RC×d. These processed fractal node representations need to be aligned
with all nodes in their respective subgraphs.

Let Vc be the set of nodes in subgraph c. For each node v ∈ Vc, we update its final representation by
combining its current features with the processed fractal node information from its corresponding
subgraph:

h(final)
v = h(L)

v + f̃ (L)
c , ∀v ∈ Vc, (29)

where f̃ (L)
c is the c-th row of F̃ (L) corresponding to the fractal node of subgraph c. This operation

ensures that each node receives the processed global context from its subgraph’s fractal node and
maintains consistency with our method while adapting it for node-level predictions.

In implementation, this process can be efficiently vectorized using a batch membership index that
maps each node to its corresponding fractal node representation. This adaptation allows our fractal

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

node framework to effectively handle both graph-level and node-level tasks while maintaining its
computational efficiency and theoretical properties.

Result. As shown in Table 16, our experiments on these large-scale benchmarks demonstrate the
effectiveness of our fractal node approach. On ogbn-arxiv, GCN+FN achieves 73.03% accuracy,
showing substantial improvement over the base GCN (71.74%) and outperforming state-of-the-art
graph Transformer models such as Exphormer and GraphGPS. The consistency between GCN+FN
and GCN+FNM indicates the robustness of our approach. The performance gains are even more
pronounced on the larger ogbn-products dataset, where GraphSAGE+FNM demonstrates substantial
improvement, achieving state-of-the-art performance of 83.11% accuracy compared to the base
GraphSAGE’s 78.29%. This surpasses recent advanced models like PolyNormer and other graph
Transformer architectures.

A notable advantage of our method becomes apparent when considering scalability. Several
Transformer-based models (marked as OOM — Out of Memory in Table 16) fail to scale to ogbn-
products due to their quadratic complexity in attention computation. In contrast, our method maintains
computational efficiency while achieving superior performance (see Table 15). This highlights not
only the effectiveness of fractal nodes in capturing both local and global graph information but also
their practical applicability to large-scale graphs.

Table 16: Node classification results on large-scale graphs (%).

Model ogbn-arxiv ogbn-product

nodes 169,343 2,449,029
edges 1,166,243 61,859,140

LINKX 66.18±0.33 71.59±0.71

GraphGPS 70.97±0.41 OOM
NAGphormer 70.13±0.55 73.55±0.21

Exphormer 72.44±0.28 OOM
NodeFormer 69.86±0.25 72.93±0.13

DiffFormer 72.41±0.40 74.16±0.31

PolyNormer 71.82±0.23 82.97±0.28

SGFormer 72.63±0.13 74.16±0.31

HC-GNN 72.79±0.25 -
ANS-GT 72.34±0.50 80.64±0.29

HSGT 72.58±0.31 81.15±0.13

GCN 71.74±0.29 75.64±0.21

GCN + FN 73.03±0.37 81.29±0.21

GCN + FNM 72.93±0.35 81.33±0.33

GraphSAGE 71.49±0.27 78.29±0.16

GraphSAGE + FN 72.70±0.11 83.07±0.35

GraphSAGE + FNM 72.54±0.30 83.11±0.07

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

L THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of fractal nodes to show how they mitigate oversquash-
ing. Our analysis builds on effective resistance theory to characterize information flow in networks
with fractal nodes.

Preliminaries on effective resistance. Following Black et al. (2023) and Appendix F, we recap
the effective resistance in graphs. For a connected, non-bipartite graph, the pseudoinverse of the
normalized Laplacian can be expressed as:

L̂+ =

∞∑
j=0

Âj , (30)

Furthermore, the effective resistance between nodes u and v can be written as:

Ru,v =

∞∑
i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
degudegv

(Âi)uv

)
, (31)

where (Âi)u,v represents the number of paths of length i between nodes u and v (Black et al., 2023).
This equation intuitively shows that more shorter and disjoint paths connecting two nodes leads to
lower effective resistance.

L.1 EFFECTIVE RESISTANCE WITH FRACTAL NODES

Lemma L.1 (Fractal Node Effective Resistance). Let G be a connected graph with C subgraphs and
their associated fractal nodes. The effective resistance between any two nodes u, v with fractal nodes
can be expressed as:

Rf (u, v) = (1u − 1v)
TL+

f (1u − 1v), (32)

where Lf is the augmented Laplacian incorporating fractal node connections:

Lf =

[
L+

∑C
i=1 FiF

T
i −[F1,F2, ...,FC]

−[F1,F2, ...,FC]
T IC

]
, (33)

where L is the original Laplacian matrix, Fi is the incidence vector for fractal node i indicating its
connections to the original nodes.

