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Abstract
Abstract reasoning is a key ability for an intelligent system. Large language models (LMs) achieve above-chance performance on 
abstract reasoning tasks but exhibit many imperfections. However, human abstract reasoning is also imperfect. Human reasoning 
is affected by our real-world knowledge and beliefs, and shows notable “content effects”; humans reason more reliably when the 
semantic content of a problem supports the correct logical inferences. These content-entangled reasoning patterns are central to 
debates about the fundamental nature of human intelligence. Here, we investigate whether language models—whose prior 
expectations capture some aspects of human knowledge—similarly mix content into their answers to logic problems. We explored 
this question across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the 
Wason selection task. We evaluate state of the art LMs, as well as humans, and find that the LMs reflect many of the same 
qualitative human patterns on these tasks—like humans, models answer more accurately when the semantic content of a task 
supports the logical inferences. These parallels are reflected in accuracy patterns, and in some lower-level features like the 
relationship between LM confidence over possible answers and human response times. However, in some cases the humans and 
models behave differently—particularly on the Wason task, where humans perform much worse than large models, and exhibit a 
distinct error pattern. Our findings have implications for understanding possible contributors to these human cognitive effects, as 
well as the factors that influence language model performance.
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Significance Statement

Language models and humans both mix semantic content into their performance on logical reasoning problems, which generally re-
sults in greater success in familiar situations, but more errors in unusual ones. These results may inform the search for the origins of 
these human behaviors and may help improve applications of language models.
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Introduction
A hallmark of abstract reasoning is the ability to perform system-
atic operations over variables that can be bound to any entity 
(1, 2): the statement: “X is bigger than Y” logically implies that “Y 
is smaller than X”, no matter the values of X and Y. That is, ab-
stract reasoning is ideally content-independent (2). The capacity 
for reliable and consistent abstract reasoning is frequently high-
lighted as a crucial missing component of current AI (3–5). For 
example, while large language models (LMs) exhibit some impres-
sive emergent behaviors, including some performance on abstract 
reasoning tasks ((6–9); though cf. (10)), they have been criticized 
for failing to achieve systematic consistency in their abstract rea-
soning (e.g. (11–13)).

However, humans—arguably the best known instances of gen-
eral intelligence—are far from perfectly rational abstract reason-
ers (14, 15). Patterns of biases in human reasoning have been 
studied across a wide range of tasks and domains (15). Here, we fo-
cus on “content effects”—the finding that humans are affected by 
the semantic content of a logical reasoning problem. In particular, 
humans reason more readily and more accurately about familiar, 
believable, or grounded situations, compared to unfamiliar, un-
believable, or abstract ones. For example, when presented with 
a syllogism like the following:

All students read.
Some people who read also write essays.
Therefore some students write essays.
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humans will often classify it as a valid argument. However,

All students read.
Some people who read are professors.
Therefore some students are professors.

is much less likely to be considered valid (14, 16, 17)—despite the 
fact that the arguments above are logically equivalent (both are 
invalid). Similarly, humans struggle to reason about how to falsify 
conditional rules involving abstract attributes (18, 19), but reason 
more readily about logically equivalent rules grounded in realistic 
situations (20, 21). This human tendency also extends to other 
forms of reasoning e.g. probabilistic reasoning, where humans 
are notably worse when problems do not reflect intuitive expect-
ations (22).

The literature on human cognitive biases is extensive, but 
many of these biases can be idiosyncratic and setting-dependent. 
For example, even some seminal findings in the influential work of 
Kahneman et al. (15), like “base rate neglect,” are sensitive to set-
ting and experimental design (23). However, the content effects on 
which we focus are a notably consistent finding that has been 
documented in humans across many reasoning tasks and do-
mains: deductive, inductive, logical, or probabilistic (14, 19, 22, 
24, 25). This consistent content sensitivity contradicts the defin-
ition of abstract reasoning—that it is independent of content. 
This tension speaks to longstanding debates over the fundamen-
tal nature of human intelligence: are we best described as algebra-
ic symbol-processing systems (2, 26), or emergent connectionist 
ones (27, 28) whose inferences are grounded in learned seman-
tics? Explanations or models of content effects in cognitive 
science often focus on a single (task and content-specific) phe-
nomenon and invoke bespoke mechanisms that only apply to 
these specific settings (e.g. (21)). A more general understanding 
of what leads to this blending of logical and semantic content is 
lacking.

In this work, we examine whether LMs also blend semantic 
content with logic. LMs possess prior knowledge that is shaped 
by their training. Indeed, the goal of the “pretrain and adapt” or 
“foundation models” (29) paradigm is to endow a model with 
broad prior knowledge for later tasks. Thus, LM representations 
often reflect human semantic cognition; e.g. language models re-
produce patterns like association and typicality effects (30, 31), 
and LM predictions can reproduce human knowledge and beliefs 
(32, 33). Here, we explore whether this prior knowledge impacts 
LM performance in logical reasoning tasks. While various recent 
works have explored biases and imperfections in language mod-
els’ performance (e.g. (12, 13, 34, 35)), we focus specifically on 
whether content interacts with logic in these systems in the 
ways it does for humans. Specifically, we hypothesize that while 
LMs and humans will not always show identical answer patterns, 
LMs will show directionally similar effects to those observed in 
humans. In particular, we test whether LMs show facilitation 
when semantic content supports the logical answer, and interfer-
ence when it does not. This question has significant implications 
both for characterizing LMs and potentially for understanding hu-
man cognition, contributing new ways of understanding the bal-
ance, interactions, and trade-offs between the abstract and 
grounded capabilities of a system and suggesting new ways of 
thinking about the potential nature of the mechanisms at play 
in the human case.

