Under review as a conference paper at ICLR 2025

FRACTAL-INSPIRED MESSAGE PASSING NEURAL NET-
WORKS WITH FRACTAL NODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for learning on
graph-structured data, but they struggle to balance local and global information pro-
cessing. While graph Transformers aim to address these issues, they often neglect
the inherent locality of Message Passing Neural Networks (MPNNG5). Inspired by
the fractal nature of real-world networks, we propose a novel concept, ‘fractal
nodes’, that addresses the limitations of both MPNN and graph Transformer. The
approach draws insights from renormalization techniques to design a message-
passing scheme that captures both local and global structural information. Our
method enforces feature self-similarity into nodes by creating fractal nodes that
coexist with the original nodes. Fractal nodes adaptively summarize subgraph
information and are integrated into MPNN. We show that fractal nodes alleviate an
over-squashing problem by providing direct shortcuts to pass fractal information
over long distances. Experiments show that our method achieves comparable or
better performance to the graph Transformers while maintaining the computational
efficiency of MPNN by improving the long-range dependencies of MPNN.

1 INTRODUCTION

GNNs have emerged as powerful tools for learning on graph-structured data, in various domains such
as social network analysis, molecular property prediction, and recommendation systems (Defferrard
et al., 2016; Velickovi¢ et al., 2018; Chen et al., 2020a; Chamberlain et al., 2021). At the core of
this field lies the MPNN (Gilmer et al., 2017), which iteratively propagates information between
neighboring nodes. Recent research has focused on addressing the limitations of MPNN, such as
over-smoothing (Nt & Maehara, 2019) and over-squashing (Alon & Yahav, 2021). To overcome
these challenges, Transformer architectures (Vaswani et al., 2017) have been introduced to the graph
learning community, applying self-attention mechanisms to enable long-range interactions by treating
all nodes as tokens (Dwivedi & Bresson, 2021; Wu et al., 2021; Kreuzer et al., 2021b). While graph
Transformers have shown promise in capturing global information, they often neglect the inherent
locality of MPNN s (Xing et al., 2024). Although approaches such as GraphGPS (Rampések et al.,
2022) attempt to combine MPNN and Transformer node representations to balance local and global
information, the computational complexity of Transformers remains a challenge.

Motivation. The limitations of both MPNN and graph Transformers motivate us to seek a novel
approach that balances local and global information processing while maintaining computational effi-
ciency. Our inspiration comes from the fractal nature (Mandelbrot, 1983) of real-world networks (Dill
et al., 2002; Kim & Kahng, 2010; Chen et al., 2020b). This fractality exhibits self-similarity over dif-
ferent scales, meaning that parts of the network resemble the whole. We approach this self-similarity
from two perspectives — the structural aspect, where structural patterns repeat across scales, and
the feature aspect, where we aim to enable consistent feature patterns on different network scales.
In fractal network analysis, a popular technique is renormalization (see Fig. 1(a)), which involves
replacing groups of nodes with “super-nodes” to study how network properties change in scales (Song
et al., 2005). The fractality properties and the concept of renormalization motivate us to ask: “Can we
design a message passing scheme inspired by fractal geometry and renormalization that effectively
captures both local and global structural information in graphs?” Our answer is “yes,” and we
introduce our main idea.

Under review as a conference paper at ICLR 2025

Q.
-
NLO)
g Re) o
(a) Coarsened (renormalized) graph (b) Graph where our fractal nodes are connected.

Figure 1: Heuristic comparison of renormalization and our fractal node process. (a) In renormalization,
the original graph is replaced by a single node according to each box-covering method, resulting
in a coarsened network. (b) After partitioning the original graph into subgraphs, we aggregate the
low and high-frequency information of each subgraph to create fractal nodes (O), (), (). Then,
we propagate the information to the original nodes (see our proposed FN). We also support the
long-distance interactions () between fractal nodes (see our proposed FN ;).

Main idea: fractal nodes for enforcing self-similarity. We propose a novel concept called a
‘fractal node’, inspired by fractal nature and the renormalization process. Drawing on our perspective
of self-similarity, this approach aims to reflect the characteristics of larger structures in individual
network nodes while enforcing feature self-similarity, thus promoting efficient information flow.
Unlike renormalization, which replaces node groups with single nodes, our method partitions the
given graph into multiple subgraphs and creates fractal nodes for each subgraph that coexist with the
original nodes (see Fig. 1(b)). These fractal nodes represent the information of each subgraph while
maintaining connections to the original structure.

By incorporating subgraph features into each node within the given subgraph through direct connec-
tions with fractal nodes, our approach enables smaller units (nodes) to reflect the properties of larger
units (subgraphs), effectively enforcing feature self-similarity into the nodes. Specifically, we achieve
this by adaptively combining low-frequency (global) and high-frequency (local) components of node
features within each subgraph, where the low-frequency component captures common subgraph
features while a learnable parameter controls the contribution of high-frequency variations. This
process of combining node-specific features with subgraph characteristics enables the seamless
integration of fractal nodes into existing MPNNSs. In addition, we ensure that the hidden vectors
of fractal nodes and original nodes are in the same latent space using the same MPNN layer. This
approach allows for the simultaneous consideration of local and global information while maintaining
computational efficiency. Each fractal node adaptively summarizes the information of nodes within
its corresponding subgraph, going beyond mean pooling to capture subgraph-level characteristics.

Assigning fractal node to each subgraph contributes to mitigate over-squashing problem. Each
fractal node has direct first-order connections to every node within the corresponding subgraph,
while preserving the rich node features aggregated across all nodes. This direct connection between
the fractal node and the orignal nodes serves as a shortcut pathway to facilitate the propagation
of the information across multi-hop distances, which has been considered as the primary cause of
over-squashing (Alon & Yahav, 2021). Additionally, we apply an MLP-Mixer (Tolstikhin et al., 2021)
at the last layer to flexibly mix the representations of fractal nodes. This enables inter-subgraph long
range interactions to globally exchange the subgraph context without passing through multiple edges
with potential risk of singal degradation as depth grows.

Contributions. We introduce a novel paradigm, fractal nodes', for better propagation by enforcing
self-similarity at the subgraph level into individual nodes. Our main contributions are as follows:

* We propose fractal nodes, which can be integrated into MPNN:Ss, inspired by the fractal nature of
networks (Section 3) and discuss the properties of our fractal nodes (Section 4).

* We theoretically and empirically show that fractal nodes alleviate the over-squashing problem
(Section 5.1) and improve the expressive power over MPNN (Section 5.2).

* Our experiments on various benchmark datasets demonstrate that MPNNs augmented with fractal
nodes achieve performance comparable to or better than state-of-the-art graph Transformer-based
models (Section 5.3), while maintaining computational efficiency (Section 5.4).

'Our source code is available here: https://sites.google.com/view/fractalnode/

https://sites.google.com/view/fractalnode/

Under review as a conference paper at ICLR 2025

2 BACKGROUND & RELATED WORK

In this section, we discuss MPNNS, their limitations, graph Transformers, augmented MPNNs and
discuss fractality and self-similarity in networks.

Message passing neural network. Given a graph G = (V, £), we use V and £ to denote its nodes
and edges, respectively. The nodes are indexed by v and u such that v, w € V, and an edge connecting
nodes v and w is denoted by (v, u) € £. We consider the case where each node v has a hidden vector

th) € RY, where d is the size of the hidden dimension, and ¢ is the number of layers. MPNNs
iteratively update node representations using the following equation:

hEFD = (0, O (D u e N()})), (1)

where 1(©) and ¢(©) are aggregation function and update function. Their different definitions result in
different architectures (Kipf & Welling, 2017; Xu et al., 2019a; Bresson & Laurent, 2017).

Limitations of MPNNs. In several studies, MPNN has been investigated for its expressive power
limitations and over-squashing problems. Simple MPNN is only as powerful as the 1-Weisfeler-
Leman graph isomorphism test (Xu et al., 2019b). The over-squashing problem occurs when MPNNs
struggle to propagate information along long paths, resulting in substantial loss of information when
aggregating from too many neighbors into a fixed-sized node feature vector (Alon & Yahav, 2021;
Di Giovanni et al., 2023). In such scenarios, local information spreading along the natural graph
circuits is insufficient to fully capture the local and global context of the graph. This leads to the
emergence of graph Transformers that use self-attention, thereby solving the over-squashing problem
of self-attention with its “everything is connected to everything”.

Graph Transformers. Because of successes of Transformers in natural language process-
ing (Vaswani et al., 2017), and computer vision (Zhou et al., 2021; Touvron et al., 2021), many
previous works have attempted to bring Transformer architecture to the graph domain (Dwivedi &
Bresson, 2021; Miiller et al., 2023). Dwivedi & Bresson (2021) proposed the use of graph Laplacian
eigenvectors as node positional encodings. Subsequent research has explored various strategies to
enhance graph Transformer performance. Rampasek et al. (2022) proposed a general framework,
GraphGPS, that combine MPNN and graph Transformer including self-attentions and positional
or structure encoding. Ying et al. (2021) proposed Graphormer that uses attention mechanisms to
estimate several types of encoding, such as centrality, spatial, and edge endodings. Wu et al. (2021)
applies the MPNN directly to all nodes and then applies a Transformer, which is computationally
intensive. He et al. (2023) generalize ViT Dosovitskiy et al. (2021) to graphs and Ma et al. (2023)
show that adding inductive biases to graph Transformers removes the need for MPNN modules in
GraphGPS. Exphormer improves GraphGPS by using self-attention on expander graphs (Shirzad
etal., 2023).

One common belief of the advantage of the graph Transformer over MPNN is its capacity in capturing
long-range interactions while alleviating over-squashing in MPNN (Alon & Yahav, 2021; Di Giovanni
et al., 2023). While graph Transformers have shown promise in addressing the limitations of MPNNSs,
they often come at the cost of increased computational complexity, typically scaling from O(|£])
to O(|N]?), where |€| is the number of edges and || is the number of nodes. This computational
burden calls for more efficient architectures that can capture global information without the full
quadratic cost of attention mechanisms.

Augmented MPNNs. To improve information flow and address the limitations of standard MPNNSs,
various strategies have been proposed (Di Giovanni et al., 2023; Shi et al., 2023; Choi et al., 2024).
One approach involves incorporating additional global graph features during the representation
learning process (Gilmer et al., 2017; Hu et al., 2020). Another effective method is rewiring the
input graph to enhance connectivity and alleviate structural bottlenecks (Gasteiger et al., 2019; Black
et al., 2023; Karhadkar et al., 2023; Nguyen et al., 2023). These adjustments allow for more effective
information flow within the network. Another example of graph augmentation is the virtual node,
which adds a new node to the graph to enhance information exchange between all pairs of nodes.
This heuristic, introduced by Gilmer et al. (2017), has been observed to improve performance on
various tasks. Further analysis by Hwang et al. (2022) and Cai et al. (2023) has explored the role of
virtual nodes in mitigating under-reaching and over-smoothing issues.

Under review as a conference paper at ICLR 2025

Subgraphs in graph learning. Several works introduce hierarchical clustering and coarsening for
learning on graphs (Dong et al., 2023). Chiang et al. (2019) use graph clustering to identify well-
connected subgraphs on large graphs. HC-GNN (Zhong et al., 2023) shows competitive performance
in node classification on large-scale graphs, using hierarchical community structures for message
passing. In graph Transformers, several hierarchical models (Zhao et al., 2022; Gao et al., 2022;
Zhu et al., 2023; He et al., 2023) attempt to manage computational complexity, though they still face
challenges with scalability as all nodes remain within the computational burden of the Transformer
architecture. However, our approach, the incorporation of fractal nodes to MPNN, can reduce this
computational cost while preserving structural information.

Fractality and self-similarity in networks. The concept of fractals, introduced by Mandelbrot
(1983), transformed our understanding of complex, irregular structures in nature by revealing self-
similarity across different scales. This insight has since been applied to various fields, including
network science, where many real-world networks have been shown to exhibit fractal structures and
scale-free properties (Song et al., 2005; Kim et al., 2007; Fronczak et al., 2024). For instance, social
networks, the World Wide Web, and even protein interaction networks have been found to have fractal
properties (Chen et al., 2020b).

In our work, we define fractality as the degree to which subgraph properties resemble those of the
entire graph when consistently partitioned. While traditional fractal analysis (e.g., renormalization
techniques) commonly uses box-covering algorithms (Kim et al., 2007), we bring this concept to the
constraints of benchmark datasets where absolute node positions are unknown. Instead, we construct
subgraphs through graph partitioning.

3 FRACTAL-INSPIRED MESSAGE PASSING WITH FRACTAL NODES

In this section, we propose our fractal nodes and explain how they contribute to overcome limitations
of existing MPNNs. We describe how to enfore self-similarity to a graph by assigning fractal nodes
and how to implement intra and inter-subgraph local and global interactions guided by fractal nodes.

Notaion. Let {Vy,...,Vc} be the set of node subsets corresponding to C' subgraphs, where C' is
the number of subgraphs. G. = (V., &.) is the induced subgraph of G. We define hq(}e)c as the hidden

vector of node v of the c-th subgraph in layer ¢, and fc(e) as the hidden vector of the fractal node of
the c-th subgraph in the ¢-th layer.

Message passing with fractal nodes. 'We first introduce the message passing process, including frac-
tal nodes. The message passing process for both the node-level and fractal node-level representations
proceeds as follows:

REED = 0O (B0, O (B, - u € NL)), ©)
S = QUL BN (D su e ML), 3)
h{EED = GORLD, flED),)

where NV (v) is the set of neighbors of node v. Equation (2) performs standard message passing at the
node level. If the graph is not partitioned into subgraphs, Equation (2) alone is equivalent to standard
MPNN. Equation (3) updates the fractal node representations. It aggregates hidden vectors from all

nodes in the subgraph, V., using the 7&;1), and then updates the fractal node representation. wéﬁ

and <P|(:ZN) are aggregate and update functions for fractal nodes, which will be explained in more detail.

