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Abstract

Deepfakes, particularly in the auditory domain,
have become a significant threat, necessitat-
ing the development of robust countermea-
sures. This paper addresses the escalating
challenges posed by deepfake attacks on Auto-
matic Speaker Verification (ASV) systems. We
present a novel Urdu deepfake audio dataset for
deepfake detection, focusing on two spoofing
attacks — Tacotron and VITS TTS. The dataset
construction involves careful consideration of
phonemic cover and balance and comparison
with existing corpora like PRUS and Pronoun-
cUR. Evaluation with the AASIST-L model
shows an equal error rate (EER) of 0.502. Fur-
ther, this research implements a detailed human
evaluation, incorporating a user study to gauge
whether people are able to discern spoofed au-
dios from bonafide audios. The ROC curve
analysis shows an area under the curve (AUC)
of 0.63, indicating that individuals demonstrate
a limited ability to detect deepfakes (approxi-
mately 1 in 3 fake audio samples are regarded
as real). Our work contributes a valuable re-
source for training deepfake detection models
in low-resource languages like Urdu, address-
ing the critical gap in existing datasets.

1 Introduction

Automatic Speaker Verification, a method for bio-
metric person recognition, has gained popularity
in recent years. However, this surge in popularity
has also given rise to new challenges in the form
of spoofing or deepfake attacks. Initially coined on
Reddit in 2017, the term ’deepfake’ (Bitesize, 2019)
denotes the application of deep learning techniques
for face swapping in videos. Presently, the term has
evolved to broadly encompass any audio or video
manipulation where key attributes are digitally al-
tered or swapped using artificial intelligence (Al)
technologies. The ASVspoof community classifies
these attacks into two main categories: logical ac-
cess, involving deepfake-generated audios, speech

synthesis, and voice conversion, and physical ac-
cess, which includes replay attacks and imperson-
ation (Wang et al., 2020b).

Deepfakes, a complex way of manipulating me-
dia, make fake content easier to generate and harder
to detect. Speech synthesis models now allow the
creation of deepfakes that are undetectable by the
human ear or even verification systems (Mirsky and
Lee, 2021). In 2019, impostors leveraged Al-driven
software to replicate the voice of a corporate exec-
utive, orchestrating a fraudulent transfer of USD
243,000 (Stupp, 2019). This incident underscores
the imperative of developing robust methods to
accurately identify deepfake audio in order to coun-
teract such fraudulent activities. In a behavioral
study, Kobis et al. (2021) revealed that people can-
not easily detect deepfakes, yet they perceive that
they can. Thus, these fake audios have the potential
to spread misinformation, create mass panic and
havoc, malign personalities, and change narratives.
Moreover, beyond this social impact, deepfakes
have the power to break through systems protected
by voice recognition through the spoofing attacks
listed above. Considering the adverse effects of
deepfake audios, it is crucial to develop systems
capable of discerning between real and spoofed
audio. The ASVspoof challenge, a community-led
initiative, promotes the development of such coun-
termeasures against deepfakes and audio spoofing
(Wu et al., 2015; Kinnunen et al., 2017; Todisco
et al., 2019; Yamagishi et al., 2021).

Countermeasures against deepfakes include
deepfake detection algorithms designed to identify
features in spoofed audios. The physical attributes
of sound, encompassing pitch, texture, loudness,
and duration, can now be accurately replicated in
artificially generated deepfake audios. To detect the
features that differentiate bonafide and fake audios,
the model needs to train on a very large amount
of data (Azeemi et al., 2022). These differentia-
tions are based on spectral and temporal differences



and micro features (Delgado et al., 2021; Dhamyal
etal., 2021; Tak et al., 2020). Widely used datasets
created for this purpose include WaveFake (Frank
and Schonherr, 2021), FakeAVCeleb (Khalid et al.,
2021), and the ASVspoof dataset (Wang et al.,
2020Db) itself. These datasets, from high-resource
languages, exemplify the large amount of data re-
quired to train deepfake detection models. Un-
fortunately, in low-resource languages, this large
amount of data is unavailable. To cater to this lack
of data in Urdu, we create and evaluate a dataset
that can be used to train against spoofing attacks.