We explore how the content of logical reasoning problems af-
fects the performance of a range of large LMs (36–38). To avoid po-
tential dataset contamination, we create entirely new datasets 
using designs analogous to those used in prior cognitive work, 

but with a variety of semantic instantiations that have not been 
used in prior research, and also collect directly comparable hu-
man data with our new stimuli. We find that LMs reproduce the 
direction of human content effects across three different logical 
reasoning tasks (Fig. 1).  We first explore a simple natural language 
inference (NLI) task and show that models and humans answer 
fairly reliably, with relatively modest influences of content. We 
then examine the more challenging task of judging whether a syl-
logism is valid, finding that models and humans are both biased 
by the believability of the conclusion. We finally consider realistic 
and abstract/arbitrary versions of the Wason selection task (19)— 
a task introduced over 50 years ago that demonstrates a failure of 
systematic human reasoning—and show that LMs and humans 
perform better with a realistic framing. Our findings with human 
participants replicate and extend existing findings in the cognitive 
literature. We also report novel analyses of item-level effects, and 
the effect of content and items on continuous measures of model 
and human responses. Finally, we note a number of cases where 
the humans and models do not align, for example on the difficult 
Wason task, where large LMs generally outperform humans and 
their error patterns differ. We close with a discussion of the pos-
sible implications of these findings for understanding human cog-
nition as well as the performance of language models.

Evaluating content effects on logical tasks
We evaluate content effects on three logical reasoning tasks 
(depicted in Fig. 1). These three tasks involve different types of 
logical inferences, and different kinds of semantic content. 
However, these distinct tasks admit a consistent definition of con-
tent effects: the extent to which reasoning is facilitated when the 
semantic content supports the correct logical inference, and cor-
respondingly the extent to which reasoning is harmed when se-
mantic content conflicts with the correct logical inference (or, in 
the Wason tasks, when the content is simply arbitrary). We also 
evaluate versions of each task where the semantic content is re-
placed with nonsense nonwords, which lack semantic content 
and thus should neither support nor conflict with reasoning per-
formance. (However, note that in some cases, particularly the 
Wason tasks, changing to nonsense content requires more sub-
stantially altering the kinds of inferences required in the task; 
see Materials and methods.)

Natural language inference
The first task we consider has been studied extensively in the 
natural language processing literature (39). In the classic NLI 
problem, a model receives two sentences, a “premise” and a 
“hypothesis”, and has to classify them based on whether the hy-
pothesis “entails”, ‘contradicts’, or “is neutral to” the premise. 
Traditional datasets for this task were crowd-sourced (40) leading 
to sentence pairs that don’t strictly follow logical definitions of en-
tailment and contradiction. To make this task more strictly logic-
al, we follow Dasgupta et al. (41) to generate comparisons (e.g. 
X is smaller than Y). We then give participants an incomplete in-
ference such as “If puddles are bigger than seas, then…” and ask 
them to choose between two possible hypotheses to complete it: 
“seas are bigger than puddles” and “seas are smaller than 
puddles.” Note that one of these completions is consistent with 
real-world semantic beliefs i.e. “believable”, but is logically incon-
sistent with the premise, while the other is logically consistent 
with the premise but contradicts real world beliefs—thus, logical 
consistency and believability can be manipulated independently. 
We can then evaluate whether models and humans answer more 
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accurately when the logically correct hypothesis is believable; 
that is, whether the content affects their logical reasoning. We hy-
pothesized that both LMs and humans would perform relatively 
well on these simple tasks—and thus that both would show min-
imal content effects.

However, content effects are generally more pronounced in dif-
ficult tasks that require extensive logical reasoning (16, 24). We 
therefore consider two more challenging tasks where human con-
tent effects have been observed in prior work.

Syllogisms
Syllogisms (42) are a simple argument form in which two true 
statements necessarily imply a third. For example, the statements 
“All humans are mortal” and “Socrates is a human” together imply 
that “Socrates is mortal.” But human syllogistic reasoning is not 
purely abstract and logical; instead it is affected by our prior be-
liefs about the contents of the argument (14, 17, 43). For example, 
Evans et al. (14) showed that if participants were asked to judge 
whether a syllogism was logically valid or invalid, they were 
biased by whether the conclusion was consistent with their be-
liefs. Participants were very likely (90% of the time) to mistakenly 
say an invalid syllogism was valid if the conclusion was believ-
able, and thus mostly relied on belief rather than abstract reason-
ing. Participants would also sometimes say that a valid syllogism 
was invalid if the conclusion was not believable, but this effect 
was somewhat weaker (but cf. (44)). These “belief-bias” effects 
have been replicated and extended in various subsequent studies 
(17, 44). We therefore hypothesized that language models would 
likewise be more likely to endorse an argument as valid if its con-
clusion is believable, or to dismiss it as invalid if its conclusion is 
unbelievable.

The Wason selection task
The Wason selection task (19) is a logic problem that can be chal-
lenging even for humans with substantial education in logic. 
Participants are shown four cards, and are told that each card 
has a letter on one side, and a number on the other. The partici-
pants are then told a rule such as: “if a card has a ‘D’ on one 
side, then it has a ‘3’ on the other side”. The four cards respectively 
show “D”, “F”, “3”, and “7”. The participants are then asked which 
cards they need to flip over to check if the rule is true or false. 
The correct answer is to flip over the cards showing “D” and “7”. 
However, Wason (19) showed that while most participants 

correctly chose “D”, they were much more likely to choose “3” 
than “7”. That is, the participants should check the contrapositive 
of the rule (“not 3 implies not D”, which is logically implied), but in-
stead they confuse it with the converse (“3 implies D”, which is not 
logically implied). Furthermore, Wason even attempted instruct-
ing the subjects not to assume the converse, using examples and 
explanations, but even with this extra instruction very few sub-
jects produced completely correct responses. This is therefore a 
classic task in which reasoning according to the rules of formal log-
ic does not come naturally for humans, and thus there is potential 
for prior beliefs and knowledge to affect reasoning.

