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Abstract

The Transformer architecture has opened a new paradigm in the domain of deep learn-
ing with its ability to model long-range dependencies and capture global context and has
outpaced the traditional Convolution Neural Networks (CNNs) in many aspects. However,
applying Transformer models to 3D medical image datasets presents significant challenges
due to their high training time, and memory requirements, which not only hinder scalability
but also contribute to elevated CO2 footprint. This has led to an exploration of alternative
models that can maintain or even improve performance while being more efficient and envi-
ronmentally sustainable. Recent advancements in Structured State Space Models (SSMs)
effectively address some of the inherent limitations of Transformers, particularly their high
memory and computational demands. Inspired by these advancements, we propose an
efficient 3D segmentation model for medical imaging called SegResMamba, designed to
reduce computation complexity, memory usage, training time, and environmental impact
while maintaining high performance. Our model uses less than half the memory during
training compared to other state-of-the-art (SOTA) architectures, achieving comparable
performance with significantly reduced resource demands.

Keywords: Mamba, State Space Models, Vision Transformer, Medical Image Segmenta-
tion

1. Introduction

The Transformer architecture has revolutionized deep learning by effectively modeling long-
range dependencies and capturing global context. However, its application to 3D medical
imaging datasets presents significant challenges, including high memory requirements, com-
putational complexity, and prolonged training times. These challenges are particularly pro-
nounced in tasks involving large datasets like BraTS (Baid et al., 2021) and BTCV Segmen-
tation (Landman et al., 2015), where training Transformer-based models such as UNETR
(Hatamizadeh et al., 2021b) and SwinUnetr (Hatamizadeh et al., 2021a) demands substan-
tial resources. Furthermore, transformer models often struggle with smaller datasets, such
as Spleen Segmentation (Antonelli et al., 2022), where their performance is suboptimal.
The environmental impact of Transformers, driven by their elevated training times, has
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raised concerns. This has led to a growing interest in alternative architectures such as
structured state space models (SSMs), which reduce computational demands and training
time, offering a more efficient solution for medical image analysis.

State-space architectures like Mamba (Gu and Dao, 2024), S4 (Gu et al., 2022), and
S4nd (Nguyen et al., 2022) have gained popularity due to their solid foundation in Kalman
Filters (Kalman, 1960). In contrast, CNN-based models like U-Net (Ronneberger et al.,
2015) and SegResNet (Myronenko, 2018) are effective but have a limited receptive field.
Hybrid models like UNETR and SwinUnetr(Hatamizadeh et al., 2021a) combine CNNs and
Transformers(Vaswani et al., 2023) to enhance performance, though Transformers remain
computationally demanding, limiting their practicality in resource-constrained clinical set-
tings. Numerous studies have adapted Mamba to address this issue by modeling long-range
dependencies with innovative selection mechanisms (Zhu et al., 2024; Wang et al., 2024; Liu
et al., 2024; Liao et al., 2024; Wang and Ma, 2024).

3D image segmentation methods, such as U-Mamba(Ma et al., 2024) and SegMamba(Xing
et al., 2024), leverage hybrid CNN-SSM blocks to combine the local feature extraction capa-
bilities of convolutions with the ability of SSMs to capture long-range dependencies. Inspired
by these models, we propose SegResMamba, which uses the benefits of Mamba while further
reducing memory consumption and computational requirements, thereby enhancing train-
ing efficiency. SegResMamba is a lightweight Mamba-based 3D image segmentation model
that offers comparable performance to other state-of-the-art (SOTA) models while signif-
icantly increasing overall efficiency. Our approach employs Tri-orientated Mamba (ToM)
to enhance long-range contextual understanding, combined with CNNs for effective local
feature extraction. A convolution mamba mixed block (CMMB) efficiently captures both
local and global features, starting with a convolutional bottleneck and leveraging Mamba’s
global modeling capabilities.

2. Methodology

Our model consists of an encoder, a decoder, and skip connections between the encoder
and decoder (Ronneberger et al., 2015) as shown in Figure 1. The encoder utilizes encoder
blocks that consist of downsampling layers, convolution mamba mixed blocks consisting of
convolution, and tri-oriented Mamba blocks (Xing et al., 2024).

2.1. Encoder

The encoder architecture comprises four cascaded blocks, each meticulously designed to
extract hierarchical features from the input 3D medical image while progressively down-
sampling the spatial dimensions. Each block sequentially employs Downsampling Lay-
ers, convolution mamba mixed blocks, and Multi-Layer Perceptron (MLP) (Haykin, 1994)
blocks.