1.1 Contributions

The presented research offers the following contri-
butions:

* We present an audio deepfake dataset, contain-
ing 20,451 utterances of bonafide and 16,830
utterances of spoofed audio, to train detection
models in Urdu, a low-resource language.

* We assess the dataset through human evalua-
tion and discover that about one out of every
three audio samples goes undetected by in-
dividuals as being fake. This finding carries
implications for the potential spread of misin-
formation.

* To explain the qualitative differences between
both spoofing attacks and bonafide audio, we
examine the variations in the relative position
and distribution of deepfake-generated and
real audios using t-SNE plotting.

2 Related Works
2.1 Deepfake Detection Models

The field of audio deepfake detection has seen re-
markable growth recently, focusing on using ma-
chine learning to differentiate real speech from syn-
thetic audio (Wu et al., 2020; Wang et al., 2020a;
Chen et al., 2020). This research typically follows
either a conventional pipeline method, combining
feature extraction with classification, or newer end-
to-end methodologies that process raw audio data
directly for both tasks.

A key hurdle in this domain is the development
of advanced deep learning Text-to-Speech (TTS)
models (Ping et al., 2017; Shen et al., 2017; Sotelo
et al., 2017; Tachibana et al., 2017; Wang et al.,
2017), which require extensive data for training.
Research has shown the efficacy of multi-speaker

TTS models, especially when data for a specific
speaker is limited (Latorre et al., 2018; Luong et al.,
2019). The study by Luong et al. (2019) empha-
sized the superiority of multi-speaker models using
oversampling techniques in scenarios with sparse
data. While undersampling generally showed neg-
ative impacts, ensemble methods were noted for
their ability to improve speech naturalness, albeit at
the cost of higher computational resources (de Ko-
rte et al., 2020).

Furthermore, the majority of research and com-
petitions in audio deepfake detection, such as
ASVspoof and ADD, are focused on English and
Chinese, reflecting a language bias due to easier
data collection (Wang et al., 2020b; Yi et al., 2022).

2.2 Deepfake Detection Datasets

The creation of robust TTS datasets is vital for
the development of effective TTS models. These
datasets should be of high quality, featuring diverse
speakers, accurate transcripts, and ample audio con-
tent per speaker (Bakhturina et al., 2021). Best
practices for TTS dataset creation underscore the
necessity for error-free, clear recordings, unifor-
mity in tone and pitch, comprehensive phoneme
representation, and overall naturalness. Rigorous
quality assessments, such as examining the length
of clips and transcripts and inspecting spectrograms
for noise, are also advised to maintain dataset in-
tegrity (coq, 2023).

Recent trends in audio deepfake research in-
clude using alternative data sources to address the
lack of target data. Efforts to build TTS datasets
through community-driven or automated collection
and transcription processes have been observed
(Gutkin et al., 2016; Xu et al., 2020; Wibawa et al.,
2018). However, these methods might result in
datasets with lower recording quality and natural-
ness, which could impact the effectiveness of TTS
models when compared to traditional datasets (Guo
et al., 2022).

Additionally, the focus on enhancing TTS sys-
tems for under-resourced languages has gained
traction. Researchers are exploring how well-
structured datasets in various languages can im-
prove TTS for languages with scarce resources.
Techniques like cross-lingual transfer learning and
multilingual TTS are being investigated for this pur-
pose (Azizah et al., 2020; Tu et al., 2019; He et al.,
2021), aiming to democratize TTS technology and
extend its reach to a wider range of languages and



dialects.

2.3 Benchmark Dataset

The Phonetically Rich Urdu Speech Corpus
(PRUS) and the PronouncUR Iexicon are crucial
resources for developing and benchmarking Urdu
Text-to-Speech (TTS) systems, particularly in the
context of audio deepfakes in low-resource lan-
guages like Urdu.

