

000 USEFULNESS-DRIVEN LEARNING OF FORMAL MATH- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 USEFULNESS-DRIVEN LEARNING OF FORMAL MATHEMATICS

Anonymous authors

Paper under double-blind review

ABSTRACT

Creating an AI that can truly “do” mathematics requires more than just solving isolated problems. It must mimic the creative, progressive nature of human mathematicians, who build upon previous work to generate new knowledge. A crucial part of this process is proposing theorems that serve as useful building blocks for proving more advanced theorems. In this paper, we introduce UseFor, a novel framework that formalizes this notion of usefulness and demonstrates how it can be used to train a usefulness-driven AI mathematician. UseFor determines a theorem’s usefulness based on two criteria: its reusability in subsequent proofs and its contribution to increasing proof likelihood. We integrate UseFor into the self-play conjecturing-and-proving setting of Minimo ((Poesia et al., 2024)). That is, starting from only axioms, we iteratively train conjecturers to propose useful formal statements and provers that explicitly reuse them when generating formal proofs. We experimentally evaluate this usefulness-driven self-play approach across three mathematical domains: arithmetic, propositional logic, and group theory. Our evaluation considers two metrics: intrinsic usefulness, which measures how often our trained provers reuse theorems, and extrinsic usefulness, judged by a state-of-the-art large language model and external provers like SMT solvers. Our results demonstrate that our usefulness-trained model effectively generates a large number of intrinsically and extrinsically useful formal theorems. For instance, our approach outperforms the original Minimo by 2.9 times in extrinsic usefulness for arithmetic. Our work highlights the significant potential of integrating usefulness in AI-driven mathematical discovery.

1 INTRODUCTION

Mathematical reasoning has long stood as a frontier challenge for artificial intelligence (Newell & Simon, 1956). While large language models (LLMs) have achieved rapid progress in formal theorem proving (Yang et al., 2024), most approaches depend on extensive human-written corpora of proofs and conjectures (Yang et al., 2023; Ying et al., 2025). This dependence limits the domains in which they can operate and prevents them from advancing beyond existing human knowledge. By contrast, human mathematicians build knowledge by conjecturing new statements and proving them, gradually extending their theoretical landscape without external supervision.

A natural question, therefore, arises: can we replicate this process automatically? Specifically, can an artificial agent, starting only from axioms, learn via self-play between conjecturing and proving, bootstrapping its own knowledge and progressively discovering new mathematics? This paradigm (McAllester, 2020) would eliminate the need for human data, enable exploration of domains where no proofs exist, and produce a scalable source of synthetic theorems for training future provers. Recent work such as (Poesia et al., 2024) shows early signs of this vision: by iterating between conjecture generation and Monte Carlo tree search (MCTS)-guided proof search, Minimo gradually learns to prove increasingly more difficult statements from scratch. However, as we argue below, merely increasing difficulty as defined in Minimo is not enough to drive true theory building.

Minimo, like most self-play provers, evaluates conjectures purely by their difficulty—the negative log-probability of successful proofs under the current prover policy. This encourages the generation of challenging statements, but overlooks whether they actually help prove other results. In practice,

054 we find that conjectures promoted solely by difficulty are rarely reused in later proofs and offer little
 055 leverage for solving harder targets.
 056

057 We are inspired here by Bengio & Malkin (2024)'s perspective that the value of a theorem lies in
 058 its connection to other theorems. They noted that "*a crucial component of the usefulness of a new*
 059 *proven theorem t (in the context of previous theorems $\mathcal{T}(S)$) is how efficiently $\mathcal{T}(S) \cup \{t\}$ com-*
 060 *presses the set of all provable mathematical statements \mathcal{M}* ". Tao (2007) makes a similar point,
 061 observing that the *strength* of a theorem is best judged by "*testing it against a class of questions and*
 062 *problems that the theorem is intended to assist with solving*". Both perspectives highlight that valua-
 063 *ble conjectures should be judged not in isolation but advance the prover's qualitative capabilities*
 064 *and accelerate cumulative theory building.*

065 This motivates our core idea: to advance automated theory building, we need a tractable metric
 066 that approximates this relational value of conjectures. We introduce such a metric, UseFor, which
 067 defines a conjecture as *useful* if it both appears in the proof of a downstream target and increases
 068 the prover's success likelihood (log-probability) on that target. This dual criterion excludes trivial
 069 tautologies with no proving power and narrowly phrased statements with little applicability in other
 070 proofs, yielding a practical proxy for Bengio & Malkin (2024)'s compression perspective.

071 We leverage UseFor to develop a usefulness-aware self-play loop that builds directly on Minimo
 072 (Poesia et al., 2024). After each round of conjecturing and proving, we use UseFor to identify
 073 proven conjectures with the most relational value for proving other conjectures. These useful the-
 074orems are made available to the proving model as lemmas and weighted more heavily in training,
 075 guiding future conjectures and proofs toward structures that accelerate cumulative theory building.

076 We evaluate our usefulness-driven self-play framework on three domains: arithmetic, propositional
 077 logic, and group theory. Our results show that our approach generates a significant number of
 078 theorem usages and more useful conjectures compared to Minimo based on LLM-as-a-judge. For
 079 instance, for arithmetics, our approach outperforms Minimo by 2.9 times in producing useful con-
 080jectures. These findings indicate that usefulness is a stronger intrinsic signal than difficulty for guiding
 081 conjecture generation, and that usefulness-aware self-play offers a scalable path toward data-free
 082 theory exploration.

083 **Main contributions.** Our paper makes the following contributions:
 084

- 085 • We formalize the notion of theorem usefulness as a dual criterion of *usage* and *improvement*, and
 086 propose a tractable procedure for measuring it within self-play (Section 3.2.1).
- 087 • We introduce a usefulness-aware self-play loop that augments Minimo by selecting conjectures
 088 according to relational usefulness rather than difficulty (Section 3.2.2).
- 089 • We present stabilization techniques (triviality filtering and novelty bias) that keep the loop from
 090 collapsing into tautologies or memorized variants (Section 3.2.3).
- 091 • We provide empirical results across arithmetic, propositional logic, and group theory, demon-
 092 strating that usefulness-driven conjectures are more reusable and lead to higher prover success rates
 093 than difficulty-based baselines (Section 4).