Indeed, the difficulty of the Wason task depends upon the con-
tent of the problem. Past work has found that if an identical logical 
problem is instantiated in a common situation, particularly a social 
rule, participants are much more accurate (20, 21, 45). For example, 
if participants are told the cards represent people, and the rule is “if 
they are drinking alcohol, then they must be 21 or older” and the 
cards show “beer”, “soda”, “25”, “16”, then many more participants 
correctly choose to check the cards showing “beer” and “16”. We 
therefore hypothesized that LMs would similarly show facilitated 
reasoning about realistic rules, compared to the more-abstract ar-
bitrary ones. (Note that in our Wason task implementations, 
we forced participants and LMs to choose exactly two cards, in or-
der to align answer formats between the humans and LMs.) 
However, we note that other studies have found that the facilita-
tion can be quite sensitive to the particular rule evaluated; several 
studies found poor performance even with seemingly plausible 
rules (46, 47). The extent of content effects on the Wason task 
also depends upon background knowledge; mathematical educa-
tion is associated with improved reasoning on abstract Wason 
tasks (48, 49). However, even experienced participants are far 
from perfect—undergraduate mathematics majors and academic 
mathematicians achieved less than 50% accuracy at the arbitrary 
Wason task (49). This illustrates the challenge of abstract logical 
reasoning, even for experienced humans. As we will see in the 
next section, many human participants did struggle with our ver-
sions of these tasks.

Results
We summarize our primary results in Fig. 2. In each of our three 
tasks, humans and models show similar levels of accuracy across 
conditions. Furthermore, in keeping with our hypothesis, humans 

Fig. 1. Manipulating content within fixed logical structures. In each of our three datasets (rows), we instantiate different versions of the logical problems 
(columns). Different versions of a problem offer the same logical structures and tasks, but instantiated with different entities or relationships between 
those entities. The relationships in a task may either be consistent with, or violate real-world semantic relationships, or may be nonsense, without 
semantic content. In general, humans and models reason more accurately about belief-consistent or realistic situations or rules than belief-violating or 
arbitrary ones. (For brevity this figure presents a subset of the problem text; complete example problems are included in Fig. S9).
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and models show similar content effects on each task, which we 
measure as the advantage when reasoning about logical situa-
tions that are consistent with real-world relationships or rules. 
In the simplest NLI task, humans and all models show high ac-
curacy and relatively minor effects of content. When judging 
the validity of syllogisms, both humans and models show more 
moderate accuracy, and significant advantages when content 
supports the logical inference. Finally, on the Wason selection 
task, humans and models show even lower accuracy, and again 
substantial content effects. We describe each task, and the cor-
responding results and analyses, in more detail below.

Natural language inference
The relatively simple logical reasoning involved in this task 
means that both humans and LMs exhibit high performance, 
and correspondingly show relatively little effect of content 
(Fig. 3). We do not detect a statistically significant effect of con-
tent on accuracy in humans or any of the LMs in mixed-effects 
logistic regressions controlling for the random effect of items 
(or χ2 tests where regressions did not converge due to ceiling ef-
fects; all z < 1.21 or χ2 < 0.1, all P > 0.2; see Supplementary 
Material C.1 for full results). However, we do find a statistically 
significant relationship between human and model accuracy at 
the item level (t(832) = 3.49, P < 0.001; Fig. S30—even when con-
trolling for condition. Furthermore, as we discuss below, further 
investigation into the model confidence shows evidence of con-
tent effects on this task as well.

Syllogisms
Syllogism validity judgements are significantly more challenging 
than the NLI task above; correspondingly, both humans and LMs 
exhibit lower accuracy. Nevertheless, humans and most LMs are 
sensitive to the logical structure of the task. However, both hu-
mans and LMs are strongly affected by the syllogism content 
(Fig. 4), as in prior human studies (16). If the semantic content sup-
ports the logical inference—that is, if the conclusion is believable 
and the argument is valid, or if the conclusion is unbelievable and 
the argument is invalid—humans and all LMs tend to answer 

more accurately (all z ≥ 2.25 or χ2 > 6.39, all P ≤ 0.01; see 
Supplementary Material C.2 for full results).

Two simple effects contribute to this overall content effect: that 
belief-consistent conclusions are judged as logically valid and that 
belief-inconsistent conclusions are judged as logically invalid. As 
in prior works, the dominant effect is that humans and models 
tend to say an argument is valid if the conclusion is belief-consistent, 
regardless of the actual logical validity. If the conclusion is belief- 
violating, humans and models do tend to say it is invalid more fre-
quently, but are generally more sensitive to actual logical validity 
in this case. Specifically, we observe a significant interaction be-
tween the content effect and conclusion believability in humans, 
PaLM 2-L, Flan-PaLM 2, and GPT-3.5 (all z > 5.9 or χ2 > 14.3, all 
P < 0.001); but do not observe a significant interaction in Chinchilla 
or PaLM 2-M (both χ2 < 0.001, P > 0.99). Both humans and models ap-
pear to show a slight bias towards saying syllogisms with nonsense 
words are valid, but again with some sensitivity to logic.
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Fig. 2. Across the three tasks we consider, various language models and humans show similar patterns of overall accuracy and directions of content 
effects on reasoning. The vertical axis shows accuracy when the content of the problems supports the logical inference. The horizontal axis shows 
accuracy when the content conflicts (or, in the Wason task, when it is arbitrary). Thus, points above the diagonal indicate an advantage when the content 
supports the logical inference. a) On basic NLIs, both humans and LMs demonstrate high accuracy across all conditions, and thus relatively little effect of 
content. b) When identifying whether syllogisms are logically valid or invalid, both humans and LMs exhibit moderate accuracy, and substantial content 
effects. c) On the Wason selection task, the majority of humans show fairly poor performance overall. However, the subset of subjects who take the 
longest to answer show somewhat higher accuracy, primarily on the realistic tasks—i.e. substantial content effects. On this difficult task, LMs generally 
exceed humans in both accuracy and magnitude of content effects. (Throughout, errorbars are bootstrap 95% CIs).
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Fig. 3. Detailed results on the NLI tasks. Both humans (left) and all 
models show relatively high performance, and relatively little difference 
in accuracy between belief-consistent and belief-violating inferences, or 
even nonsense ones.
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Furthermore, even when controlling for condition, we find a 
significant correlation between item-level accuracy in humans 
and LMs (t(345) = 4.98, P < 0.001), suggesting shared patterns in 
the use of lower-level details of the logic or content.

