
Dynamic Masking and Auxiliary Hash Learning for
Enhanced Cross-Modal Retrieval

Shuang Zhang1,2, Yue Wu1, Lei Shi3,∗, Yingxue Zhang4, Feifei Kou5,6,
Huilong Jin1, Pengfei Zhang7, Meiyu Liang5, Mingying Xu8

1College of Engineering, Hebei Normal University
2Hebei Provincial Key Laboratory of Information Fusion and Intelligent Control

3State Key Laboratory of Media Convergence and Communication, Communication University of China
4College of Computer and Cyber Security, Hebei Normal University

5School of Computer Science (National Pilot School of Software Engineering), BUPT
6key Laboratory of Trustworthy Distributed Computing and Service, BUPT, Ministry of Education

7School of Computer Science and Engineering, Anhui University of Science of Technology
8School of Artificial Intelligence and Computer Science, North China University of Technology

*Corresponding author: leiky_shi@cuc.edu.cn

Abstract

The demand for multimodal data processing drives the development of information
technology. Cross-modal hash retrieval has attracted much attention because it
can overcome modal differences and achieve efficient retrieval, and has shown
great application potential in many practical scenarios. Existing cross-modal
hashing methods have difficulties in fully capturing the semantic information of
different modal data, which leads to a significant semantic gap between modalities.
Moreover, these methods often ignore the importance differences of channels, and
due to the limitation of a single goal, the matching effect between hash codes is
also affected to a certain extent, thus facing many challenges. To address these
issues, we propose a Dynamic Masking and Auxiliary Hash Learning (AHLR)
method for enhanced cross-modal retrieval. By jointly leveraging the dynamic
masking and auxiliary hash learning mechanisms, our approach effectively resolves
the problems of channel information imbalance and insufficient key information
capture, thereby significantly improving the retrieval accuracy. Specifically, we
introduce a dynamic masking mechanism that automatically screens and weights
the key information in images and texts during the training process, enhancing
the accuracy of feature matching. We further construct an auxiliary hash layer
to adaptively balance the weights of features across each channel, compensating
for the deficiencies of traditional methods in key information capture and channel
processing. In addition, we design a contrastive loss function to optimize the
generation of hash codes and enhance their discriminative power, further improving
the performance of cross-modal retrieval. Comprehensive experimental results on
NUS-WIDE, MIRFlickr-25K and MS-COCO benchmark datasets show that the
proposed AHLR algorithm outperforms several existing algorithms.

1 Introduction

In the field of information retrieval, although traditional unimodal data representation is efficient
in processing single-type data, it is difficult to capture data associations and semantic details in
the face of increasingly popular cross-modal data. Cross-modal retrieval[1][2][3] as an emerging
solution, it effectively bridges the gap between heterogeneous modalities by establishing connections
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between different data types. In recent years, cross-modal hashing retrieval[4][5][6][7] has attracted
widespread attention due to its advantages of fast retrieval and efficient storage. It uses hashing tech-
nology to convert high-dimensional data into low-dimensional binary hash codes, thereby reducing
computational complexity and storage requirements while retaining semantic information.

Currently, some scholars have proposed a variety of new cross-modal hashing retrieval methods. Neu-
ral network technologies, such as convolutional neural networks (CNNs) and generative adversarial
networks (GANs), have been widely used in cross-modal hashing retrieval. CNN can effectively
extract semantic information from images through its powerful feature extraction capabilities, while
GAN generates robust hash codes through adversarial training of generators and discriminators,
thereby improving the performance of cross-modal retrieval. In addition, large language models
(LLMs) have also been introduced into cross-modal hashing retrieval, which enhance the semantic
representation of text modalities through their powerful natural language processing capabilities,
thereby improving the accuracy of cross-modal matching.

Although many methods have achieved good results in the field of cross-modal hashing retrieval, they
still face some challenges. Due to the huge semantic gap between different modalities [8][9] often
leads to inconsistent cross-modal representations, many noncritical information or noise[10] may
affect the matching accuracy, resulting in similar images and texts being mismatched[11]. Secondly,
when processing features, traditional hash layers often ignore the importance differences between
different channels [12], which can lead to insufficient capture of key information and difficulty in
effectively suppressing noise and redundant information. In addition, when hash codes are generated,
they usually rely on a single optimization goal, which may lead to insufficient performance of hash
codes in cross-modal matching.