095 2 RELATED WORK

097 Our work is primarily related to prior bodies of work on mathematical conjecturing, tactic discovery,
 098 and theory exploration. Our approach is distinguished by the fact that our model is trained in a tabula
 099 rasa fashion, without any pre-existing examples, and evaluated on the theory exploration task.
 100

101 **Mathematical conjecturing.** Our work is most closely based on Minimo (Poesia et al., 2024),
 102 which proposes a theorem-proving model in the Peano (Poesia & Goodman, 2023) formal language
 103 that is trained through iterative conjecturing and proving from scratch. (Polu & Sutskever, 2020)
 104 also propose a model that is trained via self-play, while (Dong & Ma, 2025) demonstrate the ability
 105 of the iterative conjecturing-proving paradigm to enhance a pretrained theorem prover. However,
 106 these works only use conjecturing as a means to improve the proof-search capabilities of the model,
 107 and do not attempt to evaluate the conjecturing abilities of the model directly. LeanConjecturer
 (Onda et al., 2025) proposes a model specifically designed for the conjecturing task, but uses a

108 pretrained LLM; in doing so, the ability of the LeanConjecturer model to generate novel conjectures
 109 cannot be faithfully evaluated due to inevitable contamination from pre-training data. Compared to
 110 these works, our approach evaluates conjecturing as a stand-alone task, while our tabula rasa setting
 111 allows us to definitively confirm the novelty of conjectures generated by our model.
 112

113 **Tactic and premise discovery.** There is also a body of work concerning the task of tactic dis-
 114 covery, which aims to construct tactics in an interactive theorem prover setting that simplify proofs
 115 or otherwise enhance proving capabilities. TacMiner (Xin et al., 2025) proposes a method to find
 116 tactic simplifications in RCoq, given an existing high-quality corpus of proofs. Lego-Prover (Wang
 117 et al., 2023) and Seed-Prover (Chen et al., 2025) use already proven lemmas as a way to strengthen
 118 a theorem proving model, in the Isabelle and Lean 4 settings, respectively. However, all of these
 119 approaches require a dataset of high-quality, human-generated proofs, while our approach generates
 120 useful premises from scratch.
 121

122 **Theory exploration using machine learning.** Finally, a third body of work is theory exploration
 123 using ML methods, the task of formulating interesting conjectures about a given problem domain
 124 (Johansson & Smallbone, 2021). We consider this problem to be the one our work addresses most
 125 closely. While a number of classical and neural approaches have been proposed for this task, existing
 126 neural methods work by training or finetuning a model based on an existing proof corpus (Urban
 127 & Jakubuv, 2020). Lemmanaid (Alhessi et al., 2025) uses neuro-symbolic methods by finetuning a
 128 model with a subset of an existing proof library, and then evaluating it on another subset of conjec-
 129 tures. In search of a purely intrinsic approach in order to discover how a model could discover this
 130 usefulness without relying on human data, we distinguish ourselves by not training on external data,
 131 an approach similar to what has been done for SMT solvers (Gauthier & Urban, 2025).
 132

3 METHODOLOGY

3.1 BASE SELF-PLAY FRAMEWORK (MINIMO)

137 A central challenge in building autonomous theorem-proving agents is the lack of human-labeled
 138 data. Unlike natural language or code, formal mathematics has limited corpora, and many target
 139 domains have essentially no prior datasets. There are two main approaches to address this bottle-
 140 neck. One line of work leverages autoformalization, which translates large volumes of informal
 141 mathematics into formal statements, an approach that has already shown promise in practice. A
 142 more first-principles alternative is to remove reliance on pre-existing data entirely by using self-
 143 play: coupling¹ a conjecturer, which proposes candidate statements, with a prover, which attempts
 144 to establish them. Through repeated interaction, both components improve jointly in a closed loop,
 145 enabling progress even in domains with no human supervision or existing corpus.
 146

Minimo (Poesia et al., 2024), implemented in the Peano environment (Poesia & Goodman, 2023),
 instantiates this idea. Starting from axioms alone, it alternates between conjecture generation and
 proof search. Over time, the prover strengthens by training on successful proof traces, while the
 conjecturer adapts toward statements near the boundary of provability. This process yields an auto-
 matically generated curriculum of increasing difficulty, with no reliance on human annotations. We
 summarize its core components next, as they provide the foundation on which our method builds.
 151

3.1.1 CONJECTURING

154 The conjecturer \mathcal{C}_θ , with θ denoting the model parameters, generates statements in the Peano lan-
 155 guage, a dependently typed tree-based formal system with a finite action space (Poesia & Goodman,
 156 2023). Each formula is represented as a well-formed term tree. To prevent invalid formulas, Min-
 157 imo employs constrained decoding Poesia et al. (2021): at each step, candidate tokens are filtered
 158 so that only those extending the current tree into a valid continuation remain. This guarantees both
 159 syntactic and semantic validity, and prevents wasting prover efforts on malformed statements.
 160

¹In practice, coupling means using a single underlying model for both conjecturer and prover roles, as proposed by Poesia et al. (2024).

162 3.1.2 PROOF SEARCH
163

164 The prover \mathcal{P}_θ attempts to establish each conjecture using Monte Carlo tree search (MCTS), which
165 is well suited to the combinatorial branching structure of formal proofs. A proof state s encodes the
166 current context, including the set of assumptions, the active subgoal, and any partially completed
167 steps. At each state, the Peano environment defines the finite set of admissible inference actions.
168 Guided by the prover’s policy $\pi_\theta(a | s)$ and value estimates, MCTS expands trajectories

$$169 \tau = (s_0, a_0, s_1, a_1, \dots, s_T)$$

170 starting from the initial state s_0 . A completed trajectory corresponds to a valid proof of the conjecture.
171 Its score is the log-likelihood under the prover’s policy,
172

$$173 \ell(c) = \log p_\theta(\tau | c) = \sum_{t=0}^{T-1} \log \pi_\theta(a_t | s_t).$$

176 Less negative values of $\ell(c)$ indicate that the proof was expected under the current policy, while more
177 negative values correspond to surprising but ultimately valid proofs. To exploit partial progress,
178 Minimo applies *hindsight relabeling*: even when a conjecture cannot be proved in full, explored
179 search trees are decomposed into valid subtraces corresponding to intermediate lemmas, which are
180 then incorporated as additional training data (Poesia et al., 2024). This enlarges the training set and
181 recycles computation that would otherwise be wasted on failed proofs.

182 3.1.3 CONJECTURING-PROVING SELF-PLAY LOOP
183

184 The conjecturer \mathcal{C}_{θ_i} and prover \mathcal{P}_{θ_i} interact in an iterative loop. At iteration i , the conjecturer
185 samples a batch of N candidate statements

$$186 \mathcal{Q}_i = \{c_1, \dots, c_N\} \sim \mathcal{C}_{\theta_i}(\cdot | \mathcal{T}_i),$$

188 where \mathcal{T}_i is the current theory consisting of axioms and previously promoted lemmas. For each
189 $c \in \mathcal{Q}_i$, the prover attempts to establish it via MCTS:

$$190 (\text{proof}(c), \ell(c), \text{trace}(c)) \leftarrow \text{MCTS_PROVE}(c; \mathcal{T}_i, \mathcal{P}_{\theta_i}),$$

192 where $\text{proof}(c)$ is a complete proof trajectory τ if one is found (or \emptyset otherwise), $\text{trace}(c)$ is the
193 explored search tree, and $\ell(c)$ is the log-likelihood of the trajectory under the prover’s policy.

