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Abstract

The Transformer architecture has opened a new paradigm in the domain of deep learn-
ing with its ability to model long-range dependencies and capture global context and has
outpaced the traditional Convolution Neural Networks (CNNs) in many aspects. However,
applying Transformer models to 3D medical image datasets presents significant challenges
due to their high training time, and memory requirements, which not only hinder scalability
but also contribute to elevated COs footprint. This has led to an exploration of alternative
models that can maintain or even improve performance while being more efficient and envi-
ronmentally sustainable. Recent advancements in Structured State Space Models (SSMs)
effectively address some of the inherent limitations of Transformers, particularly their high
memory and computational demands. Inspired by these advancements, we propose an
efficient 3D segmentation model for medical imaging called SegResMamba, designed to
reduce computation complexity, memory usage, training time, and environmental impact
while maintaining high performance. Our model uses less than half the memory during
training compared to other state-of-the-art (SOTA) architectures, achieving comparable
performance with significantly reduced resource demands.

Keywords: Mamba, State Space Models, Vision Transformer, Medical Image Segmenta-
tion

1. Introduction

The Transformer architecture has revolutionized deep learning by effectively modeling long-
range dependencies and capturing global context. However, its application to 3D medical
imaging datasets presents significant challenges, including high memory requirements, com-
putational complexity, and prolonged training times. These challenges are particularly pro-
nounced in tasks involving large datasets like BraTS (Baid et al., 2021) and BTCV Segmen-
tation (Landman et al., 2015), where training Transformer-based models such as UNETR
(Hatamizadeh et al., 2021b) and SwinUnetr (Hatamizadeh et al., 2021a) demands substan-
tial resources. Furthermore, transformer models often struggle with smaller datasets, such
as Spleen Segmentation (Antonelli et al., 2022), where their performance is suboptimal.
The environmental impact of Transformers, driven by their elevated training times, has
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raised concerns. This has led to a growing interest in alternative architectures such as
structured state space models (SSMs), which reduce computational demands and training
time, offering a more efficient solution for medical image analysis.

State-space architectures like Mamba (Gu and Dao, 2024), S4 (Gu et al., 2022), and
S4nd (Nguyen et al., 2022) have gained popularity due to their solid foundation in Kalman
Filters (Kalman, 1960). In contrast, CNN-based models like U-Net (Ronneberger et al.,
2015) and SegResNet (Myronenko, 2018) are effective but have a limited receptive field.
Hybrid models like UNETR and SwinUnetr(Hatamizadeh et al., 2021a) combine CNNs and
Transformers(Vaswani et al., 2023) to enhance performance, though Transformers remain
computationally demanding, limiting their practicality in resource-constrained clinical set-
tings. Numerous studies have adapted Mamba to address this issue by modeling long-range
dependencies with innovative selection mechanisms (Zhu et al., 2024; Wang et al., 2024; Liu
et al., 2024; Liao et al., 2024; Wang and Ma, 2024).

3D image segmentation methods, such as U-Mamba(Ma et al., 2024) and SegMamba(Xing
et al., 2024), leverage hybrid CNN-SSM blocks to combine the local feature extraction capa-
bilities of convolutions with the ability of SSMs to capture long-range dependencies. Inspired
by these models, we propose SegResMamba, which uses the benefits of Mamba while further
reducing memory consumption and computational requirements, thereby enhancing train-
ing efficiency. SegResMamba is a lightweight Mamba-based 3D image segmentation model
that offers comparable performance to other state-of-the-art (SOTA) models while signif-
icantly increasing overall efficiency. Our approach employs Tri-orientated Mamba (ToM)
to enhance long-range contextual understanding, combined with CNNs for effective local
feature extraction. A convolution mamba mixed block (CMMB) efficiently captures both
local and global features, starting with a convolutional bottleneck and leveraging Mamba’s
global modeling capabilities.