To effectively address these challenges, we proposed a method called auxiliary hashing learning
(AHLR). It significantly improves feature extraction and alignment capability by introducing a
dynamic mask mechanism. Specifically, the dynamic mask can automatically identify and weight key
information in the image and text during the training process, effectively improving the accuracy of
matching of cross-modal features. In addition, we also constructed an auxiliary hashing layer that can
adaptively weight the features of each channel, thereby solving the problem of channel information
imbalance, while enhancing the ability to capture key information and effectively suppressing noise
interference. Finally, by introducing a contrastive loss function, minimizing the distance between
similar samples, and maximizing the distance between heterogeneous samples, the distinguishing
ability of hash codes in cross-modal retrieval is effectively enhanced, thereby improving the retrieval
accuracy. The main contributions of this paper are as follows:

• We propose a dynamic masking and auxiliary hash learning (AHLR) method for cross-
modal retrieval, which can effectively enhance feature extraction and alignment capabilities,
generate more detailed hash codes, and improve the accuracy of cross-modal hashing
retrieval.

• We introduce a dynamic masking mechanism to automatically select key information from
images and text and weight it, thereby improving the accuracy of feature alignment and
matching.

• We design an adaptive auxiliary hash learning cross-modal module that can adaptively
weight the features of each channel, enhancing the retention of key information. Moreover,
we introduce the contrast loss function to distinguish the similarity and heterogeneity of the
samples and improve cross-modal semantic consistency.

• Extensive experiments on three benchmark datasets show that our AHLR outperforms
state-of-the-art baselines, demonstrating clear performance advantages.

2 The Proposed Method

2.1 Notation and problem definition

For ease of understanding, we first introduce the following notation used in this article. Assume
that there is a training dataset O = {(Xi,Xt) |i ∈ [1, N ], t ∈ [1, N ]}, where Xi represents the i-th
image sample, Xt represents the t-th text sample and N represents the number of samples. The
size of the image is defined as X ∈ RH×W×C, where H, W, and C represent the height, width,

2



and number of channels of the image, respectively. FI and FT represent the features after the
extraction of the image and text. The dynamic attention mask is used to process the features of the
image and text data, and the generated dynamic mask matrix is defined as M. When M = 0, the
model calculates the attention weight normally, and when M = −∞, the model focuses only on
key information. The auxiliary hash layer performs channel dimensionality reduction and weighting
processing on the features to obtain the final embedded features f∗

I and f∗
T . The binary hash code Bi

is generated by the maximum probability selection method. The final hash vector is represented as
H = (B1,B2, . . . ,BK) ∈ {0, 1}K and K represents the length of the hash code.
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Figure 1: The AHLR framework consists of two main modules: 1) a cross-modal feature learning
module that extracts features from images and texts. By introducing a dynamic attention mask, it
automatically selects and weights the key information in images and texts according to the length of
the input sequence; 2) an auxiliary hash learning module that adaptively weights the features of each
channel, optimizes the feature representation to assist in the generation of hash codes, and introduces
a contrast loss function to enhance the distinguishing ability of hash codes.

2.2 Framework Architecture of AHLR

The AHLR framework in Figure1 contains two modules: Cross-modal Feature Learning Module
and Auxiliary Hash Learning Module. For cross-modal feature learning, the Vision Transformer is
employed as the image feature extractor, after which the features are fused via a Transformer to obtain
the final image representation. For the text modality, Byte Pair Encoding (BPE) is first applied to
segment the input text, followed by a Transformer-based fusion process to generate the corresponding
text representation. In order to adapt to input sequences of different lengths, the model introduces a
dynamic attention mask mechanism to automatically generate the corresponding mask matrix, so
that the model can effectively ignore irrelevant information and focus on key features. Traditional
attention mechanisms assign continuous soft weights to all tags or image patches. However, even
information with minimal contribution to the task is retained rather than discarded. In contrast,
the proposed dynamic masking mechanism adaptively selects semantic key information from both
image and text modalities during training and assigns appropriate weights. This process effectively
suppresses modality redundancy and irrelevant regions, thereby enhancing semantic consistency
across modalities, strengthening feature alignment, and ultimately improving retrieval efficiency. In
the hash code learning part, an auxiliary hash layer is designed to enhance the representation ability
of the hash code by adaptively weighting the features of each channel, and a contrast loss function
is used to strengthen the feature aggregation between similar samples, while pulling away the hash
representation of dissimilar samples to improve the retrieval performance of the model.
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2.3 Cross-modal Feature Learning Module

In the AHLR model, the cross-modal feature learning module is mainly divided into two steps,
namely image feature learning and text feature learning.