Downsampling Layers efficiently reduce the spatial resolution, enabling the capture of
essential features with reduced computational cost. Convolution mamba mixed blocks in-
tegrates convolutional layers for local feature extraction with Mamba layers for capturing
long-range dependencies. This dual approach ensures a comprehensive representation of
both local and global image characteristics. Subsequently, another ToM Layer is used with
a skip connection from 3D features to further enhance long-range dependency handling,
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Figure 1: a) Overview of SegResMamba architecture, b) Convolution Mamba mixed block,
and c) Tri-oriented Mamba

which is crucial for accurate 3D image modeling. Finally, the output is normalized and
refined through MLP blocks before being fed into a residual connection (He et al., 2015) to
facilitate gradient flow during training.

The encoder commences with a downsampling layer applied to the input 3D medical
image. The initial downsampling layer employs a Conv3D layer with a larger kernel size of
7 × 7 × 7, a stride of 2 × 2 × 2, and padding of 3 × 3 × 3. This expansive receptive field
facilitated by the larger kernel aids in capturing more comprehensive contextual information
during feature abstraction.

Subsequently, the remaining three downsampling layers utilize smaller Conv3D kernels
with dimensions of 2×2×2, a stride of 2×2×2, and padding of 3×3×3. This adjustment
in kernel size balances feature extraction granularity with computational efficiency as the
network progresses through deeper layers. We also added an additional convolutional layer
before these downsampling operations to preserve essential features.

Following the downsampling layer, feature maps are processed through the convolution
mamba mixed block. This block integrates both convolution and Mamba layers to capture
multi-scale features. It begins with a larger 5 × 5 × 5 convolution kernel that effectively
reduces the spatial dimensions while extracting coarse-grained features. Subsequently, these
features pass through a 3× 3× 3 convolution layer to refine local details. A ToM Layer is
then applied to this refined representation, enabling the abstraction of long-range depen-
dencies and creating a more comprehensive understanding of the local context learned by
the convolution filters. The ToM module computes feature dependencies in three distinct
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directions: forward (zf ), reverse (zr), and inter-slice (zs). The ToM module begins by flat-
tening the 3D input features into sequences correspond- ing to each of these directions. This
transformation enables the module to effectively capture sequential dependencies within the
high-dimensional feature space.

To reverse the spatial reduction process a 3 × 3 × 3 convolution layer and a 5 × 5 ×
5 convolution layer are used which restore the feature map’s spatial dimensions to their
original size. Following that, the extracted features are added to the original features
passed through a skip connection. The combined feature maps are then fed into another
ToM layer to further capture long-range dependencies and refine the representation.

After this, we apply an MLP block coupled with Instance Normalization (Ulyanov et al.,
2017) to normalize the activations and improve stability during training. Notably, these
intermediate outputs are directly utilized in the decoder.

2.2. Decoder

The decoder leverages both the encoded features from the encoder and the intermediate
results from the encoding process. The decoder is structured with three distinct upsampling
stages, designed to progressively refine and expand the spatial resolution of the features.
The main input to the decoder has a shape of 768 in the channel dimension. At each stage,
the feature map is upsampled and its channel count is halved. This process uses a 1× 1× 1
convolution operation followed by an upsampling layer. Inside the upsampling layer, we use
non-trainable linear interpolation from Monai(Cardoso et al., 2022).

Upsampled results are combined with the corresponding intermediate results received
during the encoding process. The combined features are processed through a sequence of
residual blocks. The residual block consists of the ReLU activation function, Group Norm,
and convolution kernel of 3× 3× 3. We use two of these blocks and a skip connection from
the input of these residual blocks to get an output. This architecture combines efficient
upsampling with skip connections and residual learning, allowing it to reconstruct detailed
spatial information while maintaining the ability to learn complex features at multiple
scales. After getting the output from three decoder blocks we use a transposed convolution
layer to get the final segmented output. This design is lightweight, being both memory and
computation-efficient.

3. Experiments & Results

3.1. Dataset and Implementation Details

BraTS 2021: The BraTS 2021 dataset(Baid et al., 2021) comprises 1,251 multi-parametric
magnetic resonance (mpMRI) brain scans, each annotated with segmentation masks delin-
eating tumorous regions. Each scan includes four modalities: Fluid Attenuated Inversion
Recovery (FLAIR), native T1-weighted (T1), post-contrast T1-weighted (T1Gd), and T2-
weighted (T2) images. