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ABSTRACT

Mathematical problem solving remains a challenging test of reasoning for large
language and multimodal models, yet existing benchmarks are limited in size,
language coverage, and task diversity. We introduce MathNet, a large-scale, high-
quality, multilingual, and multimodal dataset of Olympiad-level problems. MathNet
spans 40 countries, 10 languages, and two decades of competitions, comprising
17,512 expert-authored problems with solutions across diverse domains.
MathNet supports three tasks: (i) mathematical comprehension, (ii) mathematical
retrieval, an underexplored but essential capability , and (iii) Math RAG to test how
retrieval augmented generation can improve problem solving. For retrieval, we
construct 39K pairs of mathematically equivalent problems to enable equivalence-
based evaluation, in addition 70 pairs of expert curated. Experimental results show
that even state-of-the-art reasoning models (76.8% for GPT-5 and 46.8% for Claude
4.5 Opus) are challenged, while embedding models struggle to retrieve equivalent
problems. Finally, we show that LLM performance in RAG-based math problem
solving varies noticeably with the quality of retrieved context, which shows that
more community effort is needed in this domain.
MathNet provides the largest high-quality Olympiad dataset and the first retrieval
benchmark for problem equivalence. We publicly release both the dataset and
benchmark at http://mathnet.netlify.app.

a) MathNet Dataset

b) MathNet Benchmark Tasks
i) Comprehension ii) Retrieval

13K problems from 40 countries in 10 languages Expert Authored Problems/Solutions 

LLM generated answer Official Solution

?

In Depth Annotations
Vietnam (2024)

Problem Statement Equivalent Problems

Different Problems

……

Figure 1: Overview of MathNet. (a) Dataset of 17K Olympiad-level problems across 40 countries,
10 languages, and 700 competitions with expert-authored solutions. (b) Benchmark tasks: compre-
hension (solution generation) and retrieval (equivalence-based problem matching).
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1 INTRODUCTION

Recent LLMs and LMMs have made rapid strides on mathematical reasoning benchmarks, from
grade-school arithmetic to competition mathematics (Cobbe et al., 2021; Hendrycks et al.; Achiam
et al., 2023). This year, public reports claimed unprecedented gold-medal–level performance at
the International Mathematical Olympiad (IMO) by advanced AI systems (Luong et al., 2025;
Zhihong Shao, 2025). Moreover, there have been multiple incidents of AI systems reportedly solving
open mathematical problems (Nie et al., 2025; Feldman & Karbasi, 2025).

Despite these advances, progress in the research community remains constrained by the lack of open,
high quality, and diverse benchmarks. Existing Olympiad-level datasets are typically drawn from
community platforms such as AoPS and are predominantly sourced from few competitions in the U.S
and China, and they are small in scale (see Table 1). To address this gap, we present MathNet: the
first large-scale, multilingual, and multimodal dataset of Olympiad-level problems. Curated over two
decades from 40 countries and spanning 10 languages, MathNet comprises 17,512 problems with
official solutions written by experts across a wide range of mathematical domains. Its scale, diversity,
and expert quality provide an unprecedented foundation for exploring mathematical generalization
and analogical reasoning.

Building on this foundation, we focus on two main tasks Math Comprehension: the ability of solving
mathematical problems similar to all previous benchmark, and Math Retrieval, a fundamental yet
underexplored capability. Math Retrieval is the abality of retrieving "mathematically" equivalent or
related problems. Unlike existing semantic retrieval (Izacard et al., 2021; Khattab & Zaharia, 2020;
Formal et al., 2021), mathematical retrieval must be sensitive to symbolic structure, invariances,
and transformations. For example, the problem of solving x2 + y2 = 1 is equivalent to one that
poses

√
a2 + b2 = 1, or to a geometric formulation constraining a 2D vector to unit norm |u|2 = 1.

Crucially, however, these are not equivalent to solving x+ y = 1. Current retrieval models fail to
make this distinction: due to superficial lexical overlap (Das et al., 2025), they often rank a problem
containing x+ y = 1 as closer to x2 + y2 = 1 than to the truly equivalent formulations.

This challenge is evident in mathematical practice. In the IMO pipeline, more than a hundred
countries propose original problems annually; a shortlist is debated and six are ultimately selected.
Despite rigorous vetting, near-duplicates and thematic overlaps occasionally emerge, since existing
tools cannot reliably surface mathematical equivalences across languages, formats, and notations.
More broadly, contest success is often viewed as only weakly correlated with the deeper, sustained
reasoning required for research mathematics (Gemstones, 2020).

A similar difficulty arises for research search. For example, a mathematician interested in finding
a bound for consecutive primes might want to check if someone showed a result like pn+1 − pn ≤
C(log pn)

2, where pn denotes the n-th prime number and C is a constant. In their search, they must
typically look using paraphrases like “upper bounds on prime gaps” rather than by the symbolic
form itself. Existing MathIR and formula-search systems attempt to bridge this gap: for example,
Vemuganti et al. (2025) explore structural enrichments in formula only retrieval, however, it’s not
built to support more complex langague interleaved with math.

This paper introduces MathNet, a benchmark designed to evaluate math-aware retrieval and its
role in reasoning. Our contributions are:

1. Dataset. A 17K-problem corpus of Olympiad-style math with aligned LaTeX and natural-
language statements, expert solutions, and metadata spanning 40+ countries, 10 languages.

2. New Annotations and Similarity Axes. 39,078 synthetic problem pairs that are mathematically
equivalent, in addition to 70 curated problem pairs by Olympiad experts that appeared in real
competitions and are conceptually similar.

3. Large-Scale Evaluation. Benchmarking across 27 models on three primary tasks that measure
mathematical comprehension, retrieval quality, and analogical reasoning (MathRAG) using both
automatic grading and human expert grading.

4. Analysis: Solving vs. Retrieving. We demonstrate a sharp divergence between problem solving
and retrieval: even state-of-the-art models struggle with mathematical retrieval. Moreover,
retrieval-augmented generation (RAG) improves reasoning only when retrievers surface structure-
aligned, mathematically relevant neighbors.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Mathematical problem solving has long been a core benchmark for evaluating AI intelligence. Early
efforts focused on text-based arithmetic problems, while recent research has expanded to competition-
level reasoning, theorem proving, and multimodal problem-solving. Existing datasets can be broadly
categorized into text-only benchmarks, multimodal benchmarks, and large-scale aggregates.

Text-Only Mathematical Benchmarks. Several datasets evaluate LLMs’ mathematical reasoning
using text-only problems. Cobbe et al. (2021) introduced GSM8K, grade-school level problems for
elementary arithmetic reasoning. Hendrycks et al. proposed MATH, which consists of problems
spanning high school to competitive mathematics. Gao et al. (2024b) presented Omni-MATH, with
4,428 Olympiad-level problems. He et al. (2024) and Wang et al. (2024) further extend coverage
with bilingual and competition-level datasets, though most are limited in scale, language diversity, or
structured similarity annotations.

Multimodal Mathematical Benchmarks. Multimodal benchmarks integrate visual information
with textual descriptions, primarily for geometry or diagram-based reasoning. Datasets such as
MATH-Vision (Wang et al., 2024) and MathVista (Lu et al., 2024) incorporate broad visual contexts,
including charts and diagrams. Despite this added modality, these datasets remain comparatively easy
and do not capture the full difficulty of Olympiad-level problem solving.

Large-Scale Aggregates. Large datasets aggregate problems from multiple sources such as Numina-
Math (Li et al., 2024b) and (Li et al., 2025). Although valuable for large-scale training and evaluation,
these datasets typically lack curated multimodal content, multi-lingual coverage, and fine-grained
annotations.

Math Retrieval There has been work on formula-aware indexing (Zanibbi et al., 2025), but such
systems predate LLMs and typically operate at the formula level, missing broader conceptual and
structural similarities expressed in natural language. Meanwhile, modern IR excels at semantic
paraphrase but is often blind to symbolic equivalence and cross-modal cues.

Limitations and Motivation for MathNet. Despite these advances, current benchmarks exhibit thre
main limitations: (i) limited detailed solutions written by experts, (ii) restricted visual multilingual
content, especially for high-difficulty problems, and (iii) no focus on retrieving mathematically
equivalent or related problems. MathNet addresses these gaps by offering a large-scale, multilingual,
multimodal dataset of 17,512 Olympiad-level problems. It includes expert-validated problem pairs and
a fine-grained taxonomy of mathematical similarity, enabling rigorous study of retrieval-augmented
reasoning, analogical problem solving, and cross-lingual generalization in LLMs and LMMs.