PRUS, with its comprehensive phonetic cover-
age, including all 62 phonemes and a wide array
of tri-phonemes, offers a detailed representation of
Urdu’s phonetic diversity. This corpus, balancing
high-frequency word focus with practical dataset
size, serves as an ideal benchmark for phonetic
diversity and quality assessment in TTS systems.
Figure 1 shows a snippet of PRUS corpus and it’s
phoneme counts(PC).

PronouncUR’s lexicon, encompassing approxi-
mately 46,000 words and covering 64 out of 67
phonemes, provides a broad spectrum of Urdu
sounds. Its phoneme frequency distribution and
expert tagging make it invaluable for evaluating
TTS system comprehensiveness and phonetic accu-
racy.

The combination of PRUS and PronouncUR un-
derscores the need for benchmark datasets for audio
deepfakes in languages like Urdu. These resources
are not only vital for TTS system development but
also offer a framework for detecting and authen-
ticating audio deepfakes, addressing a significant
challenge in digital communication in low-resource
languages.

3 Methodology

To create the text corpus for the dataset, we ran-
domly select sentences from reputable Urdu news
sources. We then analyze the phonemic structure
of the text corpus, ensuring its alignment with natu-
ral language patterns. Statistical measures confirm
the dataset’s phonemic cover and balance. For the
spoofing attacks, advanced text-to-speech models
Tacotron and VITS TTS are utilized to generate
deepfake audios. Figure 2 highlights the steps taken
in dataset construction.

3.1 Phonemic Analysis of the Datasets

The text corpus (referred to as the news corpus
here onwards) for our dataset has been curated by
randomly selecting 495 sentences from reputable
Urdu news sources, with permission. Given the

Metric PRUS vs News Corpus | P-Value
Spearman’s Rank Correlation 0.977 <2.2e-16
Kendall’s Tau Coefficient 0.888 5.67e-40
Average Rank Difference 2.66 -

Table 1: Phoneme Rank Evaluation Metrics for PRUS
vs News Corpus

Metric PronouncUR vs News Corpus | P-Value
Spearman’s Rank Correlation 0.958 <2.2e-16
Kendall’s Tau Coefficient 0.841 1.60e-22
Average Rank Difference 4.04 -

Table 2: Phoneme Rank Evaluation Metrics for Pro-
nouncUR vs News Corpus

rich phonemic inventory inherent in the Urdu lan-
guage (Raza et al., 2009), it is imperative to ensure
that our dataset possesses a comprehensive phone-
mic cover and balance. To achieve this, we conduct
a careful analysis to ascertain the presence of all
possible phonemes within the text and to verify
whether their frequencies aligned with those ob-
served in natural language (Zia et al., 2018).

To establish the phonemic fidelity of our dataset,
we conduct a comparative analysis with established
Urdu corpora known for their adherence to Urdu’s
phonemic distribution patterns. Notably, we em-
ploy the Phonetically Rich Urdu Corpus (PRUS)
(Raza et al., 2009) and PronouncUR (Zia et al.,
2018) as references.

Phoneme Rank Comparison between PRUS Corpus and News Corpus
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8

Figure 3: Phoneme Rank Comparison between PRUS
Corpus and News Corpus.

Phoneme Rank Comparison between PronouceUR and News Corpus
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Figure 4: Phoneme Rank Comparison between Pronoun-
cUR and News Corpus.
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Figure 1: PRUS Corpus