2.3.1 Image Feature Learning

First, use the Vision Transformer (ViT)[13] to extract deep features from the input image. Given an
input image of size X ∈ RH×W×C, it is split into patches of size P × P, and the total number of
patches generated N is represented as follows:

N =
H

P
· W
P

=
H ·W
P2

(1)

where, H, W, and C represent the height, width, and number of channels of the image, respectively.
Each patch is flattened into a vector to form a matrix representation Xpatch. The specific process is
as follows:

Xpatch ∈ RN×(P2.C) (2)

The shape of the matrix representation is P2.C, which represents the feature dimension of each patch
after flattening. Subsequently, it is mapped to a feature space of dimension D through the linear
transformation. The mapping process is as follows:

Fi = XpatchWE + bE ,WE ∈ R(P
2.C)×D,bE ∈ RD (3)

where, WE is the linear transformation matrix and bE is the bias term. Then, to maintain spatial
information, a position code P is added to each patch. The specific input of the Vision Transformer is
as follows:

F
′

i = Fi + P,P ∈ RN×D (4)

The encoded patch features are input into the Transformer. The dynamic attention mask sets the
corresponding mask matrix according to the sequence length of the image input. The definition of the
dynamic attention mask matrix M is as follows:

Mij =

{
0 if j ≤ i

−∞ if j > i
(5)

When Mij = 0, this means that the model normally calculates the attention weight. When Mij =
−∞, the attention score of this position will be completely blocked, which will make the model
focus on the key parts while avoiding the interference of invalid information. The dynamic attention
mask matrix restricts each token to attend only to its current and previous positions. Although
the mask matrix is determined by the length of the input sequence and does not directly contain
semantic information, during the training process, the model can model global and local information
through the multi-head attention mechanism and feed-forward network, thereby gradually learning
key information under the mask restriction. Subsequently, the global and local information of the
image is captured through the multi-head self-attention mechanism and feedforward network. The
specific formula is as follows:

Q = F
′

iWQ,K = F
′

iWK ,V = F
′

iWV (6)

Attention (Q,K,V) = softmax

(
QKT

√
dk

+ M

)
V (7)

Xi = Concat(Attention1, . . .Attentionh)W
O (8)

where, WQ, WK and WV represent the transformation matrices of query, key and value, respectively,
dk is the dimension of the key vector, and WO is the output projection matrix of multi-head attention.
Finally, after the MLP layer of the Transformer encoder, the final feature representation FI of the
image is obtained. The specific process is as follows:

FI = MLP (Xi) (9)
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2.3.2 Text Feature Learning

For text data, the model uses Byte Pair Encoding (BPE)[14] for subword-level encoding, splitting
the input text into subword units, and gradually merging high-frequency subword pairs according to
the frequency of occurrence of subword pairs in the text, thereby generating tokens with more text
semantic information. After BPE encoding, the text representation is as follows:

Ft ∈ RL×D (10)

where, L represents the length of the token sequence and D is the feature dimension. Next, add
the corresponding position encoding P to the final tokens to ensure that the model can understand
the order relationship in the word sequence. The process of adding position encoding is shown as
follows:

F
′

t = Ft + P,P ∈ RL×D (11)

F
′

t is the final input feature after adding the position encoding. The tokens are sent to the Transformer
model, the following process is similar to the image processing process, and the final feature
representation FT of the text is obtained. The specific process is as follows:

FT = MLP (Xt) (12)

2.4 Auxiliary Hash Learning Module

When processing features, traditional hash layers often ignore the importance differences between
different channels, which may lead to insufficient capture of key information and difficulty in
effectively suppressing noise and redundant information. In addition, traditional hashing methods
usually rely on a single optimization goal, which may lead to poor performance of hash codes in
cross-modal matching. To solve this problem, we built an auxiliary hash code generation module that
is designed to generate hash codes that contain more information.

First, the linear hash layer performs a linear transformation on the input features FI and FT , mapping
the high-dimensional input of images and texts into a low-dimensional embedding space to generate
a preliminary feature representation. The specific mapping process is as follows:

fi = FIWI + bI , ft = FTWT + bT (13)

where WI ,WT ∈ RD×d is the weight dimension reduction matrix, which maps the original
characteristic dimension D to the embedding space of dimension d, and bI ,bT ∈ Rd is the bias term.
The mapped features are processed nonlinearly through the ReLU activation function. The main
processing process is as follows:

f
′

I = ReLU(fi), f
′

T = ReLU(ft) (14)

The auxiliary hash layer is used to adjust the channel weights of the embedded features f
′