The Wason selection task
As in the prior human literature, we found that the Wason task 
was relatively challenging for humans, as well as for language 
models (Fig. 5). Nevertheless, we observed significant content ad-
vantages for the Realistic tasks in humans, and in Chinchilla, 
PaLM 2-L, and GPT-3.5 (all z > 2.2, all P < 0.03; Supplementary 
Material C.3). We only observed marginally significant advantages 
of realistic rules in PaLM 2-M and Flan-PaLM 2 (both z ≥ 1.78, both 

P ≤ 0.08), due to stronger item-level effects in these models 
(though the item-level variance does not seem particularly un-
usual; see Supplementary Material B.8.3). Intriguingly, some lan-
guage models also show better performance at the versions with 
Nonsense nouns compared to the Arbitrary ones, though general-
ly Realistic rules are still easier. We also consider several rule var-
iations in Fig. S25.

Our human participants struggled with this task, as in prior re-
search, and did not achieve significantly above-chance perform-
ance overall (although their behavior is not random; see below). 
However, spending longer on logical tasks can improve perform-
ance (50), and thus many studies split analyses by response time 
(51). Indeed, human accuracy was positively and significantly as-
sociated with response time (z = 4.44, P < 0.001; Supplementary 
Material C.3.1 see Fig. 6. To visualize these reaction time effects 
in our Figs. 2 and 5, we split subjects into “slow” and “fast” groups. 
The distribution of times taken by subjects is quite skewed, with a 
long tail. We separate out the top 15% of subjects that take the lon-
gest, who spent more than 80 s on the problem, as the slow group. 
These subjects showed above chance performance in the Realistic 
condition, but still performed near chance in the other conditions. 
Intriguingly, we also find that chain-of-thought techniques (loose-
ly giving the models time to “think”) can improve the performance 
of strong models on the Arbitrary and Nonsense conditions of the 
Wason task (Supplementary Material B.3). In subsequent sec-
tions (and Supplementary Material B.7.1) we further investigate 
the predictive power of human response times on the other 
tasks.

We collected the data for the Wason task in two different 
experiments; after observing the lower performance in the first 
sample, we collected a second sample where we offered a per-
formance bonus for this task. We did not observe significant dif-
ferences in overall performance or content effects between 
these subsets, so we collapse across them in the main analyses; 
however, we present results for each experiment and some add-
itional analyses in Supplementary Material B.6.
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humans and models exhibit substantial content effects—a strong bias towards saying an argument is valid if the conclusion is consistent with 
expectations (cyan), and some bias towards saying the argument is invalid if the conclusion violates expectations (maroon). (This figure plots the 
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Fig. 5. Detailed results on the Wason task. Human performance is low, 
even on Realistic rules. However, the subset of subjects who answer more 
slowly show above chance accuracy for the realistic rules (cyan), but not 
for the arbitrary ones (pink). Furthermore, each of the language models 
reproduces this pattern of advantage for the realistic rules. In addition, 
two of the larger models perform above chance at the arbitrary rules. (The 
dashed line corresponds to chance—a random choice of two cards. LMs 
and humans were forced to choose exactly two cards).
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Robustness of results to altering prompting and scoring
LM behavior is frequently sensitive to evaluation details. Thus, we 
performed several experiments to confirm that our results were 
robust to the methods used. We outline these experiments here; 
seein Supplementary Material B.2 for full results. First, removing 
the prequestion instructions does not substantially alter the over-
all results (Supplementary Material B.2.1). Next, the DC-PMI scor-
ing correction is not the primary driver of content effects 
(Supplementary Material B.2.2). Finally, we consider few-shot 
evaluation. Giving few-shot examples yields some mild improve-
ments in accuracy (with greater improvement in the simpler 
tasks) but does not eliminate content effects (Supplementary 
Material B.2.4). Together, these experiments suggest that our find-
ings are not strongly driven by idiosyncratic details of our evalu-
ation and thus support the robustness of our findings.

Chain-of-thought can sometimes push large models  
to rely more on logic
Chain-of-thought methods (52) have been shown to improve per-
formance on some reasoning tasks, by allowing the models to pro-
duce a reasoning trace before giving their final answer. We tested 
the benefits of these strategies (Supplementary Material B.3), and 
find that chain-of-thought prompting can, in some cases, push 
large models to rely more on logical strategies, thereby reducing 
content effects through improving performance on less familiar 
or conflicting situations—particularly if those examples demon-
strate precisely the type of reasoning that’s required.

Variability across different language models
We generally find similar content effects across the various mod-
els we evaluate, but there are a few notable differences. First, 
across tasks larger models tend to be more accurate overall (e.g. 
comparing the large vs. the medium variants of PaLM 2); however, 
this does not necessarily mean they show weaker content effects. 
While it might be expected that instruction-tuning would affect 
performance, the instruction-tuned models (Flan-PaLM 2 and 
GPT-3.5-turbo-instruct) do not show consistent differences in 

overall accuracy or content effects across tasks compared to the 
base language models—in particular, Flan-PaLM 2 performs quite 
similarly to PaLM 2-L overall. (However, there are some more not-
able differences in the distributions of log-probabilities from the 
instruction-tuned models; Supplementary Material B.10.)