The update function () is the step that shows that the message fc(“l) is propagated to hﬁf’c

How to create fractal nodes. As shown in Fig. 1(b), fractal nodes are created from partitioned
subgraphs. To partition into subgraphs, we consider the METIS (Karypis & Kumar, 1998) algorithm
for its computational efficiency. How we use METIS is discussed in more detail in Appendix B.1.
Following our dual perspective of self-similarity, each fractal node serves two purposes: (1) repre-
senting structural patterns of a subgraph that potentially mirror the whole graph’s topology and (2)
enabling feature self-similarity by integrating low and high-frequency components from the node

Under review as a conference paper at ICLR 2025

features within the subgraph. While graph partitioning preserves structural patterns, we focus on
achieving feature self-similarity by adaptively combining low-pass filtering (LPF) and high-pass
filtering (HPF). We first show that mean pooling captures only the direct current (DC) component
(i.e., the lowest frequency component) of the signal.

Theorem 3.1 (Mean pooling as a low-pass filter capturing the DC component). Let h,, represent the
hidden state of node v in subgraph V, and let H. = [hy, ha, ..., hy,| € R"*% be the matrix of node
features for all nodes in V. where n = |V,| is the number of nodes in the subgraph. The mean pooling
operation applied to the node features is equivalent to extracting the DC or the lowest frequency
component of the signal in the frequency domain.

As shown in Theorem 3.1, mean pooling corresponds to extracting the lowest frequency component
— also known as the DC component — in the Fourier domain. This DC component capture the global
characteristic of the subgraph, but it ignores higher-frequency variations that represent local details.
A formal proof of Theorem 3.1 is provided in Appendix A.

While Theorem 3.1 shows that mean pooling only captures the DC component, fractal nodes go
beyond this limitation by using LPF and HPF. We adaptively rescale the high-frequency component,
and combine LPF and HPF together to form fractal nodes:

FLEHD = LPFALE) + PR, ®

U7

where w§‘> is a learnable parameter controlling the contribution of high-frequency components. We

use a learnable scalar parameter, wg) € R!, or a learnable vector parameter, wy) € R%. The LPF is
computed by averaging the node features within the subgraph, so it can capture global information:

LPF(h{" D) = —— 37 hf, ©)
|VC| vEV,
Equation (6) is analogous to mean pooling and represents the global, low-frequency component of
the subgraph. To capture the finer details, the HPF is applied by subtracting the low-pass filtered
output from the original node hidden vector. This allows the model to retain the local variations that
would otherwise be lost:

HPF(A{TD) = h{fIH) — LPF(R{f). @)

v,c

Fractal Nodes mixing with MLP-Mixer. We can also allow fractal nodes to exchange messages,
as the coarsened network in Fig. 1(a) takes advantage of long-distance interactions. To do this, we
can apply the MLP-Mixer layer (Tolstikhin et al., 2021) to the fractal nodes in the last layer. This
means that we do not need to create a coarsened network, and the MLP-Mixer flexibly mix the
representations of fractal nodes:

~ . L) (L L
F = MLPMixer(F(1)), F(E) =[5 pB) L ptH), ®)
where F(I) is the matrix of all fractal node representations at final layer L. The MLP-Mixer layer
consists of token-mixing and channel-mixing steps:
U = F) 4 (Wyp(WiLayerNorm(F(1)))) e RE*4)
FU) = U + (Wyp(WsLayerNorm(UT)T) € RE*4, (10)

where p is a GELU nonlinearity, LayerNorm(-) is layer normalization, and matrices W; €
RUXC W, € RE*D Wy € R¥2*4 T, € R4¥9 are learnable weight matrices, where d; and
do are the tunable hidden widths in the token-mixing and channel-mixing MLPs.

Instance of our framework. To better understand our framework, we show how to integrate fractal
nodes into MPNNs: GCN (Kipf & Welling, 2017), GINE (Xu et al., 2019a), and GatedGCN (Bresson
& Laurent, 2017). We will use these MPNNSs for our experiments. The update equation for GCN +
FN is the following:

BV =o(W e Y W),

uwEN (v) V degvdegu v

e R

(11)

Under review as a conference paper at ICLR 2025

where ¢ a ReLU activation function, and deg, and deg, are their node degrees. Due to space
constraints, the update equations of GINE and GatedGCN can be found in Appendix B.2 and we
provide implementation details in Appendix B.

The method of applying the fractal nodes as in Equation (11) is called FN, and the method of using
the fractal nodes of the last layer by mixing (see Equation (8)) is called FN; from now on.

The output layer. Once the final representation h¢ is derived, we use a multi-layer perceptron
(MLP) as an output layer to predict graph-level outputs:

ye = MLP(hg), he = MeanPool(H™) for FN, F") for FN,;) € R?,

where y¢ is either a scalar for regression tasks or a vector for classification tasks, and HX) =

[th), e h‘(éf] is the matrix of node representations at the final layer L for all nodes in the graph.

4 PROPERTIES OF FRACTAL NODES

In this section, we analyze why fractal nodes are effective and what properties they have, discuss the
model complexity, and compare them with previous work.

4.1 WHY FRACTAL NODES WORK?

Theoretical analysis. We provide theoretical analysis showing that fractal nodes help mitigate
oversquashing by reducing the effective resistance between nodes.

Theorem 4.1 (Resistance reduction). Let G be the original graph and G be the augmented graph
with fractal nodes. For any nodes u,v € G, the effective resistance in Gy satisfies:

Ry(u,v) < R(u,v), (12)
where Ry (u,v) is the effective resistance in Gy and R(u,v) is the original effective resistance in G.

This reduction in effective resistance directly improves signal propagation between distant nodes:

Theorem 4.2 (Signal propagation with fractal nodes). For a MPNN with fractal nodes, the signal
propagation between nodes u, v after { layers satisfies:

[— RO < exp(—€/Ry(u,)[R — B, (13)

where R (u,v) is the effective resistance in the augmented graph with fractal nodes.

Since R (u,v) < R(u,v), fractal nodes improve the worst-case signal propagation bound compared
to the original graph. The proofs and detailed analysis can be found in Appendices L.2 and L.3.

Frequency response analysis. We analyze the fre-
quency response of node representations to understand
the information encoding properties of fractal nodes.
Fig. 2 shows the normalized frequency response for
GCN, self-attention, mean pooling, and fractal nodes.
Self-attention shows a prominent response in low and
high frequencies but with a potential overemphasis on
global information. Mean pooling shows a minimal re-
sponse, primarily in the low-frequency domain, which
suggests an oversimplification of node representations

. . -1.0 -0.5 0.0 0.5 1.0
by losing local details. In contrast, fractal nodes show a Frequency
distinctive response for low and high frequencies. The
prominent low-frequency response captures the global Figure 2: Normalized frequency response
context of subgraphs, while the elevated high-frequency on PEPTIDES-STRUCT.
response ensures the retention of fine-grained, local de-
tails. This unique combination highlights the ability of fractal nodes to encode subgraph-level patterns
while preserving node-level distinctions.

o]
o

— GCN

— Self-Attention
— Mean Pooling
— Fractal Node

(o))
o

Normalized Magnitude
N >
o o

o

Under review as a conference paper at ICLR 2025

1.0 ;
Self-similarity in structural patterns and feature repre- . |
sentations. Our fractal nodes work by using structural — ..0-8 : i
and feature self-similarity. In structural perspective, we E
observe it through node centrality distributions at various & 0-6 :
scales. We use betweenness centrality (Freeman, 1977) 4, !
as it captures local and global structural importance, par- T T -»- Mean

4 8

ticularly in networks where even low-degree nodes can 16 32

be critical bridges (Kitsak et al., 2007). We partition the Number of Subgraphs

graphs into different numbers of subgraphs and compare o

the distributions between the original graph and its sub- Figure 3: Structural similarity of node
graphs (See Appendix C for more details). As shown in centrality distribution in PEPTIDES.
Fig. 3, the structural similarity increases with the number of subgraphs.

From the feature perspective, our fractal nodes go beyond structural patterns by adaptively combining
LPF and HPF to represent both global and local features. By using the learnable parameter wg),
fractal nodes can represent multi-scale feature effectively. While mean pooling only retains global
information through DC components, our approach preserves global patterns and local variations
in the feature space. This dual consideration allows our method to better capture the inherent

self-similarity of real-world networks.

Expressive power of fractal nodes. The expressive power of fractal nodes can be understood
through the lens of existing theoretical results on subgraph-based approaches. The methods have
been shown to increase expressive power beyond MPNNs. Encoding local subgraphs is stronger
than 1-WL and 2-WL tests (Zhao et al., 2022, Theorem 4.3). In the context of subgraph WL (SWL)
test (Zhang et al., 2023), fractal nodes achieve expressive power comparable to SWL with additional
single-point aggregation and potentially approach SWL with additional global aggregation (Zhang
et al., 2023, Theorem 4.4), as the fractal nodes implicitly perform a form of global aggregation within
each subgraph. We will empirically verify expressive power in Section 5.2.

4.2 MODEL COMPLEXITY

Our fractal nodes show improvements in computational efficiency compared to Transformer-based
models such as graph Transformers (Dwivedi & Bresson, 2021) and GraphGPS (Rampasek et al.,
2022). The time complexity of our FN method is O(L(|V| + |£])), where L is the number of layers,
|V is the number of nodes, and |€| is the number of edges. The FNj; introduces an additional mixing
step through the MLP-Mixer, leading to a time complexity of O(L(|V| + |€|) + Cd?). C is the
number of subgraphs and d is the hidden dimension. Given that C' is much smaller than |V|, this
term does not dominate the overall complexity, preserving the efficiency of the model. In contrast,
graph Transformers incur a time complexity of O(L(|V|?)), due to the quadratic cost of computing
self-attention over all node pairs, which is expensive for large graphs. Similary, GraphGPS combines
MPNNSs with self-attention, resulting in comparable quadratic complexity O(L(|V|?)). Thus, fractal
nodes offer a computational advantage over graph Transformer-based methods.

4.3 COMPARISON WITH PRIOR WORK

Comparison to graph coarsening methods. Coarformer (Kuang et al., 2022) tries to use coarsened
and original graphs as separate views, where the coarsened graph is input to the Transformer, while
ANS-GT (Cai et al., 2021) feeds a sequence of node representations to the graph Transformer
by combining original, global, and coarsened node representations formed via adaptive sampling.
Our method, on the other hand, incorporates fractal nodes representing subgraph information into
the MPNN and enables fractal nodes to exchange messages with the original nodes and exchange
information between fractal nodes via MLP-Mixer.

Comparison to virtual node. If we do not split into subgraphs, there will be only one fractal node.
This can be compared to a virtual node (Gilmer et al., 2017; Hwang et al., 2022; Cai et al., 2023),
which is known to have the information of a global node. While both approaches facilitate global or
subgraph-level global information exchange, the key difference lies in how they process information.
Virtual nodes aggregate global information from the entire graph, whereas fractal nodes operate at a
subgraph level. A virtual node has its own update and aggregation functions that process messages

Under review as a conference paper at ICLR 2025

from all graph nodes, while regular nodes incorporate both their local neighborhood messages and
the virtual node’s message. In contrast, our fractal nodes adaptively decompose and process both
low and high frequency components of subgraph features. This allows fractal nodes to capture richer
information at the subgraph level compared to virtual node implementations that typically aggregate
global information.

5 EXPERIMENTS

To evaluate the effectiveness of our proposed fractal nodes, we conduct extensive experiments on
various tasks. We aim to answer the following key questions: (Q1.) Can fractal nodes mitigate
over-squashing compared to MPNNs? (Q2.) Do fractal nodes improve expressiveness compared to
MPNNs? (Q3.) How do fractal nodes compare to MPNNs and other graph Transformers in terms of
performance on various benchmark datasets? (Q4.) Does the lower theoretical complexity of fractal
nodes lead to faster run time? Through this experiment, we aim to determine if fractal nodes provide
meaningful benefits. Afterwards, we perform a series of ablation and sensitivity analyses.

5.1 ANALYSIS ON OVER-SQUASHING (Q1.) c ! T
s g
. . . 5 08 == GCN + FNy
Singal propagation and effective resistance. The signal prop- g .,
. P . . Q

agation of MPNN:Ss is inversely proportional to the total effective ¢

. a 04
resistance R;,; (Di Giovanni et al., 2023). Consistent with our

. =

theoretical analysis in Theorems 4.1 and 4.2, this motivates us to @ 2
check if adding fractal nodes help maintain signal flow across a 0% 03 04 06 08

6
graph with high R;,;. Ry is the total effective resistance between Normalized Reot

all pairs of nodes in a graph. The theoretical details of effective
resistance and signal propagation are provided in Appendix F.
The results in Section 5.1 validate our theoretical predictions —
GCN+FN mitigates the decay of signal propagation with higher
Rt compared to GCN. GCN fails to maintain the magnitude of

Figure 4: The amount of sig-
nal propagated across the graphs
w.r.t. the normalized R;,; in
PEPTIDES-FUNC. More results
are in Appendix F.

signal flow under severe bottleneck structure, indicated as higher

total effective resistance. In contrast, GCN+FN,; demonstrates resilience to over-squashing and
maintains higher levels of signal propagation even under the highest R;,;. This improvement can
be attributed to fractal nodes, which serve as single-hop shortcuts to connect all nodes and enable
efficient long-range interactions by exchanging the features across them through MLP-Mixer layer.

Fractal nodes alleviates over-squashing. We evaluate
our fractal nodes on the TREENEIGHBOURSMATCH pro-

1.00

—8— GCN

posed by Alon & Yahav (2021), which has tree structures -.0.75{ &~ GINE

that show fractal-like properties. The dataset helps evalu- § 0.50 ——GatedGCN

ate over-squashing. In this dataset, each example consists § : gﬁ\f;?m

of a binary tree of depth 7, with the task of predicting the < 0.25 -+ GatedGCN-+FNy
label for target node by matching its degree of neighbors 0———‘\.\‘___._.__&
with a leaf node. As shown in Fig. 5, standard MPNNs 0.00 53 4 5 6 7 s
(i.e., GCN, GINE, GatedGCN) fail to generalize for r» > 4, r (the problem radius)

while our fractal nodes mitigate over-squashing and gener-

alize well up to r = 7. We empirically show that MPNNs Figure 5: Test accuracy in the

augmented with fractal nodes can directly propagate long- TREENEIGHBOURMATCH problem.

distance information, avoiding the over-squashing problem.

