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ABSTRACT

Creating an AI that can truly “do” mathematics requires more than just solving
isolated problems. It must mimic the creative, progressive nature of human math-
ematicians, who build upon previous work to generate new knowledge. A crucial
part of this process is proposing theorems that serve as useful building blocks for
proving more advanced theorems. In this paper, we introduce UseFor, a novel
framework that formalizes this notion of usefulness and demonstrates how it can
be used to train a usefulness-driven AI mathematician. UseFor determines a theo-
rem’s usefulness based on two criteria: its reusability in subsequent proofs and its
contribution to increasing proof likelihood. We integrate UseFor into the self-play
conjecturing-and-proving setting of Minimo ((Poesia et al., 2024)). That is, start-
ing from only axioms, we iteratively train conjecturers to propose useful formal
statements and provers that explicitly reuse them when generating formal proofs.
We experimentally evaluate this usefulness-driven self-play approach across three
mathematical domains: arithmetic, propositional logic, and group theory. Our
evaluation considers two metrics: intrinsic usefulness, which measures how often
our trained provers reuse theorems, and extrinsic usefulness, judged by a state-of-
the-art large language model and external provers like SMT solvers. Our results
demonstrate that our usefulness-trained model effectively generates a large num-
ber of intrinsically and extrinsically useful formal theorems. For instance, our
approach outperforms the original Minimo by 2.9 times in extrinsic usefulness for
arithmetic. Our work highlights the significant potential of integrating usefulness
in AI-driven mathematical discovery.

1 INTRODUCTION

Mathematical reasoning has long stood as a frontier challenge for artificial intelligence (Newell
& Simon, 1956). While large language models (LLMs) have achieved rapid progress in formal
theorem proving (Yang et al., 2024), most approaches depend on extensive human-written corpora
of proofs and conjectures (Yang et al., 2023; Ying et al., 2025). This dependence limits the domains
in which they can operate and prevents them from advancing beyond existing human knowledge.
By contrast, human mathematicians build knowledge by conjecturing new statements and proving
them, gradually extending their theoretical landscape without external supervision.

A natural question, therefore, arises: can we replicate this process automatically? Specifically, can
an artificial agent, starting only from axioms, learn via self-play between conjecturing and proving,
bootstrapping its own knowledge and progressively discovering new mathematics? This paradigm
(McAllester, 2020) would eliminate the need for human data, enable exploration of domains where
no proofs exist, and produce a scalable source of synthetic theorems for training future provers.
Recent work such as (Poesia et al., 2024) shows early signs of this vision: by iterating between
conjecture generation and Monte Carlo tree search (MCTS)-guided proof search, Minimo gradually
learns to prove increasingly more difficult statements from scratch. However, as we argue below,
merely increasing difficulty as defined in Minimo is not enough to drive true theory building.

Minimo, like most self-play provers, evaluates conjectures purely by their difficulty—the negative
log-probability of successful proofs under the current prover policy. This encourages the generation
of challenging statements, but overlooks whether they actually help prove other results. In practice,
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we find that conjectures promoted solely by difficulty are rarely reused in later proofs and offer little
leverage for solving harder targets.

We are inspired here by Bengio & Malkin (2024)’s perspective that the value of a theorem lies in
its connection to other theorems. They noted that “a crucial component of the usefulness of a new
proven theorem t (in the context of previous theorems T (S)) is how efficiently T (S) ∪ {t} com-
presses the set of all provable mathematical statements M”. Tao (2007) makes a similar point,
observing that the strength of a theorem is best judged by “testing it against a class of questions and
problems that the theorem is intended to assist with solving”. Both perspectives highlight that valu-
able conjectures should be judged not in isolation but advance the prover’s qualitative capabilities
and accelerate cumulative theory building.

This motivates our core idea: to advance automated theory building, we need a tractable metric
that approximates this relational value of conjectures. We introduce such a metric, UseFor, which
defines a conjecture as useful if it both appears in the proof of a downstream target and increases
the prover’s success likelihood (log-probability) on that target. This dual criterion excludes trivial
tautologies with no proving power and narrowly phrased statements with little applicability in other
proofs, yielding a practical proxy for Bengio & Malkin (2024)’s compression perspective.

We leverage UseFor to develop a usefulness-aware self-play loop that builds directly on Min-
imo (Poesia et al., 2024). After each round of conjecturing and proving, we use UseFor to identify
proven conjectures with the most relational value for proving other conjectures. These useful the-
orems are made available to the proving model as lemmas and weighted more heavily in training,
guiding future conjectures and proofs toward structures that accelerate cumulative theory building.

We evaluate our usefulness-driven self-play framework on three domains: arithmetic, propositional
logic, and group theory. Our results show that our approach generates a significant number of
theorem usages and more useful conjectures compared to Minimo based on LLM-as-a-judge. For
instance, for arithmetics, our approach outperforms Minimo by 2.9 times in producing useful conjec-
tures. These findings indicate that usefulness is a stronger intrinsic signal than difficulty for guiding
conjecture generation, and that usefulness-aware self-play offers a scalable path toward data-free
theory exploration.

Main contributions. Our paper makes the following contributions:

• We formalize the notion of theorem usefulness as a dual criterion of usage and improvement, and
propose a tractable procedure for measuring it within self-play (Section 3.2.1).

• We introduce a usefulness-aware self-play loop that augments Minimo by selecting conjectures
according to relational usefulness rather than difficulty (Section 3.2.2).

• We present stabilization techniques (triviality filtering and novelty bias) that keep the loop from
collapsing into tautologies or memorized variants (Section 3.2.3).

• We provide empirical results across arithmetic, propositional logic, and group theory, demonstrat-
ing that usefulness-driven conjectures are more reusable and lead to higher prover success rates
than difficulty-based baselines (Section 4).