Benchmark Size Languages Evaluation Type M Source Difficulty

GSM8k Cobbe et al. (2021) 8,500 EN Numeric Answer × Crowdsourced problems Grade School
MATH Hendrycks et al. 12,500 EN Numeric Answer × Competitions / textbooks High School
MATH-Vision Wang et al. (2024) 3,040 EN Expression / Proof ✓ Math Competitions High School
CMMLU Li et al. (2024a) 11,528 ZH MCQ × Chinese exam materials High School / College
MMLU Hendrycks et al. (2021) 15,908 EN MCQ × College / professional exams College-Level
C-Eval Huang et al. (2023) 13,948 ZH MCQ × Chinese college exams College Entrance
MMMU Yue et al. (2024) 11,500 EN MCQ / Expression ✓ Multimodal academic exams College-Level
AGIEval Zhong et al. (2024) 3,300 EN & ZH MCQ / Expression × College entrance exams College Entrance
JEEBench Arora et al. (2023) 515 EN MCQ / Numeric Answer × Indian JEE Advanced JEE Advanced Exam

OlympiadBench He et al. (2024) 6,142 EN & ZH Proof / Expression ✓ Official Websites Olympiad Level
OlympicArena Huang et al. (2024) 3,233 EN & ZH Proof / Process ✓ Official Websites Olympiad Level
Omni-Math Gao et al. (2024b) 4,428 EN Proof / Process × AoPS Forum / Contest Pages Olympiad Level
IneqMath Sheng et al. (2025) 1,552 EN Proof / Analytical Tools × Curated Inequalities Problems Olympiad Level
OlymMATH Sun et al. (2025) 200 EN & ZH Numeric Answer × AoPS Forum/Official Websites Olympiad Level
LiveAoPS Mahdavi et al. (2025) - EN Numeric / Expression × AoPS Forum (rolling snapshot) Olympiad Level
MathArena Balunović et al. (2025) 162 EN Final Answer / Proof ✓ Newly released competitions Olympiad Level
IMOBench Luong et al. (2025) 460 EN Numeric / Proof × IMO & national archives Olympiad Level

MathNet (ours) EN, ZH, ES ✓ Printed Official Country
17,152 RU, AR, RO Expression / Proof Booklets/ International Olympiad Level

DE, FA, . . . and National Contests

Table 1: Comparison of mathematical reasoning benchmarks across different sizes, languages, eval-
uation types, and difficulty levels. We include both unimodal and multimodal datasets, spanning
grade-school to Olympiad-level mathematics. Our proposed MathNet expands coverage to 10 lan-
guages and focuses on proof- and process-based evaluation with authentic national contest problems.
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MathNet Sources
(official problems/solutions)

Other Benchmarks Sources
e.g. Omni-MATH (ICLR 2025)

Figure 2: MathNet is a collection of official Olympiad documents sourced directly from national
problem booklets. This example shows a BMO 2023 problem that appears in both MathNet and
Omni-MATH Gao et al. (2024a) While Omni-MATH relies on the AoPS discussion shown on the
left, MathNet provides the official problem and solution on the right.

3 DATASET

We introduce MathNet, a large-scale benchmark designed to evaluate the cognitive reasoning and
retrieval abilities of large language models (LLMs) and large multimodal models (LMMs). The
benchmark contains both text-only and interleaved text–image problems, supporting multi-lingual
presentation to broaden accessibility and inclusivity. In total, MathNet comprises 17,512 problems
with expert-written solutions, spanning 40 countries and 300 distinct competitions.

A key feature of MathNet is its fine-grained taxonomy of mathematical similarity, which enables
systematic analysis of model performance across varying levels of structural and semantic overlap.
To complement the dataset, we define a novel retrieval task that measures a model’s ability to identify
related problems based on deeper structural relationships rather than surface-level features. We
further provide baseline models and evaluations, demonstrating the benchmark’s utility in assessing
both problem-solving accuracy and mathematical understanding.

3.1 DATA COLLECTION, EXTRACTION AND ANNOTATION

Data sources. Each year, participating countries in the International Mathematical Olympiad (IMO)
contribute original problems for use in their national contests and team selection examinations. To
construct our benchmark, we curated a collection of official problem booklets from 40 countries
spanning 2006–2025, comprising 739 PDF volumes and more than 25,000 pages in total. Unlike
prior math benchmarks that often rely on community-sourced platforms such as AoPS, MathNet is
built exclusively from officially published national materials. All included problems and solutions are
authored and disseminated by national teams themselves, ensuring expert-level quality, consistency
in style, and immunity from noisy or informal annotations. For more details, refer to section A.1.

Problems Extraction. We first convert all contest booklets into a Markdown format using dots-ocr
dot (2025), which is a multilingual document parsing framework (see Appendix 9). This step
establishes a uniform input format for downstream processing. The underlying source material spans
a wide range of formats: recent volumes are digitally typeset, while older archives are only available
as scanned copies, and many booklets are bilingual. By leveraging the multilingual recognition and
layout analysis capabilities of dots-ocr, our pipeline robustly handles this variation, ensuring
consistent and faithful text extraction across diverse document types.

Problems Solution Matching and Annotation Extracting aligned problem–solution pairs from
parsed contest booklets poses a significant challenge due to the heterogeneity of source documents.
Some booklets present problems and solutions in separate sections (see Appendix 9), while others
interleave them. Numbering schemes and naming conventions vary not only across countries but
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Figure 3: Problem–solution Extraction and Validation Pipeline.

often within a single document. These inconsistencies render traditional parsing techniques (e.g.,
regex-based heuristics) brittle and non-scalable.

To address this, we designed a tailored LLM-based pipeline for problem–solution alignment (illus-
trated in Figure 3). Our approach operates in three stages:

Document Ingestion and Problem Extraction. We preprocess each contest booklet by segmenting
it into page-level units, which are then provided as input to GPT-4.1 for problem identification and
extraction in LATEX format. For each extracted statement, we additionally record the source file and
page number to maintain provenance metadata.

Solution Retrieval. Since solutions never precede their corresponding problems, the system begins
searching only after the identified problem page. We slide an overlapping window of four consecutive
pages, pairing the problem text with these candidate pages, and prompt GPT-4.1 to extract the
corresponding solution as shown in Appendix 1. This strategy balances robustness to noisy formatting
with efficiency in long documents.

Semantic Verification. We subsequently evaluate each extracted problem–solution pair with two
independent LLMs: GPT-4.1 and Claude 4 Opus. We prompt both models to act as judges (see
Appendix 2), assessing (i) the correctness of alignment and whether the solution corresponds to the
intended problem (ii) the completeness of coverage—whether the entire solution is captured. The
system accepts a pair into the dataset only when both LLMs independently agree on its validity,
thereby providing cross-model consensus that mitigates single-model bias or hallucination (Gu et al.,
2024).

Through this multi-stage design, our pipeline achieves high recall and precision across diverse
document structures, enabling the construction of a clean, large-scale dataset of expert-authored
problems and solutions.

3.2 DATA QUALITY VERIFICATION

Human Validation of Problem and Solution Extraction. To obtain a reliable estimate of extraction
quality, we randomly sampled 100 problem–solution pairs from the dataset and conducted a controlled
human evaluation. We recruited 20 annotators with academic backgrounds in mathematics, computer
science, and engineering, and instructed them to independently assess each problem-solution pair
along two dimensions: (i) the correctness of alignment, i.e., whether the solution corresponds to the
intended problem, and (ii) the completeness of coverage, i.e., whether the solution is fully captured.
To facilitate human validation, we developed and publicly released a lightweight web-based interface
that supports multimodal display of problems, solutions, and provenance metadata (e.g., source
document and page number).

LLM-Based Stress Testing with Distractors. To assess dataset robustness and potential leakage,
we employed a large language model (GPT-4.1) to generate a set of “distractor” problems. For each
problem, we prompted the model to produce five plausible but incorrect statements and then instructed
it to identify the correct problem from a mixture of its own distractors and the true related problems

5
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Mode Problem A Problem B

Invariance
Syntactic Equivalence Find f : R → R such that f(x2 − y2) = (x− y)(f(x) + f(y)). Find g : R → R such that (g(a) + g(b))(a− b) = g(a2 − b2).

Reformulation Let ai > 0. Prove
∑n

i=1
ai

a2
i+ai+1ai+2

≤
∑n

i=1
1

ai+ai+1
Let ai > 0. Prove

∑n
i=1

a2
i

a2
i+ai+1ai+2

≥ 1
2

Transformational Find all x ∈ R such that 4x + 6x = 9x. Find all x ∈ R such that (2/3)x + (3/2)x = 5/2.