I and
f

′

T after dimensionality reduction, and the weights are adaptively assigned according to the global
importance of each channel. The main process is to average pool the feature maps in all feature
channels to obtain the global statistical information S of the channel. The specific process is shown
as follows:

S =
1

N

N∑
i=1

f
′

j [i, :] ,S ∈ RC (15)

where j can be expressed as I or T , then f
′

j represents the feature f
′

I or f
′

T , the reduced dimension
feature of the image and text. N represents the spatial dimension of the feature. The importance
weight of each channel is calculated using the fully connected layers (FC1 and FC2), and the
global statistical information S is reduced and restored so that the model can capture the nonlinear
relationship between channels. FC1 reduces the number of channels from C to a smaller dimension
(C/R), and then activates through ReLU. The process of dimensionality reduction and activation is
shown as follows:

Q = ReLU(SWFC1
+ bFC1

),Q ∈ R
C
R (16)
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where R represents the channel compression rate, which is used to control the number of channels
after dimensionality reduction. Then FC2 is used to restore the channels to the original number of
channels C. The specific recovery process V is shown as follows:

V = QWFC2
+ bFC2

,V ∈ RC (17)

Finally, the weight coefficient Wi of each channel is obtained through the Sigmoid activation function,
and the activation generates the channel weight representation as follows:

Wi = Sigmoid(V),Wi ∈ [0, 1]C (18)

Each channel C of features f
′

I and f
′

T is multiplied by the corresponding weight Wi to strengthen
the representation of important channels and suppress the influence of unimportant channels. The
specific process is shown as follows:

f∗
I = Wi ⊙ f

′

I , f
∗
T = Wi ⊙ f

′

T (19)

where ⊙ represents the channel-by-channel dot product, f∗
I and f∗

T represent the embedded features
after dimension reduction and weighting. The embedded features f∗

I and f∗
T are mapped using the

linear transformation layer F(.) to map the hash code of each bit to the binary probability distribution.
The specific mapping process is shown as follows:

F(f∗
x) = WHf

∗
x + bH (20)

where WH represents the trainable weight matrix, which is mainly used to transform f∗
x into a new

space, and bH represents the bias term. After the mapping transformation, the final hash code is
determined by the calculated probability distribution Fx. The main process is shown as follows:

Fx = softmax(F(f∗
x)) (21)

where x can be represented as an image or text. The final binary is determined by the maximum
probability selection method. The hash code generation process is shown as follows:

Bi =

{
0 if Fi[0] > Fi[1]

1 if Fi[0] ≤ Fi[1]
(22)

where Bi is the binary hash code of the i-th bit, the length of the hash code is represented by K, and
the vector representation of the entire hash code is shown as follows:

H = (B1,B2, . . . ,BK) ∈ {0, 1}K (23)

The auxiliary hash code generation module solves the channel neglect problem of the traditional
hash layer through channel weighting, enhances the expressiveness of the hash code, and makes the
matching between different modal data in the model more robust.

2.5 Loss Function

The model introduces contrast loss into the hash code module, aiming to maximize the similarity
between positive sample pairs (image and text) while minimizing the similarity between negative
samples. First, the mapped image feature fi and text feature ft are represented as X1 and X2, and
normalized so that the vector module length between different modalities is 1, thereby avoiding the
similarity calculation deviation caused by different vector lengths. The specific normalization process
is shown as follows:

X̂1 =
X1

∥X1∥2
, X̂2 =

X2

∥X2∥2
(24)

X̂1 and X̂2 represent the normalized image and text embeddings, respectively. Then dot product
calculation is performed to calculate the cosine similarity matrix between the image and the text. The
main definition is as follows:

Sij =
Xi

1 ·X
j
2∥∥Xi

1

∥∥
2
·
∥∥∥Xj

2

∥∥∥
2

(25)
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Table 1: The mAP comparison results on three datasets

Task Method MIRFlickr-25K NUS-WIDE MS-COCO

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I→T

DJSRH 0.6652 0.6873 0.6987 0.5271 0.5582 0.6015 0.5257 0.5454 0.5646
JDSH 0.7276 0.7426 0.7468 0.6536 0.6601 0.6900 0.5928 0.6348 0.6517
CDTH 0.7317 0.7461 0.7477 0.6596 0.6613 0.6700 0.5853 0.6411 0.6573
UCCH 0.7606 0.7620 0.7674 0.6718 0.6738 0.6891 0.6039 0.6249 0.6398
MLCAH 0.7960 0.8080 0.8150 0.6440 0.6410 0.6430 0.5700 0.5620 0.5620
DCHMT 0.8177 0.8221 0.8261 0.6711 0.6812 0.6932 0.6450 0.6331 0.6647
AHLR 0.8203 0.8233 0.8266 0.6777 0.6884 0.6994 0.6454 0.6582 0.6797