Table 1: Synthetic results (Accuracy 1)
5.2 EXPRESSIVE POWER OF FRACTAL NODES (Q2.)

, , Method CSL SR25 EXP
We experimentally evaluate the expressive power of fractal
nodes on 3 simulated datasets: CSL (Murphy et al., 2019), GCN 10.00 6.67 52.17
EXP (Abboud et al., 2021), and SR25 (Balcilar et al, 0N o 007 303
2021). Each dataset contains graphs that are indistinguish- : i i
able by the 1 to 3-WL test, and detailed descriptions are GCN + FNyy 39.67 100.0 86.40
GINE + FN s 47.33 100.0 95.58

provided in Appendix D.1. Table 1 shows that our model
GatedGCN + FN s 49.67 100.0 96.50

Under review as a conference paper at ICLR 2025

Table 2: Test performance on two peptide datasets from LRGB (Dwivedi et al., 2022) and four other
benchmark datasets (Hu et al., 2020; Dwivedi et al., 2023). 1 denotes the higher the better and |
denotes the lower the better. Top three models are colored by first, second, third.

Method PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MoOLHIV MoLTox21
AP 1 MAE | Accuracy T Accuracy T ROCAUC1 ROCAUC 1

GCN 0.632840.0023 0.275840.0012 0.9269+0.0023 0.5423+0.0056 0.7529+0.0098 0.7525+0.0031
GINE 0.64054-0.0086 0.278040.0021 0.9705+0.0023 0.6131+0.0035 0.7885+0.0034 0.77304-0.0064
GatedGCN 0.63004-0.0029 0.277840.0017 0.9776+0.0017 0.6628+0.0017 0.7874+0.0119 0.76414-0.0057
GT - - 0.9083+0.0016 0.5975+0.0029 0.7350+0.0040 0.75004-0.0060
GraphiT - - - - 0.746040.0100 0.718040.0130
Graphormer - - - - 0.793040.0040 0.77300.0800
Transformer + LapPE 0.632640.0126 0.252940.0016 0.9083+0.0016 0.5975+0.0029 - 0.7323+0.0057
SAN + LapPE 0.638440.0121 0.268340.0043 - - 0.777540.0061 0.713040.0080
EGT - - 0.9817+40.0009 0.6870+0.0041 - -
GraphGPS 0.65344-0.0091 0.25094-0.0014 0.9805+40.0013 0.723040.0036 0.7880+0.0101 0.757040.0040
GRIT 0.69884-0.0082 0.24604-0.0012 0.981140.0011 0.7647-+0.0089 - -
Graph-ViT/MLP-Mixer 0.6970+0.0080 0.2449+0.0016 0.98464-0.0009 0.71584-0.0009 0.799740.0102 0.7910-0.0040
Exphormer 0.652740.0043 0.248140.0007 0.9841+0.0035 0.7469-+0.0013 - -
GECO 0.6975+0.0025 0.246440.0009 - - 0.798040.0200 -
CRaWl1 0.696340.0079 0.250640.0022 0.979440.0050 0.6901+0.0026 0.7707-40.1490 -

PNA - - 0.979440.0012 0.703540.0063 0.790540.0132 -
GNN-AK+ 0.648040.0075 0.273640.0012 - 0.721940.0013 0.796140.0119 -

SUN 0.6730+0.0115 0.24984-0.0008 - - 0.8003£0.0055 -

CIN - - - - 0.8094+0.0057 -

GCN + FN 0.680240.0043 0.253040.0004 0.9393+0.0084 0.6006+0.0070 0.7564+0.0059 0.7670+40.0073
GINE + FN 0.68154-0.0059 0.251540.0020 0.979040.0012 0.6584+0.0069 0.7890+0.0104 0.775140.0029
GatedGCN + FN 0.677840.0056 0.253640.0019 0.9826+0.0012 0.7125+0.0035 0.7967+0.0098 0.7759+0.0054
GCN + FN s 0.678740.0048 0.246440.0014 0.9455+0.0004 0.6413+0.0068 0.7866+0.0034 0.7882+0.0041
GINE + FN s 0.7018+0.0074 0.244640.0018 0.9786+0.0004 0.6672+0.0068 0.8127+0.0076 0.7926-+0.0021
GatedGCN + FN 5z 0.69504-0.0047 0.245340.0014 0.9848-+0.0005 0.7526+0.0033 0.8097+0.0047 0.7922+4-0.0054

achieves perfect accuracy on all 3 datasets while MPNNSs fail (see detailed result in Appendix M).
Our results are empirical but align with our discussion in Section 4.1.

5.3 EXPERIMENTS ON GRAPH BENCHMARKS (Q3.)

Experimetnal setting and baselines. We evaluate our method on two different types of tasks:
graph-level prediction and large-scale node classification. For graph-level tasks, we use six benchmark
datasets: two peptide datasets from LRGB (Dwivedi et al., 2022), two graph-level super-pixel image
datasets from Benchmarking GNNs (Dwivedi et al., 2023), and two molecular datasets from OGB
dataset (Hu et al., 2020). We compare our fractal nodes to MPNNs, graph Transformer-based
models, and other state-of-the-art models: GCN (Kipf & Welling, 2017), GINE (Xu et al., 2019a),
GatedGCN (Bresson & Laurent, 2017), GT (Dwivedi & Bresson, 2021), GraphiT (Mialon et al., 2021),
Graphormer (Ying et al., 2021), Transformer + LapPE, SAN (Kreuzer et al., 2021a), EGT (Hussain
et al., 2022), GraphGPS (Rampadsek et al., 2022), GRIT (Ma et al., 2023), GraphViT/MLPMixer (He
et al., 2023), Exphormer (Shirzad et al., 2023), GECO (Sancak et al., 2024), GNN-AK+ (Zhao
etal., 2022), SUN (Frasca et al., 2022), CIN (Bodnar et al., 2021), CraWl (Tonshoff et al., 2023),
and PNA (Corso et al., 2020). Detailed experimental settings for graph-level tasks are provided
in Appendix D, while the setup and baseline comparisons for the large-scale node classification
experiments are described separately in Appendix K.

Results on graph-level tasks. Our proposed fractal nodes (FN and FN,,) consistently enhance
the performance of baseline MPNNs on all benchmark datasets, often surpassing graph Transformer
models. In Table 2, for instance, on PEPTIDES-FUNC dataset, GINE+FN,, achieves an average
precision (AP) of 0.7018, outperforming both Exphormer and GraphGPS. The capabilities of base
MPNN impact performance outcomes. Our fractal nodes framework is model-agnostic and augments
various MPNNs. Our fractal nodes capture global information at the subgraph level through low
and high-pass filtering and enable long-range interactions without self-attention layers. The superior
performance of GRIT on CIFARI10 stems from its self-attention, positional encoding, and degree
scalers. Our comparable performance with Graph-ViT and Exphormer on MNIST shows that fractal
nodes can effectively capture local and global information without self-attention layer.

Under review as a conference paper at ICLR 2025

Results on large-scale graphs. The effectiveness of our method is particularly evident in large-
scale graph experiments in Table 16 of Appendix K. On ogbn-arxiv, GCN+FN improves accuracy
from 71.74% to 73.03%, while on ogbn-product, GraphSAGE+FNj; demonstrates a substantial
improvement from 78.29% to 83.11%. These improvements are achieved while maintaining the
computational efficiency of MPNNSs, offering a more practical alternative to graph Transformers for
large-scale graph learning tasks.

Table 3: Runtime and memory con-
5.4 RUNTIME COMPARISON (Q4.) sumption on PETIDES-FUNC.

As we discussed in Section 4.2, our fractal nodes provide ben-

. Time/epoch Memory
efits in capturing long-range dependencies without increasing

computational complexity. As shown in Table 3, GCN+FN re- gCN LaoPE 1‘8%413 6265g11\1/{/113B
. . a rans.+Lap Ols 6,
sults in only a slight runtime increase compared to base MPNNSs. GraphGPS 1201s 6.904 MB

This efficiency extends to large-scale graphs (see Appendix J.2)
— on ogbn-arxiv, GCN+FN maintains identical computational GCN + FN 503s 512MB
requirements to GCN. Even with FN, the overhead remains GCN+FNy 6.17s 667 MB
minimal and far below graph Transformers such as GraphGPS

and Exphormer. Our empirical analysis of graph partitioning algorithms (detailed in Table 14) shows
that using METIS with O(|£]|) complexity enables efficient fractal node creation even for large graphs
such as ogbn-arxiv and ogbn-products. Given these results shown in Table 16, we believe our method
achieves a balance between accuracy and computational efficiency.

5.5 ABLATION, SENSITIVITY, AND ADDITIONAL STUDIES

We report ablation studies for wﬁe) and HPF in Appendices E.1 and E.2. We report results when wge) is
zero, that is, without HPF, and when we use either a scalar parameter (denoted ‘SC”) or a learnable vec-
tor parameter (denoted “VC’). We also report sensitivity studies on C, i.e., the number of fractal nodes,
and additional analyses on a variant of message passing between fractal nodes in Appendices E.5
and E.6. Analysis of the use of partitioning algorithms other than METIS is reported in Appendix 1.

Table 4: Comparison to rewiring methods
Fractal nodes vs. augmented MPNNs. We com-

pare our fractal nodes to 6 augmented MPNNs includ- pjoihod ~ PEPTIDES-FUNC PEPTIDES-STRUCT

ing graph rewiring methods: DIGL (Gasteiger et al., AP 1 MAE |
2019), SDRF (Topping et al., 2022), FoSR (Karhad-
kar et al., 2023), BORF (Nguyen et al., 2023), OCN 0.5930+0003 0.3496-0.0013

GTR (Black et al., 2023), PANDA (Choi et al., 2024), 12‘?&‘ 823‘7‘213%2 8;2?3323?;

and LASER (Barbero et al., 2023) (see Appendix E.3 | ¢prp 0.5947 400126 0.3478=0.0013
for detail setup). If there is only one fractal node and | BORF 0.5994-£0.0037 0.35140.0000
no subgraph is created, our method can be reduced to +PANDA 0.6028 00031 0.3272+0.0001
the virtual node method, so we compare our fractal +LASER 0.6440-0.0010 0.3043-+£0.0019
nodes and virtual nodes in Appendix E.4. +EN 0.6445 00057 0.2535+00012

6 CONCLUDING REMARK

We introduced the fractal nodes to enforce self-similarity into MPNNS, inspired by the fractal
nature of real-world networks. Our method effectively combines local and global graph information,
addressing limitations of both MPNNs and graph Transformers. Experimental results on 6 benchmark
datasets show the superiority of our approach, consistently improving the performance of MPNN’s
and competing advantageously with state-of-the-art graph Transformers-based methods.

Limitations and future directions. While fractal nodes are effective, they are currently designed
to extend MPNN architectures. Although efficient and widely used, the use of METIS for subgraph
partitioning may not be optimal for all types of graphs. While alternative partitioning methods
could be used for large-scale graphs, the computational efficiency of METIS limits our options for
more computationally intensive partitioning approaches. Future work could explore better ways to
construct subgraphs at scale, and it may be worthwhile to investigate extending our fractal nodes in
ways better suited for graph Transformers.

10

Under review as a conference paper at ICLR 2025

ETHICAL STATEMENTS

In terms of the broader impact of this research on society, we do not see the very negative impacts
that might be expected.

REPRODUCIBILITY STATEMENT

To ensure reproducibility and completeness, we have included appendices in this paper. Appendix A
provides a proof of Theorem 3.1. We provide details of our experiments presented in the paper in
Appendix D. Only a part of the source code that reproduces the experiments is available at ht tps:
//sites.google.com/view/fractalnode/. We plan to make all the code available after
acceptance.

REFERENCES

Ralph Abboud, Ismail Tlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence (IJCAI), 2021.

Réka Albert and Albert-Lasz16 Barabdasi. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i800PhOCVH2.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pp. 599-608. PMLR, 2021.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
GNNs through the lens of effective resistance. In International Conference on Machine Learning,
2023. URL https://proceedings.mlr.press/v202/black23a.html.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in neural
information processing systems, 34:2625-2640, 2021.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553,2017.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=uxpzitPEood.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. In International Conference on Machine Learning, pp. 3408-3430. PMLR, 2023.

Benjamin Paul Chamberlain, James Rowbottom, Maria Goronova, Stefan Webb, Emanuele Rossi,
and Michael M Bronstein. GRAND: Graph neural diffusion. In International Conference on
Machine Learning, 2021.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=8KYeilT30w.

11

https://sites.google.com/view/fractalnode/
https://sites.google.com/view/fractalnode/
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://proceedings.mlr.press/v202/black23a.html
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=8KYeilT3Ow

Under review as a conference paper at ICLR 2025

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020a.

Ying Chen, Rongpeng Li, Zhifeng Zhao, and Honggang Zhang. On the capacity of fractal d2d social
networks with hierarchical communications. IEEE Transactions on Mobile Computing, 20(6):
2254-2268, 2020b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257-266,
2019.

Jeongwhan Choi, Sumin Park, Hyowon Wi, Sung-Bae Cho, and Noseong Park. PANDA: Expanded
width-aware message passing beyond rewiring. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=J1NIXxiDbu.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovi¢. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260-13271, 2020.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
2016.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=hmv1LpNfXa.

Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance.
Journal of Physics: Complexity, 3(2):025008, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M.
Bronstein. On over-squashing in message passing neural networks: The impact of width,
depth, and topology. In International Conference on Machine Learning, 2023. URL https:
//proceedings.mlr.press/v202/di—-giovanni23a.html.

Stephen Dill, Ravi Kumar, Kevin S McCurley, Sridhar Rajagopalan, Daksh Sivakumar, and Andrew
Tomkins. Self-similarity in the web. ACM Transactions on Internet Technology (TOIT), 2(3):
205-223, 2002.

Honghua Dong, Jiawei Xu, Yu Yang, Rui Zhao, Shiwen Wu, Chun Yuan, Xiu Li, Chris J Maddison,
and Lei Han. Megraph: capturing long-range interactions by alternating local and hierarchical
aggregation on multi-scaled graph hierarchy. Advances in Neural Information Processing Systems,
36:63609-63641, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=in7XC5RcjEn.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1-48, 2023.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17-60, 1960.