2 RELATED WORK

Our work is primarily related to prior bodies of work on mathematical conjecturing, tactic discovery,
and theory exploration. Our approach is distinguished by the fact that our model is trained in a tabula
rasa fashion, without any pre-existing examples, and evaluated on the theory exploration task.

Mathematical conjecturing. Our work is most closely based on Minimo (Poesia et al., 2024),
which proposes a theorem-proving model in the Peano (Poesia & Goodman, 2023) formal language
that is trained through iterative conjecturing and proving from scratch. (Polu & Sutskever, 2020)
also propose a model that is trained via self-play, while (Dong & Ma, 2025) demonstrate the ability
of the iterative conjecturing-proving paradigm to enhance a pretrained theorem prover. However,
these works only use conjecturing as a means to improve the proof-search capabilities of the model,
and do not attempt to evaluate the conjecturing abilities of the model directly. LeanConjecturer
(Onda et al., 2025) proposes a model specifically designed for the conjecturing task, but uses a
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pretrained LLM; in doing so, the ability of the LeanConjecturer model to generate novel conjectures
cannot be faithfully evaluated due to inevitable contamination from pre-training data. Compared to
these works, our approach evaluates conjecturing as a stand-alone task, while our tabula rasa setting
allows us to definitively confirm the novelty of conjectures generated by our model.

Tactic and premise discovery. There is also a body of work concerning the task of tactic dis-
covery, which aims to construct tactics in an interactive theorem prover setting that simplify proofs
or otherwise enhance proving capabilities. TacMiner (Xin et al., 2025) proposes a method to find
tactic simplifications in RCoq, given an existing high-quality corpus of proofs. Lego-Prover (Wang
et al., 2023) and Seed-Prover (Chen et al., 2025) use already proven lemmas as a way to strengthen
a theorem proving model, in the Isabelle and Lean 4 settings, respectively. However, all of these
approaches require a dataset of high-quality, human-generated proofs, while our approach generates
useful premises from scratch.

Theory exploration using machine learning. Finally, a third body of work is theory exploration
using ML methods, the task of formulating interesting conjectures about a given problem domain
(Johansson & Smallbone, 2021). We consider this problem to be the one our work addresses most
closely. While a number of classical and neural approaches have been proposed for this task, exist-
ing neural methods work by training or finetuning a model based on an existing proof corpus (Urban
& Jakubův, 2020). Lemmanaid (Alhessi et al., 2025) uses neuro-symbolic methods by finetuning a
model with a subset of an existing proof library, and then evaluating it on another subset of conjec-
tures. In search of a purely intrinsic approach in order to discover how a model could discover this
usefulness without relying on human data, we distinguish ourselves by not training on external data,
an approach similar to what has been done for SMT solvers (Gauthier & Urban, 2025).

3 METHODOLOGY

3.1 BASE SELF-PLAY FRAMEWORK (MINIMO)

A central challenge in building autonomous theorem-proving agents is the lack of human-labeled
data. Unlike natural language or code, formal mathematics has limited corpora, and many target
domains have essentially no prior datasets. There are two main approaches to address this bottle-
neck. One line of work leverages autoformalization, which translates large volumes of informal
mathematics into formal statements, an approach that has already shown promise in practice. A
more first-principles alternative is to remove reliance on pre-existing data entirely by using self-
play: coupling1 a conjecturer, which proposes candidate statements, with a prover, which attempts
to establish them. Through repeated interaction, both components improve jointly in a closed loop,
enabling progress even in domains with no human supervision or existing corpus.

Minimo (Poesia et al., 2024), implemented in the Peano environment (Poesia & Goodman, 2023),
instantiates this idea. Starting from axioms alone, it alternates between conjecture generation and
proof search. Over time, the prover strengthens by training on successful proof traces, while the
conjecturer adapts toward statements near the boundary of provability. This process yields an auto-
matically generated curriculum of increasing difficulty, with no reliance on human annotations. We
summarize its core components next, as they provide the foundation on which our method builds.

3.1.1 CONJECTURING

The conjecturer Cθ, with θ denoting the model parameters, generates statements in the Peano lan-
guage, a dependently typed tree-based formal system with a finite action space (Poesia & Goodman,
2023). Each formula is represented as a well-formed term tree. To prevent invalid formulas, Min-
imo employs constrained decoding Poesia et al. (2021): at each step, candidate tokens are filtered
so that only those extending the current tree into a valid continuation remain. This guarantees both
syntactic and semantic validity, and prevents wasting prover efforts on malformed statements.

1In practice, coupling means using a single underlying model for both conjecturer and prover roles, as
proposed by Poesia et al. (2024).
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3.1.2 PROOF SEARCH

The prover Pθ attempts to establish each conjecture using Monte Carlo tree search (MCTS), which
is well suited to the combinatorial branching structure of formal proofs. A proof state s encodes the
current context, including the set of assumptions, the active subgoal, and any partially completed
steps. At each state, the Peano environment defines the finite set of admissible inference actions.
Guided by the prover’s policy πθ(a | s) and value estimates, MCTS expands trajectories

τ = (s0, a0, s1, a1, . . . , sT )

starting from the initial state s0. A completed trajectory corresponds to a valid proof of the conjec-
ture. Its score is the log-likelihood under the prover’s policy,

ℓ(c) = log pθ(τ | c) =

T−1∑
t=0

log πθ(at | st).

Less negative values of ℓ(c) indicate that the proof was expected under the current policy, while more
negative values correspond to surprising but ultimately valid proofs. To exploit partial progress,
Minimo applies hindsight relabeling: even when a conjecture cannot be proved in full, explored
search trees are decomposed into valid subtraces corresponding to intermediate lemmas, which are
then incorporated as additional training data (Poesia et al., 2024). This enlarges the training set and
recycles computation that would otherwise be wasted on failed proofs.