2. Methodology

Our model is designed to be computationally efficient while maintaining competitive per-
formance in medical image segmentation. To achieve this, we developed a powerful encoder
for efficient feature extraction, followed by a lightweight decoder to reconstruct the seg-
mentation mask. The architecture consists of an encoder, a decoder, and skip connections
between them (Ronneberger et al., 2015), as illustrated in Figure 1.

2.1. Encoder

To minimize the overall computational cost, particularly for the downstream decoder, we
designed a powerful yet efficient encoder that extracts high-quality features. Our method
integrates CNNs and Mamba blocks to effectively capture both local and global feature
representations while maintaining computational efficiency. The encoder is composed of
four cascaded blocks, each designed to progressively downsample spatial dimensions while
extracting multi-scale hierarchical features. Each block includes Downsampling Layers,
convolution and Convolution Mamba Mixed Blocksas shown in Figure 1a.

The encoder begins with an initial downsampling layer, which applies a Conv3D oper-
ation with a 7 x 7 x 7 kernel, a stride of 2 x 2 x 2, and padding of 3 x 3 x 3. This larger
receptive field allows for a comprehensive feature abstraction at the early stage. Next, a
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Figure 1: a) Overview of SegResMamba architecture, b) Convolution Mamba mixed block,
and c) Tri-oriented Mamba

Convolution Mamba Mixed Block is applied to refine these features before further downsam-
pling. The remaining three downsampling layers use 2 x 2 x 2 Conv3D kernels, maintaining
a balance between feature granularity and computational efficiency. Additionally, an extra
convolutional layer is introduced before these downsampling operations to preserve essential
features.

Convolution Mamba Mixed Block: We introduce the convolution mamba mixed
block, which integrates convolutional operations and Tri-oriented Mamba (ToM) layers to
achieve hierarchical feature extraction across multiple receptive fields as shown in Figure
1b.

It begins with a larger 5 x 5 x 5 convolution kernel that effectively reduces the spatial
dimensions while extracting coarse-grained features. These features are further refined
through a 3 x 3 x 3 convolution, which captures local contextual relationships.

A ToM Layer is then applied to this refined representation, enabling the abstraction
of long-range dependencies and creating a more comprehensive understanding of the local
context learned by the convolution filters. As shown in Figure 1c¢, the ToM module computes
feature dependencies in three distinct directions: forward (zy), reverse (z,), and inter-slice
(zs) by flattening the 3D input features Fb.
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ToM(z) = Mamba(zy) + Mamba(z,) + Mamba(z,),

To recover the original spatial resolution, we employ a 3 x 3 x 3 convolution and a
5 X 5 X 5 transposed convolution. Then we have a residual connection to generate the
enhanced feature representation by calculating the sum of the extracted feature map and
the original feature map, which can preserve the gradient flow and retain the original feature
information. Finally, a second ToM layer further captures long-range dependencies across
the enhanced feature representation. The whole flow of Convolution Mamba Mixed Block
is shown in Algorithm 1.

Algorithm 1 Convolution Mamba Mixed Block

Input: Tensor X € REXDxHxW
Output: Feature representation Fyyt
F + COHV5><5><5(X)

F5 < Convsy3x3(F1)

F3 — TOM(FQ)

Fy < Convsy3x3(F3)

F5 — COHVT5><5><5(F4)

Feg+— F5+ X

Fout < ToM(Fg)

Return Fg

H
@

2.2. Decoder

Our decoder is intentionally designed to be lightweight compared to state-of-the-art models
like UNETR, Swin-UNETR, and SegMamba, to reduce the computational cost of the model.
The responsibility of maintaining the model’s performance is on the uniquely designed,
powerful yet efficient encoder. This efficient design reduces both computational complexity
and memory usage while maintaining strong segmentation performance.

The decoder leverages both the encoded features from the encoder and the intermediate
results from the encoding process. At each level, the decoder connects to the correspond-
ing encoder layer through an MLP (Haykin, 1994) with Instance Normalization (Ulyanov
et al., 2017), which normalizes activations and stabilizes training. To ensure high-resolution
feature retention for precise segmentation, intermediate outputs after the MLP are directly
passed to the decoder.