In our linguistic research, we conducted a com-
parative analysis of phoneme ranks across two dif-
ferent corpora: the PRUS Corpus and the Pronoun-
cUR Corpus, each compared against the News Cor-
pus. We formulate the null hypothesis stating no
significant correlation between the phoneme distri-
butions of the two datasets. The visual data from
the line graphs illustrate a striking similarity in
phoneme distribution in both comparisons. Figure
3 shows the phoneme rank comparison between
PRUS Corpus and the News Corpus, while Figure
4 shows the phoneme rank comparison between
PronouncUR training lexicon and the News Corpus.
This visual correlation is statistically substantiated
by Spearman’s Rank Correlation Coefficient. It
can be understood as ranging from no association
(coefficient = 0) to a perfectly monotonic relation-
ship (coefficient = —1 or +1). We observe values of
0.977 for the PRUS Corpus comparison and 0.958
for the PronouncUR comparison, both suggesting
exceptionally strong positive monotonic correla-
tions. These high coefficients are coupled with
near-zero p-values, confirming that these correla-
tions are statistically significant and not products
of chance. Spearman’s metric was particularly apt
for these analyses as it adeptly captures monotonic
relationships without the need for data normality,
and it remains robust in the presence of outliers.

Furthermore, the strength of these relationships
is reinforced by Kendall’s Tau Coefficient. It can
again be understood as ranging from no association
(coefficient = 0) to a perfectly monotonic relation-
ship (coefficient = —1 or +1). We observe values
of 0.888 for the PRUS comparison and 0.841 for

the PronouncUR comparison. These coefficients
mirror the strong positive correlations indicated by
Spearman’s, and their very low p-values support
the notion of a significant, non-random association
between the phoneme ranks in the respective cor-
pora. The conservative nature of Kendall’s Tau
makes it a suitable choice for the datasets, espe-
cially considering that it is less influenced by small
sample sizes and the non-parametric nature of the
data.

Additionally, the Average Rank Difference met-
ric complements these findings, showing minimal
discrepancies in phoneme rankings between the
PRUS Corpus and the News Corpus at approxi-
mately 2.66, and a slightly larger yet modest vari-
ation of approximately 4.04 when comparing the
PronouncUR Corpus to the News Corpus. Despite
the slight differences indicated by this metric, the
strong Spearman’s and Kendall’s correlations con-
firm a general consistency in phoneme rank order
across the examined linguistic resources. The co-
efficients and p-values from both hypothesis tests
indicate a significant correlation, thereby rejecting
the null hypothesis.

The integration of Spearman’s Rank Correla-
tion, Kendall’s Tau, and Average Rank Difference
in these analyses provides a robust, multifaceted
validation of the initial graphical observations. It
collectively supports the conclusion that there is
a substantial overlap in phoneme usage patterns
within the compared linguistic resources. While
the PronouncUR Corpus exhibits a slightly greater
variability in phoneme rank compared to the PRUS
Corpus, both corpora maintain a significant par-
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Figure 2: The figure delineates the steps involved in
constructing the dataset. First, a phonemic analysis is
performed between the News Corpus and PRUS Corpus,
as well as between the New Corpus and the PronouncUR
training lexicon. Once phonemic coverage and balance
are ensured, the speakers record the bonafide audios.
There are two sets of bonafide audios, PRUS Corpus
recordings and News Corpus bonafide recordings. The
PRUS corpus recordings are employed to train both
attacks, and two sets of spoofed audio are generated
using these models, one set each for VITS TTS and
Tacotron attacks.

allelism with the News Corpus, underscoring the
reliability of phoneme usage patterns across differ-
ent linguistic datasets. Table 1 and 2 summarize
the results of the phonemic analysis.

3.2 Spoofing Attacks

We create a database consisting of a combina-
tion of bonafide (actual utterances of the people)
and spoofed audios. In order to achieve this, we
choose two advanced text-to-speech (TTS) models,
Tacotron (Wang et al., 2017) and VITS TTS (Kim
et al., 2021), to generate the spoofed audio. This se-
lection is based on their demonstrated effectiveness
in processing the Urdu language, essential due to
its complex phonetic structure, and the popularity
of these models in deepfake generation. Addition-
ally, these models represent the cutting edge in
TTS technology, providing high-quality, realistic
audio outputs. The choice of two distinct models,
one based on a sequence-to-sequence model with
attention (Tacotron) and the other on a Conditional
Variational Autoencoder with Adversarial Learning
(VITS TTS), allowed for a comprehensive explo-
ration of audio deepfake generation methodologies.
The models have been fine tuned to work on Urdu
datasets.