3.1.3 CONJECTURING–PROVING SELF-PLAY LOOP

The conjecturer Cθi and prover Pθi interact in an iterative loop. At iteration i, the conjecturer
samples a batch of N candidate statements

Qi = {c1, . . . , cN} ∼ Cθi(· | Ti),

where Ti is the current theory consisting of axioms and previously promoted lemmas. For each
c ∈ Qi, the prover attempts to establish it via MCTS:

(proof(c), ℓ(c), trace(c))← MCTS PROVE(c; Ti, Pθi),

where proof(c) is a complete proof trajectory τ if one is found (or ∅ otherwise), trace(c) is the
explored search tree, and ℓ(c) is the log-likelihood of the trajectory under the prover’s policy.

Conjectures are then stratified by empirical difficulty. Let Si = {c ∈ Qi : proof(c) ̸= ∅} be the set
of successful conjectures, and let q20 and q50 denote the 20th and 50th percentiles of {ℓ(c) : c ∈ Si}.
Labels are assigned to each conjecture c as

label(c) =


“fail”, if proof(c) = ∅,

“hard”, if ℓ(c) < q20,

“easy”, q20 ≤ ℓ(c) < q50,

“trivial”, ℓ(c) ≥ q50.

The dataset for iteration i is then

Ei = {(trace(c), label(c)) : c ∈ Qi},

which aggregates conjectures, proofs when available, and hindsight-relabeled subproofs extracted
from failed searches. Both Cθ and Pθ are updated on Ei, creating a feedback loop: the conjecturer
shifts toward generating statements just beyond the prover’s current reach, while the prover expands
its competence from the resulting proofs. This difficulty-driven loop is the foundation upon which
we build in Section 3.2, where difficulty is replaced with a more relational signal of usefulness.

3.2 USEFULNESS-AWARE SELF-PLAY LOOP

The self-play framework of Minimo provides a compelling basis for data-free theory exploration:
starting from axioms, conjecturing and proving improve together in a bootstrapping loop. However,
its training signal is limited to conjectural difficulty, measured as the negative log-probability of a
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proof under the current prover. While effective for generating a curriculum of harder statements,
this signal is ultimately syntactic. It rewards conjectures that are improbable under the model’s local
policy, but does not account for whether they connect meaningfully to other theorems explored so
far. As a result, the system often promotes conjectures that are labeled as “hard” but not necessarily
useful statements: isolated identities that stretch the prover temporarily but are rarely reused and add
little structure to the theory. The log-probability score treats difficulty as an end in itself, overlooking
the relational role that lemmas play in enabling further proofs and sustaining theory growth.

To address this limitation, we introduce a usefulness-based self-play loop. Instead of ranking conjec-
tures solely by syntactic hardness, we ask whether incorporating a new lemma changes the prover’s
future behavior, specifically, whether it makes other statements easier to prove. Conjectures that
are both provable and demonstrably beneficial in downstream proofs are promoted into the growing
library, and their traces are used to train both the conjecturer and the prover. This shifts the learning
objective from accumulating difficult but isolated statements to building a network of reusable ones,
better aligned with the cumulative nature of mathematical discovery.

3.2.1 DEFINITION OF THE USEFULNESS METRIC

The perspectives of Bengio & Malkin (2024) and Tao (2007) converge on the idea that the value of
a theorem is relational: it derives its significance not from truth alone, but from its effect on sub-
sequent reasoning. Yet they articulate this in complementary registers. Bengio & Malkin (2024)
frames usefulness in information-theoretic terms, proposing that a theorem acts as a compression
primitive—its addition to a base theory reduces the description length of other proofs. Tao (2007)
instead emphasizes the pragmatic dimension: the strength of a theorem is revealed only by con-
fronting new problems and observing the range of arguments it simplifies.

While these views are philosophically aligned, neither directly yields a metric implementable within
a self-play loop. Compression, though elegant, requires comparing description lengths over the
unbounded space M of all provable statements, which is an intractable quantity in practice. Tao
(2007)’s criterion, by contrast, presupposes a human mathematician’s judgment in selecting “a class
of questions and problems” against which to test strength. What is missing is a procedure that
preserves the spirit of both notions while remaining computable for a prover–conjecturer system.

Our contribution is to bridge this gap by constructing an operational proxy for usefulness that can
be applied iteratively inside the self-play loop. At a high level, the metric estimates a conjecture’s
capacity to expand the prover’s effective reach: conjectures are useful insofar as their availability
systematically reduces the effort of proving a benchmark set of targets.

Formally, let B be a benchmark set consisting of theorems that are difficult, but not impossible,
for the prover to prove. In Section 3.2.2, we detail how we instantiate B using theorems generated
internally by our self-play training loop. For each b ∈ B, let pθ(τb | b) denote the prover’s probability
of producing a proof trajectory τb under theory T , and let p′θ(τb | b) denote the same quantity when
a candidate lemma ℓ is available. We say that ℓ is useful if there exists b ∈ B such that

(i) ℓ is invoked in the proof trace of b, and (ii) log p′θ(τb | b)− log pθ(τb | b) > 0.

Both conditions are essential: usage without improvement admits trivial tautologies such as ∀x. x =
x, which the prover may frequently attempt but which yield no real progress. Only when the two
conditions coincide do we identify lemmas that are genuinely structural.