The decoder is structured with three distinct upsampling stages, designed to progres-
sively refine and expand the spatial resolution of the features. The main input to the
decoder has a shape of 768 in the channel dimension. At each stage, the feature map is
upsampled and its channel count is halved. This process uses a 1 x 1 x 1 convolution oper-
ation followed by an upsampling layer. Inside the upsampling layer, we use non-trainable
linear interpolation from Monai(Cardoso et al., 2022).

Upsampled features are combined with the corresponding intermediate features received
during the encoding process. Instead of concatenation, these intermediate features are
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summed with the corresponding upsampled features at each level. In this way, the compu-
tational complexity of the decoder is further reduced. The combined features are processed
through a sequence of residual blocks. The residual block consists of the ReLLU activation
function, Group Norm, and convolution kernel of 3 x 3 x 3. We use two of these blocks and
a skip connection from the input of these residual blocks to get an output. This architec-
ture combines efficient upsampling with skip connections and residual learning, allowing it
to reconstruct detailed spatial information while maintaining the ability to learn complex
features at multiple scales. After getting the output from three decoder blocks we use a
transposed convolution layer to get the final segmented output. This design is lightweight,
being both memory and computation-efficient.

3. Experiments & Results

3.1. Dataset and Implementation Details

3D Multi-organ Segmentation (BTCV Challenge):The 3D Multi-organ Segmentation
dataset from the BTCV Challenge (Landman et al., 2015) focuses on the segmentation of 13
abdominal organs. The dataset comprises 30 volumetric images, with 24 volumes allocated
for training and the remaining 6 reserved for testing and evaluation. Each volumetric image
provides detailed 3D representations of abdominal structures, essential for medical imaging
and diagnosis. The task involves accurately delineating each of the 13 specified organs
within these scans.

BraTS 2021: The BraTS 2021 dataset(Baid et al., 2021) comprises 1,251 multi-
parametric magnetic resonance (mpMRI) brain scans, each annotated with segmentation
masks delineating tumorous regions. FEach scan includes four modalities: Fluid Attenuated
Inversion Recovery (FLAIR), native T1-weighted (T1), post-contrast T1-weighted (T1Gd),
and T2-weighted (T2) images. Three recombined regions—the tumor core, the entire tumor,
and the enhancing tumor—are used to quantify performance using 5-fold cross-validation.

Spleen 3d Segmentation: The Spleen 3D Segmentation dataset (Antonelli et al.,
2022) focuses on segmenting spleens within portal-venous phase CT scans from patients
undergoing chemotherapy treatment for liver metastases. The dataset consists of 61 vol-
umetric CT scans, with 41 scans designated for training and the remaining 20 reserved
for testing and evaluation. Each scan provides detailed 3D representations of abdominal
anatomy, emphasizing the spleen and its surrounding structures during the portal-venous
phase. The segmentation task involves accurately delineating the spleen, which is critical
for assessing spleen-related conditions and treatment responses in oncology patients.

We used Dice loss and weighted ADAM optimizer for training. Dice similarity co-
efficient was used for quantitative evaluations. Our experiments used the PyTorch with
MONALI (Cardoso et al., 2022) framework for model implementation. All experiments were
conducted on a single NVIDIA A100 GPU (40GB).

3.2. Results

Figure 2 illustrates the relationship between the peak memory consumption during training
and segmentation accuracy, measured by the Average Dice Score, across various models. It
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Figure 2: Average Dice Scores for BTCV, Spleen, and BraTS2021 datasets plotted against
training memory (in GB) for different models using image size 128 x 128 x 128
for BTCV and BRATS dataset and 96 x 96 x 96 for Spleen dataset with batch

size 1.

can be observed that our method uses comparatively less memory than other large models
like Swin Unetr and SegMamba while still maintaining comparable performance.

Table 1 shows that SegResMamba, while having a smaller memory footprint and lower
Multiply-Accumulate operations (MACs), achieves better or comparable performance on the
BTCV dataset comparing with other more memory-intensive and computationally expensive
models. SegResMamba outperforms nnFormer (Zhou et al., 2021), 3D UX-Net (Lee et al.,
2022), and nnUNet (Isensee et al., 2021; Shaker et al., 2024) on computation cost, Inference
Time as well as the segmentation performance.