3.2.1 Spoofing Attack 1: Tacotron

Tacotron serves as an end-to-end text-to-speech
(TTS) model based on the sequence-to-sequence
(seq2seq) paradigm with an attention mechanism.
In our study, we train and utilize a Tacotron model
to generate deepfake audios. This model incor-
porates PronouncUR (Zia et al., 2018) as a pro-
nunciation lexicon, functioning as a grapheme-to-
phoneme (G2P) converter. During the training pro-
cess, sentences from the PRUS corpus (Raza et al.,
2009) are initially passed to PronouncUR to con-
vert them into a string of phonemes, which are then
fed into the pre-trained Tacotron model.

3.2.2 Spoofing Attack 2: VITS TTS

VITS (Conditional Variational Autoencoder with
Adversarial Learning for End-to-End Text-to-
Speech) stands as an end-to-end text-to-speech
model that combines an encoder and vocoder. In
our study, VITS TTS serves as the second attack
method. This attack analyzes input text using nat-
ural language processing (NLP) techniques to ex-
tract linguistic features, including phonemes, stress
patterns, and intonation. To train the VITS TTS
model, we use the list of sentences from the PRUS



Training Set Development Set Evaluation Set Total
8 speakers 4 speakers 5 speakers 17 speakers
1) L 1 1) L 1 1) L 1 1) L 1
Bonafide Bonafide Bonafide Bonafide
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2 TTS Attacks | 9,624 utterances 4,812 utterances 6,015 utterances
(VITS TTS and Tacotron) | utterances
Spoofed Spoofed Spoofed Spoofed
7,920 utterances 3,960 utterances 4,950 utt 16,830
, ' 200 Ltierances utterances

Figure 5: Distribution and Split of the Dataset

Corpus (Raza et al., 2009), along with their corre-
sponding audios.

We train the Tacotron and TTS models on the
voice of 17 individuals separately. We then gener-
ate the deepfake audios through the trained models.
These audios were then compared with the bonafide
audios in the human evaluation phase.

3.3 Training Data Collection

We train Tacotron and TTS on the PRUS corpus
audios. To achieve this, we select a sample of 20
student volunteers who record the 708 sentences
from the PRUS corpus. Each speaker receives a
set of pre-recorded audios, articulating every sen-
tence of the PRUS corpus. Participants attentively
listen to each audio before reproducing the sen-
tence in their own voice. We also document the
laptop make, model, and headphones used by each
speaker during recording, and they are instructed to
record in a quiet, closed environment. Upon com-
pleting the recording stage, we carefully choose
a sample of 17 speakers (7 female, 10 male) with
high-quality complete audio recordings to advance
to the next phase of the experiment, and get written
consent for the public sharing of their recordings
(and derivatives) for research.

3.4 Training Process

To create deep fake models for each speaker, we
train our TTS and Tacotron models on the speaker’s
708 PRUS audios. Prior to training, we downsam-
ple each audio file individually to 16000 Hz (us-
ing Librosa functions), ensuring uniform frequency
and shape across all audio. Each speaker’s dataset
is then employed to train our pre-trained models
using default hyperparameters. The training dura-
tion and steps for each speaker model vary based
on the quality of the audio recordings. This step
results in two distinct deepfake generation models
per speaker,one from Tacotron and one from VITS

TTS.

3.5 Generation of Deepfake Audios

We assign a unique speaker ID to each speaker
based on their training order. This ensures distinct
identification while preserving anonymity for the
public dataset release. We generate spoofed audios
using the final checkpoint of each model, using the
495 sentences of the news corpus for both attacks.
The speakers also record the bonafide audios of the
news corpus. This process yields PRUS and news
corpus recordings as bonafide audios and two sets
of spoofed audios (one for each attack) for each
speaker. In Figure 5, the distribution of bonafide
and spoofed utterances in the final dataset is de-
picted. The dataset is segmented across 8, 4, and 5
speakers for training, development, and evaluation,
respectively.