To evaluate this criterion efficiently, we do not re-prove B for every lemma in isolation. Instead,
given a set of newly proved conjectures C, we subsample a subset of size ⌈

√
|C|⌉ and temporarily

add them to the context. Each b ∈ B is then re-proved once under this extended theory. If a candidate
ℓ appears in the proof of b and the resulting log-likelihood improves relative to baseline, the gain is
attributed to ℓ. The aggregate score

U(ℓ) =
∑
b∈B

1{ℓ ∈ proof(b)} ·max{0, log p′θ(τb | b)− log pθ(τb | b)}

is then used to rank candidates. Only the top ρ fraction are promoted to the library, together with
their associated proofs and hindsight traces. This provides a tractable mechanism for selecting
conjectures that repeatedly demonstrate both reuse and measurable downstream gains.
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Illustrative scenario. Consider arithmetic with multiplication defined inductively. Early in train-
ing, the prover may not yet know lemmas such as x×(y+1) = xy+x. Without this fact, even simple
targets like (x+1)× (y+1) = xy+x+ y+1 require long derivations by repeatedly unfolding the
definition of multiplication. Once x×(y+1) = xy+x is conjectured and proved, however, it can be
applied directly, and many small multiplication–addition identities shorten dramatically. Our metric
marks this lemma as useful precisely because it is both used in subsequent proofs and its presence
improves the prover’s success probability. Later discoveries, such as distributivity, compound this
effect across broader families, but it is these intermediate stepping-stone lemmas that first enable
steady cumulative progress.

3.2.2 TRAINING LOOP WITH THE USEFULNESS METRIC

We now describe how the usefulness metric is integrated into the conjecturing–proving loop. The
outer structure mirrors Minimo (Poesia et al., 2024): in each iteration the agent generates conjec-
tures, the prover attempts proofs via MCTS, and traces are collected. The crucial difference lies
in how conjectures are filtered, promoted, and fed back into training. Whereas Minimo labels con-
jectures by proof log-probability percentiles and emphasizes those deemed “hard”, our framework
evaluates conjectures by their relational usefulness.

At iteration i, the conjecturer first proposes a batch Ci, which is passed through a triviality filter to re-
move vacuous identities. Each conjecture is then attempted under the current theory Ti using MCTS,
producing proofs, log-likelihoods, and hindsight examples. Following Minimo, conjectures are pro-
visionally bucketed into “hard”, “easy”, and “trivial” categories by percentile of log-likelihood.
Non-failing conjectures are collected as candidate lemmas.

The key departure comes in how the “hard” subset is treated. Rather than promoting the “hard”
conjectures indiscriminately, we apply the usefulness test with them as the benchmark set B, and
with the set of all previously proven theorems Hi as our set of “potentially useful” lemmas. A
random subsample Li ⊆ Hi of size ⌈

√
|Hi|⌉ is drawn, and each benchmark b ∈ B is re-proven

under the augmented theory Ti ∪ Li. If a lemma λ ∈ Li is invoked in the augmented proof of b and
improves its log-likelihood relative to the baseline, the gain is added to its cumulative usefulness
score Ui(λ). Candidates are then ranked by Ui(λ), and only the top ρ fraction are maintained in
Hi+1 for future usefulness evaluations . Because Li is resampled at every iteration, different subsets
of candidates are tested over time, so all conjectures eventually receive usefulness credit.

Finally, we assemble the training dataset Ei. It includes the conjectures along with their percentile
labels, their proofs, and the hindsight traces from the base loop as in Minimo. Additionally, we in-
corporate the useful lemmas and re-proving trajectories produced during usefulness testing. Specif-
ically, each lemma deemed useful is added a conjecture under a “useful” category. We also include
proof-search attempts that happened re-proving, which may involve lemma reuses. These additions
help both the conjecturer and prover internalize the notion of “usefulness”. The agent is updated on
Ei, and the promoted and untested lemmas are added toHi+1 for future iterations.

In summary, Minimo’s curriculum is driven by proof difficulty under the current prover, whereas our
loop is driven by demonstrable downstream impact. Only conjectures that are both used and improve
benchmark proofs are promoted, producing a library that is not just deeper but more interconnected,
with lemmas reappearing across proofs and compounding overall success.

3.2.3 OTHER IMPROVEMENT TECHNIQUES

Although the usefulness loop provides a stronger supervisory signal than difficulty alone, we ob-
served recurrent failure modes in practice. In particular, the conjecturer may become trapped in
local minima, repeatedly generating trivial identities or minor variants of existing statements. This
behavior resembles exploiting shortcuts rather than genuine advancements. To enhance robustness
and better align training with the intended objectives, we incorporate two additional techniques.

Triviality filtering. Before proof attempts, we remove conjectures that match heuristic patterns
such as tautologies (x = x) or constant-only identities (0 + 1 = 1). Such statements can be
discharged immediately without reasoning, yet they satisfy the usage criterion and would otherwise
dominate the usefulness signal. Filtering them prevents the prover cycles from being wasted and
prevents the model from collapsing toward vacuous but spuriously rewarding lemmas.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Novelty bias. To encourage structural diversity, we penalize the conjecturer for generating state-
ments that share long prefixes with previously generated conjectures. This discourages local mem-
orization and pushes exploration toward unexplored syntactic regions, thereby increasing the likeli-
hood of uncovering genuinely new lemmas that expand the theorem library.

These techniques do not alter the usefulness metric itself, but regularize the conjecturer’s proposal
distribution. By filtering trivialities and discouraging near-duplicates, the system avoids spurious
short-term rewards and maintains pressure toward conjectures that are both novel and reusable. Em-
pirically, they improve the stability of the usefulness-aware loop, allowing the training distribution
to shift steadily toward conjectures that promote cumulative theory building.

4 EXPERIMENTAL EVALUATION

We now present our experimental evaluation. Our goal is to assess whether UseFor demonstrates the
essential qualities of a desirable reasoning system: (a) the ability to accumulate knowledge within
the self-play training loop, (b) the ability to generate conjectures that are useful both internally (for
self play) and externally (for the outside world), and (c) whether our usefulness-driven training is
necessary. In more detail, we would like to address the following research questions:

• RQ1: Can the prover reuse theorems proven in previous iterations to prove current conjectures?
Reuse is essential for cumulative theory building: without it, a system risks repeatedly rediscov-
ering tautologies or isolated results, rather than developing an interconnected body of theory.