Model MACs Inference Time (sec) Avg Dice
UNETR 196.03G 0.0531 0.8027
SegMamba  1554.86G 0.1693 0.8430
UNET 60.10G 0.0273 0.8192
SwinUnetr 784.46G 0.1343 0.8389
nnFormer 648.10G 0.0958 0.8239
nnUNet 1067.97G 0.1668 0.8316
3D UX-Net 1498.66G 0.1338 0.8326
SegResMamba  336.45G 0.0841 0.8361

Table 1: Average Dice scores of models on the BTCV dataset.

Brain tumor segmentation performances of different SOTA models are shown in Table
2. SegResMamba achieves a competitive mean Dice score of 0.8839, which is compara-
ble to models like SwinUNETR (0.8861) and SegMamba (0.8863). Despite this, SegRes-
Mamba operates with significantly lower MACs, making it a more computationally efficient
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model. This lower computational cost, combined with its strong performance, highlights
SegResMamba as an excellent choice for scenarios requiring a balance between accuracy
and resource efficiency.

Model MACs Mean Dice Dice TC Dice WT Dice ET
UNETR 203.29G 0.8617 0.8653 0.8708 0.8490
SegMamba 1575.13G 0.8863 0.8943 0.8962 0.8685
UNET 30.13G 0.8444 0.8435 0.8637 0.8260
SwinUnetr 792.08G 0.8861 0.8907 0.8970 0.8707
SegResMamba  340.52G 0.8839 0.8953 0.8958 0.8605

Table 2: Mean dice scores of different models on BraTS21 dataset for 5-fold cross-validation.
Dice TC, Dice WT, and Dice ET represent the Dice scores for Tumor Core, Whole
Tumor, and Enhancing Tumor, respectively.

Model MACs Avg Dice
UNETR 82.52G 0.8642
SegMamba 655.32G 0.9004
UNET 11.53G 0.8195
SwinUnetr 328.68G 0.9126
SegResMamba 137.84G 0.9147

Table 3: Average Dice scores of models on the Spleen dataset.

In the spleen segmentation task, as shown in Table 3, the SegResMamba network
achieved the highest average Dice score of 0.9147, outperforming UNETR (0.8642), UNET
(0.8195), and SwinUNETR (0.9126). This highlights SegResMamba’s superior performance
compared to transformer-based models on a small dataset.

Exp Model Avg Dice (BTCV)
1 SegMamba Encoder + ResNet-based Decoder 0.8164
2 Exp. 1 + Convolution Mamba Mixed Block 0.8279
3 Exp. 2 + Additional Conv before downsampling 0.8361

Table 4: Average Dice scores of different setups on the BTCV dataset.

To investigate the contribution of various components in our model, we conducted an
ablation study on the BTCV dataset, with results shown in Table 4. In the first experiment,
a Mamba encoder proposed by SegMamba(Xing et al., 2024) was paired with a lightweight
ResNet-based decoder. This helps us to reduce computational complexity and memory ef-
ficiency. Next, we replaced the TSMamba block (Global Spatial Context (GSC) and ToM)
used in the SegMamba encoder with our convolution mamba mixed block to enhance feature
extraction of the encoder. This modification leverages both local representation through
convolution and global representation via the mamba layer and improves the segmentation
performance by 1.15%. Finally, we added a convolutional layer before the downsampling
operation to preserve essential features. When combined with the improvements from Ex-
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periments 1 and 2, this experiment led to significant performance gains, increasing the
Dice score on the BTCV dataset from 0.8164 to 0.8361. To investigate the effectiveness
of the ToM layer, we performed an ablation study with and without the ToM layer, the
results shown in Table 5. 1.27% improvement on BTCV dataset with ToM layer shows the
effectiveness of the Mamba module.