Structural Resonance
Generalization/Specialization For k ≥ 1, prove that k divides

(
n
k

)
for all n ≥ k. Show that

(
n
m

)
≡

∏(
ni

mi

)
(mod p), where n =

∑
nip

i, m =
∑

mip
i.

Common Lemma Prove that 4n + 2n + 1 is never a prime number. Prove that 22n + 2n + 1 is divisible by 3 for all n.
Structural Reduction If ab+ 1|a2 + b2, show that a2+b2

ab+1 is a perfect square. If a2 + b2 + c2 = k(ab+ bc+ ca), show that k ∈ {1, 2, 3}.

Affinity
Thematic Show that the largest prime factor of

(
2n
n

)
is greater than n2/3. For every n > 1, there is a prime p such that n < p < 2n.

Table 2: Taxonomy of mathematical similarity with Olympiad-style examples. Invariance captures
strict equivalence under reformulation, Structural Resonance reflects shared lemmas or reductions,
and Affinity denotes looser thematic clustering.

from our dataset. The model’s low success rate indicates that the annotated problem connections
in MathNet are non-trivial and cannot be inferred through simple surface-level patterns, thereby
reinforcing the quality of our annotations (see Section 4.3).

Expert Review of Similarity Annotations. As an additional validation step, we asked experts to
review a subset of 500 sampled problems with their associated distractors. At least two annotators
independently assessed each problem–distractor set, and a senior expert resolved any disagreements
through consensus. This procedure confirmed that the similarity annotations capture genuine mathe-
matical structure rather than superficial lexical overlap, providing a complementary layer of assurance
beyond the LLM-based evaluation.

3.3 WHAT MAKES PROBLEMS SIMILAR?

Mathematical progress often depends on recognizing when different problems share common structure.
Similarity is not a single notion but can take several forms, from strict equivalence to looser thematic
connections. We distinguish three modes of similarity: Invariance, Resonance, and Affinity (see
Table 2).

Invariance refers to strict equivalence under transformation. Two problems are invariant when they
differ only in representation but share the same underlying structure. Examples include syntactic
renaming, algebraic reformulation, geometric re-characterization, or cross-domain isomorphism.

Resonance refers to partial similarity. Problems are not identical, but they can be addressed using the
same idea, proof strategy, or structural analogy. Resonance highlights opportunities to transfer tools
or insights across contexts.

Affinity refers to a broad sense of relatedness without structural equivalence. Problems may belong
to the same conceptual or disciplinary area (e.g., number theory, geometry) even if they do not share
a method or solution strategy. Affinity provides a way to group problems by theme, context, or
historical development.

3.4 HOW ARE SIMILAR PROBLEM PAIRS CONSTRUCTED?

To asses the limitations of current embedding models, we designed a Problem Retrieval task that
aims to distinguish between surface-level lexical overlap and deep mathematical equivalence. We
construct three types of paired data points:

a) Synthetic Equivalent Pairs. We generated equivalent versions of anchor problems via variable
renaming (e.g., x → a), algebraic manipulation, and paraphrasing using GPT-4.1 (prompt details
more details Appendix). For example, the functional equation f(x) + f(y) = f(x + y) is paired
with an algebraically equivalent variant such as g(a)− g(a+ b) = −g(b).

b) Hard Negatives (Near-Misses). To asses how much models can rely solely on token overlap,
we generated adversarial “hard negatives” that mimic the syntax of the anchor but differ mathemat-
ically (e.g., f(x2) + f(y) = f(x − y)). These serve as near-miss distractors that require genuine
mathematical understanding to avoid.
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To ensure correctness of the synthetic problems, we performed a human verification pass on all
generated samples, where 500 pairs of synthetic samples were verified.

c) Expert-Curated Conceptual Pairs. We curated 70 pairs from real Olympiad problems over
the past 20 years. These belong to the Structural Resonance category of our taxonomy of pairs
exhibiting conceptual similarity such as generalization/specialization relations, shared key lemmas,
or one problem being a reduction of the other. These expert-curated pairs capture similarity that goes
beyond algebraic transformations.

3.5 DATA PREPARATION AND RELEASE

Our benchmark contains 17,512 problems, with 5,500 designated for model-based evaluation as
MathNet-test-large, and 140 curated hard problems as MathNet-test-small. MathNet-test-small is
organized into pairs consisting of a problem and a conceptually related problem (Invariance and
Structural Resonance), both of which appeared in real competitions. The dataset will be publicly
released.

3.6 DATA ANALYSIS

Figure 6b illustrates the diversity of our dataset across mathematical domains. Notably, Number
Theory and Combinatorics account for a large share of the most difficult problems, reflecting their
inherent complexity. In addition, the dataset is multilingual, with problems provided in ten different
languages (see Appendix Table 11), which makes it particularly well-suited for evaluating cross-
lingual reasoning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate 25 models on MathNet under two benchmarks: (a) Math Comprehension and (b) Math
Retrieval.

For Math Comprehension, we evaluate two types of models: (i) LLMs and LMMs, includ-
ing gpt-4o, Llama-4-Maverick-17B-128E-Instruct-FP8, Grok-4.1, Grok-3. For
models that accept images, we provide both the text and image as input; otherwise, we supply a
text-only description of the image. (ii) LLMs and LMMs with CoT Reasoning, including gpt-5,
gpt-5-mini, gpt-5-nano, gemini-3-pro, gemini-2.5-pro, gemini-2.5-flash,
DeepSeek-V3.2-Speciale, DeepSeek-V3, DeepSeek-R1, claude-opus-4.5.

For Math Retrieval, we evaluate retrieval performance using embeddings derived
from a diverse set of state-of-the-art models, including all-mpnet-base-v2,
multi-qa-mpnet-base-dot-v1, cohere-embed-v4.0, qwen3-embedding-4B,
gemini-embedding-001, text-embedding-ada-002, text-embedding-3-small,
and text-embedding-3-large. We compute similarities between problem statements using
cosine similarity over the embedding representations.

4.2 EVALUATION PROTOCOL

Math Comprehension. For evaluation, following the protocol proposed by IMO-Bench Luong
et al. (2025), we adopt a model-based evaluation using Gemini-2.5-Pro, which was shown
in IMO-Bench to achieve a Pearson correlation of 0.87 with human graders. For each problem,
Gemini-2.5-Pro is provided with the problem statement, the reference solution, and the model-
generated solution, and is asked to judge whether the output is consistent with the correct answer
using a numeric system 0-7 binarized to score=7 (full correctness) and score != 7. This allows us to
distinguish between models that arrive at the correct final answer by coincidence versus those that
demonstrate consistent reasoning ability. We also report performance by subject domain (algebra,
geometry, combinatorics, number theory), enabling a fine-grained analysis of model strengths and
weaknesses.

Math Retrieval. The primary evaluation metric for our retrieval task is Recall@k, which measures
whether any of the top-k retrieved problems correspond to a "correct" match from our equivalent

7
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versions of each problem. We report Recall@1, Recall@5, and Recall@10. To better understand
embedding behavior, we further analyze cosine similarity distributions between equivalent problem
pairs, unrelated pairs, and near misses (hard negatives), highlighting cases where models struggle to
separate fine-grained distinctions.

Retrieval Augmented Generation. To assess the impact of retrieval RAG, we evaluate how retrieval
quality affects downstream mathematical problem solving. We adopt a controlled setup: we report
solver performance under three conditions: (a) zero-shot, (b) RAG with a standard off-the-shelf
retriever, and (c) RAG with an oracle retriever that supplies a ground-truth similar problem from
MathNet. This allows us to directly quantify how much math-aware retrieval contributes to solution
accuracy.

We report the relative gains between (b) and (c), highlighting how structural alignment in retrieval
enables models to make effective use of retrieved context, and we identify cases where irrelevant
retrieval harms performance. This protocol provides a clear empirical demonstration of the value of
math-aware retrieval.

4.3 MAIN RESULTS

Math Comprehension Table 4 summarizes accuracy across four mathematical domains. Baseline
LLMs such as Llama-4-Maverick-17B and DeepSeek-V3 achieve modest macro-averages in the mid-
40s, indicating that direct pattern matching and shallow heuristics are insufficient for Olympiad-level
problem solving.