• RQ2: Do likelihoods of theorem-reusing proofs increase across multiple iterations? This would
signify that during the training process, the prover is gradually gaining more capabilities and
confidence in theorem reuse.

• RQ3: Are the conjectures useful beyond self-play? Extrinsic usefulness tests whether the system
discovers theorems a mathematician would value, rather than artifacts of the training loop.

• RQ4: Is the usefulness metric essential for conjecturing quality? Without it, does the model
discover interesting theorems? This matters because the entire training loop relies on this metric
as its guiding signal.

4.1 EXPERIMENTAL SETUP

Evaluation metrics. In light of the above interesting research questions, we employ two comple-
mentary metrics designed to capture structural usefulness:

• Intrinsic usefulness: measured as the number of times a previously proven theorem is reused dur-
ing usefulness testing. A high score indicates that the system is both conjecturing and successfully
reusing theorems in its own proving process.

• Extrinsic usefulness: measured via an LLM-as-judge (GPT-4.1), which rates conjectures for math-
ematical value after a deduplication step that removes near-duplicates (details can be found in
Appendix B). We also require that the conjectures can be proved by an external automated prover
based on the Z3 STM solver (De Moura & Bjørner, 2008), which is effective on our self-play-
generated conjectures. This metric evaluates whether conjectures would be judged useful by a
human mathematician, beyond the system’s internal dynamics.

Poesia et al. (2024) introduced intrinsic metrics based on the proof difficulty of internally generated
conjectures, and extrinsic metrics based on the prover’s success rate on human-written theorems.
However, their metrics are unsuitable for our goals. First, they primarily measure proving perfor-
mance, whereas our focus is on conjecturing. In addition, they evaluate isolated statements, while
our metrics capture how the conjectured statements interact and build on each other.

Baselines. We compare UseFor against two baselines:

• “Base Minimo”: The original Minimo algorithm (Poesia et al., 2024) without any modification,
enabling a direct comparison with prior work.
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• “No usefulness training”: Our full approach but without the usefulness training described in Sec-
tion 3.2.2, while retaining the improvements in Section 3.2.3. This isolates the contribution of
usefulness training.

Mathematical domains. We conduct our evaluation on three mathematical domains: (i) arith-
metic, (ii) propositional logic, and (iii) group theory. This setup follows Poesia et al. (2024), en-
abling clear comparison. The axioms of these domain are directly taken from Poesia et al. (2024)
and are presented in Appendix A. All models in our experiments were fully bootstrapped from these
axioms in Peano (Poesia & Goodman, 2023) without relying on any other external data.

Model and self-play configurations. We follow the setup of Minimo Poesia et al. (2024) and use
an 8.45M-parameter GPT-2 model for both conjecturing and proving. All models are trained starting
from scratch, ensuring that any generated theorem are genuine “discoveries”. We run training for
10 iterations (compared to 5 in Minimo), as our approach benefits from cumulative improvements
across iterations. In each iteration, we generate 200 conjectures. We perform proof search using
MCTS with a budget of 1000 expansions per conjecture. All experiments are repeated three times,
and we report averaged results to account for stochastic variations. Additional training details are
provided in Appendix C.

4.2 EXPERIMENTAL RESULTS

(RQ1) The model reuses previously proven conjectures. Reuse is a key indicator of cumulative
reasoning: a system that fails to apply previously proven theorems risks stagnating in isolated re-
discoveries, rather than developing an interconnected theory. In our experiments, UseFor shows a
steady increase in lemma usage during usefulness testing (Figure 1). Although the first few iterations
provide little signal, usage accelerates in later iterations, demonstrating that the model progressively
conjectures more useful theorems and becomes increasingly capable of applying them. This trend
is consistent across all domains, and we expect it to persist with additional iterations. Since Minimo
does not use previously proven theorems, its intrinsic metric is identically zero; we therefore do not
include it as a baseline here.

Figure 1: Intrinsic Evaluation: Total theorem use count with increasing iterations.

Figure 2: Average log-probabilities
of proofs where a previous conjecture
was used, across prover iterations.

(RQ2) The model grows increasingly more confident in
theorem reuse. As training progresses, our model grows
increasingly confident in its use of previously conjectured
lemmas, as evaluated by the average log-probability of
proofs where at least one previously conjecture was used
(Figure 2). This aligns with the significant increase in in-
trinsically useful conjectures across multiple iterations, as
shown in Figure 1, and shows that the UseFor training ob-
jective is effective in encouraging the model to use previ-
ously proven lemmas. As we notice an upwards trend as
iterations continue, this also demonstrates that our lemmas
become more difficult to prove as time goes on, as earlier
provers assign low probabilities to them. In addition, our
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model also achieves consistently higher probablities than “No usefulness training”. This shows that
training on usefulness testing improves the prover’s confidence in its lemma reuse proofs.

(RQ3) The conjectures are extrinsically useful In early iterations, UseFor quickly identifies
many “easy” theorems accessible through shallow search. Crucially, usefulness continues to in-
crease in later iterations, indicating that the system discovers progressively deeper and less trivial
results. The growth of this metric empirically suggests that UseFor can generate theorems that are
regarded as useful in the real-world by LLM-as-judge (and thus human). In Appendix B.5, we
provide examples of extrinsically useful theorems conjectured by our model. In the case of group
theory, our model conjectures less extrinsically useful theorems than base Minimo (average across 3
runs). However, using an LLM in order to compare the union of all conjectures generated during our
3 runs (detailed in Appendix B.3), we are able to find that in total, our method generates 23 conjec-
tures not semantically equivalent to those of Minimo. Meanwhile, Minimo generates 21 conjectures
not equivalent to ours and 64 conjectures are generated by both models. Therefore, our model still
remains diverse and provides complementary results to those of Minimo.