On the syllogisms, there are some noticeable differences. 
GPT-3.5, and the larger PaLM 2 models, have high sensitivity for 
identifying valid arguments but relatively less specificity. By con-
trast, PaLM 2-M and Chinchilla models rely more on content ra-
ther than logic; i.e. they judge consistent conclusions as more 
valid than violating ones, irrespective of their logical structure. 
The sensitivity to logic in the nonsense condition also varies 
across models—the PaLM models are fairly sensitive, while GPT 
3.5 and Chinchilla both have a strong bias to answer “valid” to 
all nonsense propositions irrespective of logic.

On the Wason task, the main difference of interest is that the 
PaLM 2 family of models show generally greater accuracy on the 
nonsense problems than the other models do, comparable to their 
performance on the Realistic condition in some cases.

In Supplementary Material B.3, we also test several newer 
Gemini (53) models on the Syllogisms and Wason tasks, and ob-
serve similar effects to the above, showing that these phenomena 
still hold with more recent models. We also test the smaller, open- 
source Gemma 7B model (54), which shows low performance over-
all, with strong content biases on the syllogisms task. Thus, at 
least with present models, a fairly large scale may be needed to 
observe significant differences in performance modulated by con-
tent on complex logic problems like the Wason task, but simpler 
content effects may be observed even at smaller scales.

Model confidence relates to human response 
times
LMs do not produce a single answer, but a probability distribution 
over the possible answers. This distribution can provide further 
insight into their processing. For example, the probability as-
signed to the top answers, relative to the others, can be used as 
a confidence measure. By this measure, LMs are often somewhat 
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Fig. 6. There is a strong relationship between response time and answer accuracy in the Wason tasks; subjects who take longer to answer are more 
accurate on average. Participants who take sufficiently long to answer perform above chance in the Realistic tasks. There are hints of a similar effect in 
the Arbitrary condition, but we do not have the power to detect it. (Curves are logistic regression fits, with 95% CIs. We also plot regressions dropping 
outliers with time greater than 180 s, to show that the effect is not driven solely by outliers).
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calibrated; i.e. the probability they assign to the top answer ap-
proximates the probability that top answer is correct (e.g. (55)). 
Human response times (RTs) relate to similar variables, including 
confidence, surprisal, and task difficulty. Thus, prior works have 
related LM confidence to human response times for linguistic 
stimuli (e.g. (56)). Here, we correspondingly analyze how LM con-
fidence relates to the task content and logic, answer correctness, 
and human RTs.

We summarize these results in Fig. 7. We measure model confi-
dence as the difference in prior-corrected log-probability between 
the top answer and the second highest—if the model is almost un-
decided between several answers, this confidence measure will be 
low, while if the model is placing almost all its probability mass on 
a single answer, the confidence measure will be high. In 
mixed-effects regressions predicting model confidence from task 
variables and average human RTs on the same problem, we find sev-
eral interesting effects. First, LMs tend to be more confident on cor-
rect answers (i.e. they are somewhat calibrated). Task variables also 
affect confidence; models are generally less confident when the con-
clusion violates beliefs, and more confident for the realistic rules on 
the Wason task. Furthermore, even when controlling for task varia-
bles and accuracy, there is a statistically significant negative associ-
ation with human response times on the NLI and syllogisms tasks 
(respectively t(655) = −3.39, P < 0.001; and t(353) = −2.03, P < 0.05; 
Supplementary Material C.4)—that is, models tend to show more 
confidence on problems where humans likewise respond more rap-
idly. We visualize this relationship in Fig. S34.

Analyzing components of the Wason responses
Because each answer to the Wason problems involves selecting 
a pair of cards, we further analyzed the individual cards chosen. 
In each problem, two cards respectively match and violate 
the antecedent, and similarly for the consequent. The correct an-
swer is to choose the card for which the Antecedent is True (AT), 
and the card for which the Consequent is False (CF). In Fig. 8, 
we examine human and model choices; we quantify these ana-
lyses with a multinomial logistic regression in Supplementary 
Material C.3.2.

Even when performance is close to chance, behavior is gener-
ally not random. As in prior work, humans do not consistently 
choose the correct answer (AT, CF). Instead, humans tend to ex-
hibit a matching bias; that is, they tend to choose the two cards 
that match each component of the rule (AT, CT). However, in 

the Realistic condition, slow humans answer correctly some-
what more often. Humans also exhibit errors besides the 
matching bias, including an increased rate of choosing the 
two cards corresponding to a single component of the rule— 
either both antecedent cards, or both consequent cards. LMs 
tend to give more correct responses than humans, and to 
show facilitation in the realistic rules compared to arbitrary 
ones. Relative to humans, LMs show fewer matching errors 
and fewer errors of choosing two cards from the same rule 
component, but more errors of choosing the antecedent false 
options. These differences in error patterns may indicate differ-
ences between the response processes engaged by the models 
and humans. (Note, however, that while model accuracies do 
not change too substantially with alternate scoring methods, 
the particular errors the models make are somewhat sensitive 
to scoring method—without the DC-PMI correction the model 
errors more closely approximate the human ones in some 
cases; Supplementary Material B.2.3).

Discussion
Humans are imperfect reasoners. We reason most effectively 
about situations that are consistent with our understanding of 
the world and often struggle to reason in situations that either vio-
late this understanding or are abstract and disconnected from the 
real world. Our experiments show that language models mirror 
these patterns of behavior. Language models also perform imper-
fectly on logical reasoning tasks and more often fail in situations 
where humans fail—when stimuli become too abstract or conflict 
with prior expectations.