Math Comprehension Results on Test-Set-Small (70 samples)

Model RD Human Grading LLM Grading

(2025) zero shot embed-RAG expert-RAG zero shot embed-RAG expert-RAG

DeepSeek-V3.2-Speciale 01 Dec 84.8% 89.5% 97.3% 82.23% 87.87% 89.03%
Claude-4.5-Opus 24 Nov 46.8% 55.5% 52.4% 45.97% 50.34% 56.43%
oLMO-3-Think 20 Nov 45.2% 54.6% 47.6% 49.49% 45.56% 51.07%
Grok-4.1-Fast 19 Nov 75.4% 83.8% 83.2% 73.06% 67.66% 69.11%
Gemini-3-Pro 18 Nov 89.1% 92.9% 87.5% 73.16% 70.54% 76.43%
GPT-5 07 Aug 76.8% 75.2% 86.6% 87.09% 81.81% 85.76%
Phi-4-Reasoning Plus 30 Apr 15.1% 14.3% 16.7% 24.06% 19.64% 30.04%

Table 3: Performance of evaluated language models on the Math Comprehension Test-Set-Small (70
samples). The table reports human and average LLM grading accuracy under three prompting and
retrieval configurations: zero-shot, embed-RAG, and expert-RAG. RD=release date.

Reasoning-augmented models (e.g., GPT 5 and Gemini 2.5 Flash) substantially improve performance,
with macro-averages around above 60%. However, their accuracy remains uneven across domains:
while Algebra shows steady gains, Geometry and Discrete Math remain the hardest categories,
reflecting difficulty with abstract reasoning, non-obvious solution paths, and combinatorial structures.
For more breakdown analysis of Language and Multimodality sensitivity refer to Table 9 and Table
10 in Appendix A.4.

Math Retrieval As shown in Table 5, retrieval on MathNet remains highly challenging at the top-1
level, with even the strongest models (Qwen3-embedding-4B and Gemini-embedding-001)
achieving only ∼5% Recall@1. Performance improves markedly at higher cutoffs, with Recall@10
exceeding 80% in several domains. Among all models, Gemini-embedding-001 provides the most
consistent gains, delivering the highest Recall@5 and Recall@10 across domains and the strongest
aggregate performance (68.88% and 83.79%, respectively). In contrast, legacy embedding models
such as text-embedding-ada-002 and text-embedding-3-small perform substantially
worse across all settings.

These results suggest that current general-purpose embedding models fail to capture the deep structural
and symbolic relationships that define mathematical equivalence. A critical failure mode is that
both LLMs and LMMs often rely on superficial textual overlap (e.g., matching on keywords such as
"triangle" or "polynomial") rather than reasoning over the underlying mathematical concepts. The
weak top-1 retrieval performance highlights that these models lack a robust internal representation of
mathematical knowledge that would support analogical reasoning across problem variants. This gap
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Zero-Shot Math Comprehension Results on Test-Set-Large (5500 samples)
Algebra Number Theory Geometry Discrete Math Macro Avg Micro Avg

LLMs (Text-only)
Mistral-3B 8.87% ± 0.54 5.99% ± 0.53 1.28% ± 0.17 4.51% ± 0.46 5.16% ± 1.37 4.60% ± 0.20
DeepSeek-V3.2 11.03% ± 0.60 12.11% ± 0.73 1.74% ± 0.20 5.83% ± 0.52 7.68% ± 2.08 6.66% ± 0.24
Grok-3 22.13% ± 0.79 18.23% ± 0.87 3.14% ± 0.27 12.97% ± 0.74 14.12% ± 3.56 12.41% ± 0.31
LVLMs (Vision-enabled)
Llama-4-Maverick-17B 25.72% ± 0.83 22.08% ± 0.93 5.84% ± 0.36 10.67% ± 0.68 16.08% ± 4.05 14.60% ± 0.34
GPT-4.1 41.71% ± 0.94 41.34% ± 1.11 12.75% ± 0.51 33.91% ± 1.05 32.43% ± 5.89 29.00% ± 0.43
GPT-4o 19.22% ± 0.75 15.77% ± 0.82 3.13% ± 0.27 12.05% ± 0.72 12.54% ± 3.00 11.04% ± 0.30
LLMs + Reasoning (Text-only)
DeepSeek-R1 32.43% ± 0.90 27.21% ± 1.00 5.18% ± 0.34 16.69% ± 0.83 20.38% ± 5.22 18.07% ± 0.37
LVLMs + Reasoning (Vision + deliberate reasoning)
Gemini-2.5-Flash 51.42% ± 0.95 52.18% ± 1.02 56.73% ± 0.88 42.57% ± 0.91 50.03% ± 3.20 49.61% ± 0.45
Claude-4-Opus 40.27% ± 0.90 20.44% ± 0.75 79.12% ± 1.10 26.39% ± 0.82 41.08% ± 4.10 40.22% ± 0.50
GPT-5 92.41% ± 0.50 89.06% ± 0.70 64.23% ± 0.73 85.28% ± 0.78 82.74% ± 5.49 79.63% ± 0.38
GPT-5-mini 87.14% ± 0.64 88.81% ± 0.71 65.43% ± 0.73 79.13% ± 0.90 80.13% ± 4.62 77.58% ± 0.40
GPT-5-nano 77.59% ± 0.80 78.05% ± 0.93 51.92% ± 0.76 66.81% ± 1.04 68.59% ± 5.31 65.75% ± 0.45

Table 4: Experimental results on MathNet-Test-Large, which consists of 5500 problems. Results are
expressed as percentages, with the highest score in each setting underlined and the highest scores
across all settings bolded.

Table 5: Experimental results on MathNet, expressed as percentages for Recall@1 and Recall@5.
The highest score in each setting is underlined, and the highest overall scores are bolded.

Algebra Number Theory Geometry Discrete Mathematics All
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

all-mpnet-base-v2 4.54% 73.06% 4.67% 82.54% 4.37% 74.76% 4.25% 75.38% 3.78% 57.7%
multi-qa-mpnet-base-dot-v1 4.0% 69.4% 3.73% 80.76% 3.88% 71.73% 3.98% 73.4% 3.27% 55.08%
cohere-embed-v4.0 2.73% 59.85% 2.67% 68.85% 2.35% 59.87% 2.78% 63.4% 2.24% 44.81%
qwen3-embedding-4B 5.24% 78.74% 4.62% 86.43% 5.6% 79.05% 5.96% 81.5% 4.96% 64.95%
gemini-embedding-001 5.5% 81.62% 4.95% 87.43% 5.49% 81.86% 5.35% 82.8% 4.83% 68.88%
text-embedding-ada-002 2.05% 54.94% 2.22% 63.35% 2.16% 55.07% 2.71% 57.51% 1.94% 42.02%
text-embedding-3-small 2.1% 47.47% 1.89% 54.62% 2.1% 47.61% 2.84% 50.12% 1.98% 35.49%
text-embedding-3-large 3.19% 68.18% 2.73% 75.25% 3.2% 68.18% 3.35% 69.52% 2.74% 54.23%

underscores the need for embeddings explicitly trained to encode mathematical structure, rather than
depending on incidental surface-level cues.

To further illustrate this issue, Figure 4 shows the distribution of cosine similarities between equivalent
and non-equivalent problems. Surprisingly, non-equivalent pairs often exhibit higher similarity scores
than equivalent ones. This counterintuitive trend highlights that embeddings frequently capture
superficial lexical or symbolic overlap rather than true structural relationships, leading models to
mis-rank distinct problems as closer than genuinely equivalent ones. This explains the weak Recall@1
performance observed in Table 5.

MathRAG. As shown in Table 3, providing these ground-truth pairs as retrieval context (expert-RAG)
yields consistent gains over zero-shot sttings under both human and LLM grading. Improvements are
largest for lower- and mid-tier solvers, indicating that math-aware retrieval supplies structure-aligned
hints that current models do not reliably surface on their own. For the strongest systems, we observe
occasional small dips (e.g., Gemini-3-Pro with human grading; GPT-5 with LLM grading), which
we attribute to over-conditioning on partially relevant context. In the embed-RAG setting, we see
high variance across results: when it retrieves structure-aligned neighbors it helps, but near-miss
distractors often degrade performance.

Together, these results show that retrieval can meaningfully boost Olympiad problem solving but only
when the retrieved context is truly structurally similar. Progress in retrieval-enhanced systems will
hinge on retrievers attuned to mathematical structure rather than surface lexical overlap. MathNet
with expert-aligned pairs and hard negatives offers a controlled setting to develop and rigorously
evaluate such math-aware retrieval for RAG.