3.6 Evaluation of the Dataset

40

20

-20
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Figure 6: Visualization of Audio Sample Distribu-
tion using t-SNE. The graph illustrates the separa-
tion of bonafide and spoofed audio samples in a two-
dimensional space. Real audio samples are represented
by green dots. Yellow dots indicate audio samples gen-
erated by TTS Model and blue dots represent audio
samples synthesized by the Tacotron model.



To understand the differences in the bonafide and
spoofed audios in the dataset, it is important to
analyze the spectral composition of these subsets.
We visualize these subsets by obtaining the Mel
Frequency Cepstral Coefficients (MFCCs) of each
audio. MFCCs are a representation of the short-
term power spectrum of a sound signal. They are
commonly used in audio processing and speech
recognition. We reduce the dimensions of MFFC
features through the treebased t-SNE algorithm —
with a perplexity value of 40 as suggested in (Wang
et al., 2020b) and plotting the reduced dimensions.
Figure 6 shows the scatter plot of the processed fea-
tures for each subset. The colors represent different
subsets of the dataset, i.e. bonafide audio (green),
VITS TTS spoofed audios (yellow) and Tacotron
spoofed audios (blue). The smaller clusters within
each subset represent individual speakers. We no-
tice differences in the position and distribution of
each attack as compared to the bonafide audios.
Both spoofed subsets exhibit considerable overlap
with the bonafide audios, especially those gener-
ated using the Tacotron model, highlighting the
spectral similarity between these subsets.

We further evaluate the dataset by running it
on AASIST-L. AASIST-L (Jung et al., 2022) is a
lightweight end-to-end audio anti-spoofing model
based on graph neural networks. The graph
modules and heterogeneous stacking graph atten-
tion layer can efficiently model spoofing artefacts
present in temporal and spectral domains. The max
graph operation detects various spoofing artefacts
in parallel and combines them. We obtain an equal
error rate of 0.502 with the AASIST-L model.

4 Human Evaluation

4.1 User Study

To assess the quality of our dataset, we employ a
human evaluation-based approach. Participants in
our study listen to a set of 30 random audios in a
controlled environment and classify each as either
Fake (spoofed) or Real (bonafide). We employ a
convenience sample of 100 participants between
the ages of 10 to 48, with a male-to-female ratio of
70-30, with varying tech literacy. The participants
are paid PKR 500 per evaluation (approximately
10 minutes) Each random sample of 30 audios in-
cludes 10 random bonafide audios, 10 Tacotron-
generated, and 10 TTS-generated audios.

We conduct the evaluation in a controlled envi-
ronment to eliminate biases stemming from vari-

ations in speaker quality. During the assessment,
we ask each participant to listen to each audio and
give the following instructions: "The audio sample
that you will listen to is audio produced by humans
or produced artificially by artificial intelligence.
Please listen to the audio sample and determine
whether the voice is artificially generated by arti-
ficial intelligence or is uttered by a person on the
basis of only the voice you hear. You can listen
to it as many times as you like. And then share
your reasons for the classification." Each partici-
pant categorizes each audio in the assigned group
of recordings into two distinct groups, real or fake.
We document their reasons for classifying the au-
dios as fake or real. We observe that most partici-
pants base their judgment on factors such as audio
distortion and length. Audios containing longer
sentences with minimal pauses for breath are often
categorized as deepfake generated.

4.2 Analyzing User Study Results
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Figure 7: ROC Curve for human evaluation results

The evaluation results, illustrated by the ROC
curve in Figure 7, shed light on how well human
participants performed in distinguishing between
genuine and deepfake audio samples at various
classification thresholds. The ROC curve, plot-
ting True Positive Rate against False Positive Rate,
indicated a moderate level of discriminative perfor-
mance with an Area Under the Curve (AUC) value
of 0.63.