T→I

DJSRH 0.6710 0.6958 0.7043 0.5575 0.5680 0.5952 0.5590 0.5591 0.5519
JDSH 0.7304 0.7326 0.7481 0.6439 0.6640 0.6921 0.5888 0.6510 0.6635
CDTH 0.7315 0.7464 0.7503 0.6788 0.6815 0.6910 0.5846 0.6427 0.6573
UCCH 0.7343 0.7342 0.7410 0.6740 0.6812 0.6945 0.6023 0.6258 0.6371
MLCAH 0.7940 0.8050 0.8050 0.6620 0.6730 0.6870 0.5440 0.5470 0.5940
DCHMT 0.8007 0.8021 0.8065 0.6852 0.6963 0.7009 0.6298 0.6176 0.6616
AHLR 0.8046 0.8052 0.8154 0.6952 0.7040 0.7144 0.6451 0.6557 0.6672

Sij represents the cosine similarity between the i-th image and the j-th text embedding. Xi
1 ·X

j
2

represents the dot product between vectors,
∥∥Xi

1

∥∥
2

and
∥∥∥Xj

2

∥∥∥
2

are the L2 norms of Xi
1 and Xj

2,
respectively, representing the length of the vector. Since X1 and X2 have been normalized, Sij can
be simplified as follows:

Sij = Xi
1 ·X

j
2 (26)

The labeling matrix A marks whether each pair of image and text is a positive sample or a negative
sample, where a positive sample refers to a matching pair between an image and the corresponding
text, and a negative sample refers to a pair between an image and an irrelevant text. The loss between
positive samples is calculated as follows:

Lpositive =

N∑
i=1

N∑
j=1

Aij · (1− Sij) (27)

where Aij is the element in the label matrix, and then the loss of the negative sample pair is calculated.
ξ controls the similarity between negative samples and pushes the similarity between negative samples
down to the set boundary ξ. The specific process is shown as follows:

Lnegative =

N∑
i=1

N∑
j=1

(1−Aij) · ReLU(Sij − ξ) (28)

3 Experiments

In this section, we assess the performance of the proposed AHLR framework across three benchmark
datasets using cutting-edge techniques. We subsequently conduct an in-depth analysis through
systematic ablation studies to examine the role of each component within our model.

3.1 Experimental Settings

In this paper, we use the Vision Transformer as the feature extractor of images and adopt the BPE
method to perform word segmentation on text. Subsequently, Transformer is further used to fuse
and process the feature representations of images and text. At the same time, the model introduces
a dynamic attention mask mechanism. We experimentally analyzed the parameters involved and
selected the most appropriate value, which is 1. In the experiment, the batch size is set to 64, the
Adam optimizer[15] is used for the main optimization, and the method of dynamically adjusting the
learning rate is adopted, where the initial learning rate of 1e-3, a decay schedule of 0.9 times the
learning rate every 5 epochs, and a weight decay of 0.2. The AHLR method is mainly implemented
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Figure 2: The Top-K curves on the MIRFlickr-25K
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Figure 3: The Top-K curves on the NUS-WIDE
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Figure 4: The Top-K curves on the MS-COCO
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Table 2: Ablation study on the three datasets

Task Method MIRFlickr-25K NUS-WIDE MS-COCO

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I→T
AHLR-M 0.8086 0.8161 0.8193 0.6753 0.6850 0.6946 0.6396 0.6516 0.6642
AHLR-A 0.8083 0.8115 0.8179 0.6686 0.6818 0.6894 0.6447 0.6578 0.6688
AHLR 0.8203 0.8233 0.8266 0.6777 0.6884 0.6994 0.6454 0.6582 0.6797

T→I
AHLR-M 0.7992 0.8005 0.8093 0.6929 0.7011 0.7132 0.6319 0.6525 0.6656
AHLR-A 0.7988 0.7995 0.8066 0.6865 0.6974 0.7031 0.6422 0.6540 0.6669
AHLR 0.8046 0.8052 0.8154 0.6952 0.7040 0.7144 0.6451 0.6557 0.6672

based on Pytorch[16], and all experiments are run on a server equipped with an NVIDIA GeForce
RTX 3080 graphics card with 40GB RAM to ensure the stability of the experiment.