9
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a) openai-text-3-large b) openai-text-ada-2 c) openai-text-3-small d) gemini-embeddings-001

e) multi-qa-mpnet-base-v1 f) all-mpnet-base-v2 g) cohere-embed-v4.0 h) qwen-3-embeddings-4B

Figure 4: Cosine similarity distributions for equivalent (green) and near-miss/hard negatives (orange)
problem pairs across different embedding models. Higher separation between the two distributions
indicates a model’s ability to distinguish structurally identical problems from those with small but
critical alterations.

5 DISCUSSION

Results on MathNet reveal a clear gap between the problem-solving ability of modern LLMs/LMMs
and their understanding of mathematical structure. While models achieve impressive scores on answer-
generation benchmarks, our retrieval task shows they lack a generalizable grasp of equivalence and
analogy. The limited gains from visual augmentation further suggest that multimodal integration for
symbolic tasks remains underdeveloped.

The strong performance of the formula-aware baseline indicates that structured, non-textual represen-
tations are crucial for retrieval. Progress in true mathematical reasoning may require moving beyond
next-token prediction toward architectures that explicitly integrate symbolic reasoning.

6 CONCLUSION

In this work, we introduced MathNet, the first large-scale, multilingual, multimodal benchmark
for mathematical reasoning and retrieval. By providing a rich dataset of 17,512 problems with a
fine-grained taxonomy of equivalence, we enabled a rigorous study of mathematical generaliza-
tion and analogical reasoning. To ensure reliability, we complemented automated extraction with
systematic human validation: expert annotators reviewed problem similarity labels, and student
evaluators assessed the alignment and completeness of extracted problem–solution pairs. These
human contributions establish a strong ground-truth foundation, ensuring that MathNet captures deep
mathematical structure rather than superficial overlap.

Our comprehensive evaluations show that while frontier models can solve complex problems, they
struggle with a fundamental yet overlooked task: retrieving mathematically equivalent or related
problems from large corpora. This deficiency in retrieval highlights a key limitation in their ability to
form a robust, internally consistent representation of mathematical knowledge. We hope MathNet will
serve as a valuable resource for the community, paving the way for research into improved retrieval-
augmented reasoning, symbolic AI, and ultimately, more capable and reliable problem-solving
models.
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A APPENDIX

The appendix provides additional tables, figures, prompts, and implementation details to support
reproducibility and further analysis.

A.1 OVERVIEW OF COMPETITIONS COVERED BY MATHNET

This section lists the national and regional competitions represented in MathNet, along with years
covered and document sources, to clarify the dataset’s institutional breadth.

Country Years Competitions
Argentina 2003–2023 Cono Sur MO; Argentine National Olympiad; Rioplatense Olympiad;

Iberoamerican MO; Olimpiada de Mayo;
Australia 2010–2024 AMOC Senior Contest; APMO; AIMO; Australian MO; EGMO (TST);

IMO (TST); MCYA
Austria 2010–2024 Austrian MO – Regional; Austrian MO – Junior Regional; Austrian MO

– National; National Olympiad – Preliminary; National Olympiad – Final;
Beginners’ Competition; EGMO (TST); IMO (TST)

Balkans 2010–2025 Balkans Mathematical Olympiad (BMO)
Baltics 2009–2023 Baltic Way; Baltic Way Shortlist
Belarus 2010–2024 Belarusian MO; IMO (TST)
Brazil 2006–2012 OBM
Bulgaria 2007–2024 Bulgarian MO – Regional; Bulgarian MO – Final; Bulgarian Autumn

Competition; Bulgarian Spring Competition; Bulgarian Winter Competi-
tion (Rousse, Varna, National); IMO (TST); BMO (TST); Other Bulgarian
Competitions; JBMO (TST)

Canada 2010–2017 CMO
China 2007–2025 AMC 10/12; AIME; CMO (China); Chinese MO; China Southeastern MO;

CWMO; CGMO; Hua Luogeng Cup; IMO (TST); Soviet Mathematical
Competition; Russian Mathematical Competition; Putnam (China ed.)

Croatia 2010–2019 Croatian MO; National Olympiad – City; National Olympiad – County;
National Olympiad – Final; MEMO; IMO/MEMO (TST)

Czech Republic 2000–2025 Czech MO – School; Czech MO – District; Czech MO – Regional; Czech
MO – Final; Czech–Polish–Slovak Match; Czech–Slovak–Polish Match;
Czech–Austrian–Polish–Slovak Match; CAPS Match; Olympiad Corner;
IMO/EGMO/MEMO (TST)

Slovakia 2000–2025 Slovak MO – School; Slovak MO – District; Slovak MO – Regional;
Slovak MO – Final; Czech–Slovak Match; Czech–Polish–Slovak Match;
Czech–Slovak–Polish Match; Czech–Austrian–Polish–Slovak Match; CAPS
Match; Olympiad Corner; IMO/EGMO/MEMO (TST)

Poland 2004–2025 Polish MO; Czech–Polish–Slovak Match; Czech–Slovak–Polish Match;
Czech–Austrian–Polish–Slovak Match; CAPS Match; Olympiad Corner;
IMO/EGMO/MEMO (TST)

Estonia 2010–2025 Estonian MO; Kangaroo; IMO (TST); Other Estonian Open Contests;
EGMO (TST)

Greece 2007–2024 Hellenic MO – Archimedes; National Competition – Thales; National Com-
petition – Euclides; BMO; JBMO; Mediterranean Competition; EGMO
(TST); IMO (TST); JBMO (TST)

Hong Kong 2014–2017 Hong Kong MO; Hong Kong Team Selection Test; Preliminary Selection –
IMO; IMO (TST); APMO; CHKMO

India 2006–2023 INMO; RMO; TSTs (IMO/EGMO/RMM); EGMO (TST); RMM (TST);
IMO (TST); USA TST Exchange; ISL/ELMO (training/mock)

Iran 2010–2024 Iranian MO; IMO (TST)
Ireland 2007–2025 Irish MO; IMO (TST)
Japan 2006–2025 JMO; JJMO; IMO/EGMO (TST)
Mongolia 2009–2025 Mongolian MO; Mongolian National MO; IMO (TST); EGMO (TST)
Netherlands 2019–2025 Dutch MO; Junior MO; Kangaroo; Pythagoras Olympiad; BxMO; Bx-

MO/EGMO (TST); IMO (TST)
Continued on next page
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Country Years Competitions
North Macedonia 2008–2023 Macedonian MO; Macedonian Junior MO; National Olympiad – Regional;

National Olympiad – Final; BMO; JBMO; Mediterranean Competition;
EGMO (TST); IMO (TST); BMO (TST)

Romania 2010–2025 Romanian MO – District; Romanian MO – Final; RMM; BMO; JBMO;
EGMO; IMAR Competition; Stars of Mathematics; Danube Competition;
Clock-Tower School Competitions; IMO/BMO/JBMO/EGMO/RMM (TST)

Russia 2009–2025 Russian MO – Regional; Russian MO – Final; Euler Olympiad; All-Russian
Olympiad (district, regional, national); IMO/EGMO (TST)

Saudi Arabia 2010–2025 Saudi MO; APMO (TST); EGMO (TST); IMO (TST); BMO (TST); JBMO
(TST)

Singapore 2010–2025 SMO (Junior, Senior, Open); SIMOC Camp Quizzes; National Olympiad –
Round 2 (all); IMO/EGMO (TST)

Slovenia 2008–2016 Slovenian National MO; International Kangaroo; IMO (TST)
South Africa 2010–2024 SAMO; National Olympiad – Senior; University Training Camps; Talent

Search; Monthly Problem Sets; IMO (TST)
South Korea 2004–2024 KMO; National Olympiad; IMO (TST)
Spain 2012–2023 Spanish MO; National Olympiad – First Phase; National Olympiad – Fi-

nal Phase; Iberoamerican MO; Mediterranean MO; Barcelona Contest;
BarcelonaTech Math Contest; Arhimede Contest; IMO (TST)

Taiwan 2012–2024 Taiwan MO; National Olympiad Training Camps (Independent Study, Mock
Exams, International Practice); IMO (TST)

Thailand 2007–2017 Thailand MO; TMO; IMO (TST)
Turkey 2008–2024 Turkish MO; Junior Turkish MO; National Olympiad; IMO (TST); JBMO

(TST); EGMO (TST); Silk Road Mathematical Competition
UK 2006–2022 BMO (Rounds 1 & 2); BMO; EGMO (TST); IMO (TST); RMM (TST);

CGMO (TST); Mathematics Ashes
USA 2001–2025 AMC 10/12; AIME; USAMO; USAJMO; IMO (TST); EGMO (TST); RMM

(TST)
Ukraine 2005–2023 Ukrainian National MO; Regional Olympiads; Kyiv City Olympiad;

Ukrainian Tournament of Mathematical Battles; Ukrainian Mathematical
Competitions; Online Olympiads (Algebra, Combinatorics, Number The-
ory); Ukrainian Summer School Competitions; EGMO (TST); IMO (TST);
RMM (TST); EMC

Vietnam 2001–2024 VMO; Vietnamese National Olympiad; IMO (TST)

A.2 TAXONOMY OF TOPICS COMMONLY USED IN MATH OLYMPIAD

We provide the curated taxonomy used for labeling domains, subjects, topics, and subtopics. These labels ground
our analyses and enable consistent cross-competition comparisons.