Model Avg Dice (BTCV)
Ours without ToM 0.8234
Ours with ToM (SegResMamba) 0.8361
Table 5: Average Dice scores of different setups with and without ToM on the BTCV
dataset.
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Figure 3: Mean dice score of BraTS dataset against COy emission with 5-fold cross-
validation settings for different models.

Furthermore, Figure 3 illustrates the relationship between COs emission and segmen-
tation accuracy for brain tumor segmentation with 5-fold cross-validation across various
models. These estimations are based on training time and conducted using Amazon Web
Services in region eu-central-1, which has a carbon efficiency of 0.61 kgCOgeq/kWh. A
cumulative training hours of computation was performed on hardware of type A100 PCle
40GB (TDP of 250W). Estimations were conducted using the Machine Learning Impact
calculator presented in (Lacoste et al., 2019). Among the high-performing models, SegRes-
Mamba demonstrates a notable advantage by achieving a balance between environmental
efficiency and segmentation performance. Specifically, SegResMamba exhibits significantly
lower CO9 emissions compared to other high-performing models such as SwinUNETR and
SegMamba, while maintaining a comparable dice score. Furthermore, when compared to
UNET and UNETR, SegResMamba achieves superior segmentation accuracy without a
substantial increase in COy emissions, highlighting its efficiency and effectiveness.
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4. Discussion

The experimental results demonstrate that SegResMamba is a robust and efficient model
for 3D medical image segmentation tasks. It consistently delivers competitive performance
across datasets while significantly reducing memory consumption and computational costs
compared to state-of-the-art models like SwWinUNETR and SegMamba. The model’s design
prioritizes memory efficiency without compromising segmentation accuracy. The reduced
training memory requirements make this model an excellent choice for training and deploy-
ment on less resource-intensive hardware.

In terms of computational complexity, SegResMamba requires only 340.52 GMACs
for the BraTS21 dataset (Table 2), a significant improvement over SegMamba (1575.13
GMACs) and SwinUNETR (792.08 GMACs). Despite its lightweight design, SegResMamba
maintains a competitive mean Dice score of 0.8839, only 0.24% and 0.22% less than Seg-
Mamba and SwinUNETR respectively. This demonstrates the model’s ability to achieve
high segmentation accuracy while remaining computationally efficient which makes it more
suitable to be deployed in energy-sensitive situations.

SegResMamba’s performance across datasets further highlights its versatility. On the
BTCV dataset, the model achieves Dice scores comparable to memory-intensive counter-
parts like SegMamba and SwinUNETR (Table 1), while attaining the highest Dice score of
0.9147 on the spleen segmentation task (Table 3). These results emphasize its effectiveness
in addressing diverse segmentation challenges.

Environmental efficiency is another key aspect of the proposed model. SegResMamba
demonstrates significantly lower COg emissions compared to other SOTA models during
training due to reduced memory and computational requirements. This aligns with sus-
tainable Al practices, promoting the development of energy-efficient models that minimize
environmental impact without compromising performance.

While SegResMamba demonstrates substantial advantages, there are a few limitations
to consider. First, its segmentation performance, although competitive, is marginally lower
than other high-performing models like SwinUNETR and SegMamba, as observed in the
BraTS and BTCV datasets. This slight trade-off may be a consideration for applications
where peak accuracy is critical. Another limitation is that the training and evaluation were
performed on three datasets with well-defined segmentation tasks; performance on more
challenging, larger, or less-structured datasets remains to be explored.

5. Conclusion

SegResMamba marks a significant advancement in 3D medical image segmentation, bal-
ancing efficiency and performance by combining Mamba’s global context modeling with
convolutional layers for local feature extraction. Its reduced memory overhead, along with
improved computational and training efficiency, makes it well-suited for real-world clinical
applications, delivering excellent results while remaining resource-efficient. Future work
will focus on exploring new training strategies and data augmentation to further enhance
segmentation accuracy and generalization across various datasets.
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Appendix A. Additional Implementation Details
A.1. Brain Tumor Segmentation

BraTS2021 dataset (Baid et al., 2021) was used for brain tumor segmentation to compare the
performance across multiple folds for the SOTA models. We trained 5-fold cross-validation
for 200 epochs utilizing strategies like learning rate scheduling with CosineAnnealing, Adam
optimizer with weight decay of le-5, and gradient scaling. We used dice metric and dice
loss as metric and the loss function. Various dataset transforms like foreground cropping,
random spatial cropping, random flip with probability 0.5 in each direction, and random
intensity scaling were used.