12

https://openreview.net/forum?id=J1NIXxiDbu
https://openreview.net/forum?id=hmv1LpNfXa
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://openreview.net/forum?id=in7XC5RcjEn
https://openreview.net/forum?id=in7XC5RcjEn

Under review as a conference paper at ICLR 2025

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. In Advances in Neural Information
Processing Systems, volume 35, pp. 31376-31390, 2022.

Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pp. 35-41,
1977.

Agata Fronczak, Piotr Fronczak, Mateusz J Samsel, Kordian Makulski, Michat Lepek, and Maciej J
Mrowinski. Scaling theory of fractal complex networks. Scientific Reports, 14(1):9079, 2024.

Han Gao, Xu Han, Jiaoyang Huang, Jian-Xun Wang, and Liping Liu. Patchgt: Transformer over
non-trainable clusters for learning graph representations. In Learning on Graphs Conference, pp.
27-1. PMLR, 2022.

Johannes Gasteiger, Stefan Weilenberger, and Stephan Giinnemann. Diffusion improves graph
learning. In Advances in neural information processing systems, 2019.

Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a graph. SIAM
review, 50(1):37-66, 2008.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821-7826, 2002.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International conference on machine learning, pp.
12724-12745. PMLR, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems (NeurIPS), 33:22118-22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-LSC:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655-665, 2022.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of virtual
nodes in graph neural networks for link prediction (extended abstract). In The First Learning on
Graphs Conference, 2022. URL https://openreview.net/forum?id=dI6KBKNRp7.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral rewiring for
addressing oversquashing in GNNs. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=3YJjQfCLdrzz.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359-392, 1998.

Jin Seop Kim, Kwang-Il1 Goh, Byungnam Kahng, and Doochul Kim. Fractality and self-similarity in
scale-free networks. New Journal of Physics, 9(6):177, 2007.

Pureun Kim and Byungnam Kahng. Fractal network in protein interaction network model. Journal of
the Korean Physical Society, 56(3):1020-1024, 2010.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

13

https://openreview.net/forum?id=dI6KBKNRp7
https://openreview.net/forum?id=3YjQfCLdrzz

Under review as a conference paper at ICLR 2025

Maksim Kitsak, Shlomo Havlin, Gerald Paul, Massimo Riccaboni, Fabio Pammolli, and H Eugene
Stanley. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on
real networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(5):056115,
2007.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. In Advances in Neural Information Processing
Systems, volume 34, pp. 21618-21629, 2021a.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618-21629, 2021b.

Weirui Kuang, Zhen WANG, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer
for large graph via graph coarsening, 2022. URL https://openreview.net/forum?id=
fkjO_FKVzw.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems, volume 34, pp. 20887—
20902. Curran Associates, Inc., 2021.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321-23337. PMLR, 2023.

Benoit B Mandelbrot. The fractal geometry of nature/revised and enlarged edition. New York, 1983.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Luis Miiller, Mikhail Galkin, Christopher Morris, and Ladislav Rampasek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663—4673. PMLR,
2019.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International Con-
ference on Machine Learning, 2023. URL https://proceedings.mlr.press/v202/
nguyen23c.html.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit .org.

Eran Rosenbluth, Jan Tonshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self-attention vs. virtual nodes. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AcSChDWL6V.

Kaan Sgncak, Zhigang Hua, Jin Fang, Yan Xie, Andrey Malevich, Bo Long, Muhammed Fatih Balin,
and Umit V Catalyiirek. A scalable and effective alternative to graph transformers. arXiv preprint
arXiv:2406.12059, 2024.

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
GNNs: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023.

14

https://openreview.net/forum?id=fkjO_FKVzw
https://openreview.net/forum?id=fkjO_FKVzw
https://proceedings.mlr.press/v202/nguyen23c.html
https://proceedings.mlr.press/v202/nguyen23c.html
http://www.rdkit.org
https://openreview.net/forum?id=AcSChDWL6V

Under review as a conference paper at ICLR 2025

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp- 31613-31632. PMLR, 2023.

Chaoming Song, Shlomo Havlin, and Hernan A Makse. Self-similarity of complex networks. Nature,
433(7024):392-395, 2005.

Carsten Thomassen. Resistances and currents in infinite electrical networks. Journal of Combinatorial
Theory, Series B, 49(1):87-102, 1990.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261—
24272, 2021.

Jan Tonshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=vgXnEyeWVY.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=7UmjRGzp—A.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning (ICML), pp. 10347-10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems (NeurIPS), volume 30, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018.

Zong-Wen Wei, Bing-Hong Wang, and Xiao-Pu Han. Renormalization and small-world model of
fractal quantum repeater networks. Scientific reports, 3(1):1222, 2013.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387-27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (graph) transformers induced by energy constrained diffusion. In The Eleventh Interna-
tional Conference on Learning Representations, 2023a. URL https://openreview.net/
forum?id=j6zUzrapY3L.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2023b.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266-13279, 2021.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing
problem in graph transformers. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=uKmcyyrzae.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019a. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

15

https://openreview.net/forum?id=vgXnEyeWVY
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=uKmcyyrZae
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019b. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems (NeurIPS), volume 34, pp. 28877-28888, 2021.

Enik$ Zakar-Polyak, Marcell Nagy, and Roland Molontay. Towards a better understanding of the
characteristics of fractal networks. Applied Network Science, 8(1):17, 2023.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In International Conference on
Machine Learning, pp. 41019-41077. PMLR, 2023.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=Mspk_WYKoEH.

Zhigiang Zhong, Cheng-Te Li, and Jun Pang. Hierarchical message-passing graph neural networks.
Data Mining and Knowledge Discovery, 37(1):381-408, 2023.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and
Jiashi Feng. DeepViT: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer for
scalable graph learning. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pp. 4702-4710, 2023.

16

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=Mspk_WYKoEH

Under review as a conference paper at ICLR 2025

Supplementary Materials for ‘“Fractal-Inspired Message Passing
Neural Networks with Fractal Nodes”

Table of Contents
A Proof of Theorem 3.1 18
B Implementation Detail 18
B.1 Metis Partitioning for Fractal Node Creation 18
B.2 Instance of Our Framework 19
B.3 Positional Encoding Lo o 19
C Structural Self-Similarity and Node Centrality 20
D Experimental Details 20
D.1 Dataset Description 20
D.2 Hardware Specifications and Libraries 21
D.3 Setup & Hyperparameters e 22
E Ablation, Sensitivity and Additional Studies 24
E.1 Impactof HPF o . 24
E.2 Impact of type of W 24
E.3 Comaprison to Graph Rewiring Methods 24
E.4 Comaprison to Virtual Node Methods 25
E.5 Sensitivity to C' L 25
E.6 Additional Results on All-layer Fratal Node Message Passing 26
F Effective Resistance and Signal Propagation 26
G Distribution Analysis of Subgraph Size Ratio 27
H Connection to Renormalization Techniques 31
I Different Partitioning Algorithms 31
J Scalability Analysis of of Fractal Node 33
J.1 Profiling Results on Synthetic Graphs 33
J.2 Profiling Results on Large-Scale Real-world Graphs 33
K Large-scale Node Classification 33
L Theoretical Analysis 36
L.1 Effective Resistance with Fractal Nodes 36
L.2 Proofof Theorem 4.1 36
L3 Proofof Theorem4.2 37
L.4 Total Resistance Analysis 38
M Detailed Discussion on Section 5.2 39

17

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 3.1

Theorem 3.1 (Mean pooling as a low-pass filter capturing the DC component). Let h,, represent the
hidden state of node v in subgraph V. and let H, = [hy, ha, . .., h,] € R™"*4 be the matrix of node
Sfeatures for all nodes in V. where n = |V.| is the number of nodes in the subgraph. The mean pooling
operation applied to the node features is equivalent to extracting the DC or the lowest frequency
component of the signal in the frequency domain.

Proof. The mean pooling operation aggreagated the features of all nodes in the subgraph or graph by
computing the average,

m _ 1
fmean — - Z Ry (14)

veC.

To understand this operation in the frequency domain, we use discrete Fourier transform (DFT),
which transforms the node feature matrix H, into its frequency domain. The DFT of a signal h,, is
represented as:

F(hy) =DFT - hy, (15)

where DFT € C™*" is the Fourier matrix. The rows of the Fourier matrix are given by the Fourier
basis vectors, which are complex exponential functions. These basis vectors represent different
frequencies, and each row in the DFT corresponds to a specific frequency component. The first row of
the Fourier matrix DFT corresponds to the DC component, which is the lowest frequency component
of the signal. This row is a vector of ones:

1
vn
This row corresponds to the mean or average of the signal. Therefore, when we project the input
signal onto this basis vector, we are effectively extracting the global, smooth structure of the signal.

DFT[L,:] = — - [1,1,...,1]. (16)

The DC component of the DFT is then expressed as:
1
DC|[z] = DFT 'diag(1,0,...,0)DF Tz = —117z. (17)
n

This operation corresponds to projecting the input signal = onto the vector of ones, effectively
averaging all elements of x, which is exatly the result of mean pooling:

1 1
fhe = ~1TH, = > b (18)
veCe

O

Therefore, mean pooling captures the DC component of the signal, which is the lowest frequency
component. This corresponds to extracting the global, smooth node features of the subgraph, but it
does not retain higher-frequency variations, which represent the local details.

Thus, mean pooling is equivalent to applying a low-pass filter that only retains the DC component of
the signal.

B IMPLEMENTATION DETAIL

B.1 METIS PARTITIONING FOR FRACTAL NODE CREATION

To create fractal nodes, we employ METIS (Karypis & Kumar, 1998), a graph clustering algorithm
known for its excellent balance between accuracy and computational efficiency. METIS partitions a
graph into a pre-defined number of clusters, maximizing within-cluster connections while minimizing
between-cluster links. This approach effectively captures the community structure of the graph.

However, using non-overlapping partitions could result in the loss of important edge information,
particularly at the boundaries between partitions. To address this issue and retain all original edges,

18

Under review as a conference paper at ICLR 2025

we introduce overlapping subgraph. After the initial METIS partitioning, we expand each partition to
include nodes from neighboring partitions.

Formally, we first apply METIS to partition a graph G into C non-overlapping subgraphs:
{Vi,....,Vc} such that V = {V; U...UVc} and V; NV; = @,Yi # j, where C is the num-
ber of fractal nodes or subgraphs. Then, we expand these subgraphs to include k-hop neighborhoods:

Vi <V, U{NL(J)|7 € Vi}, (19)

where Ny () defines the k-hop neighbourhood of node j. This expansion ensures that each subgraph
retains information about its immediate surroundings. The choice of & allows us to control the degree
of overlap between subgraphs. A larger k value increases the overlap, potentially capturing more
global information but at the cost of increased computational complexity. This overlapping subgraph
approach allows our fractal nodes to capture both local structural details and broader subgraph-level
information, enhancing the model’s ability to learn multi-scale representations of the graph structure.

B.2 INSTANCE OF OUR FRAMEWORK

We describe update equations for how our fractal node is applied to MPNN. The update equation for
GatedGCN + FN is the following:

B0 = o (0B 4 Y gate®(hL 0 0 AOWLY),

uwEN (v)
FUD = LPF(EEfjl)) +w®. HPF(%Sfijl)), (20)
h(z+1) _ %sz—l) + fc(Hl)’

() e)) = sigmoid(WZ(l)hffl + Wéz))h o

v,c? u,

gate (n|

where o is a ReLU activation function, W(Z) Wl(g), WQ(K), W?EZ) are learnable weight matrices,
gate(¥) is a gating mechanism that controls the information flow between nodes.

The update equation for GINE + FN is the following:

RED = MLPO (1 4+ €®) - () + Z (B + ef)),

uEN (v
FED = LPF(RHY) + w0 - HPF(ho, c(“'l))

h([+1) — hg)fjl) + f(.éﬁ*l ,

v,C

2n

where €(®) is a learnable scalar parameter, and eq(fv) is a edge hidden vector between node v and v.

Note that the positional encoding scheme and readout function schemes can also be applied to
MPNNs with fractal nodes.

B.3 POSITIONAL ENCODING

When we integrate our fractal node to MPNN, we incorporate two distinct positional encodings (PE):
an absolute PE for individual nodes and a relative PE for fractal nodes.

For node-level encoding, we consider dataset-specific approaches. We utilize random-walk structural
encoding (RWSE) for molecular graphs and Laplacian eigenvector encodings for super-pixel image-
based tasks. To enhance robustness, we randomly flip the sign of Laplacian eigenvectors during
training.

Let M € {0,1}9*IVI be a binary matrix where each row corresponds to a fractal node and each

column to an original graph node. M;; = 1 if node j belongs to fractal node 7, and 0 otherwise. Then,

the coarsened adjacency matrix is computed as A® = MM ". This operation effectively counts the
number of connections between fractal nodes, where AC represents the number of edges between

fractal nodes ¢ and j in the original graph. We then der1ve a positional encoding p, € R% for each

19

Under review as a conference paper at ICLR 2025

fractal node from this coarsened adjacency matrix. This encoding is incorporated into the fractal
node representation through a linear transformation:

B =Tp, + OfF) +b e RY, (22)

where T' € R4%% and O € R%*4 are learnable transformation matrices, and b € R< is a learnable
bias vector.

By incorporating relative positional information between fractal nodes, we enable the FNj, variant
to better use the hierarchical structure of the graph.

C STRUCTURAL SELF-SIMILARITY AND NODE CENTRALITY

In this section, we describe how we calculate the self-similarity of a network by comparing the node
centrality distributions between the original graph and its subgraphs using betweenness centrality.
Specifically, we use the Kolmogorov-Smirnov (KS) test to measure the similarity between these
distributions.

Fractality definition. We define the fractality of a graph as the degree to which the properties of
the subgraphs resemble those of the original graph when the graph is partitioned consistently. In
this work, we focus on how the betweenness centrality distribution of the original graph compares to
those of its subgraphs.

Let W(x) represent the node centrality distribution function for the original graph, and let
Uo(x),..., Usa(x) represent the centrality distributions for each of the subgraphs obtained by
partitioning the original graph into 32 subgraphs. We aim to quantify the similarity between ¥ (z)
and the subgraph distributions using the KS test.