Figure 3: Extrinsic Evaluation: Number of deduplicated useful theorems per iteration, as determined
by GPT-4.1 as a judge and proved by an SMT solver.

Figure 4: Comparison showing the
necessity of usefulness training.

(RQ4) Usefulness training is necessary. This experiment
evaluates how our usefulness training signal affects perfor-
mance (Figure 4). We focus here on the domain of arith-
metic, though the same pattern holds in the other domains. As
shown in Figure 4, if training is omitted, the system performs
markedly worse: extrinsically, fewer theorems are judged to
be useful by LLM-as-a-judge and SMT solver. This demon-
strates the importance of training for updating the conjecturer
with usefulness feedback steers it toward generating conjec-
tures that are genuinely valuable for future proofs.

5 CONCLUSION AND DISCUSSION

We studied automated conjecturing from minimal axioms as a prerequisite to scalable, self-
improving theorem proving. While prior self-play systems such as (Poesia et al., 2024) use dif-
ficulty (low proof log-probability) as the sole training signal, we argued that difficulty alone is in-
sufficient for theory building. We introduced a usefulness-aware self-play framework that evaluates
conjectures by their downstream impact: whether they are actually reused in subsequent proofs and
whether their inclusion increases the success likelihood of proving other targets. This dual criterion
operationalizes the intuition that valuable theorems function as compression primitives for mathe-
matics, turning isolated wins into reusable structure. Integrated into the self-play loop, the metric
selects, promotes, and trains on lemmas that reshape future proof search through usefulness.

Across arithmetic, propositional logic, and group theory, UseFor steadily increases both the intrinsic
reuse of conjectured theorems and the extrinsic usefulness of its discoveries. Performance improves
over successive iterations, with the system progressing from “easy” lemmas to conjectures requiring
deeper proofs. Ablation studies show that training both the prover and conjecturer with usefulness
feedback is necessary: removing either sharply reduces both intrinsic and extrinsic metrics. To-
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gether, these findings confirm that usefulness-aware self-play can build coherent and cumulative
theories directly from axioms.

Limitations and future work. In order to avoid the risk of data contamination, our study focuses
on relatively small models, limited axioms, and fixed search budgets. Scaling to richer foundations
(e.g., Lean, Isabelle) and larger models remains an open but promising direction. Our method pro-
vides potential for synthetic data generation. We have previously seen that training on synthetic data
to finetune LLM-based provers such as in Dong & Ma (2025), which built on Minimo’s method-
ology, has led to strong results. Incorporating a notion of “usefulness”, as explored in our work,
could further enhance the data quality and diversity, thus strengthening the provers. In addition,
our method offers the potential for lemma generation at larger scale, allowing for the model to have
access to powerful and useful lemmas for use for its own theorem proving. However, applying ap-
proaches like UseFor on bigger pretrained models for conjecturing, such as LLMs, brings the novel
risk of data contamination. In this case, benchmarking a conjecturing and discovery model becomes
extremely difficult, as it is likely that the desired theorems are contained within the training set, even
if the model is constructing the theorem indirectly. Therefore, future work should consider how
to mitigate such data leakage concerns in the setting where LLMs are used for conjecturing new
mathematical theorems.
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A AXIOMS

We now provide all the axioms for the three domains considered in our experiments in Section 4.
They are taken from the Minimo paper (Poesia et al., 2024) and formalized in the Peano lan-
guages (Poesia & Goodman, 2023).

Arithmetic
= : [nat -> nat -> prop].
nat : type.

z : nat.
s : [nat -> nat].
o : nat.

+ : [nat -> nat -> nat].
* : [nat -> nat -> nat].

o_s : (= o (s z)).
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+_z : [(’n : nat) -> (= (+ ’n z) ’n)].
+_s : [(’n : nat) -> (’m : nat) -> (= (+ ’n (s ’m)) (s (+ ’n ’m)))].

*_z : [(’n : nat) -> (= (* ’n z) z)].
*_s : [(’n : nat) -> (’m : nat) -> (= (* ’n (s ’m)) (+ ’n (* ’n ’m)))].

nat_ind : [(’p : [nat -> prop]) -> (’p z) -> [(’n : nat) ->
(’p ’n) -> (’p (s ’n))] -> [(’n : nat) -> (’p ’n)]].

#backward nat_ind.
#forward +_z ((+ ’n z) : nat).
#forward +_s ((+ ’n (s ’m)) : nat).
#forward *_z ((* ’n z) : nat).
#forward *_s ((* ’n (s ’m)) : nat).

Propositional logic
prop : type.

false : prop.

/* Connectives */
not : [prop -> prop].
and : [prop -> prop -> prop].
or : [prop -> prop -> prop].
iff : [prop -> prop -> prop].

/* Introduction rule for conjunction */
#backward and_i.
and_i : [(’P : prop) -> (’Q : prop) -> ’P -> ’Q -> (and ’P ’Q)].
/* Elimination rules for conjunction */
#forward and_el (’_ : (and ’P ’Q)).
and_el : [(’P : prop) -> (’Q : prop) -> (and ’P ’Q) -> ’P].
#forward and_er (’_ : (and ’P ’Q)).
and_er : [(’P : prop) -> (’Q : prop) -> (and ’P ’Q) -> ’Q].

/* Introduction rules for disjunction */
#backward or_il.
or_il : [(’P : prop) -> (’Q : prop) -> ’P -> (or ’P ’Q)].
#backward or_ir.
or_ir : [(’P : prop) -> (’Q : prop) -> ’Q -> (or ’P ’Q)].
/* Elimination rule for disjunction */
#backward or_e infer infer infer infer subgoal subgoal.
or_e : [(’P : prop) -> (’Q : prop) -> (’R : prop) ->

(or ’P ’Q) -> [’P -> ’R] -> [’Q -> ’R] -> ’R].