3.2 Comparison Methods

There are two cross-modal hashing retrieval tasks (convert image to text and text to image). We
compare the performance of the AHLR method with six other cross-modal hashing methods on three
datasets. The specific methods are as follows: DCHMT[17], JDSH[18], MLCAH[19], UCCH[20],
CDTH[8] and DJSRH[21].

3.3 Performance Comparison

To demonstrate the efficacy of the AHRL algorithm, we performed a comparative analysis of its
performance across three datasets. Table 1 shows the mAP values of the AHLR method on the
MIRFlickr-25K, NUS-WIDE, and MS-COCO datasets. The best results in the table are in bold,
where “I → T” denotes image-to-text retrieval and “T → I” indicates text-to-image retrieval.

From the mAP of the three datasets, we can see that the AHLR method we proposed can achieve good
performance on both small-scale and large-scale datasets. Compared to the baseline, our method
achieves over 10% higher mAP across the three datasets than the lowest experimental method. This
is due to the introduction of the auxiliary hash module, which enables the model to generate hash
codes containing rich semantic information. When facing larger datasets, the performance between
different bits gradually stabilizes. This is because the dynamic mask mechanism proposed by AHLR
enables the model to adaptively focus on key parts while ignoring unimportant information, thereby
improving retrieval accuracy.

Figures 2, 3 and 4 show the Top-K accuracy curves of the AHLR method on the three datasets. The
value of K covers multiple retrieval ranges, mainly including 50, 100, 200, 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500 and 5000. As can be seen from the figure, as the number of retrieval
samples K increases, the retrieval performance of the AHLR method is always significantly higher
than that of other comparison methods. As the number of retrieval samples continues to increase, the
retrieval performance of the model gradually stabilizes, indicating that our method maintains good
stability and reliability while improving retrieval accuracy.

3.4 Ablation Study

In order to verify the effectiveness of each module in the model, the following ablation experiments
are designed:

• AHLR-M: This experiment removes the dynamic attention mask, and all other modules are
the same as in AHLR.

• AHLR-A: This experiment removes the auxiliary hash learning module, and all other
modules are the same as in AHLR.

The results of the ablation experiment are shown in Table 2. After AHLR-M removes the dynamic
attention mask, the performance of the model in the image-text cross-modal retrieval task is signifi-
cantly reduced, especially in the accuracy mAP indicator. This shows that the dynamic attention mask
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Figure 5: Parameter sensitivity of ξ

can effectively capture the key information in the image and text, and flexibly weight it according to
the sequence length, thereby improving the representation ability of the feature.

After AHLR-A removes the auxiliary hash learning module, the retrieval performance of the model
is reduced, especially under the condition of short hash code length, the performance decline is
more obvious. This shows that the auxiliary hash learning module helps to generate more compact
and more discriminative hash codes by adaptively weighting the features of each channel, thereby
improving the retrieval effect.

The results of the ablation experiment show that the dynamic attention mask and auxiliary hash
learning module have an impact on the overall performance of the model and demonstrate their
important role in improving cross-modal retrieval performance.

3.5 Parameter Sensitivity

We analyze the parameter ξ we designed and select a unified 64-bit hash code to verify it on three
data sets. The experimental results show that when the value of the parameter ξ is adjusted, the mAP
result will fluctuate accordingly. The specific results are shown in Figure 5. It can be seen from the
figure that when the value of ξ is 1, the mAP value of the model is the highest, indicating that the
retrieval performance of the model is optimal at this time. As the value of ξ continues to increase, the
performance of the model shows a downward trend, indicating that an excessively large ξ may affect
the model’s expression of feature information, resulting in a decrease in retrieval accuracy. Therefore,
based on the comprehensive consideration of the performance of the model, taking ξ as 1 is more in
line with the performance of the model, and can ensure good stability and effectiveness on the three
data sets.