Kolmogorov-Smirnov test. The KS test is a non-parametric test that compares the empirical
cumulative distribution function (CDF) ¥,,(z) of the sample (subgraph centrality) with the CDF
U(z) of the reference distribution (original graph centrality). The KS test statistic D is defined as:

D = sup |\I]n(x) - \I/((E)|, (23)

where D represents the maximum distance between the two CDFs. A smaller D value indicates
higher similarity between the two distributions.

Similarity metric. We define the similarity between the original graph and a subgraph as 1 — D,
where D is the KS test statistic. Therefore, a higher 1 — D value implies greater similarity. For each
graph, we compute the similarity for all C' subgraphs, yielding C' similarity values.

Fractality calculation. In our fractality evaluation, it is sufficient to identify the subgraph whose
centrality distribution is most similar to that of the original graph. This is because not all subgraphs
need to exhibit self-similarity for the graph to be considered fractal-like; the presence of one or more
highly similar subgraphs is indicative of fractality. Thus, we take the maximum of the C' similarity
values (1 — D) as the self-similarity score for the graph:

Self-Similarity Score = max(1 — D;), (24)

where D; is the KS test statistic for the ¢-th subgraph. This approach allows us to compute a self-
similarity score for a single graph based on betweenness centrality. The comparison according to the
number of subgraphs is shown in Fig. 6.

D EXPERIMENTAL DETAILS
In this section, we provide further details about our experiments.
D.1 DATASET DESCRIPTION

We provide the descriptions and statistics of all datasets used in our experiments.

20

Under review as a conference paper at ICLR 2025

g 0.8{ -» Mean 0.7
2"® L 2 ! 20.6
g 506 5
z 0.6 E ‘€05
) H 7])
0.4 Tr 0.4 Tr 0.4 Tr
T -»- Mean s -e- Mean
1 1 0.3
4 8 16 32 4 8 16 32 4 8 16 32
Number of Subgraphs Number of Subgraphs Number of Subgraphs
@ k=0 b k=1) k=2

Figure 6: Similarity of node centrality distribution in PEPTIDE-STRUCT.

PEPTIDES-FUNC & PEPTIDES-STRUCT. (CC BY-NC 4.0 License) (Dwivedi et al., 2022): These
datasets comprise 16K atomic peptide graphs from SAT-Pdb, with residues as nodes. They differ
in their graph-level tasks: PETIDES-FUNC is a multi-label classification task with 10 nonexclusive
functional classes, while PEPTIDES-STRUCT involves regression on 11 3D structural properties.
Dataset splitting utilizes meta-class holdout based on original peptide labels.

MNIST & CIFAR10. (CC BY-SA 3.0 and MIT License): These datasets adapt popular image
classification tasks to graph classification. Images are converted to graphs using super-pixels,
representing homogeneous intensity regions. Both are 10-class classification tasks following standard
splits: S5K/5SK/10K for MNIST and 45K/5K/10K for CIFARI1O0 (train/validation/test).

MoLHIV & MOLTOX21. (MIT License) (Hu et al., 2020): These molecular property prediction
datasets use common node and edge features representing chemophysical properties, pre-processed
with RDKit (RDKit, online). Molecules are represented as graphs with atoms as nodes and chemical
bonds as edges. Node features are 9-dimensional, including atomic number, chirality, and other
properties. Predefined scaffold partitions are used: MOLTOX21 6K/0.78K/0.78K and MOLHIV
32K/4K/4K for training/validation/test.

CSL. CSL (Murphy et al., 2019) is a synthetic dataset testing GNN expressivity, containing 150
4-regular graphs in 10 isomorphism classes. These graphs, indistinguishable by 1-WL tests, form
cycles with skip-links. The task is to classify them into their respective isomorphism classes.

EXP. EXP (Abboud et al., 2021) consists of 600 graph pairs that 1&2-WL tests fail to distinguish,
aiming to classify these into two categories.

SR25. SR25 (Balcilar et al., 2021) consists of 15 strongly regular graphs (3-WL indistinguishable)
with 25 nodes each, forming a 15-way classification problem.

TREENEIGHBOURMATCH. Proposed by Alon & Yahav (2021), this synthetic dataset highlights
over-squashing in MPNNS. It uses binary trees of depth r (problem radius), requiring information
propagation from leaves to a target node for label prediction, thus demonstrating over-squashing
issues.

D.2 HARDWARE SPECIFICATIONS AND LIBRARIES

We have implemented our method using PYTORCH-GEOMETRIC, and built on the source code of
Rampasek et al. (2022)? and He et al. (2023)3. All experiments were performed using the following
software and hardware environments: UBUNTU 18.04 LTS, PYTHON 3.7.13, PYTORCH 1.12.1,
PYTORCH GEOMETRIC 2.5.2, , TORCH-SCATTER 2.1.0, TORCH-SPARSE 0.6.16, NUMPY 1.24.3,
METIS 0.2a5, CUDA 11.3, NVIDIA Driver 465.19, i9 CPU, NVIDIA RTX 3090/A6000.

Mttps://github.com/rampasek/GraphGPS
Shttps://github.com/XiaoxinHe/Graph-ViT-MLPMixer

21

https://github.com/rampasek/GraphGPS
https://github.com/XiaoxinHe/Graph-ViT-MLPMixer

Under review as a conference paper at ICLR 2025

D.3 SETUP & HYPERPARAMETERS

We use the same learning rates and weight decay to GCN, GINE, and GatedGCN, and the hyperpa-
rameters we considered are shown in Tables 5 to 7. The experimental results of MPNN are the same
as the results using positional encoding, and we use the setup of He et al. (2023).

In Tables 5 to 7, we report the hyperparameters used in our experiments.

Table 5: Hyperparameter search space of fractal nodes for benchmark datasets

Hyperparameters Search Space
ws® {sc, vc}
C {4,8, 16, 32}
HPF {True, False}
k-hop {0, 1,2}
L {2,3,4,5,6,7, 8}
Ly {1,2,4}

Table 6: Best hyperparameter of FN for PEPTIDES-FUNC, PEPTIDES-STRUCT, MNIST, CIFAR10,
MoLHIV, and MoOLTOx21.

Hyperparameter Method ~ PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MoLHIV MoLTox21

GCN vC SC \%® VvC \%® SC
w® GINE e vC vC vC e e
GatedGCN SC vC \%® vC \%® SC
GCN 32 32 32 32 32 32
C GINE 32 32 32 32 32 32
GatedGCN 32 32 32 32 32 32
GCN True True True True True True
HPF GINE True True True True True True
GatedGCN True True True True True True
GCN 1 1 | 1 1 1
k-hop GINE 1 1 1 1
GatedGCN 1 1 1 1 1
GCN 4 4 4 7 2 4
L GINE 4 4 4 7 2 4
GatedGCN 4 4 4 7 2 4

22

Under review as a conference paper at ICLR 2025

Table 7: Best hyperparameter of FN 5, for PEPTIDES-FUNC, PEPTIDES-STRUCT, MNIST, CIFAR10,
MOLHIV, and MOLTOX21.

Hyperparameter Method PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MoLTox21

GCN vC SC vC VC vC vC
w® GINE sC vC vC vC vC sc
GatedGCN vC SC vC VC vC vC
GCN 32 32 32 32 32 32
C GINE 32 16 32 32 32 32
GatedGCN 32 32 4 4 32 32
GCN True True True True True True
HPF GINE True True True True True True
GatedGCN True True False True True True
GCN 1 1 1 2
k-hop GINE 1 1 2
GatedGCN 1 1 1 1 2
GCN 4 4 4 7 2 5
L GINE 4 4 4 7 2 4
GatedGCN 4 4 4 8 2 5
GCN 2 2 4 1 2 4
L GINE 2 2 4 1 2 4
GatedGCN 2 2 4 1 2 4

23

Under review as a conference paper at ICLR 2025

E ABLATION, SENSITIVITY AND ADDITIONAL STUDIES

E.1 IMPACT OF HPF

We use both LPF and HPF to create fractal nodes, as shown in Equation (5). We analyze the cases

when w(e) is 0, i.e., with and without HPF. Our results are reported in Table 8, and we obtain the best
performance when using HPF in almost all cases.

Table 8: Ablation study on HPF

PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MoLTox21
AP T MAE | Accuracy 1 Accuracy 1 ROCAUC 7t ROCAUC 1

True 0.6802-+0.0043 0.25300.0004 0.9393+0.0084 0.6006-+0.0070 0.7564-+0.0059 0.7670-:0.0073
False 0.6768+0.0016 0.254740.0023 0.938340.0102 0.599340.0081 0.7551+4-0.0084 0.7608-0.0093

Method HPF

GCN + FN

True 0.6815+-0.0059 0.251540.0020 0.9790+0.0012 0.6584+0.0069 0.7882+0.0050 0.77514-0.0029

GINE + FN False 0.6749+400111 02524400021 0.9788-00008 0.6584-0.0069 0.7861+00054 0.7702400045

True 0.6778+0.0071 0.2536+0.0019 0.9826+0.0012 0.71254-0.0035 0.7967+0.0098 0.7759+-0.0054
False 0.6661+0.0103 0.2609+40.0016 0.980140.0015 0.701040.0031 0.790840.0084 0.767440.0024

True 0.6787+0.0048 0.2464+0.0014 0.945540.0004 0.6413+0.0070 0.7866-+0.0034 0.7882+0.0041
False 0.67780.0056 0.246140.0022 0.944840.0007 0.613040.0080 0.768940.0124 0.787440.0080

GatedGCN + FN

GCN + FN M

True 0.7018+0.0074 0.2446+0.0018 0.9786+0.0004 0.6672+0.0068 0.8127+0.0076 0.7926-:0.0021

GINE + FNay False 0.6647+000052 02484400018 0.9744+00007 0.6670+00056 0.7959+00079 0.789540.0067

GatedGCN + FN True 0.6950+-0.0047 0.2453+0.0014 0.983640.0010 0.75264-0.0033 0.8097+0.0047 0.7922+4-0.0054
M False 0.6900-£0.0055 0.247740.0005 0.9848+0.0005 0.750140.0042 0.79304-0.0057 0.78834-0.0067

E.2 IMPACT OF TYPE OF wﬁz)
When creating a fractal node, we can use a learnable scalar parameter (denoted as ‘SC’) or a learnable
vector parameter (denoted as ‘VC’) to make the contribution of high frequency components. We
report the results in Table 9.

e L
Table 9: Sensitivity study on wé)
(¢) PEPTIDES-FUNC PEPTIDES-STRUCT MNIST CIFAR10 MOLHIV MoLTox21
Method wg
AP 1 MAE | Accuracy T Accuracy T ROCAUC 1 ROCAUC 1
GCN + FN SC 0.6797+0.0056 0.253040.0004 0.937740.0080 0.60034-0.0075 0.75534-0.0061 0.7670+-0.0073
VC 0.6802+0.0043 0.253540.0033 0.9393+0.0084 0.6006+0.0070 0.7564-+0.0059 0.7667-+0.0045
GINE + EN SC 0.6815+0.0059 0.2534+0.0016 0.978440.0010 0.654840.0088 0.7882:0.0050 0.7751::0.0029

VC 0.6796+0.0024 0.251540.0020 0.9790+0.0012 0.6584+0.0069 0.7849+40.0047 0.7672+40.0009

SC 0.6778+0.0071 0.254640.0020 0.9813+0.0018 0.708340.0032 0.791040.0090 0.7759+0.0054

GatedGCN+FN G 6647100052 02536100019 0.9826-0.0012 0.712510.0035 0.7967+0.0098 07662400090

SC 0.6773+0.0039 0.246440.0014 0.94444-0.0008 0.64054-0.0065 0.776240.0089 0.78824-0.0041

GCN+FNwm VC 0.6787100048 02485100016 0.9455-0.0004 0.6413-0.0070 0.7866-0.0034 07862400037

SC 0.7018+0.0074 0.245140.0011 0.973540.0009 0.66554-0.0066 0.80704-0.0084 0.7924+4-0.0019

GINE + FNay VC 0.6926400105 02446400018 0.978610.0004 0.66720.0068 0.8127-£0.0076 0.7926-0.0021

GatedGCN + FN SC 0.6932+0.0056 0.2453+0.0014 0.9836+0.0010 0.749540.0051 0.8097+0.0047 0.7922+0.0054
M VC 0.6950+0.0047 0.246140.0009 0.983640.0009 0.7526+0.0033 0.802510.0087 0.78854-0.0043

E.3 COMAPRISON TO GRAPH REWIRING METHODS

We compare our fractal nodes to no graph rewiring and 4 other state-of-the-art rewiring methods:
DIGL (Gasteiger et al., 2019), SDRF (Topping et al., 2022), FoSR (Karhadkar et al., 2023), and
BORF (Karhadkar et al., 2023). We also add the recent method, PANDA (Choi et al., 2024) to
alleviate over-squashing without rewiring and the state-of-the-art method, LASER (Barbero et al.,
2023). We replicate the experimental settings of Dwivedi et al. (2022) and use the results from
Barbero et al. (2023). We choose the hidden dimension to respect the 500k parameter budget. In our
fractal node, we opt out the positional encodings for a fair comparison.

24

Under review as a conference paper at ICLR 2025

E.4 COMAPRISON TO VIRTUAL NODE METHODS

To provide a comprehensive comparison with existing virtual node method, we compare with the two
virtual node methods by Hu et al. (2020) (denoted as ‘virtual node’) and Rosenbluth et al. (2024)
(denoted as “VN’). As shwon in Table 10, both FN and FNj; outperform the GCN and GIN models
augmented with virtual nodes from Hu et al. (2020) on MOLHIV and MOLT0x21. On the Peptides
datasets, our methods show competitive results with the VN method of Rosenbluth et al. (2024).

Table 10: Comparison to virtual node methods.