194 Conjectures are then stratified by empirical difficulty. Let $\mathcal{S}_i = \{c \in \mathcal{Q}_i : \text{proof}(c) \neq \emptyset\}$ be the set
195 of successful conjectures, and let q_{20} and q_{50} denote the 20th and 50th percentiles of $\{\ell(c) : c \in \mathcal{S}_i\}$.
196 Labels are assigned to each conjecture c as

$$197 \text{label}(c) = \begin{cases} \text{“fail”}, & \text{if } \text{proof}(c) = \emptyset, \\ 198 \text{“hard”}, & \text{if } \ell(c) < q_{20}, \\ 199 \text{“easy”}, & q_{20} \leq \ell(c) < q_{50}, \\ 200 \text{“trivial”}, & \ell(c) \geq q_{50}. \end{cases}$$

203 The dataset for iteration i is then

$$205 \mathcal{E}_i = \{(\text{trace}(c), \text{label}(c)) : c \in \mathcal{Q}_i\},$$

206 which aggregates conjectures, proofs when available, and hindsight-relabeled subproofs extracted
207 from failed searches. Both \mathcal{C}_θ and \mathcal{P}_θ are updated on \mathcal{E}_i , creating a feedback loop: the conjecturer
208 shifts toward generating statements just beyond the prover’s current reach, while the prover expands
209 its competence from the resulting proofs. This difficulty-driven loop is the foundation upon which
210 we build in Section 3.2, where difficulty is replaced with a more relational signal of usefulness.

211 3.2 USEFULNESS-AWARE SELF-PLAY LOOP
212

214 The self-play framework of Minimo provides a compelling basis for data-free theory exploration:
215 starting from axioms, conjecturing and proving improve together in a bootstrapping loop. However,
its training signal is limited to conjectural difficulty, measured as the negative log-probability of a

proof under the current prover. While effective for generating a curriculum of harder statements, this signal is ultimately syntactic. It rewards conjectures that are improbable under the model’s local policy, but does not account for whether they connect meaningfully to other theorems explored so far. As a result, the system often promotes conjectures that are labeled as “hard” but not necessarily useful statements: isolated identities that stretch the prover temporarily but are rarely reused and add little structure to the theory. The log-probability score treats difficulty as an end in itself, overlooking the relational role that lemmas play in enabling further proofs and sustaining theory growth.

To address this limitation, we introduce a usefulness-based self-play loop. Instead of ranking conjectures solely by syntactic hardness, we ask whether incorporating a new lemma changes the prover’s future behavior, specifically, whether it makes other statements easier to prove. Conjectures that are both provable and demonstrably beneficial in downstream proofs are promoted into the growing library, and their traces are used to train both the conjecturer and the prover. This shifts the learning objective from accumulating difficult but isolated statements to building a network of reusable ones, better aligned with the cumulative nature of mathematical discovery.

3.2.1 DEFINITION OF THE USEFULNESS METRIC

The perspectives of Bengio & Malkin (2024) and Tao (2007) converge on the idea that the value of a theorem is relational: it derives its significance not from truth alone, but from its effect on subsequent reasoning. Yet they articulate this in complementary registers. Bengio & Malkin (2024) frames usefulness in information-theoretic terms, proposing that a theorem acts as a *compression primitive*—its addition to a base theory reduces the description length of other proofs. Tao (2007) instead emphasizes the pragmatic dimension: the *strength* of a theorem is revealed only by confronting new problems and observing the range of arguments it simplifies.

While these views are philosophically aligned, neither directly yields a metric implementable within a self-play loop. Compression, though elegant, requires comparing description lengths over the unbounded space \mathcal{M} of all provable statements, which is an intractable quantity in practice. Tao (2007)’s criterion, by contrast, presupposes a human mathematician’s judgment in selecting “a class of questions and problems” against which to test strength. What is missing is a procedure that preserves the spirit of both notions while remaining computable for a prover–conjecturer system.

Our contribution is to bridge this gap by constructing an operational proxy for usefulness that can be applied iteratively inside the self-play loop. At a high level, the metric estimates a conjecture’s capacity to expand the prover’s effective reach: conjectures are useful insofar as their availability systematically reduces the effort of proving a benchmark set of targets.

Formally, let \mathcal{B} be a benchmark set consisting of theorems that are difficult, but not impossible, for the prover to prove. [In Section 3.2.2, we detail how we instantiate \$\mathcal{B}\$ using theorems generated internally by our self-play training loop.](#) For each $b \in \mathcal{B}$, let $p_\theta(\tau_b \mid b)$ denote the prover’s probability of producing a proof trajectory τ_b under theory \mathcal{T} , and let $p'_\theta(\tau_b \mid b)$ denote the same quantity when a candidate lemma ℓ is available. We say that ℓ is *useful* if there exists $b \in \mathcal{B}$ such that

- 255 (i) ℓ is invoked in the proof trace of b , and (ii) $\log p'_\theta(\tau_b \mid b) - \log p_\theta(\tau_b \mid b) > 0$.

Both conditions are essential: usage without improvement admits trivial tautologies such as $\forall x. x = x$, which the prover may frequently attempt but which yield no real progress. Only when the two conditions coincide do we identify lemmas that are genuinely structural.

To evaluate this criterion efficiently, we do not re-prove \mathcal{B} for every lemma in isolation. Instead, given a set of newly proved conjectures \mathcal{C} , we subsample a subset of size $\lceil \sqrt{|\mathcal{C}|} \rceil$ and temporarily add them to the context. Each $b \in \mathcal{B}$ is then re-proved once under this extended theory. If a candidate ℓ appears in the proof of b and the resulting log-likelihood improves relative to baseline, the gain is attributed to ℓ . The aggregate score

$$265 \quad U(\ell) = \sum_{b \in \mathcal{B}} \mathbf{1}\{\ell \in \text{proof}(b)\} \cdot \max\{0, \log p'_\theta(\tau_b \mid b) - \log p_\theta(\tau_b \mid b)\}$$

268 is then used to rank candidates. Only the top ρ fraction are promoted to the library, together with 269 their associated proofs and hindsight traces. This provides a tractable mechanism for selecting conjectures that repeatedly demonstrate both reuse and measurable downstream gains.

270 **Illustrative scenario.** Consider arithmetic with multiplication defined inductively. Early in training, the prover may not yet know lemmas such as $x \times (y+1) = xy + x$. Without this fact, even simple targets like $(x+1) \times (y+1) = xy + x + y + 1$ require long derivations by repeatedly unfolding the definition of multiplication. Once $x \times (y+1) = xy + x$ is conjectured and proved, however, it can be applied directly, and many small multiplication–addition identities shorten dramatically. Our metric marks this lemma as useful precisely because it is both *used* in subsequent proofs and its presence *improves* the prover’s success probability. Later discoveries, such as distributivity, compound this effect across broader families, but it is these intermediate stepping-stone lemmas that first enable steady cumulative progress.

279 3.2.2 TRAINING LOOP WITH THE USEFULNESS METRIC

280 We now describe how the usefulness metric is integrated into the conjecturing–proving loop. The outer structure mirrors Minimo (Poesia et al., 2024): in each iteration the agent generates conjectures, the prover attempts proofs via MCTS, and traces are collected. The crucial difference lies in how conjectures are filtered, promoted, and fed back into training. Whereas Minimo labels conjectures by proof log-probability percentiles and emphasizes those deemed “hard”, our framework evaluates conjectures by their relational usefulness.

281 At iteration i , the conjecturer first proposes a batch \mathcal{C}_i , which is passed through a triviality filter to remove vacuous identities. Each conjecture is then attempted under the current theory \mathcal{T}_i using MCTS, producing proofs, log-likelihoods, and hindsight examples. Following Minimo, conjectures are provisionally bucketed into “hard”, “easy”, and “trivial” categories by percentile of log-likelihood. Non-failing conjectures are collected as candidate lemmas.

