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Abstract

Brain age prediction using T1-weighted MRI has become a key biomarker for assessing
neurological health, with application in studying neurodegeneration (Soumya Kumari and
Sundarrajan, 2024; Mishra et al., 2023; Lea et al., 2021) and brain development (Tanveer
et al., 2023). While convolutional neural networks (CNNs) remain a standard approach,
recent advances suggest that Kolmogorov-Arnold Networks (KANs) may offer superior
performance in image-based task (Bodner et al., 2025; Li et al., 2024). In this study, we
present the first use of KANs for brain age prediction from 3D MRI scans, comparing their
performance against traditional CNNs. Experimental results show that KAN-based models
reduce estimation errors, highlighting their potential for improving brain age assessment.

Keywords: Brain aging, Convolutional Neural Networks, Kolmogorov-Arnold Networks,
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1. Introduction

Brain age prediction serves as a valuable biomarker, offering insights into neurodegenerative
disorders, cognitive decline, and the effects of lifestyle on aging (Natalia et al., 2024; Franke
and Gaser, 2019; Dias et al., 2025). Deep learning models, particularly CNNs, have been
widely applied to this task due to their capacity to extract meaningful features from MRI
scans (Peng et al., 2021; Dartora et al., 2024; Dinsdale et al., 2021). However, recent
advances in neural architectures, such as Kolmogorov-Arnold Networks (Liu et al., 2025),
provide new opportunities to enhance prediction accuracy (Patel et al., 2024).
KANs utilize the Kolmogorov-Arnold representation theorem to approximate complex func-
tions (Schmidt-Hieber, 2020) more efficiently than conventional neural networks (SS et al.,
2024; Yeo et al., 2025). They have shown promising results in classification, segmentation,
and image generation tasks. This study investigates the application of convolutional KANs
and hybrid CNN-KAN models for brain age prediction, comparing their performance to
traditional CNNs.
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2. Materials and Methods

Datset. The study utilized T1-weighted MRI scans from three publicly available datasets:
the Human Connectome Project (Bookheimer et al., 2019), the Nathan Kline Istitute - Rock-
land Sample (Nooner et al., 2012), and the Cambridge Centre for Aging and Neuroscience
(Taylor et al., 2017). The combined cohort included 2,129 participants (878 males and 1,250
females), ranging in age from 18 to 100 years. To ensure consistent input dimension (193
x 229 x 193) and spatial alignment across datasets, all images were linearly coregistered
to the MNI152 2009c standard space. No additional harmonization was performed. To
enhance model robustness, data augmentation (DA) techniques, including rotation (± 40◦)
and translation (± 10 pixels), were applied (Connor and M., 2019).
The dataset was randomly split into training (64%), validation (16%), and test (20%) sub-
sets, maintaining age and sex distribution. For cross-validation experiments, the training
and validation sets were redefined in each fold. Mann-Whitney U tests confirmed no sta-
tistical differences in age or sex between training and test sets (p = 0.901) nor between
training and validation sets across cross-validation folds (lowest p = 0.840).
Models Architecture. The following models were tested: a standard CNN inspired by
Cole et al. (2017), serving as a baseline (CNN), a convolutional KAN with a fully connected
linear KAN output layer (KAN), and a hybrid CNN with a final fully connected linear KAN
layer (CNN + KAN-Lin). All models used 3x3x3 convolutional kernels, and stride of 1
and 2 for the first convolutional layer were tested, however KAN were only evaluated at
stride 2 due to its very high memory occupancy demands.
Training and Evaluation. Training optimized the Mean Squared Error (MSE) loss be-
tween actual and predicted brain age using the Adam optimizer (learning rate: 0.0001)
over 1000 epochs, validating every 50 epochs. Five-fold cross-validation was performed for
stride-2 models. The best-performing models were selected based on lowest validation loss
and evaluated on the test set using Mean Absolute Error (MAE) and Pearson Correlation
Coefficient (PCC). In the cross-validation scenario, final performance metrics were obtained
via median ensembling of predictions provided by the best models in each fold.

3. Results and Discussion

As shown in Table 1, the KAN model with stride 2 outperformed the CNN, reducing er-
ror by 15.16%. The CNN + KAN-Lin hybrid achieved an 11.72% improvement with data
augmentation, offering the best balance between accuracy and computational load. More-
over, data augmentation improved model generalizability in all three scenarios, significantly
improving the performance on unseen test data.
Due to computational constraints and hybrid’s model efficiency, stride-1 evaluation excluded
the KAN model. The CNN + KAN-Lin model still outperformed CNN by 5.77%. However,
the performance gain was smaller than with stride-2, likely because high-resolution input
allowed CNN layer to extract finer features, reducing the added value of the KAN layer.
Despite improvements, both models exhibited age-related bias (Figure 1), overestimating
younger ages and underestimating older ones. The hybrid model produced a smoother Pre-
dicted Age Difference (PAD) curve and improved accuracy in middle-aged groups, though
biases persisted at age extremes (≤ 30 and ≥ 70 years), indicating a need for better age-
related feature representation or bias correction methods.

2



Brain Age from MRI with KANs and CNNs

Stride Method
Without DA With DA
MAE PCC MAE PCC

2
CNN 5.982 0.908 4.588 0.947
KAN 5.240 0.930 4.561 0.946

CNN + KAN-Lin 5.286 0.932 4.051 0.959

1
CNN 4.929 0.944 4.158 0.958

CNN + KAN-Lin 4.994 0.943 3.918 0.962

Table 1: MAE and PCC obtained for the different models with and without the use of data
augmentation.

Figure 1: Mean PAD across chronological age bins (5-year intervals) for two models (left:
CNN stride-1, right: CNN + KAN-Lin stride-1) trained with data augmentation.
The red dashed line represents a third-order polynomial fit of PAD.

4. Conclusion

This study highlights the potential of Kolmogorov-Arnold Networks for brain age prediction
using T1-weighted MRI scans. While KAN-based models achieved superior accuracy, the
hybrid architecture combining CNN and KAN layers offered the best trade-off between per-
formance and computational efficiency, and demonstrated robust generalizability with data
augmentation. Although both models exhibited age-related bias—overestimating younger
subjects and underestimating older ones—the CNN + KAN-Lin model produced smoother
PAD distributions and higher accuracy in middle-aged groups. This hybrid approach capi-
talizes on the strengths of both architectures, leveraging CNNs for spatial feature extraction
and KANs for complex functional approximations. Nevertheless, further work is needed to
mitigate bias at the age extremes, potentially through targeted regularization strategies or
debiasing techniques. Overall, this work supports the integration of KANs into neuroimag-
ing pipelines for brain age estimation and opens the door to exploring their application in
broader medical imaging tasks.
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