PEPTIDES-FUNC PEPTIDES-STRUCT MoOLHIV MoLTox21

Method

AP 1 MAE | ROCAUC 1 ROCAUC T
GCN + virtual node - - 0.7599+0.0119 0.7551+0.0100
GIN + virtual node - - 0.7707+0.0149 0.7621+0.0062
GCN + VN 0.6732+0.0066 0.2505+0.0022 - -
GatedGCN + VN 0.6823-+0.0069 0.2475+0.0018 - -
GCN + FN 0.6802+£0.0043 0.2530-0.0004 0.7564+00059 0.7670+0.0073
GINE + FN 0.6815+0.0059 0.2515+0.0020 0.7890+0.0104 0.7751+0.0029
GatedGCN + FN 0.6778+0.0056 0.2536-+0.0019 0.7967 +0.0098 0.7759+0.0054
GCN + FN 0.6787+0.0048 0.2464+0.0014 0.7866+0.0034 0.7882+0.0041
GINE + FNjs 0.7018--0.0074 0.2446--0.0018 0.8127+0.0076 0.7926-+0.0021
GatedGCN + FNy, 0.6950--0.0047 0.2453+0.0014 0.8097+0.0047 0.7922+0.0054

E.5 SENSITIVITY TO C

The analysis of sensitivity to the number of fractal nodes (C) reveals distinct performance patterns
in various datasets. As shown in Fig. 7, for PEPTIDES-FUNC and PEPTIDES-STRUCT, there is
relatively stable performance across different C' values, with GINE+FN , consistently outperforming
the baseline GINE+FN. In MNIST, both GINE variants show an upward trend as C' increases, with
GINE+FN; achieving peak accuracy at C' = 32.

The optimal results are typically achieved at C' = 32, which indicates that graph tasks benefit from
finer-grained subgraph partitioning and additional mixing operations in FN ;. Overall, the results
indicate that larger C' values (16 or 32) generally yield better performance for most datasets.

7,GINE + FN HEGINE + FNy 7.GINE + FN HIGINE + FNp

A

4 8 16 32 4 8 16 32 4 8 16 32
C (Number of Fractal Nodes) C (Number of Fractal Nodes) C (Number of Fractal Nodes)
(a) PEPTIDE-FUNC (b) PEPTIDE-STRUCT (c) MNIST

/.GINE + FN MEGINE + FNy

/.GINE + FN MGINE + FNy /.GINE + FN MEGINE + FNy

o
~

Accuracy
()]
(o))
ROCAUC

65 # 7
4 8 16 32 4 8 16 32 4 8 16 32
C (Number of Fractal Nodes) C (Number of Fractal Nodes) C (Number of Fractal Nodes)
(d) CIFAR10 (e) MOLHIV (f) MoLTox21

Figure 7: Sensitivity to C' with GINE.

25

Under review as a conference paper at ICLR 2025

E.6 ADDITIONAL RESULTS ON ALL-LAYER FRATAL NODE MESSAGE PASSING

While our main FNj; design uses an MLLP-Mixer in the final layer for fractal node interactions, we
also explored an alternative approach with message passing between fractal nodes across all layers
(denoted as FN 4). This analysis aims to empirically validate our architectural choice.

Table 11 compares 3 variants: i) FN: is a base MPNN with no explicit fractal node interactions; ii)
FN 4 is an all-layer message passing between fractal nodes; and iii) FN; is MLP-Mixer in final layer
only (our proposed approach). The results show that while FN 4 shows some improvements over
the base FN model in certain cases (e.g., MOLHIV accuracy improves from 0.7564 to 0.7783 for
GCN), it consistently underperforms compared to our proposed FN,; design. This pattern holds
across different base architectures (GCN, GINE, GatedGCN) and datasets.

These empirical results validate our design choice of using MLP-Mixer in the final layer rather than
implementing message passing between fractal nodes throughout all layers. This result indicates that
the flexible mixing capabilities of the MLP-Mixer provide more effective fractal node interactions
compared to explicit message passing approaches.

Table 11: Comparison on FN, FN 4 and FN,

PEPTIDES-FUNC PEPTIDES-STRUCT MoLHIV MoLTox21

Method

AP 1 MAE | ROCAUC 1 ROCAUC 1t
GCN + FN 0.6802-+0.0043 0.2530-£0.0004 0.7564+0.0059 0.767040.0073
GCN + FN4 0.6582-+0.0032 0.2531+0.0008 0.7783+0.0164 0.7600+40.0037
GCN + FNjs 0.6787+0.0048 0.2464-+0.0014 0.7866-+0.0034 (0.7882+0.0041
GINE + FN 0.68150.0059 0.2515+0.0020 0.7890+0.0104 0.7751+0.0029
GINE + FN 4 0.6660-+0.0067 0.2530-+0.0011 0.8025+0.0100 0.7680-+0.0056
GINE + FNas 0.7018-+0.0074 0.2446--0.0018 0.8127+0.0076 0.7926+-0.0021
GatedGCN + FN 0.6778+0.0056 0.2536+0.0019 0.7967+0.0098 0.7759+0.0054
GatedGCN + FN 4 0.6658-+0.0048 0.2531+0.0009 0.7898+0.0065 0.7642+0.0050
GatedGCN + FN 0.6950--0.0047 0.2453+0.0014 0.8097 £o.0047 0.7922-+0.0054

F EFFECTIVE RESISTANCE AND SIGNAL PROPAGATION

Effective resistance and signal propagation. Derived from the field of electrical engineering, the
effective resistance between two nodes u and v in an electrical network is defined as the potential
difference induced across the edges when a unit current is injected at one of each end (Ghosh et al.,
2008). Intuitively, it provides a physical measure of the ease of signal flow from one end to the other.
Rayleigh’s monotonicity principle, which says that adding paths or shortening existing paths can
only decrease the effective resistance between two nodes (Thomassen, 1990), leads to the following
interpretation: more and shorter disjoint paths connecting the nodes v and v lead to a lower resistance
between them (Black et al., 2023; Devriendt & Lambiotte, 2022). Therefore, edges with higher
effective resistance have fewer alternative paths or shortcuts for signals passing through that edge and
thus, struggle to propagate information, causing bottlenecks. The total effective resistance R;,;, the
sum of the effective resistance among all pairs of nodes (see Equation (26)), is a key measure for
measuring the overall degree of over-squashing across a graph.

Total effective resistance. The resistance between nodes v and v in the graph is given by

Ru,v = (1u - 1v)TL+(1u - 11)); (25)

where L is a Laplacian matrix, 1, and 1, are indicator vectors for node v and v, respectively.
Total effective resistance, Ry, is defined as the sum of effective resistance between all pairs of
nodes (Ghosh et al., 2008; Black et al., 2023):

1
Rt = 3 Ryn =n-Tr(LT) = nzx, (26)
u>v 7 v

where); is the i-th eigenvalues of L and L* is the pseudoinverse of L.

26

Under review as a conference paper at ICLR 2025

Signal propagation w.r.t. effective resistance. Here, we outline the experimental details for
measuring signal propagation with respect to the normalized total effective resistance of the graphs.
First, we randomly select a source node v € V, an entire node set, and assign d-dimensional feature
vector to it, while all other nodes are initialized with zero vectors. Then, the amount of signal that has
been propagated over the graph by the randomly initialized model with ¢ layers is given by

DI P et

B —
L
t=1 u#v ||h()t

u, v), 27)

dmaxwgv kg(u,v)

where h{" is the ¢-th feature of d-dimensional feature vector of node w at layer ¢ and kg (u, v) is the

distance between two nodes u and v, computed as a shortest path. Every unitary signal 7" / ||hq(f)’t I
propagated across the graph G from the source node v is weighted by the normalized propagation
distance kg (u,v)/ maxy4, dg(u,v) for all nodes u # v and then averaged over entire d output
channels. To estimate the total effective resistance of the graph, 10 nodes are randomly sampled from
each graph and total effective resistance of the graph is estimated for each source node. The final

hg) and total resistance of the graph are obtained by averaging across the 10 sampled nodes. The
experiment is repeated for every graph in the dataset and the signal propagation measured for each
graph is plotted against the normalized total effective resistance of the corresponding graph.

In Figs. 8 to 10, we report the results of this analysis.

1

S = GCN 5 = GINE 5 == GatedGCN
2 08 =— GCN +FNy | & 08 = GINE+FNy | & 08 = GatedGCN + FNy
[*)] [*)] (o))
T 0.6 T 0.6 T 0.6
o o o
o o o
a 0.4 a 0.4 a 04
E = =
502 502 502
(2] (2] (2]
0502 08 0502 04 06 08 06— 02 04 06 08

1

1

04 06
Normalized Rt

(a) GCN

Figure 8: The amount of signal propagated across the graphs w.r.t.

STRUCT.

1

1

Normalized Rt

(b) GINE

Normalized Ryt

(c) GatedGCN

the normalized R;,; in PEPTIDES-

1

15 = GCN 5 = GINE 5 = GatedGCN
= 08 = GCN +FNy | & 08 = GINE+FNy | £ 08 == GatedGCN + FNy
(o)} (o)} o
T 0.6 T 0.6 T 0.6
o o o
e e 3
T 04 I 04 T 04
g 0. g 0. g oo
[%p] (%] [0p]
0502 08 0602 08 0602 04 06 08

04 06
Normalized R¢ot

(a) GCN

04 06
Normalized R¢ot

(b) GINE

Normalized Riot

(c) GatedGCN

Figure 9: The amount of signal propagated across the graphs w.r.t. the normalized R;,; in MOLHIV.

G DISTRIBUTION ANALYSIS OF SUBGRAPH SIZE RATIO

We analyze the distribution of subgraph size ratios produced by METIS partitioning across different
numbers of partitions (C') and datasets.

In generally, as C increases from 2 to 32, the average subgraph size ratio naturally decreases since
each partition contains a smaller portion of the original graph. The width of the distributions generally
increases with C, indicating more variance in partition sizes with finer granularity. Most datasets
show roughly normal or slightly skewed distributions around the expected mean ratio of 1/C'.

As shwon in Fig. 11, PEPTIDE-FUNC/STRUCT show relatively tight, symmetric distributions. In
indicates that METIS creates balanced partitions for molecular graphs. CIFAR10 and MNIST

27

Under review as a conference paper at ICLR 2025

=

1 1
S = GCN s = GINE 5 == GatedGCN
= 08 = GCN +FNy | & 08 = GINE+FNy | B 08 == GatedGCN + FNy
g 06 g 06 g 06
o o o
o 2 o
a 04 a 0.4 a 0.4
2 o2 2 oo 2 o2
2 = o = o =
(2] (2] (2]
% 02 04 06 08 % 02 04 06 08 % 02 04 _ 06 08
Normalized Rt Normalized Rt Normalized Riot
(a) GCN (b) GINE (c) GatedGCN

Figure 10: The amount of signal propagated across the graphs w.r.t. the normalized R;.: in

MoLTOX21.

show distinct bimodal patterns, especially at C' = 16 and C' = 32, likely due to the regular grid-like
structure of superpixel graphs (See Fig. 12 and Fig. 13). As shown in Fig. 14 and Fig. 15, MOLH1Vv
and MOLTO0x21 show broader distributions, particularly at higher C' values, reflecting the more

heterogeneous nature of these molecular graphs.

The consistent distributions for molecular datasets indicate METIS partitioning is well-suited for
these graph types. The bimodal distributions in image-based graphs indicate the natural clustering
of superpixels into regions of different sizes. Higher C values (i.e., 16, 32) generally maintain

reasonable balance while allowing for more fine-grained capture of graph structure.

1400

1200

1000

800

Frequency

600

400

200

0.44 0.46 0.48 0.50 0.52 0.54 0.56
Subgraph Size Ratio

(@ C=2

1750
1500

1250

Frequency
=
~ o
vl o
o o

u
o
S

N]
o
I=}

1200

1000

©
=3
S

Frequency
(=)
o
o

400

200

ol
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Subgraph Size Ratio

dC=16

i

04)"
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34

Subgraph Size Ratio

(b)yC=4

2500

2000

Frequency
—
G
o
o

1000

500

1400

1200

1000

Frequency
o [e2]
o o
o o

400

200

n

() C = 32

0
0.060.080.100.120.140.160.180.200.22

Subgraph Size Ratio

) C =8

04
0.00 0.02 0.04 0.06 0.08 0.10
Subgraph Size Ratio

Figure 11: Similarity of node centrality distribution in PEPTIDE-FUNC/STRUCT.

28

Under review as a conference paper at ICLR 2025

3500 3000 3000
3000 2500 2500
2500
> 5, 2000 > 2000
[} o o
$ 2000 S S
& 3 1500 5 1500
£ 1500 2 £
1000 1000
1000
JHJ m ""ilH
il
0 AV VL N 1 ol L
0.48 049 050 051 0.52 0.23 0.24 0.25 0.26 0.27 0.28 0.10 0.11 0.12 0.13 0.14 0.15
Subgraph Size Ratio Subgraph Size Ratio Subgraph Size Ratio
(@) C =2 b C=4 ©C=8
5000 14000
12000
4000
10000
> >
2 3000 2 8000
[[
s &
[
£ 2000 2 6000
4000
1000
2000 i
,_ L __
0.0500.0550.0600.0650.0700.0750.080 0.020 0.025 0.030 0.035 0.040 0.045
Subgraph Size Ratio Subgraph Size Ratio
(d) ¢ =16 (e) C =32
Figure 12: Similarity of node centrality distribution in CIFAR10.
3000 5000
3000
2500 2500 4000
2000
g & 2000 Z 3000
S E E
1500
g g 1500 9_‘?
[y [- 2000
1000 1000
500 500 1000
0 - 0 LA
046 048 050 0.52 054 022 024 026 0.28 0.10 0.11 0.12 0.13 0.14 0.15 0.16
Subgraph Size Ratio Subgraph Size Ratio Subgraph Size Ratio
(a) C=2 by C =14) C =28
10000 25000
8000 20000
> >
& 6000 015000
[[
3 =}
g g
& 4000 & 10000
2000 5000
0L s b o 0l Al by
0.04 0.05 0.06 0.07 0.0 0.019.02(1.029.03(M.039.040.045

Subgraph Size Ratio

d C=16

(e) C =32

Subgraph Size Ratio

Figure 13: Similarity of node centrality distribution in MNIST.