282 The key departure comes in how the “hard” subset is treated. **Rather than promoting the “hard” conjectures indiscriminately, we apply the *usefulness test* with them as the benchmark set \mathcal{B} , and with the set of all previously proven theorems \mathcal{H}_i as our set of “potentially useful” lemmas.** A random subsample $L_i \subseteq \mathcal{H}_i$ of size $\lceil \sqrt{|\mathcal{H}_i|} \rceil$ is drawn, and each benchmark $b \in \mathcal{B}$ is re-proven under the augmented theory $\mathcal{T}_i \cup L_i$. If a lemma $\lambda \in L_i$ is invoked in the augmented proof of b and improves its log-likelihood relative to the baseline, the gain is added to its cumulative usefulness score $U_i(\lambda)$. Candidates are then ranked by $U_i(\lambda)$, and only the top ρ fraction are maintained in \mathcal{H}_{i+1} for future usefulness evaluations. Because L_i is resampled at every iteration, different subsets of candidates are tested over time, so all conjectures eventually receive usefulness credit.

283 Finally, we assemble the training dataset \mathcal{E}_i . It includes the conjectures along with their percentile labels, their proofs, and the hindsight traces from the base loop as in Minimo. Additionally, we incorporate the useful lemmas and re-proving trajectories produced during usefulness testing. Specifically, each lemma deemed useful is added a conjecture under a “useful” category. We also include proof-search attempts that happened re-proving, which may involve lemma reuses. These additions help both the conjecturer and prover internalize the notion of “usefulness”. The agent is updated on \mathcal{E}_i , and the promoted and untested lemmas are added to \mathcal{H}_{i+1} for future iterations.

284 In summary, Minimo’s curriculum is driven by proof difficulty under the current prover, whereas our loop is driven by demonstrable downstream impact. Only conjectures that are both *used* and *improve* benchmark proofs are promoted, producing a library that is not just deeper but more interconnected, with lemmas reappearing across proofs and compounding overall success.

285 3.2.3 OTHER IMPROVEMENT TECHNIQUES

286 Although the usefulness loop provides a stronger supervisory signal than difficulty alone, we observed recurrent failure modes in practice. In particular, the conjecturer may become trapped in local minima, repeatedly generating trivial identities or minor variants of existing statements. This behavior resembles exploiting shortcuts rather than genuine advancements. To enhance robustness and better align training with the intended objectives, we incorporate two additional techniques.

287 **Triviality filtering.** Before proof attempts, we remove conjectures that match heuristic patterns such as tautologies ($x = x$) or constant-only identities ($0 + 1 = 1$). Such statements can be discharged immediately without reasoning, yet they satisfy the usage criterion and would otherwise dominate the usefulness signal. Filtering them prevents the prover cycles from being wasted and prevents the model from collapsing toward vacuous but spuriously rewarding lemmas.

324 **Novelty bias.** To encourage structural diversity, we penalize the conjecturer for generating statements
 325 that share long prefixes with previously generated conjectures. This discourages local mem-
 326 orization and pushes exploration toward unexplored syntactic regions, thereby increasing the likeli-
 327 hood of uncovering genuinely new lemmas that expand the theorem library.

328 These techniques do not alter the usefulness metric itself, but regularize the conjecturer’s proposal
 329 distribution. By filtering trivialities and discouraging near-duplicates, the system avoids spurious
 330 short-term rewards and maintains pressure toward conjectures that are both novel and reusable. Em-
 331 pirically, they improve the stability of the usefulness-aware loop, allowing the training distribution
 332 to shift steadily toward conjectures that promote cumulative theory building.

334 4 EXPERIMENTAL EVALUATION

335 We now present our experimental evaluation. Our goal is to assess whether UseFor demonstrates the
 336 essential qualities of a desirable reasoning system: (a) the ability to accumulate knowledge within
 337 the self-play training loop, (b) the ability to generate conjectures that are useful both internally (for
 338 self play) and externally (for the outside world), and (c) whether our usefulness-driven training is
 339 necessary. In more detail, we would like to address the following research questions:

- 340 • **RQ1:** *Can the prover reuse theorems proven in previous iterations to prove current conjectures?*
 341 Reuse is essential for cumulative theory building: without it, a system risks repeatedly rediscover-
 342 ing tautologies or isolated results, rather than developing an interconnected body of theory.
- 343 • **RQ2:** *Do likelihoods of theorem-reusing proofs increase across multiple iterations?* This would
 344 signify that during the training process, the prover is gradually gaining more capabilities and
 345 confidence in theorem reuse.
- 346 • **RQ3:** *Are the conjectures useful beyond self-play?* Extrinsic usefulness tests whether the system
 347 discovers theorems a mathematician would value, rather than artifacts of the training loop.
- 348 • **RQ4:** *Is the usefulness metric essential for conjecturing quality?* Without it, does the model
 349 discover interesting theorems? This matters because the entire training loop relies on this metric
 350 as its guiding signal.

355 4.1 EXPERIMENTAL SETUP

356 **Evaluation metrics.** In light of the above interesting research questions, we employ two comple-
 357 mentary metrics designed to capture structural usefulness:

- 358 • *Intrinsic usefulness:* measured as the number of times a previously proven theorem is reused dur-
 359 ing usefulness testing. A high score indicates that the system is both conjecturing and successfully
 360 reusing theorems in its own proving process.
- 361 • *Extrinsic usefulness:* measured via an LLM-as-judge (GPT-4.1), which rates conjectures for math-
 362 ematical value after a deduplication step that removes near-duplicates (details can be found in
 363 Appendix B). We also require that the conjectures can be proved by an external automated prover
 364 based on the Z3 STM solver (De Moura & Bjørner, 2008), which is effective on our self-play-
 365 generated conjectures. This metric evaluates whether conjectures would be judged useful by a
 366 human mathematician, beyond the system’s internal dynamics.

367 Poesia et al. (2024) introduced intrinsic metrics based on the proof difficulty of internally generated
 368 conjectures, and extrinsic metrics based on the prover’s success rate on human-written theorems.
 369 However, their metrics are unsuitable for our goals. First, they primarily measure proving perfor-
 370 mance, whereas our focus is on conjecturing. In addition, they evaluate isolated statements, while
 371 our metrics capture how the conjectured statements interact and build on each other.

372 **Baselines.** We compare UseFor against two baselines:

- 373 • “Base Minimo”: The original Minimo algorithm (Poesia et al., 2024) without any modification,
 374 enabling a direct comparison with prior work.

378 • “No usefulness training”: Our full approach but without the usefulness training described in Section 3.2.2, while retaining the improvements in Section 3.2.3. This isolates the contribution of usefulness training.

382 **Mathematical domains.** We conduct our evaluation on three mathematical domains: (i) arithmetic, 383 (ii) propositional logic, and (iii) group theory. This setup follows Poesia et al. (2024), 384 enabling clear comparison. The axioms of these domain are directly taken from Poesia et al. (2024) 385 and are presented in Appendix A. All models in our experiments were fully bootstrapped from these 386 axioms in Peano (Poesia & Goodman, 2023) without relying on any other external data. 387

388 **Model and self-play configurations.** We follow the setup of Minimo Poesia et al. (2024) and use 389 an 8.45M-parameter GPT-2 model for both conjecturing and proving. All models are trained starting 390 from scratch, ensuring that any generated theorem are genuine “discoveries”. We run training for 391 10 iterations (compared to 5 in Minimo), as our approach benefits from cumulative improvements 392 across iterations. In each iteration, we generate 200 conjectures. We perform proof search using 393 MCTS with a budget of 1000 expansions per conjecture. All experiments are repeated three times, 394 and we report averaged results to account for stochastic variations. Additional training details are 395 provided in Appendix C. 396

397 4.2 EXPERIMENTAL RESULTS

398 **(RQ1) The model reuses previously proven conjectures.** Reuse is a key indicator of cumulative 399 reasoning: a system that fails to apply previously proven theorems risks stagnating in isolated re- 400 discoveries, rather than developing an interconnected theory. In our experiments, UseFor shows a 401 steady increase in lemma usage during usefulness testing (Figure 1). Although the first few iterations 402 provide little signal, usage accelerates in later iterations, demonstrating that the model progressively 403 conjectures more useful theorems and becomes increasingly capable of applying them. This trend 404 is consistent across all domains, and we expect it to persist with additional iterations. Since Minimo 405 does not use previously proven theorems, its intrinsic metric is identically zero; we therefore do not 406 include it as a baseline here. 407

418 Figure 1: Intrinsic Evaluation: Total theorem use count with increasing iterations. 419

420 **(RQ2) The model grows increasingly more confident in 421 theorem reuse.** As training progresses, our model grows 422 increasingly confident in its use of previously conjectured 423 lemmas, as evaluated by the average log-probability of 424 proofs where at least one previously conjectured was used 425 (Figure 2). This aligns with the significant increase in in- 426 trinsically useful conjectures across multiple iterations, as 427 shown in Figure 1, and shows that the UseFor training ob- 428 jective is effective in encouraging the model to use previ- 429 ously proven lemmas. As we notice an upwards trend as 430 iterations continue, this also demonstrates that our lemmas 431 become more difficult to prove as time goes on, as earlier 432 provers assign low probabilities to them. In addition, our

433 Figure 2: Average log-probabilities 434 of proofs where a previous conjecture 435 was used, across prover iterations. 436

432 model also achieves consistently higher probabilities than “No usefulness training”. This shows that
 433 training on usefulness testing improves the prover’s confidence in its lemma reuse proofs.
 434

435 **(RQ3) The conjectures are extrinsically useful** In early iterations, UseFor quickly identifies
 436 many “easy” theorems accessible through shallow search. Crucially, usefulness continues to in-
 437 crease in later iterations, indicating that the system discovers progressively deeper and less trivial
 438 results. The growth of this metric empirically suggests that UseFor can generate theorems that are
 439 regarded as useful in the real-world by LLM-as-judge (and thus human). In Appendix B.5, we
 440 provide examples of extrinsically useful theorems conjectured by our model. In the case of group
 441 theory, our model conjectures less extrinsically useful theorems than base Minimo (average across 3
 442 runs). However, using an LLM in order to compare the union of all conjectures generated during our
 443 3 runs (detailed in Appendix B.3), we are able to find that in total, our method generates 23 conjectures
 444 not semantically equivalent to those of Minimo. Meanwhile, Minimo generates 21 conjectures
 445 not equivalent to ours and 64 conjectures are generated by both models. Therefore, our model still
 446 remains diverse and provides complementary results to those of Minimo.
 447

457 Figure 3: Extrinsic Evaluation: Number of deduplicated useful theorems per iteration, as determined
 458 by GPT-4.1 as a judge and proved by an SMT solver.
 459

460 **(RQ4) Usefulness training is necessary.** This experiment
 461 evaluates how our usefulness training signal affects performance
 462 (Figure 4). We focus here on the domain of arithmetic,
 463 though the same pattern holds in the other domains. As
 464 shown in Figure 4, if training is omitted, the system performs
 465 markedly worse: extrinsically, fewer theorems are judged to
 466 be useful by LLM-as-a-judge and SMT solver. This demon-
 467 strates the importance of training for updating the conjecturer
 468 with usefulness feedback steers it toward generating conjec-
 469 tures that are genuinely valuable for future proofs.
 470

471 5 CONCLUSION AND DISCUSSION

473 We studied automated conjecturing from minimal axioms as a prerequisite to scalable, self-
 474 improving theorem proving. While prior self-play systems such as (Poesia et al., 2024) use dif-
 475 ficulty (low proof log-probability) as the sole training signal, we argued that difficulty alone is in-
 476 sufficient for theory building. We introduced a usefulness-aware self-play framework that evaluates
 477 conjectures by their downstream impact: whether they are actually reused in subsequent proofs and
 478 whether their inclusion increases the success likelihood of proving other targets. This dual criterion
 479 operationalizes the intuition that valuable theorems function as *compression primitives* for mathe-
 480 matics, turning isolated wins into reusable structure. Integrated into the self-play loop, the metric
 481 selects, promotes, and trains on lemmas that reshape future proof search through usefulness.
 482

483 Across arithmetic, propositional logic, and group theory, UseFor steadily increases both the intrinsic
 484 reuse of conjectured theorems and the extrinsic usefulness of its discoveries. Performance improves
 485 over successive iterations, with the system progressing from “easy” lemmas to conjectures requiring
 486 deeper proofs. Ablation studies show that training both the prover and conjecturer with usefulness
 487 feedback is necessary: removing either sharply reduces both intrinsic and extrinsic metrics. To

487 Figure 4: Comparison showing the
 488 necessity of usefulness training.
 489

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
gether, these findings confirm that usefulness-aware self-play can build coherent and cumulative theories directly from axioms.

Limitations and future work. In order to avoid the risk of data contamination, our study focuses on relatively small models, limited axioms, and fixed search budgets. Scaling to richer foundations (e.g., Lean, Isabelle) and larger models remains an open but promising direction. Our method provides potential for synthetic data generation. We have previously seen that training on synthetic data to finetune LLM-based provers such as in Dong & Ma (2025), which built on Minimo’s methodology, has led to strong results. Incorporating a notion of “usefulness”, as explored in our work, could further enhance the data quality and diversity, thus strengthening the provers. In addition, our method offers the potential for lemma generation at larger scale, allowing for the model to have access to powerful and useful lemmas for use for its own theorem proving. However, applying approaches like UseFor on bigger pretrained models for conjecturing, such as LLMs, brings the novel risk of data contamination. In this case, benchmarking a conjecturing and discovery model becomes extremely difficult, as it is likely that the desired theorems are contained within the training set, even if the model is constructing the theorem indirectly. Therefore, future work should consider how to mitigate such data leakage concerns in the setting where LLMs are used for conjecturing new mathematical theorems.

REFERENCES

Yousef Alhessi, Sólrún Halla Einarsdóttir, George Granberry, Emily First, Moa Johansson, Sorin Lerner, and Nicholas Smallbone. Lemmanaid: Neuro-symbolic lemma conjecturing, 2025. URL <https://arxiv.org/abs/2504.04942>.

Yoshua Bengio and Nikolay Malkin. Machine learning and information theory concepts towards an ai mathematician. *Bulletin of the American Mathematical Society*, 61(3):457–469, 2024.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun, Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu, Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan, Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL <https://arxiv.org/abs/2507.23726>.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In *International conference on Tools and Algorithms for the Construction and Analysis of Systems*, 2008.

Kefan Dong and Tengyu Ma. Stp: Self-play lilm theorem provers with iterative conjecturing and proving, 2025. URL <https://arxiv.org/abs/2502.00212>.

Thibault Gauthier and Josef Urban. Learning conjecturing from scratch, 2025. URL <https://arxiv.org/abs/2503.01389>.

Moa Johansson and Nicholas Smallbone. Conjectures, tests and proofs: An overview of theory exploration. *Electronic Proceedings in Theoretical Computer Science*, 341:1–16, September 2021. ISSN 2075-2180. doi: 10.4204/eptcs.341.1. URL <http://dx.doi.org/10.4204/EPTCS.341.1>.

David McAllester. Mathzero, the classification problem, and set-theoretic type theory, 2020. URL <https://arxiv.org/abs/2005.05512>.

Allen Newell and Herbert A. Simon. The logic theory machine—a complex information processing system. *IRE Transactions on Information Theory*, 2(3):61–79, 1956.

Naoto Onda, Kazumi Kasaura, Yuta Oriike, Masaya Taniguchi, Akiyoshi Sannai, and Sho Sonoda. Leanconjecturer: Automatic generation of mathematical conjectures for theorem proving, 2025. URL <https://arxiv.org/abs/2506.22005>.

540 Gabriel Poesia and Noah D. Goodman. Peano: learning formal mathematical reasoning. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 381(2251), June 2023. ISSN 1471-2962. doi: 10.1098/rsta.2022.0044. URL <http://dx.doi.org/10.1098/rsta.2022.0044>.

544

545 Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
546 Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In *International
547 Conference on Learning Representations (ICLR)*, 2021.

548 Gabriel Poesia, David Broman, Nick Haber, and Noah D. Goodman. Learning formal mathematics
549 from intrinsic motivation, 2024. URL <https://arxiv.org/abs/2407.00695>.

550

551 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
552 2020. URL <https://arxiv.org/abs/2009.03393>.

553

554 Terence Tao. On the strength of theorems. <https://terrytao.wordpress.com/advice-on-writing-papers/on-the-strength-of-theorems/>, 2007. Accessed: 2025-09-15.

555

556 Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments, 2020. URL
557 <https://arxiv.org/abs/2005.14664>.

558

559 Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
560 Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.
561 Lego-prover: Neural theorem proving with growing libraries, 2023. URL <https://arxiv.org/abs/2310.00656>.

562

563 Yutong Xin, Jimmy Xin, Gabriel Poesia, Noah Goodman, Qiaochu Chen, and Isil Dillig. Automated
564 discovery of tactic libraries for interactive theorem proving, 2025. URL <https://arxiv.org/abs/2503.24036>.

565

566 Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
567 Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
568 language models, 2023. URL <https://arxiv.org/abs/2306.15626>.

569

570 Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
571 Song. Formal mathematical reasoning: A new frontier in ai, 2024. URL <https://arxiv.org/abs/2412.16075>.

572

573 Huaiyuan Ying, Zijian Wu, Yihan Geng, Zheng Yuan, Dahua Lin, and Kai Chen. Lean workbook:
574 A large-scale lean problem set formalized from natural language math problems, 2025. URL
575 <https://arxiv.org/abs/2406.03847>.

576

577

578 **A AXIOMS**

579

580 We now provide all the axioms for the three domains considered in our experiments in Section 4.
581 They are taken from the Minimo paper (Poesia et al., 2024) and formalized in the Peano lan-
582 guages (Poesia & Goodman, 2023).

583

584 **Arithmetic**

585

```
= : [nat -> nat -> prop].
586 nat : type.
587
588 z : nat.
589 s : [nat -> nat].
590 o : nat.
591
592 + : [nat -> nat -> nat].
593 * : [nat -> nat -> nat].
594
595 o_s : (= o (s z)).
```

```

594
595  $+_z : [(\text{'n} : \text{nat}) \rightarrow (= (+ \text{'n} z) \text{'n})].$ 
596  $+_s : [(\text{'n} : \text{nat}) \rightarrow (\text{'m} : \text{nat}) \rightarrow (= (+ \text{'n} (\text{s} \text{'m})) (\text{s} (+ \text{'n} \text{'m})))].$ 
597
598  $*_z : [(\text{'n} : \text{nat}) \rightarrow (= (* \text{'n} z) z)].$ 
599  $*_s : [(\text{'n} : \text{nat}) \rightarrow (\text{'m} : \text{nat}) \rightarrow (= (* \text{'n} (\text{s} \text{'m})) (+ \text{'n} (* \text{'n} \text{'m})))].$ 
600
601  $\text{nat\_ind} : [(\text{'p} : [\text{nat} \rightarrow \text{prop}]) \rightarrow (\text{'p} z) \rightarrow [(\text{'n} : \text{nat}) \rightarrow$ 
602  $\text{'p} \text{'n}) \rightarrow (\text{'p} (\text{s} \text{'n}))] \rightarrow [(\text{'n} : \text{nat}) \rightarrow (\text{'p} \text{'n})].$ 
603
604  $\# \text{backward nat\_ind}.$ 
605  $\# \text{forward } +_z ((+ \text{'n} z) : \text{nat}).$ 
606  $\# \text{forward } +_s ((+ \text{'n} (\text{s} \text{'m})) : \text{nat}).$ 
607  $\# \text{forward } *_z ((* \text{'n} z) : \text{nat}).$ 
608  $\# \text{forward } *_s ((* \text{'n} (\text{s} \text{'m})) : \text{nat}).$ 
609
610 Propositional logic
611  $\text{prop} : \text{type}.$ 
612
613  $\text{false} : \text{prop}.$ 
614
615  $\text{/* Connectives */}$ 
616  $\text{not} : [\text{prop} \rightarrow \text{prop}].$ 
617  $\text{and} : [\text{prop} \rightarrow \text{prop} \rightarrow \text{prop}].$ 
618  $\text{or} : [\text{prop} \rightarrow \text{prop} \rightarrow \text{prop}].$ 
619  $\text{iff} : [\text{prop} \rightarrow \text{prop} \rightarrow \text{prop}].$ 
620
621  $\text{/* Introduction rule for conjunction */}$ 
622  $\# \text{backward and\_i}.$ 
623  $\text{and\_i} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow \text{'P} \rightarrow \text{'Q} \rightarrow (\text{and} \text{'P} \text{'Q})].$ 
624
625  $\text{/* Elimination rules for conjunction */}$ 
626  $\# \text{forward and\_el } ('_ : (\text{and} \text{'P} \text{'Q})).$ 
627  $\text{and\_el} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow (\text{and} \text{'P} \text{'Q}) \rightarrow \text{'P}].$ 
628  $\# \text{forward and\_er } ('_ : (\text{and} \text{'P} \text{'Q})).$ 
629  $\text{and\_er} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow (\text{and} \text{'P} \text{'Q}) \rightarrow \text{'Q}].$ 
630
631  $\text{/* Introduction rules for disjunction */}$ 
632  $\# \text{backward or\_il}.$ 
633  $\text{or\_il} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow \text{'P} \rightarrow (\text{or} \text{'P} \text{'Q})].$ 
634  $\# \text{backward or\_ir}.$ 
635  $\text{or\_ir} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow \text{'Q} \rightarrow (\text{or} \text{'P} \text{'Q})].$ 
636
637  $\text{/* Elimination rule for disjunction */}$ 
638  $\# \text{backward or\_e infer infer infer infer subgoal subgoal}.$ 
639  $\text{or\_e} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow (\text{'R} : \text{prop}) \rightarrow$ 
640  $\text{(\text{or} \text{'P} \text{'Q})} \rightarrow [\text{'P} \rightarrow \text{'R}] \rightarrow [\text{'Q} \rightarrow \text{'R}] \rightarrow \text{'R}].$ 
641
642  $\text{/* Introduction rule for negation */}$ 
643  $\# \text{backward not\_i}.$ 
644  $\text{not\_i} : [(\text{'P} : \text{prop}) \rightarrow [\text{'P} \rightarrow \text{false}] \rightarrow (\text{not} \text{'P})].$ 
645
646  $\text{/* Elimination rule for negation */}$ 
647  $\text{not\_e} : [(\text{'P} : \text{prop}) \rightarrow (\text{not} \text{'P}) \rightarrow \text{'P} \rightarrow \text{false}].$ 
648  $\# \text{backward exfalso}.$ 
649  $\text{exfalso} : [\text{false} \rightarrow (\text{'P} : \text{prop}) \rightarrow \text{'P}].$ 
650
651  $\text{/* Introduction rules for equivalence */}$ 
652  $\# \text{backward iff\_i}.$ 
653  $\text{iff\_i} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow [\text{'P} \rightarrow \text{'Q}] \rightarrow [\text{'Q} \rightarrow \text{'P}] \rightarrow (\text{iff} \text{'P} \text{'Q})].$ 
654
655  $\text{/* Elimination rules for equivalence */}$ 
656  $\# \text{forward iff\_el } ('_ : (\text{iff} \text{'P} \text{'Q})).$ 
657  $\text{iff\_el} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow (\text{iff} \text{'P} \text{'Q}) \rightarrow [\text{'P} \rightarrow \text{'Q}]].$ 
658  $\# \text{forward iff\_er } ('_ : (\text{iff} \text{'P} \text{'Q})).$ 
659  $\text{iff\_er} : [(\text{'P} : \text{prop}) \rightarrow (\text{'Q} : \text{prop}) \rightarrow (\text{iff} \text{'P} \text{'Q}) \rightarrow [\text{'Q} \rightarrow \text{'P}]].$ 

```

```

648  /* Excluded middle */
649  #forward em.
650  em : [('P : prop) -> (or 'P (not 'P))].
651
652  Group theory
653
654  = : [('t : type) -> 't -> 't -> prop].
655
656  G : type.
657
658  op : [G -> G -> G].
659  id : G.
660
661  /* Associativity */
662  #forward op_assoc ((op (op 'a 'b) 'c) : G).
663  op_assoc : [('a : G) -> ('b : G) -> ('c : G) ->
664      (= (op (op 'a 'b) 'c) (op 'a (op 'b 'c)))].
665
666  /* Commutativity */
667  #forward op_comm ((op 'a 'b) : G).
668  op_comm : [('a : G) -> ('b : G) -> (= (op 'a 'b) (op 'b 'a))].
669
670  /* Identity */
671  #forward id_l.
672  id_l : [('a : G) -> (= (op id 'a) 'a)].
673
674  /* Inverse */
675  inv : [G -> G].
676  #forward inv_l.
677  inv_l : [('a : G) -> (= (op (inv 'a) 'a) id)].
```

B EXTRINSIC EVALUATION

In order to perform extrinsic evaluation, we run 5 iterations of our extrinsic evaluation pipeline, and take the average of the 5 results in order to mitigate variance from different runs of LLM evals. Our extrinsic evaluation pipeline consists of two steps: usefulness checking (Appendix B.1), deduplication (Appendix B.2), and SMT solving. In usefulness checking, we prompt the model concurrently on all conjectures generated by the model and keep the ones marked as useful by the LLM. As we are concurrently requesting for usefulness, we are likely to get a large amount of duplicate conjectures. We therefore make a second pass, calling the model on the useful conjectures to deduplicate them, keeping only sufficiently different theorems so as to get more reasonable results. Finally, we leverage the Z3 SMT solver (De Moura & Bjørner, 2008) to automatically prove the remaining conjectures and count only the proven ones. We found Z3 to be highly effective in proving these conjectures, as they are derived from axioms.

In the specific case of group theory, we noticed the variance in LLM evaluations was significantly higher than other domains, and the LLM had a very high rate of returning false problems. We solved this by running the SMT solver first, and giving a custom deduplication prompt (Appendix B.4) with examples for group theory.

B.1 USEFULNESS CHECKING PROMPT

You are tasked to judge whether a given lean theorem could be considered useful for an automatic theorem prover to have among its known theorems.

This theorem prover has only access to the following axioms and known theorems:

```

```

{known_theorems}

As well as access to the 'rfl' and 'rewrite' commands

702 Here is the theorem you are to evaluate
 703 `'''lean4`
 704 `{generated_conjecture}`
 705 `'''`
 706 Think through the problem step by step. Translate the problem into
 707 natural language, then think of what the possible uses of the theorem
 708 could be, whether it's obviously true and whether it means something
 709 .
 710 On the last line, say either USEFUL or NOT USEFUL and nothing else.

711 B.2 DEDUPLICATION PROMPT

713 I have a set of lean theorems, some of which are very similar to each
 714 other. I want to use them as tactics for proof generation.
 715 Please remove the duplicates, so that I can have a list of only unique
 716 theorems.

717 For example, the following four theorems would be duplicates of each
 718 other:

719 `'''lean4`
 720 `theorem problem1 : (v0 : Nat) -> v0 * 1 = v0`
 721 `theorem problem2 : (v0 : Nat) -> (v1 : Nat) -> v1 * 1 = v1`
 722 `theorem problem3 : (v0 : Nat) -> (v1 : Nat) -> (v2 : v0 = v1) -> v1 * 1 =`
 `v1`
 723 `theorem problem4 : (v0 : Nat) -> v0 * (Nat.succ 0) = v0`
`'''`

724 The inclusion of an extra variable in problem 2 doesn't change the fact
 725 that the result is exactly the same, and the different names for the
 726 variable doesn't affect the result.

727 Problem 3 introduces an irrelevant hypothesis, which doesn't get used in
 728 the theorem, and the conclusion is still the same.

729 The last one is a trivial result of the others, as 1 is defined as Nat.
 730 `succ 0` in this case.

731 Here is my list of theorems for you to remove duplicates for.

732 `{}`

733 I also have attached an explanation for why each could be useful for a
 734 theorem prover.

735 `{}`

736 Think it through step by step, and then return the list of unique
 737 theorems from this list in a list format inside of a `'''lean4'''` code
 738 block. Make sure your answer is inside the very last lean codeblock.
 739 Please make sure to repeat the theorems exactly as I wrote them.

740 B.3 DISTINGUISHING UNIQUE CONJECTURES BETWEEN MODELS

741 As seen in Appendix B, each experiment involves 5 iterations in order to get sets of extrinsically
 742 useful conjectures, each of which gives a slightly different set of extrinsically useful conjectures. In
 743 order to determine which conjectures were only conjectured by one model, we first union the sets we
 744 obtained from each of the 5 iterations we obtained for each model. From this, we get a resulting set
 745 of all conjectures considered at some point useful by the LLM for each model we wish to compare.
 746 We then perform deduplication (Appendix B.2), as there might be equivalent conjectures between
 747 iterations. We then union our two resulting sets together and call the LLM with our distinguishing
 748 prompt, and determine which model conjectured each of the resulting conjectures, with the following
 749 prompt:

750 I have the following list of lean theorems. I would like you to select
 751 all 'unique' lean4 theorems, that is ones that have no other theorem
 752 that is semantically equivalent in the list.

753 For example, the following four theorems would be duplicates of each
 754 other:

755 `'''lean4`
 756 `theorem problem1 : ((v0 : Group) -> (v1 : (v0 = (v0 * (1^{[-1]})))) ->`
 `(1^{[-1]}) = 1)`
 757 `theorem problem2 : ((v0 : Group) -> (v1 : Group) -> ((1^{[-1]}) = 1))`

```

756 theorem problem3 : ((v0 : Group) -> ((1^{‐1}) = 1))
757 theorem problem4 : ((v0 : Group) -> (1 = (1^{‐1})))
758 ```
759 Problem 1 introduces an irrelevant hypothesis as compared to problem 3,
760 as it makes no mention of v0 in its final claim. Therefore, these two
761 problems are duplicates of each other.
762 Problem 2 is a similar case to problem 1: It introduces an extra variable
763 , but does nothing with it. This is irrelevant, and makes for the
764 same problem.
765 Problem 4 is the same as problem 3, but is flipped. As we are running
766 this using rw, we can simply call this problem in the inverse
767 direction, so these two lemmas are the same.
768
769 Think this step by step, and then give your answer in a ````lean4 ```` code
770 block. Make sure to write the theorem exactly as written.
771 Here are the lean4 theorems:
772
773
774 B.4 GROUP THEORY SPECIFIC PROMPTS
775
776 I have a set of lean theorems, some of which are very similar to each
777 other. I want to use them as lemmas for proof generation.
778 Please remove the duplicates, so that I can have a list of only unique
779 theorems.
780 For example, the following four theorems would be duplicates of each
781 other:
782 ````lean4
783 theorem problem1 : ((v0 : Group) -> (v1 : (v0 = (v0 * (1^{‐1})))) ->
784 ((1^{‐1}) = 1))
785 theorem problem2 : ((v0 : Group) -> (v1 : Group) -> ((1^{‐1}) = 1))
786 theorem problem3 : ((v0 : Group) -> ((1^{‐1}) = 1))
787 theorem problem4 : ((v0 : Group) -> (1 = (1^{‐1})))
788 ````

789 Problem 1 introduces an irrelevant hypothesis as compared to problem 3,
790 as it makes no mention of v0 in its final claim. Therefore, these two
791 problems are duplicates of each other.
792 Problem 2 is a similar case to problem 1: It introduces an extra variable
793 , but does nothing with it. This is irrelevant, and makes for the
794 same problem.
795 Problem 4 is the same as problem 3, but is flipped. As we are running
796 this using rw, we can simply call this problem in the inverse
797 direction, so these two lemmas are the same.
798
799 In this case, our final result would likely be:
800 ````lean4
801 theorem problem3 : ((v0 : Group) -> ((1^{‐1}) = 1))
802 ````

803 Here is my list of theorems for you to remove duplicates for.
804 {}
805 I also have attached an explanation for why each could be useful for a
806 theorem prover.
807 {}
808 Think it through step by step, and then return the list of unique
809 theorems from this list in a list format inside of a ````lean4```` code
810 block. Make sure your answer is inside the very last lean codeblock.
811 Please make sure to repeat the theorems exactly as I wrote them.
812
813
814 B.5 EXAMPLES OF EXTRINSICALLY USEFUL CONJECTURES
815
816 Table 1 highlights representative conjectures that our evaluation judged to be extrinsically useful
817 across three domains. These serve as concrete examples of the kinds of results UseFor is capable
818 of producing. As an illustration, UseFor produces a 5-step proof of the first propositional-logic

```

conjecture in Table 1, using only the base axioms. However, given the tactic `iff_elim`, which reduces an equivalence to two implications, together with the axioms

$$\text{False} \implies P, \quad (1)$$

$$P \wedge Q \implies P, \quad (2)$$

UseFor found the following 5-step proof:

1. Split the problem into cases: by `iff_elim`
- Case 1: $\text{False} \implies P \wedge \text{False}$
2. introduce False into hypothesis context
3. $\text{False} \implies P \wedge \text{False}$ by (1)
- Case 2: $P \wedge \text{False} \implies \text{False}$
4. introduce $P \wedge \text{False}$ into hypothesis context
5. $P \wedge \text{False} \implies \text{False}$ by (2)

This example demonstrates how UseFor produces lemmas that apply broadly and compress multiple reasoning steps into a single inference step in practice. This ability provides a crucial advantage in Monte Carlo Tree Search, where the search space expands exponentially with depth.

We remark that these proven conjectures are also observed to be very important to the prover in future iterations. For instance, $P \implies \neg\neg P$ and $1^{-1} = 1$ often serve as powerful shortcuts, condensing multi-step reasoning into a single step and thereby streamlining longer proofs.

Arithmetic	Propositional Logic	Group Theory
$\forall x \in \mathbb{N}, x(x^2 + 1) = x + x^3$	$\text{False} \iff (P \wedge \text{False})$	$1^{-1} = 1$
$2x = 0 \implies x = 0$	$P \implies \neg\neg P$	
$\forall x \in \mathbb{N}, x * 1 = x$	$P \iff P$	$\forall x \in G, x \cdot x = x \implies x = 1$

Table 1: Representative conjectures judged extrinsically useful across three considered domains.

C TRAINING DETAILS

We instantiate our GPT-2 model with 8.45M parameters, with 8 layers, 8 attention heads, a hidden size of 512, 2048 feed forward, a vocabulary size of 128, absolute positional embeddings, and with a maximum context of 1024. We train the language model after every iteration with 2000 steps of the AdamW optimizer (learning rate of $1e - 4$). Monte Carlo Tree Search is done with a max expansion of 1000. We train each model over 10 iterations with 200 conjectures per iteration, and run on between 1 and 2 H100 80GB GPUs. An average run takes between 12-24 hours on one GPU.

D THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to support writing, revision, and other text-focused tasks, such as improving clarity, refining grammar and style, and assisting with the organization of written content.