Beyond these simple parallels in accuracy across different con-
ditions and tasks, we also observed more subtle parallels in lan-
guage model confidence. Language model confidence tends to be 
higher for correct answers, and for cases where prior expectations 
about the content are consistent with the logical structure. Even 
when controlling for these effects, language model confidence is 
related to human response times. Thus, language models reflect 
similarities to human content effects on reasoning at multiple lev-
els. Furthermore, these core results are generally robust across 
different language models with different training and tuning 
paradigms, different prompts, etc., suggesting that they are a fair-
ly general phenomenon of predictive models that learn from 
human-generated text. Importantly, however, humans and 
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Fig. 7. Language model confidence—as measured by the difference in(prior-corrected) log-probability between the chosen answer and the next most 
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language models also differ in interesting ways; particularly in 
their performance and error patterns on the more complex 
Wason card selection task.

Prior research on language model reasoning.
Since Brown et al. (6) showed that large language models could 
perform moderately well on some reasoning tasks, there has 
been a growing interest in language model reasoning (57). 
Typical methods focus on prompting for sequential reasoning (7, 
8, 52), altering task framing (58, 59).

In response, some researchers have questioned whether these 
language model abilities qualify as “reasoning”. The fact that lan-
guage models sometimes rely on “simple heuristics” (11), or rea-
son more accurately about frequently occurring numbers (12), 
have been cited to “rais[e] questions on the extent to which these 
models are actually reasoning” (ibid, emphasis ours). The implicit 
assumption in these critiques is that reasoning should be a purely 
algebraic, syntactic computation over symbols from which “all 
meaning had been purged” ((2); cf. (26)). In this work, we empha-
size how both humans and language models rely on content 
when answering reasoning problems—using simple heuristics in 
some contexts, and answering more accurately about frequently 
occurring situations (23, 60). Thus, abstract reasoning may be a 
graded, content-sensitive capacity in both humans and models.

Dual systems?
The idea that humans possess dual reasoning systems—an impli-
cit, intuitive system “system 1”, and a distinct explicit reasoning 
“system 2”—was motivated in large part by belief bias and 
Wason task effects (61–63). The dual system idea has more recent-
ly become popular (64), including in machine learning. Many 
works claim that current ML (including large language models) be-
have like system 1, and that we need to augment this with a clas-
sically symbolic process to get system 2 behaviour (e.g. (65)). 
These calls to action generally advocate for an explicit duality, 
with a neural network based system providing the system 1 and 

an explicitly symbolic or otherwise more structured architecture 
serving as system 2.

Our results show that a single system—a large transformer lan-
guage model—can mirror this dual behavior in humans, demon-
strating both biased and consistent reasoning without an explicit 
secondary symbolic “system 2”. In direct analogy to “fast” vs. 
“slow” responses (64) in humans, we compare model behavior on 
the complex Wason task with and without a chain-of-thought 
prompt, and find that the chain-of-thought prompt can move a 
strong model from strong content-biases to achieving fairly high 
accuracy across Arbitrary and Nonsense conditions. These findings 
integrate with prior works showing that language models can be 
prompted to exhibit “slow” or “system-2-like” sequential reasoning, 
and thereby improve their performance in domains like mathemat-
ics (7, 8, 52).

These results show that dual-system-like behaviors need not 
rely on an explicitly symbolic and separate system 2—they can in-
stead arise from implicit systems that use context to arbitrate be-
tween conflicting responses (such as intuitive answers vs. those 
supported by step-by-step outputs). This finding does not deny 
the possibility that humans may possess cognitive control mech-
anisms not currently found in LMs (66, 67); their possible integra-
tion into LMs is an exciting direction for future research.

Towards a normative account of content effects?
Various accounts of human cognitive biases frame them as “nor-
mative” by some objective. Some works explain biases through 
the application of processes—such as information gathering or 
pragmatics—that are broadly rational under a different model 
of the world (e.g. (43, 63)). Others interpret them as rational adap-
tations to reasoning under constraints such as limited memory or 
time (e.g. (68, 69))—where content effects actually support fast 
and effective reasoning in commonly encountered tasks (23, 60). 
However, most prior high-level explanations of content effects 
have focused on only a single task, such as explaining only the 
Wason task content effects with appeals to evolved social- 
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intriguingly choose options with the antecedent false and a consequent card (yellow/orange) more frequently.
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reasoning mechanisms (21). Our results show that these effects can 
emerge from simply training a large LM to imitate sufficiently large 
quantities of language produced by human culture, without expli-
citly incorporating any human-specific internal mechanisms.

This observation suggests two potential origins for these con-
tent effects. First, content effects could be directly imitated from 
the humans that generated the LM training data. Under this 
hypothesis, poor logical inferences about nonsense or belief- 
violating premises come from copying the incorrect inference pat-
terns humans use. Since humans also learn substantially from 
imitation and the cultures in which we are immersed, it is plaus-
ible that both humans and LMs could acquire some of these rea-
soning patterns by imitation.

The other possibility is that, like humans, an LM’s experience 
reflects real-world semantics, and thus LMs and humans both 
converge on these content biases that reflect this semantic con-
tent for task-oriented reasons—because it helps humans to 
draw more accurate inferences in the situations they more fre-
quently encounter (which are mostly familiar and believable), 
and helps language models to more accurately predict the (mostly 
believable) text that they encounter.

In either case, humans and models acquire surprisingly similar 
patterns of behavior (in many, though not all cases), even though 
there are important differences between these systems. What 
could give rise to these similarities? A promising direction for fu-
ture enquiry would be to causally manipulate features of LM 
training objectives and data, to explore which features contribute 
to the emergence of content biases—and which features might 
yield behavior even more similar to that of humans. In such 
work, it would be useful to experimentally manipulate the train-
ing dataset scale, and evaluate whether these biases still emerge 
from models trained on a more human-like quantity of language 
(cf. (70)). If so, these investigations could offer insights into the po-
tential origins of human patterns of reasoning. More generally, 
such investigations would offer insights into the data we should 
use to train language models.