29

Under review as a conference paper at ICLR 2025

3500 .
3500 4000
3000
3000 3500
2500
3000
- ..2500 -
2 2000 2 2 2500
a_é ﬂézooo qé
2000
8 1500 2 1500 £
1500
1000 1000 “
1000
500 500 500 ”’I||
04 04 +H |\!\MIHH\ \H\I“H‘ Mmhm Lo
0.4 0.46 0.48 0.50 0.52 0.54 0.56 0.150.175.200.229.250.275.300.325 0.00 005 010 015 020
Subgraph Size Ratio Subgraph Size Ratio Subgraph Size Ratio
(a) C =2 by C =4) C =8
30000
4000
25000
> 3000 -, 20000
3 9
c c
E] g
2 315000
@ 2000]
& b=
10000
1000
5000
ol o LIl 4 L,
0.000.029.05®.079.100.129.15®.175 0.000.025.050.079.100.129.150.175
Subgraph Size Ratio Subgraph Size Ratio
(& C=16 (e) C =32
Figure 14: Similarity of node centrality distribution in MOLHIV.
- 200 800
600
700
600
500 600
500
g 400 z 2500
5 $ 400 c
(7] GJ ()
2300 z 400
o L 300 o
£ & i 300

N
o
S

N

=3

S

N
1=}
S

-

o

S
o
o
S
—
o
S

il
0 ol | o0Ls .:.hlllﬁl. i Uil g
0.400.426.450.476.500.528.550.576.600 0.15 0.20 0.25 0.30 0.35 0.40 0.00 0.05 0.10 0.15 0.20
Subgraph Size Ratio Subgraph Size Ratio Subgraph Size Ratio
(aC=2 by C =14 (c)C=38
800
6000
700
5000
600
> 9
9500 g 4000
('U
3 3
g 400 3 3000
s P
300
2000
200
100 1000
0- e . 0
0.000.026.050.075.100.126.150.176.200 0.00 0.05 0.10 0.15 0.20
Subgraph Size Ratio Subgraph Size Ratio
dC=16 (e) C'=32

Figure 15: Similarity of node centrality distribution in MOLT0OX21.

30

Under review as a conference paper at ICLR 2025

H CONNECTION TO RENORMALIZATION TECHNIQUES

Our fractal nodes method draws inspiration from renormalization group techniques in physics,
where complex systems are analyzed on different scales. While this connection is conceptual, the
fundamental idea of scale transformation provides intuition for our approach. The renormalization
involves replacing groups of interacting components with effective units. Similarly, our fractal nodes
summarize subgraph information, though we maintain these summary units as fractal nodes alongside
the original graph structure rather than replacing them.

From a complex network perspective, fractal nodes facilitate a transition from scale-free fractal
networks to small-world networks. Similar to the renormalization techniques described by Wei
et al. (2013), our FN; method introduces long-range interactions between the fractal nodes, giving
small-world properties to the network (Albert & Barabdsi, 2002). We extend beyond renormalization
in 3 aspects: (i) preserving the original structure while adding fractal nodes, (ii) enabling adaptive
information flow through learned parameters, and (iii) maintaining exchange between local and global
scales.

This architecture enables efficient information propagation through several mechanisms. The fractal
nodes act as “shortcuts” in the network, reducing the effective distance information must traverse.
Maintaining local and summarized representations enables simultaneous processing at multiple scales
while preserving local network characteristics. This multi-scale processing capability addresses the
over-squashing problem by facilitating efficient global information flow without sacrificing local
structural information.

The key differences between our approach and classical renormalization highlight the factors we
introduce specifically for graph learning tasks. While traditional renormalization uses fixed transfor-
mation rules in a unidirectional manner (fine to coarse), our method learns adaptive representations
through trainable parameters and enables bidirectional information exchange. This creates a more
flexible framework that captures complex relationships in graph-structured data while maintaining
computational efficiency.

I DIFFERENT PARTITIONING ALGORITHMS

To verify the effectiveness of partitioning other than METIS partitioning, we conduct experiments ap-
plying FN and FN,; to GINE on PEPTIDES-FUNC, PEPTIDES-STRUCT, MOLHIV, and MOLTOX21
datasets using random partitioning and Louvain (Blondel et al., 2008) and Girvan-Newman (Girvan
& Newman, 2002) partitioning.

In Table 12, our results provide a comprehensive comparison of different graph partitioning methods
for GINE with FN and FN; architectures on multiple molecular and peptide datasets. METIS
consistently shows superior or competitive performance on all datasets. It achives the best results in
most cases, such as 0.6815 AP on PEPTIDES-FUNC with GINE+FN and 0.7018 AP with GINE+FN ;.
While random partitioning shows surprisingly competitive performance, particularly on MOLH1V
where it achieves 0.8039 ROCAUC with GINE+FN, community detection algorithms such as Louvain
and Girvan-Newman generally underperform compared to METIS and random partitioning. The
performance gap between different partitioning methods becomes more pronounced when using
FN s compared to FN. METIS shows more stable performance with lower standard deviations across
all metrics. For molecular property prediction tasks, the choice of partitioning method appears less
critical. However, on PEPTIDES-FUNC and PEPTIDES-STRUCT, METIS shows clear advantages
with consistently lower MAE scores. These findings validate our choice of METIS as the default
partitioning algorithm while suggesting that the optimal partitioning strategy may depend on the
specific graph structure and task requirements.

In Table 13, the analysis of results on ogbn-arxiv provides additional insights into partitioning methods
on large scale graph datasets. The performance differences between partitioning methods are relatively
small, with scores ranging between 72.46% and 73.03% accuracy. For GCN+FN, METIS achieves
the best performance at 73.03%, while random partitioning performs best for GCN+FN; at 73.01%.
GraphSAGE shows slightly lower performance compared to GCN across all partitioning strategies,
with Louvain partitioning achieving the best results at 72.76% for GraphSAGE+FN. Interestingly,
the Girvan-Newman algorithm consistently times out on this dataset, indicating scalability issues

31

Under review as a conference paper at ICLR 2025

with larger graphs such as ogbn-arxiv. The standard deviations are generally smaller for GraphSAGE
compared to GCN, suggesting more stable performance across different random seeds. These results
further support that METIS remains competitive.

Table 12: Comparison of different graph partitioning methods for GINE with FN and FN; architec-
tures on PEPTIDES-FUNC/STRUCT and molecular property prediction tasks. Best results for each
metric are shown in bold.

ce . PEPTIDES-FUNC PEPTIDES-STRUCT MOLHIV MoLTox21
Method Partitioning

AP 1T MAE | ROCAUC 1 ROCAUC 1
METIS 0.6815-+0.0059 0.2515-0.0020 0.7882+0.0050 0.7751+0.0029

GINE + FN Random 0.6533+0.0103 0.2688-+0.0014 0.8039-+0.0078 0.7653+0.0065
Louvain 0.6044+0.0068 0.2799+0.0015 0.7844+0.0050 0.7701+0.0026
Girvan-Newman 0.6528-+0.0051 0.2628-+0.0045 0.7837+0.0078 0.7630-£0.0060
METIS 0.7018-+0.0074 0.2446--0.0018 0.8127+0.0076 0.7926-0.0021
GINE + FNy; Random 0.6680-+0.0066 0.2538-+0.0013 0.8090+0.0061 0.7867+0.0045
Louvain 0.6164+0.0120 0.2789-0.0022 0.7629+00164 0.7510=+0.0118
Girvan-Newman 0.6514+0.0064 0.2655+0.0037 0.7763+0.0174 0.7579+0.0097

Table 13: Comparison of different graph partitioning methods for GCN/GraphSAGE with FN and
FNjs on ogbn-arxiv dataset. Results show accuracy (%) and best results for each metric are shown in

bold.

ogbn-arxiv GCN+FN GCN+FNy GraphSAGE + FN GraphSAGE + FN
METIS 73.03+0.37 72.93+035 72.70+0.11 72.5440.30
Random 72.79+0.37 73.01+041 72.46+0.20 72.46+0.27
Louvain 72.73+0.57 72.95+0.26 72.76+0.15 72.56+0.58
Girvan-Newman Time-out Time-out Time-out Time-out

Table 14 demonstrates the empirical runtime performance of different graph partitioning algorithms
across various graph-level tasks, providing evidence for the practicality of our approach. While
all algorithms show comparable performance on smaller datasets like Peptides (with runtimes in
microseconds), noticeable differences emerge starting with medium-sized datasets like MNIST.

The distinction becomes particularly pronounced on large-scale datasets like ogbn-arxiv. We opt for
METIS as our default partitioning algorithm due to its theoretical time complexity of O(|E|) and
superior empirical performance. METIS efficiently partitions large graphs such as ogbn-arxiv in
under 9 seconds, and even handles massive graphs like ogbn-products around 15 minutes.

In contrast, the Louvain algorithm requires over 50 seconds for ogbn-arxiv, while the Girvan-Newman
algorithm encounters runtime limitations, making it impractical for large-scale graphs like ogbn-arxiv
and ogbn-products. These results validate our choice of METIS as the primary partitioning algorithm,
as it provides an effective balance between computational efficiency and partition quality across
different graph scales.

Table 14: Empirical runtime of partitioning algorithms.

Algorithm PEPTIDES-FUNC/STRUCT MNIST MOLHIV ogbn-arxiv ogbn-product
METIS 0.71 ps 0.36's 0.71pus 8.57s 923.27 s
Louvain 1.19 ps 0.36's 1.19us 52.12s 119m
Girvan-Newman 1.19 us 0.36s 0.72us Time-out Time-out

32

Under review as a conference paper at ICLR 2025

J SCALABILITY ANALYSIS OF OF FRACTAL NODE

J.1 PROFILING RESULTS ON SYNTHETIC GRAPHS

To evaluate the efficiency and scalability of our FN integrated GCN model, we conducted experiments
on synthetic Erdos-Renyi (Erdos et al., 1960) graphs with node counts ranging from 1,000 to 100,000.
The edge probability in the Erdos-Renyi network is set to achieve an average node degree of
approximately 5, with the node feature dimension fixed at 100.

Fig. 16(a) represents that the GPU memory usage of GCN+FN increases linearly with the graph
size and validates its linear space complexity. Fig. 16(b) shows the training time for both GPU
and CPU implementations. The GPU training time exhibits a sub-linear growth trend as the graph
size increases. This means the ability of fractal nodes to effectively use GPU parallelism for large-
scale graph computations. In contrast, the CPU training time grows linearly with the graph size
and indicates the sequential nature of CPU computations and its limitations in handling large-scale
parallel graph operations.

The results demonstrate that the GPU device (RTX A6000 used in our experiments) efficiently handles
the computational workload on varying graph sizes. These observations validate the scalability and
practicality of our proposed GCN+FN model, particularly for large-scale graph learning tasks where
both memory efficiency and computational speed are critical.

—~ 100 —l- GPU Memory Usage (GB) —@- GPU Training Time (s)
o w ~®- CPU Training Time (s)
= g107
g 107! [=
o ()]
g £
2 10-2 é 1072
G =
103 104 10° 103 104 10°
Nodes # Nodes
(a) Memory Usage vs. Graph Size (b) Training Time vs. Graph Size

Figure 16: GPU memory usage and training time of GCN+FN on synthetic graphs.

J.2 PROFILING RESULTS ON LARGE-SCALE REAL-WORLD GRAPHS

Table 15 shows the profiling results of various models in terms of training time per epoch and memory
usage on the large-scale ogbn-arxiv dataset. Note that we perform full batch training for a fair
comparison of computational requirements.

The results show that our fractal node approach maintains efficiency. When integrated with base
MPNN:Ss, fractal nodes introduce trivial computational overhead — GCN+FN maintains identi-
cal training time (1.27s) and memory usage (16.49GB) compared to the vanilla GCN. Similarly,
GraphSAGE+FN shows only a marginal increase in computational cost (0.57s vs 0.55s) while pre-
serving the same memory efficiency (7.74GB). Our method uses common MPNN operations without
introducing complex additional computations.

In contrast, graph Transformers (e.g., GraphGPS, Exphormer) require substantially more computa-
tional resources (38.91GB and 34.04GB memory, respectively) due to their attention mechanisms.
This empirical evidence indicates that our fractal node approach achieves a favorable balance between
model accuracy and computational efficiency in practice.

K LARGE-SCALE NODE CLASSIFICATION

Large-scale graphs. We consider a collection of large graphs released recently by the Open Graph
Benchmark (OGB) (Hu et al., 2021): ogbn-arxiv and ogbn-products with node numbers 0.16M and
2.4M, respectively. We maintain all the OGB standard evaluation settings.

33

Under review as a conference paper at ICLR 2025

Table 15: Training time and GPU memory usage on large graphs

Model ogbn-arxiv
Train/Epoch (s) Mem. (GB)

GCN 1.27 16.49
GraphSAGE 0.55 7.74
GraphGPS 1.32 38.91
Exphormer 0.74 34.04
NodeFormer 1.20 16.30
DiffFormer 0.77 24.51
PolyNormer 0.31 16.09
GCN + FN 1.27 16.49
GCN + FN s 1.27 16.49
GraphSAGE + FN 0.57 7.74
GraphSAGE + FN s 0.58 7.76

Baselines. Our main focus lies on classic MPNNs: GCN (Kipf & Welling, 2017),
and GraphSAGE (Hamilton et al., 2017); the state-of-the-art scalable graph Transformers:
GraphGPS (Rampasek et al., 2022), NAGphormer (Chen et al., 2023), Exphormer (Shirzad et al.,
2023), NodeFormer (Wu et al., 2022), DiffFormer (Wu et al., 2023a), PolyNormer (Zakar-Polyak
et al., 2023), and SGFormer (Wu et al., 2023b); hierarchical methods: HC-GNN (Zhong et al., 2023),
ANS-GT (Cai et al., 2021), and HSGT (Zhu et al., 2023); MLP-based method: LINKX (Lim et al.,
2021).

Setting. We conduct hyperparameter tuning on classic MPNNs, which is consistent with the
hyperparameter search space of Deng et al. (2024). Specifically, we use the Adam optimizer with a
learning rate from {0.001, 0.005, 0.01} and an epoch limit of 2500. We tune the hidden dimension
from {64, 256, 512}. We consider whether to use batch or layer normalization, residual connections,
and dropout rates from {0.2, 0.3, 0.5, 0.7}, the number of layers from {1, 2, 3,4, 5,6, 7, 8,9, 10},
and C from {32, 64, 128}.