Sub-subtopic Key Concepts
Geometry

Plane Geometry
Triangles Centroid, incenter, circumcenter, orthocenter, ex-centers, Euler line,

nine-point circle; geometric inequalities; trigonometry (metric rela-
tions)

Quadrilaterals Cyclic, inscribed/circumscribed, Complete quadrangle, perpendicu-
lar diagonals

Circles Angles, coaxal, tangents, radical axis, metric relations, Apollonius
circle

Concurrency / Collinearity Theorems of Ceva, Menelaus, Pappus, Desargues
Transformations Translation, rotation, homothety, spiral similarity, inversion, the

method of moving points
Advanced Configurations Simson line, Miquel, Napoleon / Fermat / Brocard points, sym-

medians, polar triangles, harmonic/isogonal/isotomic conjugates,
barycentric coordinates

Geometric Inequalities Classical and advanced
Continued on next page
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Sub-subtopic Key Concepts
Combinatorial Geometry Helly, Sylvester, convex hulls, Pick theorem, Minkowski theorem,

convex figures
Analytic / Coordinate Methods Complex numbers, Cartesian coordinates, vectors, trigonometric

relations
Miscellaneous Angle/distance chasing, constructions, loci
Solid Geometry

3D Shapes Polyhedra, prisms, pyramids, spheres, cylinders, cones
Volume Cavalieri’s principle, Formulae and problem-solving
Surface Area Formulae and applications
Other 3D problems Mixed problems, reducing the problem into a plane geometry prob-

lem
Differential Geometry

Curvature Gaussian, mean
Manifolds Surfaces, parametric
Geodesics Shortest paths, great circles
Non-Euclidean Geometry

Spherical Geometry Spherical triangles, angles, area
Hyperbolic Geometry Lines, models, inequalities

Algebra
Prealgebra / Basic Algebra

Integers Sets of integers, Divisibility, primes, the Greatest Common Divisor
(GCD), the Least Common Multiplier (LCM)

Fractions Operations, simplification, comparison
Decimals Conversion, operations, rounding
Simple Equations Linear equations, word problems
Other Number properties, prime factorization, divisors
Algebraic Expressions

Polynomials Operations, factorization, Algebraic identities, symmetric functions,
Vieta’s formula, interpolation formulae, complex numbers, roots of
unity, Chebyshev polynomials and other trigonometric polynomials,
irreducibility of polynomials, Descartes rule of signs, rootso of
polynomials, Intermediate Value Theorem (IVT)

Sequences / Series Recurrences, Charachteristic equations, monotonocity, boundedness,
periodicity, convergence and divergence, floors/ceilings, sums/prod-
ucts, telescoping sums, Abel summation

Functional Equations Substitution, defining a new function, Cauchy’s equations, Injectivi-
ty/surjectivity, Periodicity, application of Calculus and Mathematical
Analysis, iterations

Inequalities
Functional considerations Linear/Quadratic solving techniques
Classical inequalities Cauchy-Schwarz, QM-AM-GM-HM, Power Mean, Jensen’s Inequal-

ity, smoothing, Muirhead, Chebyshev’s inequality, majorization,
combinatorial optimization
Discrete Mathematics

Graph Theory
Basic concepts Vertices, edges, path, connected graphs, cycles, Hamiltonian cycle

and path, trees
Matchings Marriage Lemma, Tutte’s theorem
Connectivity Menger, max-flow min-cut
Extremal Turán
Euler characteristic V − E + F
Combinatorics

Enumeration Symmetry, basic counting techniques, recursion, bijection, inclusion-
exclusion, double counting

Probability Expected values, probabilistice methods, partitions, generating func-
tions

Binomial coefficients Algebraic properties
Continued on next page
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Sub-subtopic Key Concepts
Pigeonhole principle Applications
Invariants / Monovariants Problem-solving
Coloring / Extremal Graph problems
Induction Standard and smoothing
Games / Greedy Strategies, combinatorial games
Logic / Algorithms / Other

Logic Propositional/predicate logic, truth tables
Algorithms Sorting, searching, Dynamic Programming (DP), greedy
Other Miscellaneous problems, strategy development problems, inter-

deciplinary problems

Number Theory
Divisibility / Factorization

Primes Properties, sieves, prime numbers tests
GCD Euclidean algorithm; linear combinations; Bezout’s identity
LCM Computation; relation with GCD
Factorization Trial, Fermat, Pollard
Modular Arithmetic

Basic operations (mod n), inverses
(mod n)

Existence (when gcd(a, n) = 1); computation (extended Euclidean
algorithm)

Chinese Remainder Theorem (CRT) Solving systems of congruences; applications in number theory and
cryptography

Fermat / Euler / Wilson Theorems; proofs; problem-solving applications
Polynomials mod p Roots, factorization; applications to number theory problems
Residues / Primitive Roots

Primitive roots Existence modulo primes; modulo pn; computation
Quadratic residues Properties; Legendre symbol; Euler’s criterion
Quadratic reciprocity Law of quadratic reciprocity; applications
Multiplicative order (mod n) Definition; computation; relation with primitive roots and cyclic

groups
Diophantine Equations

Factorization Methods Difference of squares, Sophie Germain identity, special factoriza-
tions; Unique Factorization Domains (Gaussian, Eisenstein integers);
Norms in algebraic number fields; Vieta jumping

Modular Arithmetic & Congruences Reductions modulo primes or powers; Quadratic residues, Legendre
symbol; Multiplicative order & primitive roots; Hensel lifting; Local–
global principles (solvability mod p)

Parametrization of Solutions Pythagorean triples; Rational parametrization of conics (general
quadratics); Higher-degree parametrizations (elliptic curves, quar-
tics)

Inequalities & Size Arguments Bounding arguments; Infinite descent; Minimal solutions (no smaller
solution possible)

Special Equations Pell’s equation: continued fractions, fundamental solution, recur-
rence; Fermat-type: x4 + y4 = z2,

Descent & Structural Methods Infinite descent; Descent on elliptic curves; Geometry of numbers
Arithmetic Functions

Euler’s totient’s function Properties, applications
Number / Sum of divisors Computation, properties
Sum of digits Basic properties
Möbius inversion Definition, applications
Algebraic Number Theory

Algebraic numbers Minimal polynomials, field extensions, solving Diophantine equa-
tions
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A.3 BENCHMARKING LLM GRADERS VS HUMAN EXPERT GRADERS

We benchmark the accuracy of a wide range of LLM graders and compare their judgments to human expert
grading on Testset-Small. This evaluation quantifies how reliably current models can act as automatic
graders for Olympiad-level mathematical reasoning. For each model, we report performance under three settings:
zero-shot, embed-RAG, and expert-RAG. This measure both cross-model grading consistency and alignment
with human scoring.