Why might model response patterns differ  
from human ones?
The LM response patterns do not perfectly match all aspects of the 
human data. For example, on the Wason task large models gener-
ally outperform the humans, and the error patterns on the Wason 
tasks are somewhat different than those observed in humans 
(although human error patterns also vary across populations; 
(48, 49)). Similarly, not all models show the significant interaction 
between believability and validity on the syllogism tasks that hu-
mans do (14), although it is present in most models (and the hu-
man interaction similarly may not appear in all cases; (44)). 
Various factors could contribute to differences between model 
and human behaviors.

First, while we attempted to align our human and model evalu-
ation as closely as possible (cf. (59)), it is difficult to do so perfectly. 
In some cases, such as the Wason task, differences in response 
form are unavoidable—humans selected cards individually by 
clicking them, before clicking continue, while models had to joint-
ly output both answers in text, without a chance to revise their an-
swer before continuing. Moreover, it is difficult to know how to 
prompt a language model in order to evaluate a particular task. 
Language model training blends many tasks into a homogeneous 
soup, which makes controlling the model difficult. For example, 
presenting task instructions might not always lead to better per-
formance (cf. (71)). Thus, while we tried to match instructions be-
tween humans and models, it is possible that idiosyncratic details 

of our task framing may have caused the model to infer the task 
incorrectly. To minimize this risk, we tried varying these details, 
and generally observed similar overall effects. However, our 
chain-of-thought results (Supplementary Material B.3) show 
that large models can in some cases shift their performance sub-
stantially when prompted appropriately with a clear demonstra-
tion of a reasoning process. It is possible that the appropriate 
prompt conditions would thus yield more human-like behavior.

More fundamentally, however, LMs do not directly experience 
the situations to which language refers (72); grounded experience 
presumably underpins some human beliefs and reasoning. 
Indeed, humans sometimes use physical processes like gesture 
to support reasoning (73). Finally, language models experience 
language passively, while humans experience language as an ac-
tive, conventional system for social communication (e.g. (74); ac-
tive participation may be key to understanding meaning as 
humans do (28, 75). Some differences between language models 
and humans may therefore stem from differences between the 
rich, grounded, interactive experience of humans, and the impov-
erished experience of the models.

How can we achieve more abstract, context-independent 
reasoning?
If language models exhibit some of the same reasoning biases as 
humans, could some of the factors that reduce content depend-
ency in human reasoning be applied to make these models less 
content-dependent? One method to do so is through prompting, 
which can indeed help in some cases (Supplementary Material 
B3). However, we suspect achieving fully consistent reasoning 
across all tasks would likely require altering the models training. 
For humans, formal education is associated with an improved 
ability to reason logically and consistently (48, 49, 76, 77). 
However, causal evidence is scarce, because years of education 
are difficult to experimentally manipulate; thus the association 
may be partly due to selection effects, e.g. continuing in formal 
education might be more likely in individuals with stronger 
prior abilities. Nevertheless, the association with formal educa-
tion raises an intriguing question: could language models learn 
to reason more reliably with targeted formal education?

Several recent results suggest that this may indeed be a prom-
ising direction. Pretraining on synthetic logical reasoning tasks 
can improve model performance on reasoning and mathematics 
problems (78). In some cases language models can either be 
prompted or can learn to verify, correct, or debias their own out-
puts (79). Finally, language model reasoning can be bootstrapped 
through iterated fine-tuning on successful instances (80). These 
results suggest the possibility that a model trained with instruc-
tions to perform logical reasoning, and to check and correct the re-
sults of its work, might move closer to the logical reasoning 
capabilities of formally educated humans. Perhaps logical reason-
ing is a graded competency that is supported by a range of differ-
ent environmental and educational factors (28), rather than a core 
ability that must be built in to an intelligent system.

Limitations
In addition to the limitations noted above—such as the challenges 
of perfectly aligning comparisons between humans and language 
models—there are several other limitations to our work. First, we 
only considered a handful of tasks in this work—it would be useful 
to characterize human and LM content effects across a broader 
range of tasks in order to fully understand their similarities and 
differences. Second, our human participants exhibited relatively 
low performance on the Wason task. However, as noted above, 
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there are well-known individual differences in these effects that 
are associated with factors like depth of mathematical education. 
We were unfortunately unable to examine these effects in our 
data, but in future work it would be interesting to explicitly ex-
plore how educational factors affect performance on our datasets.

Another limitation is that the language models are trained on 
much greater quantities of language data than any human, which 
makes it hard to draw strong conclusions about whether these 
effects would emerge at a more human-like data scale (70). 
Furthermore, while our experiments suggest that content effects 
in reasoning can emerge from predictive learning on naturalistic 
data, they do not ascertain precisely which aspects of the large 
language model training datasets contribute to this learning. 
Other research has used controlled training data distributions to 
systematically investigate the origin of language model capabil-
ities (81, 82); it would be an interesting future direction to apply 
analogous methods to investigate the origin of content effects, 
and whether they would still emerge for a model trained on a 
more human-like quantity of language.

Materials and methods
Creating datasets
While our tasks have been extensively studied in cognitive sci-
ence, the stimuli used previously are often online in articles and 
course materials, and thus may be present in LM training data, 
which could compromise results (e.g. (83)). To reduce these con-
cerns, we generate new datasets, by following the design ap-
proaches used in prior work. We briefly outline this process 
here; see Supplementary Material A.1 for full details.