Implementation. While our main experiment focuses on graph-level tasks, our fractal node method
can be naturally extended to node classification tasks. The key distinction lies in how we use the
processed fractal node representations from the MLP-Mixer layer to make node-level predictions
rather than graph-level ones.

For graph-level tasks, as shown in Equation (8), the fractal nodes are mixed through the MLP-Mixer
to produce

F = MLPMixer(F(1)), p) = [pB) gD el (28)
These mixed representations are then used directly for graph-level prediction via global pooling.

For node classification, however, we need to propagate this mixed global information back to
individual nodes. After the MLP-Mixer processes the C' fractal nodes according to Equations (9)
and (10), we obtain F(*) ¢ RE*9_ These processed fractal node representations need to be aligned
with all nodes in their respective subgraphs.

Let V. be the set of nodes in subgraph c. For each node v € V., we update its final representation by
combining its current features with the processed fractal node information from its corresponding
subgraph:

hg)ﬁnal) _ hE}L> + féL)7 Yov e V., 29

where féL) is the ¢-th row of F(£) corresponding to the fractal node of subgraph c. This operation
ensures that each node receives the processed global context from its subgraph’s fractal node and
maintains consistency with our method while adapting it for node-level predictions.

In implementation, this process can be efficiently vectorized using a batch membership index that
maps each node to its corresponding fractal node representation. This adaptation allows our fractal

34

Under review as a conference paper at ICLR 2025

node framework to effectively handle both graph-level and node-level tasks while maintaining its
computational efficiency and theoretical properties.

Result. As shown in Table 16, our experiments on these large-scale benchmarks demonstrate the
effectiveness of our fractal node approach. On ogbn-arxiv, GCN+FN achieves 73.03% accuracy,
showing substantial improvement over the base GCN (71.74%) and outperforming state-of-the-art
graph Transformer models such as Exphormer and GraphGPS. The consistency between GCN+FN
and GCN+FN,, indicates the robustness of our approach. The performance gains are even more
pronounced on the larger ogbn-products dataset, where GraphSAGE+FN; demonstrates substantial
improvement, achieving state-of-the-art performance of 83.11% accuracy compared to the base
GraphSAGE’s 78.29%. This surpasses recent advanced models like PolyNormer and other graph
Transformer architectures.

A notable advantage of our method becomes apparent when considering scalability. Several
Transformer-based models (marked as OOM — Out of Memory in Table 16) fail to scale to ogbn-
products due to their quadratic complexity in attention computation. In contrast, our method maintains
computational efficiency while achieving superior performance (see Table 15). This highlights not
only the effectiveness of fractal nodes in capturing both local and global graph information but also
their practical applicability to large-scale graphs.

Table 16: Node classification results on large-scale graphs (%).

Model ogbn-arxiv ogbn-product
nodes 169,343 2,449,029
edges 1,166,243 61,859,140
LINKX 66.18+0.33 71.59+0.71
GraphGPS 70.97+0.41 OOM
NAGphormer 70.13+055 73.55+021
Exphormer 72.44+028 OOM
NodeFormer 69.86+0.25 72.93+0.13
DiffFormer 72.41+040 74.16+031
PolyNormer 71.82+023 82.97+0.28
SGFormer 72.63+0.13 74.16+031
HC-GNN 72.79+0.25 -
ANS-GT 72.34+0.50 80.64+0.29
HSGT 72.58+031 81.15+0.13
GCN T1.74+0.29 75.64+0.21
GCN + FN 73.03+0.37 81.2940.21
GCN + FNps 72.93+0.35 81.33+033
GraphSAGE 71.49+027 78.29+0.16
GraphSAGE + FN 72.70+0.11 83.07+0.35

GraphSAGE + FNys 72.54+030 83.11+0.07

35

Under review as a conference paper at ICLR 2025

L THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of fractal nodes to show how they mitigate oversquash-
ing. Our analysis builds on effective resistance theory to characterize information flow in networks
with fractal nodes.

Preliminaries on effective resistance. Following Black et al. (2023) and Appendix F, we recap
the effective resistance in graphs. For a connected, non-bipartite graph, the pseudoinverse of the
normalized Laplacian can be expressed as:

Lt =) A/, (30)
j=0

Furthermore, the effective resistance between nodes « and v can be written as:

(1., 1., 2 .
Ru,v - 7(Al)uu + 7(Al)vv - 7(Al)uv P (31)
ZZ:% <du dy \/deg,deg,

where (Ai)w} represents the number of paths of length ¢ between nodes u and v (Black et al., 2023).
This equation intuitively shows that more shorter and disjoint paths connecting two nodes leads to
lower effective resistance.

L.1 EFFECTIVE RESISTANCE WITH FRACTAL NODES

Lemma L.1 (Fractal Node Effective Resistance). Let G be a connected graph with C subgraphs and
their associated fractal nodes. The effective resistance between any two nodes u, v with fractal nodes
can be expressed as:

Ry(u,v) = (L, — 1,) 'L} (1 — 1), (32)

where Ly is the augmented Laplacian incorporating fractal node connections:

Lo | L+ X FiFT —[F,Fy, .., Fc]
= | =[F1,F2,...,Fc]” I.

where L is the original Laplacian matrix, ¥; is the incidence vector for fractal node 1 indicating its
connections to the original nodes.

) (33)

Similar to the path-based interpretation in Black et al. (2023), we can express R (u,v) in terms of
paths:

= 1. 1 . 2 .
=Y Al ——(A}),y — ————(A] 4
Rf (U, U) (degu (f)uu + degv (f)vv degudegv (f)uv> (3)

=0

where A ¢ 1s the normalized adjacency matrix including fractal node connections.

L.2 PROOF OF THEOREM 4.1

Theorem 4.1 (Resistance reduction). Let G be the original graph and G be the augmented graph
with fractal nodes. For any nodes u,v € G, the effective resistance in Gy satisfies:

Ry (u,v) < R(u,v), (35
where Ry (u,v) is the effective resistance in Gy and R(u,v) is the original effective resistance in G.
Proof. Let G = (V,) be the original graph and Gy = (VU F, £ U &) be the augmented graph

with fractal nodes, where F is the set of fractal nodes and & is the set of edges connecting nodes to
fractal nodes.

Following Black et al. (2023), we express the effective resistance in terms of path decomposition:

Ry(u,v) = (36)

([1 . 1., 2 .
—— (AP + (A} oy — ———=(AY)uv | ,
i=0 (degu deg, 7 \/deg, deg, !

36

Under review as a conference paper at ICLR 2025

where A ¢ is the normalized adjacency matrix of G.
Let Py, be the set of all paths connecting u and v in G¢. The effective resistance can be expressed as:
Ry(u,v) = min Z Tay, (37)
(z,y)ep
where r,, is the resistance of edge (z,).

By Rayleigh’s monotonicity principle (Black et al., 2023), since G contains all edges of G plus
additional edges through fractal nodes, adding these edges can only decrease the effective resistance
between any pair of nodes. Therefore:

Ry¢(u,v) < R(u,v). (38)
O

L.3 PROOF OF THEOREM 4.2

Theorem 4.2 (Signal propagation with fractal nodes). For a MPNN with fractal nodes, the signal
propagation between nodes u, v after { layers satisfies:

IR = RPN < exp(=€/Ry(u,) |2 = hl, (39)
where R¢(u,v) is the effective resistance in the augmented graph with fractal nodes.

Proof. First, the message passing process in MPNN (i.e., GCN) with fractal nodes can be expressed
as:

Y = o | Wh® + Z

1
weN (v) V degvdegu

W +winl | (40)

where h(fé) is the fractal node representation. To analyze the signal propagation, we consider the
continuous-time analog by removing the nonlinearity o:

d

ahv(t) = —Lh,(t), (41)

The solution to this differential equation is:

Iy (t) = exp(fth)hv(OL (42)

The signal difference between two nodes u, v is bounded as follows:

1hu(t) = ho()]] = [[(exp(—=tL)) (hu(0) — by (0))]] (43)
< [lexp(=tLy)|[- [|hu(0) = ho (0)]] (44)
< exp(—t/Ry(u, v))|[hu(0) = hy (0)]] (45)

The last inequality comes from the spectral bound related to the effective resistance Ry (u, v) in the
graph augmented with fractal nodes. Mapping back to the discrete layer steps by setting ¢t = ¢, we
obtain our desired bound:

1557 — W91 < exp(—¢/Ry(u,0))||hE — R, (46)

This provides the worst-case signal propagation bound in the graph with fractal nodes. By the
previously proven Theorem 4.1, we know that Ry (u,v) < R(u,v), thus fractal nodes provide better
signal propagation guarantees than the original graph. O

Corollary L.2 (Improved signal propagation). Since R;(u,v) < R(u,v) by the Resistance Reduction
theorem, fractal nodes improve the worst-case signal propagation bound compared to the original
graph:

exp(—¢/Ry(u,v)) < exp(—£/R(u,v)). 47)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

L.4 TOTAL RESISTANCE ANALYSIS

Theorem L.3 (Total Resistance with Fractal Nodes). Let G¢ be the graph augmented with C fractal
nodes. The total effective resistance satisfies:

n+C
Rl =n-tr(Lf)=n-Y_ = (48)
i=2 '

where Ly is the augmented Laplacian and o; are its eigenvalues.

Proof. The total resistance can be expressed through the trace of the pseudoinverse of the Laplacian
matrix L. By construction, Ly has dimension (n + C') x (n + C') and its eigendecomposition yields
n + C eigenvalues. The pseudoinverse L}r has the same eigenvectors as Ly with reciprocal non-zero
eigenvalues, giving us the stated formula. The factor n appears because we sum over all pairs of the
n original nodes. O

Corollary L.4 (Impact of Fractal Node Count). For a graph G augmented with C fractal nodes,

the total resistance decreases with C' as Rtfot =n- Z?izc L where additional eigenvalues from

larger C decrease the sum. This leads to improved signal propagation bounds ||h£f) — hs,é)” <
exp(—t/Ry(u,0)).

38

Under review as a conference paper at ICLR 2025

M DETAILED DISCUSSION ON SECTION 5.2

To thoroughly analyze the role of positional encodings (PEs) and fractal nodes in model expressivity,
we conducted extensive ablation studies analyzing different combinations of structural components.
Table 17 shows results across three synthetic datasets (CSL, SR25, EXP) designed to test model
expressiveness.

Our ablation study reveals several important insights about the interplay between positional encodings
and our method. Without PEs, base MPNNs (GCN, GINE, GatedGCN) consistently show limited
expressiveness across all datasets, achieving only 10.00% on CSL, 6.67% on SR25, and approximately
51-52% on EXP. Adding PEs substantially improves base model performance, as evidenced by GCN’s
significant improvement from 10.00% to 76.17% on CSL and from 52.17% to 100% on EXP.

Notably, even without any positional encodings, our fractal node variants demonstrate significantly
enhanced expressivity. GINE+FN,; achieves 47.33% on CSL and 95.58% on EXP without any
PE, while GatedGCN+FN ,; reaches 49.67% on CSL. All FN,, variants achieve 100% on SR25
regardless of PE configuration, and this indicates that our method provides inherent structural
awareness independent of positional encodings.

Table 17: Synthetic results (Accuracy 1). The gray shaded rows are the results without using PE, and
are the fairest to compare against.

Ablation Dataset

Method

PE (Original Graph) PE (Coarsened Graph) CSL SR25 EXP
GCN X N/A 10.00 6.67 52.17
GCN v N/A 76.17 100.0 100.0
GINE X N/A 10.00 6.67 51.35
GINE v N/A 100.0 100.0 100.0
GatedGCN X N/A 10.00 6.67 51.25
GatedGCN v N/A 100.0 100.0 100.0
GCN + FNys X X 39.67 100.0 86.40
GCN + FN s X 4 76.17 100.0 100.0
GCN + FNys v X 100.0 100.0 100.0
GCN + FN s v v 100.0 100.0 100.0
GINE + FNs X X 47.33 100.0 95.58
GINE + FN s X 4 84.83 100.0 100.0
GINE + FN s v X 100.0 100.0 100.0
GINE + FN s v 4 100.0 100.0 100.0
GatedGCN + FN s X X 49.67 100.0 96.50
GatedGCN + FN s X v 81.83 100.0 100.0
GatedGCN + FN s v X 100.0 100.0 100.0
GatedGCN + FN s v v 100.0 100.0 100.0

39

	Introduction
	Background & Related Work
	Fractal-Inspired Message Passing with Fractal Nodes
	Properties of Fractal Nodes
	Why Fractal Nodes Work?
	Model Complexity
	Comparison with Prior Work

	Experiments
	Analysis on Over-squashing (Q1.)
	Expressive Power of Fractal Nodes (Q2.)
	Experiments on Graph Benchmarks (Q3.)
	Runtime Comparison (Q4.)
	Ablation, Sensitivity, and Additional Studies

	Concluding Remark
	Appendix
	 Supplementary Materials for ``Fractal-Inspired Message Passing Neural Networks with Fractal Nodes''
	Proof of thr:dc
	Implementation Detail
	Metis Partitioning for Fractal Node Creation
	Instance of Our Framework
	Positional Encoding

	Structural Self-Similarity and Node Centrality
	Experimental Details
	Dataset Description
	Hardware Specifications and Libraries
	Setup & Hyperparameters

	Ablation, Sensitivity and Additional Studies
	Impact of HPF
	Impact of type of ()c
	Comaprison to Graph Rewiring Methods
	Comaprison to Virtual Node Methods
	Sensitivity to C
	Additional Results on All-layer Fratal Node Message Passing

	Effective Resistance and Signal Propagation
	Distribution Analysis of Subgraph Size Ratio
	Connection to Renormalization Techniques
	Different Partitioning Algorithms
	Scalability Analysis of of Fractal Node
	Profiling Results on Synthetic Graphs
	Profiling Results on Large-Scale Real-world Graphs

	Large-scale Node Classification
	Theoretical Analysis
	Effective Resistance with Fractal Nodes
	Proof of thm:reduction
	Proof of thm:signal
	Total Resistance Analysis

	Detailed Discussion on sec:analysis-ex