4 Conclusion

We propose an auxiliary hash learning (AHLR) for cross-modal retrieval methods. By introducing a
dynamic mask mechanism, the key information between different modalities is automatically selected
and weighted to enhance the feature representation and semantic alignment between modalities. In
addition, an auxiliary hash layer is constructed to adaptively weight the features of each channel, and
combined with the contrast loss function, AHLR can minimize the distance between similar samples
and maximize the distance between heterogeneous samples, thereby improving the distinguishing
ability of hash codes in cross-modal retrieval tasks and further improving the accuracy of retrieval.
Comprehensive experiments have proved the effectiveness of this method. We mainly study the
retrieval between images and texts, and cannot effectively process other types of multimodal data (such
as video, audio, etc.), which leads to limited applicability of the model and low scalability. Therefore,
how to explore semantic alignment methods between multiple different modalities, realizing mutual
retrieval, and improving the versatility and applicability of the model is an important direction for
future research. Cross-modal hashing retrieval can improve information retrieval efficiency and
promote cultural communication and educational innovation. However, it may also leak privacy,
threaten security, amplify social bias, and impact employment structure. Therefore, strengthening
data privacy security is crucial to ensure its positive social impact.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe the main contributions of this
paper, and propose a new cross-modal hashing retrieval method to solve the matching
accuracy and single optimization target problems caused by the semantic gap. The main
contributions are as follows: We introduce a dynamic attention mask module to enhance
the feature extraction and alignment capabilities between different modal data, thereby
improving the matching accuracy of cross-modal features. An auxiliary hash layer is
constructed to adaptively weight the features of each channel. We optimize the generation
of auxiliary hash codes for feature representation. Theoretical analysis and experimental
results support the above viewpoints and verify the effectiveness of this method.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the conclusion of the paper, we explain the limitations of this work in detail.
The main limitation is that we mainly study the retrieval between images and texts, and do
not extend it to retrieval between other types, which leads to limited applicability of the
model.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Sections 2.3 to 2.5 of this paper, we describe in detail each step involved
in the framework, including feature extraction, auxiliary hash learning, and loss function
modules, ensuring that each module follows a clear and progressive logic. All theorems,
formulas, and proofs are listed in these sections, with the main proof summary attached, and
numbered to maintain the coherence and rigor of the argument.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our proposed AHLR method builds a new model framework and introduces
its core components in detail in Section 2.2, “Network Architecture of AHLR.” The model
consists of cross-modal feature extraction and auxiliary hash learning modules. In Section 3,
“Experiments”, we fully describe the experimental details to ensure the reproducibility of
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code associated with our paper can be accessed on GitHub at the
following link: https://anonymous.4open.science/r/AHLR-C48C.
The three datasets used in this study and their download links are as follows:
MIRFlickr25K:https://www.kaggle.com/datasets/paulrohan2020/
mirflickr25k;
NUS-WIDE:https://lms.comp.nus.edu.sg/wp-content/uploads/2019/
research/nuswide/NUS-WIDE.html;
MS-COCO: https://cocodataset.org/#download.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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Justification: We use Vision Transformer as the feature extractor for images and the BPE
method for word segmentation of text. Subsequently, Transformer is used to further fuse
and process the feature representations of images and text. In the experiment, the batch size
is set to 64, the Adam optimizer is used for the main optimization, and the learning rate is
dynamically adjusted. Our AHLR method is mainly implemented based on Pytorch, and all
experiments are run on a server equipped with an NVIDIA GeForce RTX 3080 graphics
card with 40GB RAM to ensure the stability of the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The performance of our model is evaluated using the top-K curve. The
top-K curve evaluates the performance of the model in retrieving relevant terms in the
top-K predictions, thus providing a practical perspective on its effectiveness in real-world
applications. It is an important metric in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The AHLR method in this paper is implemented in Pytorch and experiments
are performed on a server equipped with an NVIDIA GeForce RTX 3080 GPU (40GB RAM).
The paper clearly specifies the computing resources required to reproduce the experiments,
including the type of computing device and memory size, enabling other researchers to
reproduce the experiments under similar conditions.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The code of our paper is as follows: https://anonymous.4open.science/
r/AHLR-C48C.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Cross-modal hashing retrieval significantly improves the efficiency of informa-
tion retrieval and promotes the communication and integration between different cultures.
However, cross-modal hashing retrieval also has some potential negative effects, which may
lead to unauthorized use and dissemination problems and face challenges of privacy leakage
and security threats. Therefore, while paying attention to the positive impact of cross-modal
hashing retrieval technology, it is also necessary to deal with related negative impacts and
challenges.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing resources used in this paper, including the comparative experiments
and the three datasets, have been properly cited.
The main download links for the datasets are as follows:
MIRFlickr25K:https://www.kaggle.com/datasets/paulrohan2020/
mirflickr25k;
NUS-WIDE:https://lms.comp.nus.edu.sg/wp-content/uploads/2019/
research/nuswide/NUS-WIDE.html;
MS-COCO:https://cocodataset.org/#download.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve the LLM as any significant, original or non-standard
component.
Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix / supplemental material

A Related Work

In this section, we introduce existing work related to our study, focusing on two forms of cross-
modal hashing retrieval, namely, unsupervised cross-modal hash retrieval and supervised cross-modal
hashing retrieval.