Similar to the path-based interpretation in Black et al. (2023), we can express Rf (u, v) in terms of
paths:

Rf (u, v) =

∞∑
i=0

(
1

degu
(Âi

f)uu +
1

degv
(Âi

f)vv −
2√

degudegv
(Âi

f)uv

)
(34)

where Âf is the normalized adjacency matrix including fractal node connections.

L.2 PROOF OF THEOREM 4.1

Theorem 4.1 (Resistance reduction). Let G be the original graph and Gf be the augmented graph
with fractal nodes. For any nodes u, v ∈ G, the effective resistance in Gf satisfies:

Rf (u, v) ≤ R(u, v), (35)

where Rf (u, v) is the effective resistance in Gf and R(u, v) is the original effective resistance in G.

Proof. Let G = (V, E) be the original graph and Gf = (V ∪ F , E ∪ Ef) be the augmented graph
with fractal nodes, where F is the set of fractal nodes and Ef is the set of edges connecting nodes to
fractal nodes.

Following Black et al. (2023), we express the effective resistance in terms of path decomposition:

Rf (u, v) =

∞∑
i=0

(
1

degu
(Âi

f)uu +
1

degv
(Âi

f)vv −
2√

degudegv
(Âi

f)uv

)
, (36)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

where Âf is the normalized adjacency matrix of Gf .

Let Puv be the set of all paths connecting u and v in Gf . The effective resistance can be expressed as:

Rf (u, v) = min
p∈Puv

∑
(x,y)∈p

rxy, (37)

where rxy is the resistance of edge (x, y).

By Rayleigh’s monotonicity principle (Black et al., 2023), since Gf contains all edges of G plus
additional edges through fractal nodes, adding these edges can only decrease the effective resistance
between any pair of nodes. Therefore:

Rf (u, v) ≤ R(u, v). (38)

L.3 PROOF OF THEOREM 4.2

Theorem 4.2 (Signal propagation with fractal nodes). For a MPNN with fractal nodes, the signal
propagation between nodes u, v after ℓ layers satisfies:

∥h(ℓ)u − h(ℓ)v ∥ ≤ exp(−ℓ/Rf (u, v))∥h(0)u − h(0)v ∥, (39)

where Rf (u, v) is the effective resistance in the augmented graph with fractal nodes.

Proof. First, the message passing process in MPNN (i.e., GCN) with fractal nodes can be expressed
as:

h(ℓ+1)
v = σ

Wh(ℓ)v +
∑

u∈N (v)

1√
degvdegu

Wh(ℓ)u +Wfh
(ℓ)
f

 , (40)

where h(ℓ)f is the fractal node representation. To analyze the signal propagation, we consider the
continuous-time analog by removing the nonlinearity σ:

d

dt
hv(t) = −Lfhv(t), (41)

The solution to this differential equation is:

hv(t) = exp(−tLf)hv(0), (42)

The signal difference between two nodes u, v is bounded as follows:

||hu(t)− hv(t)|| = ∥(exp(−tLf))(hu(0)− hv(0))∥ (43)
≤ ||exp(−tLf)|| · ||hu(0)− hv(0)|| (44)
≤ exp(−t/Rf (u, v))||hu(0)− hv(0)|| (45)

The last inequality comes from the spectral bound related to the effective resistance Rf (u, v) in the
graph augmented with fractal nodes. Mapping back to the discrete layer steps by setting t = ℓ, we
obtain our desired bound:

||h(ℓ)u − h(ℓ)v || ≤ exp(−ℓ/Rf (u, v))||h(0)u − h(0)v ||, (46)

This provides the worst-case signal propagation bound in the graph with fractal nodes. By the
previously proven Theorem 4.1, we know that Rf (u, v) ≤ R(u, v), thus fractal nodes provide better
signal propagation guarantees than the original graph.

Corollary L.2 (Improved signal propagation). SinceRf (u, v) ≤ R(u, v) by the Resistance Reduction
theorem, fractal nodes improve the worst-case signal propagation bound compared to the original
graph:

exp(−ℓ/Rf (u, v)) ≤ exp(−ℓ/R(u, v)). (47)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

L.4 TOTAL RESISTANCE ANALYSIS

Theorem L.3 (Total Resistance with Fractal Nodes). Let Gf be the graph augmented with C fractal
nodes. The total effective resistance satisfies:

Rf
tot = n · tr(L+

f) = n ·
n+C∑
i=2

1

σi
, (48)

where Lf is the augmented Laplacian and σi are its eigenvalues.

Proof. The total resistance can be expressed through the trace of the pseudoinverse of the Laplacian
matrix Lf . By construction, Lf has dimension (n+C)× (n+C) and its eigendecomposition yields
n+ C eigenvalues. The pseudoinverse L+

f has the same eigenvectors as Lf with reciprocal non-zero
eigenvalues, giving us the stated formula. The factor n appears because we sum over all pairs of the
n original nodes.