/* Introduction rule for negation */
#backward not_i.
not_i : [(’P : prop) -> [’P -> false] -> (not ’P)].
/* Elimination rule for negation */
not_e : [(’P : prop) -> (not ’P) -> ’P -> false].
#backward exfalso.
exfalso : [false -> (’P : prop) -> ’P].

/* Introduction rules for equivalence */
#backward iff_i.
iff_i : [(’P : prop) -> (’Q : prop) -> [’P -> ’Q] -> [’Q -> ’P] -> (iff ’

P ’Q)].
/* Elimination rules for equivalence */
#forward iff_el (’_ : (iff ’P ’Q)).
iff_el : [(’P : prop) -> (’Q : prop) -> (iff ’P ’Q) -> [’P -> ’Q]].
#forward iff_er (’_ : (iff ’P ’Q)).
iff_er : [(’P : prop) -> (’Q : prop) -> (iff ’P ’Q) -> [’Q -> ’P]].
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/* Excluded middle */
#forward em.
em : [(’P : prop) -> (or ’P (not ’P))].

Group theory
= : [(’t : type) -> ’t -> ’t -> prop].

G : type.

op : [G -> G -> G].
id : G.

/* Associativity */
#forward op_assoc ((op (op ’a ’b) ’c) : G).
op_assoc : [(’a : G) -> (’b : G) -> (’c : G) ->

(= (op (op ’a ’b) ’c) (op ’a (op ’b ’c)))].

/* Commutativity */
#forward op_comm ((op ’a ’b) : G).
op_comm : [(’a : G) -> (’b : G) -> (= (op ’a ’b) (op ’b ’a))].

/* Identity */
#forward id_l.
id_l : [(’a : G) -> (= (op id ’a) ’a)].

/* Inverse */
inv : [G -> G].
#forward inv_l.
inv_l : [(’a : G) -> (= (op (inv ’a) ’a) id)].

B EXTRINSIC EVALUATION

In order to perform extrinsic evaluation, we run 5 iterations of our extrinisc evaluation pipeline, and
take the average of the 5 results in order to mitigate variance from different runs of LLM evals. Our
extrinsic evaluation pipeline consists of two steps: usefulness checking (Appendix B.1), deduplica-
tion (Appendix B.2), and SMT solving. In usefulness checking, we prompt the model concurrently
on all conjectures generated by the model and keep the ones marked as useful by the LLM. As we
are concurrently requesting for usefulness, we are likely to get a large amount of duplicate conjec-
tures. We therefore make a second pass, calling the model on the useful conjectures to deduplicate
them, keeping only sufficiently different theorems so as to get more reasonable results. Finally,
we leverage the Z3 SMT solver (De Moura & Bjørner, 2008) to automatically prove the remaining
conjectures and count only the proven ones. We found Z3 to be highly effective in proving these
conjectures, as they are derived from axioms.

In the specific case of group theory, we noticed the variance in LLM evaluations was significantly
higher than other domains, and the LLM had a very high rate of returning false problems. We solved
this by running the SMT solver first, and giving a custom deduplication prompt (Appendix B.4) with
examples for group theory.

B.1 USEFULNESS CHECKING PROMPT

You are tasked to judge whether a given lean theorem could be considered
useful for an automatic theorem prover to have among its known
theorems.

This theorem prover has only access to the following axioms and known
theorems:

‘‘‘
‘‘‘
{known_theorems}
As well as access to the ‘rfl‘ and ‘rewrite‘ commands

13
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Here is the theorem you are to evaluate
‘‘‘lean4
{generated_conjecture}
‘‘‘
Think through the problem step by step. Translate the problem into

natural language, then think of what the possible uses of the theorem
could be, whether it’s obviously true and whether it means something

.
On the last line, say either USEFUL or NOT USEFUL and nothing else.

B.2 DEDUPLICATION PROMPT

I have a set of lean theorems, some of which are very similar to each
other. I want to use them as tactics for proof generation.

Please remove the duplicates, so that I can have a list of only unique
theorems.

For example, the following four theorems would be duplicates of each
other:

‘‘‘lean4
theorem problem1 : (v0 : Nat) -> v0 * 1 = v0
theorem problem2 : (v0 : Nat) -> (v1 : Nat) -> v1 * 1 = v1
theorem problem3 : (v0 : Nat) -> (v1 : Nat) -> (v2 : v0 = v1) -> v1 * 1 =

v1
theorem problem4 : (v0 : Nat) -> v0 * (Nat.succ 0) = v0
‘‘‘
The inclusion of an extra variable in problem 2 doesn’t change the fact

that the result is exactly the same, and the different names for the
variable doesn’t affect the result.

Problem 3 introduces an irrelevant hypothesis, which doesn’t get used in
the theorem, and the conclusion is still the same.

The last one is a trivial result of the others, as 1 is defined as Nat.
succ 0 in this case.

Here is my list of theorems for you to remove duplicates for.
{}
I also have attached an explanation for why each could be useful for a

theorem prover.
{}
Think it through step by step, and then return the list of unique

theorems from this list in a list format inside of a ‘‘‘lean4‘‘‘ code
block. Make sure your answer is inside the very last lean codeblock.
Please make sure to repeat the theorems exactly as I wrote them.

B.3 DISTINGUISHING UNIQUE CONJECTURES BETWEEN MODELS

As seen in Appendix B, each experiment involves 5 iterations in order to get sets of extrinsically
useful conjectures, each of which gives a slightly different set of extrinsically useful conjectures. In
order to determine which conjectures were only conjectured by one model, we first union the sets we
obtained from each of the 5 iterations we obtained for each model. From this, we get a resulting set
of all conjectures considered at some point useful by the LLM for each model we wish to compare.
We then perform deduplication (Appendix B.2), as there might be equivalent conjectures between
iterations. We then union our two resulting sets together and call the LLM with our distinguishing
prompt, and determine which model conjectured each of the resulting conjectures, with the following
prompt:

I have the following list of lean theorems. I would like you to select
all ‘unique‘ lean4 theorems, that is ones that have no other theorem
that is semantically equivalent in the list.