A.1 Supervised Cross-Modal Hashing

Supervised cross-modal hashing retrieval[22][23][24][25] optimizes the generation of hash codes by
leveraging labels or semantic information, thereby improving the accuracy and efficiency of retrieval.
The core of supervised cross-modal hashing retrieval lies in mapping data of different modalities
(such as images and text) into a shared Hamming space, so that the similarity between different
modalities can be measured by the Hamming distance. In the early stage of research, non-deep
cross-modal hashing methods were proposed to bridge the semantic gap between different modalities.
For example, Semantics-Preserving Hashing (SePH)[26] takes the semantic affinity of given training
data as supervised information and converts it into a probability distribution and learns the nonlinear
projection of features by minimizing KL divergence to make hash codes for each view.

Deep learning methods have gradually become the mainstream methods for supervised cross-modal
hashing retrieval due to their advantages in feature extraction and nonlinear representation. For
example, Deep Cross-Modal Hashing (DCMH)[27] integrates feature extraction and hash code
learning into a deep convolutional neural network framework to achieve end-to-end learning. Semantic
Decomposition and Enhancement Hashing (SDEH)[28] improves the performance of cross-modal
retrieval by making full use of multi-label semantic information. This method decomposes the
shared semantic information between different modalities and bridges the feature and semantic
gap between different modalities, thereby achieving efficient cross-modal retrieval. We adopt this
supervised method to fully utilize semantic information to optimize hash code generation and enhance
cross-modal retrieval performance.

A.2 Unsupervised Cross-Modal Hashing

Compared to supervised hashing methods, unsupervised hashing methods[29][30][31][32] do not
require labels or semantic information, and map data from different modalities to a shared Hamming
space through learning. Unsupervised hashing methods do not require pre-annotated semantic labels
but instead discover common representations between different modalities by mining potential intra-
modal and inter-modal connections. Early unsupervised hashing methods were mainly based on
shallow models, learning hash codes, and hash functions by designing efficient algorithms. These
methods usually process manually extracted features. For example, Inter-media hashing (IMH)[33]
converts multimedia data from heterogeneous data sources into a common Hamming space and
enables a fast search through XOR and bit counting operations.

Deep learning methods have also been widely used in unsupervised hashing. The Unsupervised
Contrastive Multi-modal Fusion Hashing Network (UCMFH)[32] uses the pre-trained CLIP model
to extract features and enhances the interaction between modalities through the multimodal fusion
transformer encoder and contrast loss. Recent unsupervised deep hashing methods pay more attention
to the construction of similarity matrices to reduce redundant information and capture the potential
associations between modalities. Deep Joint-Semantics Reconstructing Hashing (DJSRH)[21] con-
structs a joint semantic affinity matrix that integrates the original neighborhood information from
different modalities to capture the potential associations of input multimodal instances.

B Datasets

To evaluate the proposed method, we choose to conduct experiments on three widely used cross-
modal datasets: MIRFlickr-25K[34], NUS-WIDE[35] and MS-COCO[36]. As shown in the table 3,
the detailed description of the datasets is as follows.

MIRFlickr-25K contains 25,000 images covering 24 common categories. Each image is accompanied
by multiple text labels and is annotated with at least one of the categories. We select image-text pairs
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with at least 20 labels as experimental data, randomly extract 2,000 pairs as query sets, the rest as
retrieval sets, and randomly select 10,000 pairs from the retrieval sets as training sets.

NUS-WIDE contains 269,648 web images with text labels covering 81 categories. Each image is
annotated with at least one of the 81 categories. We select 186,577 image-text pairs, all of which
belong to the 10 most common classes, randomly select 2,100 pairs from the dataset as query sets,
the rest as retrieval sets, and randomly select 10,500 pairs from the retrieval sets as training sets.

MS-COCO contains 123,289 images covering 80 categories. Each image is labeled as at least one of
the 80 categories. In our experiments, we deleted the samples that did not contain valid instances
in the text samples to improve the data quality and reliability of the experiment. 5,000 pairs were
randomly selected from the dataset as the query set, the rest as the retrieval set, and 10,000 pairs were
randomly selected from the retrieval set as training data.

Table 3: Datasets Statistics

Dataset Size Label Query raining

MIRFlickr-25K 25,000 24 2,000 10,000
NUS-WIDE 269,648 81 2,100 10,500
MS-COCO 123,289 80 5,000 10,000

C Evaluation Metrics

In the experiment, we use two evaluation indicators to evaluate the performance of the model, namely
the mean average precision (mAP) and the Top-K precision curve (top-K curve).
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