Cross-Model Grading + Human Scores
Model LLaMA-4 DeepSeek-V3 GPT-4.1 GPT-4o Average Human Expert

Zero Shot
claude-opus-4.5 72.243 41.557 31.371 38.700 45.971 46.8%
deepseek-v3.2-speciale 96.186 74.286 85.457 73.014 82.229 84.8%
gemini-3-pro-preview 94.700 72.357 71.686 53.500 73.057 89.1%
gpt-5 98.057 85.014 83.157 82.143 87.086 76.8%
grok-4.1-fast 92.657 63.357 76.529 59.700 73.060 75.4%
olmo-3-32b-think 70.243 44.286 35.200 48.214 49.486 45.2%
phi-4-reasoning-plus 46.186 23.529 6.629 19.900 24.057 15.1%

embed-RAG
claude-opus-4.5 64.93% 59.69% 40.30% 36.49% 50.34% 55.5%
deepseek-v3.2-speciale 94.21% 78.37% 92.21% 86.73% 87.89% 89.5%
gemini-3-pro-preview 95.91% 71.43% 68.63% 46.17% 70.54% 92.9%
gpt-5 93.23% 73.94% 80.96% 79.11% 81.81% 75.2%
grok-4.1-fast 88.57% 61.13% 72.23% 48.67% 67.66% 83.8%
olmo-3-32b-think 66.89% 38.57% 31.49% 45.29% 45.56% 54.6%
phi-4-reasoning-plus 36.64% 12.70% 08.16% 21.04% 19.64% 14.3%

expert-RAG
claude-opus-4.5 77.06% 55.51% 53.57% 39.54% 56.43% 52.4%
deepseek-v3.2-speciale 97.14% 83.41% 89.29% 86.24% 89.03% 97.3%
gemini-3-pro-preview 99.63% 70.03% 72.70% 63.37% 76.43% 87.5%
gpt-5 97.29% 77.93% 82.60% 85.20% 85.76% 86.6%
grok-4.1-fast 92.50% 55.66% 74.23% 54.09% 69.11% 83.20%
olmo-3-32b-think 74.67% 48.99% 33.16%% 47.44% 51.07% 47.6%
phi-4-reasoning-plus 48.57% 31.26% 09.70% 30.64% 30.04% 16.7%

Table 8: Breakdown of cross-model grading performance under Zero-Shot, embed-RAG, and expert-
RAG configurations, augmented with human evaluation scores for each model.

A.4 PERFORMANCE SENSITIVITY TO LANGUAGE, IMAGE PRESENCE AND TOPICS

We analyze how model accuracy varies with two factors: (1) the presence of figures in the test sample and (2)
the language of the sample.

Table 9: Average accuracy by model (best in bold, second best underlined)

Model Has figures No figures
Ministral-3B 4.72% 6.95%
grok-3 12.25% 19.39%
gpt-5-mini 75.51% 85.20%
gpt-5-nano 63.24% 74.14%
gpt-4.1 26.56% 39.29%
gpt-4o 9.38% 17.03%
gpt-5 76.56% 88.50%
DeepSeek-R1 16.48% 26.53%
DeepSeek-V3-0324 5.53% 10.14%
Llama-4-Maverick-17B 13.94% 21.43%

We find that all models experience some drop in accuracy when problems include figures, regardless of their
overall capability. This suggests that visual–text integration remains a challenging dimension across the board.
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However, the magnitude of the drop differs substantially by model strength. Less capable models (e.g., Ministral-
3B, DeepSeek-V3) not only perform poorly overall but also show consistently low accuracy on figure-based
questions, indicating limited visual understanding. In contrast, stronger models such as GPT-5 and GPT-5
mini still exhibit a small decline when figures are present, but they maintain high absolute performance in both
settings, demonstrating comparatively robust multimodal reasoning.

Problem with Figure

Problem. Let △ABC be an acute triangle satisfying AB > BC and AC > BC. Let O and H be the
circumcentre and orthocentre of △ABC. The circumcircle of △AHC meets AB again at M ̸= A,
and the circumcircle of △AHB meets AC again at N ̸= A. Prove that the circumcentre of △MNH
lies on the Euler line OH .

GPT-5 Solution.
Let △ABC be acute with AB >
BC and AC > BC. Define M
and N as in the problem.
1) Angles from the defining cir-
cles. Because M lies on the cir-
cumcircle of AHC and N on
that of AHB,

∠AMH = ∠ANH = 90◦−A.

This yields

∠MHN = 180◦−A = ∠BHC.

2) Similarity. Angles at M and
B are both 90◦; similarly for N
and C. Thus

△HMN ∼ △HBC,

implying a spiral similarity at H .
3) Circumcentres. Let X be the
circumcentre of △HMN and U
that of △HBC. Spiral similarity
about H sends U to X , hence
H,U,X are collinear. Since U
lies on OH , we conclude X ∈
OH .

X ∈ OH.

Mistral-3B Solution.
1. Identify points: O = circum-
centre of ABC, H = orthocen-
tre, M,N from intersecting the
circles of AHC and AHB with
AB,AC.
2. Geometry facts: Since M,N
lie on those circles, they relate
to the orthocentric configuration.
OH is the Euler line of ABC.
3. Euler line property (stated):
The model asserts that circum-
centres of triangles formed from
points on such circles and H lie
on OH , though this is not a valid
theorem.
4. Conclusion (unjustified):
Therefore, the circumcentre of
△MNH lies on OH .

Claim: X ∈ OH.

(Note: This argument is not math-
ematically valid.)

Official Solution.
Extend CH and BH to meet
the circumcircle of ABC at D
and E. From cyclic quadrilateral
AMHC and the perpendicular-
ity relations,

∠BMH = ∠MBH,

so CD is a symmetry axis of
△BMH . Similarly AB is a
symmetry axis of △DBH . Thus
HBDM is a rhombus; likewise
HCEN is a similar rhombus.
Let ℓB , ℓC be the perpendicular
bisectors of BD and CE; they
meet at O. Let mB ,mC be the
perpendicular bisectors of MH
and NH; they meet at the cir-
cumcentre Q of △MNH .
A dilation about H maps BD →
MH and CE → NH , thus map-
ping ℓB → mB and ℓC → mC .
Hence the intersection O maps to
Q.
Since H is the centre of dilation,
points H,O,Q are collinear.

Q ∈ OH.

Why This Problem Is Difficult for LLMs. This geometry problem requires a long, multi-step chain
of reasoning. The figure encodes critical structural cues, as a result, frontier models like gpt-5 can
reconstruct the full Olympiad-style argument, while weaker models like Mistral-3B fail to produce a
valid proof.
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Table 10: Average accuracy by model and language (best in bold, second best underlined).

Model en zh es mn
Ministral-3B 6.22% 1.55% 4.60% 0%
grok-3 17.00% 7.40% 10.34% 15.38%
gpt-5-mini 82.06% 65.62% 77.65% 50.00%
gpt-5-nano 70.56% 51.36% 65.12% 49.65%
gpt-4.1 34.79% 18.35% 50.00% 0%
gpt-4o 14.35% 2.72% 21.61% 15.38%
gpt-5 84.27% 74.38% 78.16% 63.64%
DeepSeek-R1 23.23% 5.43% 15.91% 14.29%
DeepSeek-V3-0324 8.49% 3.53% 12.79% 0%
Llama-4-Maverick 18.97% 5.47% 13.10% 0%

While several models perform reasonably in English, many degrade sharply in non-English settings—especially
Mongolian, where multiple models score 0%. Even high-performing models show reduced accuracy in Mongo-
lian, but the relative drop is far smaller: GPT-5 and GPT-5 mini remain the strongest models across all tested
languages and are the least affected by cross-lingual shifts. This indicates that although Mongolian remains an
especially difficult language for current LLMs, frontier-tier models exhibit significantly improved multilingual
robustness.

A.5 ERROR ANALYSIS

We present both quantitative and qualitative analyses of model performance. First, we engaged human graders to
record observations of failure cases across 1,470 generated solutions. Second, we measured model performance
across 82 distinct skills and topics within the Math Olympiad curriculum (see Appendix A.2).

Based on grader feedback, the models demonstrate high proficiency in predicting the final answer (87.3%
average accuracy); however, they struggle to generate coherent, rigorous proofs. The most common failure mode
is attempting to generalize from specific examples, assuming this constitutes a sufficient proof. For instance,
in Number Theory, models tend to verify cases modulo different primes and conclude the proof is complete
without rigorous generalization. In Functional Equations, models often identify simple candidate solutions (e.g.,
linear, constant, or quadratic forms) and assume these are the unique solutions, failing to prove that no other
solutions exist.

Regarding the skillset breakdown, we found that LLMs struggle most significantly with Combinatorics problems
that require clever construction and cannot be solved via brute force. Number Theory also presents significant
challenges. Conversely, models perform best in Algebraic problems that can be expressed purely through
equation manipulation.

Finally, we observed a specific failure case in our MathRAG experiments: performance degrades when the
retrieved problem (via embed-RAG) is irrelevant. This distraction causes a performance drop in 22% of such
cases.

A.6 DATASET STATISTICS AND EXAMPLES

We report summary statistics including per-language and per-domain distributions, subtopic frequencies,
and problem/solution length profiles, with additional visualizations. For access to full dataset, refer to
http://mathnet.netlify.app/.

Target Problem and Expert RAG Problem

Target Problem. Show that there are no 2-tuples (x, y) of positive integers satisfying

(x+ 1)(x+ 2) · · · (x+ 2014) = (y + 1)(y + 2) · · · (y + 4028).