For example, the following four theorems would be duplicates of each
other:

‘‘‘lean4
theorem problem1 : ((v0 : Group) -> (v1 : (v0 = (v0 * (1ˆ{-1})))) ->

((1ˆ{-1}) = 1))
theorem problem2 : ((v0 : Group) -> (v1 : Group) -> ((1ˆ{-1}) = 1))
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theorem problem3 : ((v0 : Group) -> ((1ˆ{-1}) = 1))
theorem problem4 : ((v0 : Group) -> (1 = (1ˆ{-1}))
‘‘‘
Problem 1 introduces an irrelevant hypothesis as compared to problem 3,

as it makes no mention of v0 in its final claim. Therefore, these two
problems are duplicates of each other.

Problem 2 is a similar case to problem 1: It introduces an extra variable
, but does nothing with it. This is irrelevant, and makes for the
same problem.

Problem 4 is the same as problem 3, but is flipped. As we are running
this using rw, we can simply call this problem in the inverse
direction, so these two lemmas are the same.

Think this step by step, and then give your answer in a ‘‘‘lean4 ‘‘‘ code
block. Make sure to write the theorem exactly as written.

Here are the lean4 theorems:

B.4 GROUP THEORY SPECIFIC PROMPTS

I have a set of lean theorems, some of which are very similar to each
other. I want to use them as lemmas for proof generation.

Please remove the duplicates, so that I can have a list of only unique
theorems.

For example, the following four theorems would be duplicates of each
other:

‘‘‘lean4
theorem problem1 : ((v0 : Group) -> (v1 : (v0 = (v0 * (1ˆ{-1})))) ->

((1ˆ{-1}) = 1))
theorem problem2 : ((v0 : Group) -> (v1 : Group) -> ((1ˆ{-1}) = 1))
theorem problem3 : ((v0 : Group) -> ((1ˆ{-1}) = 1))
theorem problem4 : ((v0 : Group) -> (1 = (1ˆ{-1}))
‘‘‘
Problem 1 introduces an irrelevant hypothesis as compared to problem 3,

as it makes no mention of v0 in its final claim. Therefore, these two
problems are duplicates of each other.

Problem 2 is a similar case to problem 1: It introduces an extra variable
, but does nothing with it. This is irrelevant, and makes for the
same problem.

Problem 4 is the same as problem 3, but is flipped. As we are running
this using rw, we can simply call this problem in the inverse
direction, so these two lemmas are the same.

In this case, our final result would likely be:
‘‘‘lean4
theorem problem3 : ((v0 : Group) -> ((1ˆ{-1}) = 1))
‘‘‘

Here is my list of theorems for you to remove duplicates for.
{}
I also have attached an explanation for why each could be useful for a

theorem prover.
{}
Think it through step by step, and then return the list of unique

theorems from this list in a list format inside of a ‘‘‘lean4‘‘‘ code
block. Make sure your answer is inside the very last lean codeblock.
Please make sure to repeat the theorems exactly as I wrote them.

B.5 EXAMPLES OF EXTRINSICALLY USEFUL CONJECTURES

Table 1 highlights representative conjectures that our evaluation judged to be extrinsically useful
across three domains. These serve as concrete examples of the kinds of results UseFor is capable
of producing. As an illustration, UseFor produces a 5-step proof of the first propositional-logic

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

conjecture in Table 1, using only the base axioms. However, given the tactic iff elim, which
reduces an equivalence to two implications, together with the axioms

False =⇒ P, (1)
P ∧Q =⇒ P, (2)

UseFor found the following 5-step proof:

1.Split the problem into cases: by iff elim

− Case 1: False =⇒ P ∧ False

2.introduce False into hypothesis context
3.False =⇒ P ∧ False by (1)
− Case 2: P ∧ False =⇒ False

4.introduce P ∧ False into hypothesis context
5.P ∧ False =⇒ False by (2)

This example demonstrates how UseFor produces lemmas that apply broadly and compress multiple
reasoning steps into a single inference step in practice. This ability provides a crucial advantage in
Monte Carlo Tree Search, where the search space expands exponentially with depth.

We remark that these proven conjectures are also observed to be very important to the prover in
future iterations. For instance, P =⇒ ¬¬P and 1−1 = 1 often serve as powerful shortcuts,
condensing multi-step reasoning into a single step and thereby streamlining longer proofs.

Arithmetic Propositional Logic Group Theory

∀x ∈ N, x(x2 + 1) = x+ x3 False ⇐⇒ (P ∧ False) 1−1 = 1
2x = 0 =⇒ x = 0 P =⇒ ¬¬P
∀x ∈ N, x ∗ 1 = x P ⇐⇒ P ∀x ∈ G, x · x = x =⇒ x = 1

Table 1: Representative conjectures judged extrinsically useful across three considered domains.

C TRAINING DETAILS

We instantiate our GPT-2 model with 8.45M parameters, with 8 layers, 8 attention heads, a hidden
size of 512, 2048 feed forward, a vocabulary size of 128, absolute positional embeddings, and with
a maximum context of 1024. We train the language model after every iteration with 2000 steps
of the AdamW optimizer (learning rate of 1e − 4). Monte Carlo Tree Search is done with a max
expansion of 1000. We train each model over 10 iterations with 200 conjectures per iteration, and
run on between 1 and 2 H100 80GB GPUs. An average run takes between 12-24 hours on one GPU.

D THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to support writing, revision, and other text-focused
tasks, such as improving clarity, refining grammar and style, and assisting with the organization of
written content.
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