For each of our tasks, we generate multiple versions of the task 
stimuli. Throughout, the logical structure of the stimuli remains 
fixed, we simply manipulate the entities over which this logic op-
erates (Fig. 1). We generate propositions that are: Consistent with 
human beliefs and knowledge; Violate beliefs by inverting the con-
sistent statements; and Nonsense tasks about nonsense pseudo-
words about which the model should not have strong beliefs 
(e.g. kleegs are smaller than feps).

For the Wason tasks, we slightly alter our approach to fit the differ-
ent character of the tasks. We generate questions with: Realistic rules 
involving plausible relationships; Arbitrary rules; and Nonsense rules 
relating nonsense words (“if the cards have more bem, then they 
have less stope”). For the Wason task, this alters the inferences 
required; for the other conditions matching each card to the ante-
cedent or consequent is nontrivial (e.g. realizing that “shoes” is plu-
ral), but we cannot match these challenges with Nonsense words 
that have no prior associations. Thus, we use propositions about hav-
ing more/less of a nonsense attribute, which makes the inferences 
more direct than other conditions (although LMs perform similarly 
on the basic inferences across conditions; Fig. S24.

In total, our NLI dataset contains 78 questions per condition, 
our syllogisms dataset has 48 questions per Consistent/Violate 
condition (24 each valid/invalid), and our Wason dataset contains 
72 questions per Realistic/Arbitrary condition. For the latter data-
sets, the Nonsense condition contains more stimuli, as we created 
Nonsense stimuli matching stimuli from both Consistent and 
Violate conditions.

In Supplementary Material B.1, we validate the semantic con-
tent of our datasets, by showing that participants find the proposi-
tions and rules from our Consistent and Realistic stimuli much 
more plausible than those from other conditions, and that similarly 
an LM assigns higher probability to the more familiar conditions.

We attempted to create these datasets in a way that could be 
presented to the humans and language models in precisely the 
same manner (e.g. prefacing the problems with the same instruc-
tions for both the humans and the models).a

Models & evaluation
We evaluate several different families of language models (see 
Supplementary Material A.4 for a detailed comparison). First, we 
evaluate several base LMs that are trained only on language mod-
eling: including Chinchilla (37) a large model (with 70 billion pa-
rameters) trained on causal language modeling, and PaLM 2-M 
and -L (36), which are trained on a mixture of language modeling 
and infilling objectives (84). We also evaluate two instruction- 
tuned models: Flan-PaLM 2 (an instruction-tuned version of 
Palm 2-L), and GPT-3.5-turbo-instruct (38), which we generally re-
fer to as GPT-3.5 for brevity. We observe broadly similar content 
effects across all types of models, suggesting that these effects 
are not too strongly driven by a particular training objective, or 
standard fine-tuning.

For each task, we present the model with brief instructions that 
approximate the relevant human instructions. We then present 
the question, which ends with “Answer:” and assess the model 
by evaluating the likelihood of continuing this prompt with each 
of a set of possible answers. We apply the DC-PMI correction pro-
posed by Holtzman et al. (85)—i.e. we measure the change in like-
lihood of each answer in the context of the question relative to a 
baseline context, and choosing the answer that has the largest in-
crease in likelihood in context. This scoring approach is intended 
to reduce the possibility that the model would simply phrase the 
answer differently than the available choices; for example, an-
swering “this is not a valid argument” rather than “this argument 
is invalid”. This approach can also be interpreted as correcting for 
the prior over utterances. For the NLI task, however, the direct an-
swer format means that the DC-PMI correction would therefore 
control for the very bias we are trying to measure. Thus, for the 
NLI task we simply choose the answer that receives the maximum 
likelihood among the set of possible answers. We also report syl-
logism and Wason results with maximum likelihood scoring in 
Supplementary Material B.2.2; while overall accuracy changes 
(usually decreases, but with some exceptions), the direction of 
content effects is generally preserved under alternative scoring 
methods.

Human experiments
All human experimental procedures were approved by the 
DeepMind independent ethical review committee; all participants 
provided informed consent to participate. The human experi-
ments were conducted in 2023 using an online crowd-sourcing 
platform, with participants from the United Kingdom who spoke 
English as a first language, and who had over a 95% approval 
rate. We did not further restrict participation. We offered pay of 
£2.50 for our task. Our intent was to pay at a rate exceeding 
£15/h, and we exceeded this target, as most participants com-
pleted the task in less than 10 min.

Participants were first presented with a consent form detailing 
the experiment and their ability to withdraw. If they consented, 
they then proceeded to the instructions. They were then pre-
sented with one question from each of our three tasks, one at a 
time in randomized order, with randomized conditions. 
Presenting only a single item per task prevents within-task con-
tamination effects—particularly for tasks like the Wason, which 
essentially involve identical reasoning each time. Finally, partici-
pants were asked to rate the believability of three items (a Wason 
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rule and concluding proposition from the syllogisms and NLI 
tasks) on a continuous scale from 0 to 100 (with 50% indicated 
as neither agree nor disagree). The participants 5 min to answer 
each question. See Supplementary Material A.3 for further details.

We first collected a dataset from 625 participants. After observ-
ing the low Wason task accuracy, we collected an additional data-
set from 360 participants in which we offered an additional 
performance bonus of £0.50 for answering the Wason correctly, 
to motivate subjects. In this replication, we collected data only 
on the Realistic and Abstract Wason conditions. In our main ana-
lyses, we collapse across these two subsets, but we present the re-
sults for each experiment separately in Fig. S26.

Statistical analyses
Main analyses use mixed-effects logistic regressions with task 
condition variables as predictors, and controlling for random ef-
fects of items, and, where applicable, models. Full specifications 
and results are provided in Supplementary Material C.

Notes
a N.B. we adapted some problem formats compared to an earlier 

preprint that did not evaluate humans; see Supplementary 
Material A.1.4. 
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