This AUC suggests that individuals demon-
strated a limited ability to detect deepfakes, with
approximately 1 in 3 fake audio samples being
misidentified as real. When considering the con-
sequences of such limitations in distinguishing be-
tween genuine and manipulated content, especially



in contexts like political situations or audio leaks
in Pakistan, there is a heightened risk of misin-
formation spreading. This misinformation could
contribute to a climate of mistrust, political polar-
ization, and potentially erode public confidence in
state institutions.

The societal impact of these findings on democ-
racy underscores the need for more robust detection
mechanisms to mitigate the potential threats posed
by deepfakes. Developing reliable methods to dif-
ferentiate between genuine and manipulated con-
tent becomes crucial for safeguarding public trust,
political discourse, and the integrity of democratic
processes.

5 Limitations and Conclusion

In presenting our Urdu deepfake detection dataset,
we recognize limitations and suggest areas for fu-
ture improvement. The dataset currently empha-
sizes two text-to-speech (TTS) synthesis meth-
ods—Tacotron and VITS TTS. Expanding to a
broader range of TTS techniques in future iterations
will enhance deepfake detection. The dataset’s re-
liance on a convenience sample leads to a gender
imbalance in the speakers, highlighting the need
for a more diverse dataset in future work. Addi-
tionally, our dataset primarily covers logical access
scenarios; future research could include physical
access scenarios for added detection challenges. In
conclusion, our dataset lays a solid foundation for
deepfake detection research in the Urdu language.
Addressing the outlined limitations and pursuing
future research directions will further enhance the
dataset’s value and contribute to the advancement
of deepfake detection technologies in low-resource
languages.

6 Ethical Impact

Deepfakes pose risks of spreading misinformation,
causing panic, damaging reputations, and manipu-
lating narratives. While improving detection mod-
els is a key solution, it inadvertently fosters the
development of more sophisticated deepfake gen-
eration models that can evade detection. The cre-
ation of extensive deepfake audio datasets raises
ethical concerns as it may inadvertently contribute
to refining audio deepfake generation techniques.
Responsible management of such datasets is cru-
cial to address potential ethical challenges in their
deployment.
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A Reproducibility and Hyperparameters

Table 3: Training and Evaluation Parameters for
Tacotron.

Parameter Value
Training
batch_size 32
adam_betal 0.9
adam_beta2 0.999

initial_learning_rate  0.002
decay_learning_rate = True

use_cmudict False
Eval

max_iters 450

griffin_lim_iters 60

power 1.5

B Datasets and Evaluation Model

We use the PRUS Corpus available under the Cre-
ative Commons license, which allows distribution,
remixing, tweaking, and building upon the work,
as long as we credit the creators for the original
creation.

We use PronouncUR and AASIST-L, available
under the MIT License.

10


https://api.semanticscholar.org/CorpusID:11206540
https://api.semanticscholar.org/CorpusID:11206540
https://api.semanticscholar.org/CorpusID:11206540
https://api.semanticscholar.org/CorpusID:11206540
https://api.semanticscholar.org/CorpusID:11206540
https://api.semanticscholar.org/CorpusID:221090125
https://api.semanticscholar.org/CorpusID:221090125
https://api.semanticscholar.org/CorpusID:221090125
https://api.semanticscholar.org/CorpusID:237385791
https://api.semanticscholar.org/CorpusID:237385791
https://api.semanticscholar.org/CorpusID:237385791
https://api.semanticscholar.org/CorpusID:246904363
https://api.semanticscholar.org/CorpusID:246904363
https://api.semanticscholar.org/CorpusID:246904363
https://api.semanticscholar.org/CorpusID:3667433
https://api.semanticscholar.org/CorpusID:3667433
https://api.semanticscholar.org/CorpusID:3667433