Source: 2014 Chinese TST

RAG-Expert Problem. Alireza multiplied one billion consecutive natural numbers, while Matin
multiplied two million consecutive natural numbers. Prove that their two products cannot be equal;
therefore, if they claim to have obtained the same number, at least one of them must have made a
mistake.
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(a) Algebra (b) Geometry

(c) Discrete Mathematics (d) Number Theory

Figure 5: Breakdown of performance across four domains: (a) Algebra, (b) Geometry, (c) Discrete
Mathematics, (d) Number Theory.

Language English Spanish Arabic Russian Roman Bulgarian Persian German Chinese Ukrainian Mongolian
Count 16154 242 200 180 60 52 70 23 418 83 30

Table 11: Problems Distribution per Language

A.7 PROMPTS

We include the core prompts used for extraction, evaluation, and metadata classification. These are the exact
versions used in our experiments.

Listing 1: System prompt for solution extraction
sys_prompt = """

You are an expert in extracting mathematical problems and solutions.
I will provide you with:

- One math problem
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(a) Problems Distribution per Language (b) Problems Distribution per Domain

Figure 6: Distribution of problems across languages and domains.

(a) Problem Length Distribution (Words) (b) Solution Length Distribution (Words)

Figure 7: Problems vs Solutions (Length Distribution) (words)

- Multiple pages
Extract the solution that matches the problem
Important instructions:
- If the problem statement is split into multiple numbered points,
extract the solution in multiple points
- Never leave ‘solution_text‘ empty. If no solution can be found,
write ‘"Not found"‘ as the value.
- If solution contains imgs make sure to extractt image path such as:
![](images/Argentina2022_p5_data_8b4126bbff.png)
- If solution coontains tables make sure to extract the tables such
as: <table><thead><tr><th>Team</th><th>T1</th><th>T2</th><th>T3</th><
th>T4</th><th>T5</th><th>T6</th><th>T7</th><th>T8</th><th>Total</th></
tr></thead><tbody><tr><td>T1</td><td>-</td><td>2</td><td>2</td><td>2</
td><td>2</td><td>2</td><td>2</td><td>2</td><td>14</td></tr><tr><td>T2
</td><td>0</td><td>-</td><td>2</td><td>2</td><td>2</td><td>2</td><td
>2</td><td>2</td><td>12</td></tr><tr><td>T3</td><td>0</td><td>0</td><
td>-</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>10</td
></tr><tr><td>T4</td><td>0</td><td>0</td><td>0</td><td>-</td><td>2</
td><td>2</td><td>2</td><td>2</td><td>8</td></tr><tr><td>T5</td><td>0</
td><td>0</td><td>0</td><td>0</td><td>-</td><td>2</td><td>2</td><td>2</
td><td>6</td></tr><tr><td>T6</td><td>0</td><td>0</td><td>0</td><td>0</
td><td>0</td><td>-</td><td>2</td><td>2</td><td>4</td></tr><tr><td>T7</
td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</
td><td>2</td><td>2</td></tr><tr><td>T8</td><td>0</td><td>0</td><td>0</
td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td></tr></
tbody></table>
- Follow the JSON schema below precisely:
‘‘‘json
{
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(a) Algebra (b) Geometry

(c) Discrete Mathematics (d) Number Theory

Figure 8: Domain subtopic distribution

"has_solution": "bool, if solution was found and extracted set to
true, else false"

"solution_page_number": "the page number where the solution is
found"

"solution_latex": "extracted solution in latex format"
"solution_parts": [

"part_label": "label of the part"
"part_latex": "extracted part solution in latex format"

]
}
‘‘‘

"""

Listing 2: System prompt for evaluation
sys_prompt_eval = """

You are an expert in evaluating mathematical problems and solutions.

I will supply you with a problem and its solution(s), including
alternative solutions if available.
Your task is to evaluate based on the following criteria:

1. **Extraction completeness:** All main parts of the solution must
have been correctly extracted. Missing or truncated content should be
noted.
2. **Problem-solution match:** Ensure that the solution corresponds
correctly to the provided problem. If they are mismatched or
unrelated, it should be noted.
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(a) PDF Sample (b) Markdown Problem Sample

(c) Markdown Solution Sample (d) LLM Output Sample

Figure 9: Sample Input Data

3. **Solution completeness:** Check if the reasoning is fully present
in the extracted solution. Minor implicit steps are acceptable, but

missing entire parts should be flagged.

**Important:**
- Since these problems and solutions are authored by experts, do NOT
reject for correctness. Focus only on extraction issues or mismatches.

- Do NOT reject for minor omissions, terseness, formatting, or style.
- Only reject if there is a **clear, significant extraction issue**
or the solution does not match the problem.
- Always provide a clear reason if rejecting, mentioning which
criteria are affected

Provide your evaluation strictly in JSON format:

‘‘‘json
{

"final_verdict": "accept" or "reject",
"reason": "A concise explanation for your decision, mentioning

which criteria failed if rejected"
}

‘‘‘
Do not add any extra commentary outside the JSON.
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"""

Listing 3: System prompt for topics, final answer, and metadata extraction
SYSTEM_PROMPT = r"""
You are a rigorous matholympiad content analyzer.

You will be given one problem package containing:
- A problem statement
- One or more official solutions (labeled Solution 1, Solution 2, )
- Optional final answers

Your tasks are:

=====================================================================
1. TOPIC EXTRACTION
=====================================================================
- Assign the problem its most specific topics from the taxonomy.
- Each topic path must be an array of strings from general specific.
- Include ALL paths relevant to the problem or solutions.
- Every topic path must be a verbatim copy of a path from the taxonomy.
- No paraphrasing, renaming, reordering, or combining nodes.
- Every topic must begin with "Topics".

=====================================================================
2. MAIN IDEAS / TRICKS / TOOLS
=====================================================================
- Produce a bullet list of the key structural insights or tools used.
- Examples:

- Techniques used
- Classical lemmas or theorems applied
- Core inequality strategies
- Key constructions or combinatorial ideas

- Do NOT retell the whole solution; extract the essential tools.

=====================================================================
3. NATURAL-LANGUAGE PROBLEM DESCRIPTION
=====================================================================
- Summarize the core task of the problem in normal English.
- NO mathematical symbols at all (no variables, no equations, no angle

notation, etc.)
- A high-level, intuitive, short description.

=====================================================================
4. PROBLEM TYPE CLASSIFICATION
=====================================================================
Classify the problem into exactly one of the following:

- "proof only": no explicit final numeric/closed-form answer is required.
- "final answer only": problem only asks for a value/choice with no proof

required.
- "proof and answer": requires both reasoning and a final value/statement.

- "MCQ": problem requires choosing from given options.

=====================================================================
5. FINAL ANSWER EXTRACTION
=====================================================================
- If the problem requires a final numeric/closed-form expression, value,

or choice, extract it.
- If the problem’s nature does NOT require a final answer (e.g., proof-

only), output ‘null‘.

Specific rules:
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- If multiple solutions exist, the final answer must match the official
answer section if present.

- Accept integers, expressions, ranges, choices, constructed forms, etc.
- For MCQ, return the *selected option* if identifiable; otherwise null.

=====================================================================
TAXONOMY BLOCK
=====================================================================
Use this taxonomy for the topics field.
Each topic path must follow the hierarchy strictly.

Topics
Geometry
Plane Geometry
Triangles
Triangle centers: centroid, incenter,
circumcenter, orthocenter, Euler line,
nine-point circle

Triangle inequalities
Triangle trigonometry

Quadrilaterals
Cyclic quadrilaterals
Inscribed/circumscribed quadrilaterals
Quadrilaterals with perpendicular diagonals

Circles
Coaxal circles
Tangents
Radical axis theorem
Circle of Apollonius

Concurrency and Collinearity
Cevas theorem
Menelaus theorem

... (more topics here)
=====================================================================
OUTPUT FORMAT (STRICT JSON)
=====================================================================

Return ONLY a JSON object:

{
"topics": [

["Topics", "...", "..."],
["Topics", "...", "..."]

],
"main_ideas": [

"key idea 1",
"key idea 2",
"key idea 3"

],
"natural_language_description": "...",
"final_answer": "... or null",
"problem_type": "proof only | final answer only | proof and answer |
MCQ",

"confidence": 0.01.0
}

Rules:
- NO text outside the JSON.
- NO markdown in the output.
- natural_language_description must contain zero mathematical symbols.
- Confidence reflects how certain you are about the classification.
"""
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A.8 LLMS USAGE IN THE PAPER

The authors made use of large language models (LLMs) primarily to support the writing process, including
polishing the text for clarity and readability. In addition, LLMs were employed to assist in refining the design of
the project website as well as the interface used by annotators.
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