Corollary L.4 (Impact of Fractal Node Count). For a graph G augmented with C fractal nodes,
the total resistance decreases with C as Rf

tot = n ·
∑n+C

i=2
1
σi

, where additional eigenvalues from

larger C decrease the sum. This leads to improved signal propagation bounds ||h(ℓ)u − h(ℓ)v || ≤
exp(−ℓ/Rf (u, v)).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

M DETAILED DISCUSSION ON SECTION 5.2

To thoroughly analyze the role of positional encodings (PEs) and fractal nodes in model expressivity,
we conducted extensive ablation studies analyzing different combinations of structural components.
Table 17 shows results across three synthetic datasets (CSL, SR25, EXP) designed to test model
expressiveness.

Our ablation study reveals several important insights about the interplay between positional encodings
and our method. Without PEs, base MPNNs (GCN, GINE, GatedGCN) consistently show limited
expressiveness across all datasets, achieving only 10.00% on CSL, 6.67% on SR25, and approximately
51-52% on EXP. Adding PEs substantially improves base model performance, as evidenced by GCN’s
significant improvement from 10.00% to 76.17% on CSL and from 52.17% to 100% on EXP.

Notably, even without any positional encodings, our fractal node variants demonstrate significantly
enhanced expressivity. GINE+FNM achieves 47.33% on CSL and 95.58% on EXP without any
PE, while GatedGCN+FNM reaches 49.67% on CSL. All FNM variants achieve 100% on SR25
regardless of PE configuration, and this indicates that our method provides inherent structural
awareness independent of positional encodings.

Table 17: Synthetic results (Accuracy ↑). The gray shaded rows are the results without using PE, and
are the fairest to compare against.

Method Ablation Dataset

PE (Original Graph) PE (Coarsened Graph) CSL SR25 EXP

GCN ✗ N/A 10.00 6.67 52.17
GCN ✓ N/A 76.17 100.0 100.0

GINE ✗ N/A 10.00 6.67 51.35
GINE ✓ N/A 100.0 100.0 100.0

GatedGCN ✗ N/A 10.00 6.67 51.25
GatedGCN ✓ N/A 100.0 100.0 100.0

GCN + FNM ✗ ✗ 39.67 100.0 86.40
GCN + FNM ✗ ✓ 76.17 100.0 100.0
GCN + FNM ✓ ✗ 100.0 100.0 100.0
GCN + FNM ✓ ✓ 100.0 100.0 100.0

GINE + FNM ✗ ✗ 47.33 100.0 95.58
GINE + FNM ✗ ✓ 84.83 100.0 100.0
GINE + FNM ✓ ✗ 100.0 100.0 100.0
GINE + FNM ✓ ✓ 100.0 100.0 100.0

GatedGCN + FNM ✗ ✗ 49.67 100.0 96.50
GatedGCN + FNM ✗ ✓ 81.83 100.0 100.0
GatedGCN + FNM ✓ ✗ 100.0 100.0 100.0
GatedGCN + FNM ✓ ✓ 100.0 100.0 100.0

39

	Introduction
	Background & Related Work
	Fractal-Inspired Message Passing with Fractal Nodes
	Properties of Fractal Nodes
	Why Fractal Nodes Work?
	Model Complexity
	Comparison with Prior Work

	Experiments
	Analysis on Over-squashing (Q1.)
	Expressive Power of Fractal Nodes (Q2.)
	Experiments on Graph Benchmarks (Q3.)
	Runtime Comparison (Q4.)
	Ablation, Sensitivity, and Additional Studies

	Concluding Remark
	Appendix
	 Supplementary Materials for ``Fractal-Inspired Message Passing Neural Networks with Fractal Nodes''
	Proof of thr:dc
	Implementation Detail
	Metis Partitioning for Fractal Node Creation
	Instance of Our Framework
	Positional Encoding

	Structural Self-Similarity and Node Centrality
	Experimental Details
	Dataset Description
	Hardware Specifications and Libraries
	Setup & Hyperparameters

	Ablation, Sensitivity and Additional Studies
	Impact of HPF
	Impact of type of ()c
	Comaprison to Graph Rewiring Methods
	Comaprison to Virtual Node Methods
	Sensitivity to C
	Additional Results on All-layer Fratal Node Message Passing

	Effective Resistance and Signal Propagation
	Distribution Analysis of Subgraph Size Ratio
	Connection to Renormalization Techniques
	Different Partitioning Algorithms
	Scalability Analysis of of Fractal Node
	Profiling Results on Synthetic Graphs
	Profiling Results on Large-Scale Real-world Graphs

	Large-scale Node Classification
	Theoretical Analysis
	Effective Resistance with Fractal Nodes
	Proof of thm:reduction
	Proof of thm:signal
	Total Resistance Analysis

	Detailed Discussion on sec:analysis-ex