A.2. Multi-organ Segmentation

We conducted experiments on the BTCV dataset for multi-organ segmentation (Landman
et al., 2015). The training process ran for 25,000 steps. We utilized the Adam optimizer with
a learning rate of 1e-4 for our experiments. Our data transformations included scaling inten-
sity range, orientation adjustment (Orientationd), foreground cropping (CropForegroundd),
and spacing adjustment (Spacingd). To optimize the model’s performance, we employed
DiceLoss as the loss function and evaluated using the dice metric for validation.

A.3. Spleen Segmentation

For the spleen segmentation task, we used the spleen 3D segmentation dataset (Antonelli
et al., 2022) and we limited training to 100 epochs. Extending the training to larger epoch
numbers, such as 200, results in overfitting due to the relatively small size of the dataset
compared to larger datasets like BraTS. Following a similar approach to the aforementioned
tasks we used Adam optimizer with a learning rate of le-4. Transformations like scaling
intensity range, normalizing the orientations of images, foreground cropping, and spacing
adjustment were used. DiceLoss was used as the loss function and dice metric as the metric
for validation.

Appendix B. Training Time and CO, Footprint

Model Epoch Time Total Time 5-Fold Time CO;y Emissions (kg)

(in sec) (in hours) (in hours) Azure Google Amazon
UNETR 262.83 14.60 73.01 10.40  11.32 11.13
Segmamba 321.50 17.86 89.31 12.73 13.84 13.62
UNET 255.80 14.21 71.06 10.13  11.01 10.84
SwinUNETR 321.39 17.85 89.28 12.72 13.84 13.61
Segresmamba 267.83 14.88 74.40 10.60  11.53 11.35

Table 6: Comparison of models in terms of training time, and CO5 emissions across different
cloud providers for training of 5-fold cross-validation using BraTS dataset
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A detailed comparison of CO9 emissions across different cloud providers, including Ama-
zon Web Services, Google Cloud, and Azure, for 5-fold training of the BraTS dataset, is
presented in Table 6. It is important to note that these values represent only the emissions
from 5-fold training; incorporating hyperparameter optimization would result in signifi-
cantly higher CO2 emissions. These estimations were conducted using the Machine Learning
Impact calculator presented in (Lacoste et al., 2019).

Appendix C. Models Configuration

Table 7 presents the model configurations, including the number of parameters (in millions)
and FLOPs for each method for the BTCV dataset. Our proposed model, SegResMamba,
has 188.42G FLOPs, striking a balance between computational efficiency and performance
compared to more complex architectures like SwinUNETR, SegMamba and 3D UX-Net.

Model Num of Params (in million) FLOPs
UNETR 93.01 177.44G
SegMamba 67.36 1443.96G
UNET 4.89 25.93G
SwinUnetr 62.19 767.23G
nnFormer 149.32 426.74G
nnUNeT 31.19 480.06G
3D UX-Net 53.01 1373.75G
SegResMamba 119.98 188.42G

Table 7: Num of params of methods with FLOPs count

Appendix D. Memory Efficiency

A comparison of training memory of different models is shown in Table 8 (using image size
128 x 128 x 128 for BTCV and BraTS dataset and 96 x 96 x 96 for Spleen dataset with
batch size 1).

Model BTCV (GB) Spleen (GB) BRATS (GB)
UNETR 3.08 0.14 3.02
SegMamba 13.51 5.68 13.44
UNET 1.42 0.48 1.13
SwinUNETR 7.77 3.21 7.68
SegResMamba 5.10 2.22 4.78

Table 8: Training memory (in GB) for different models on BTCV, Spleen, and BraT§S
datasets.
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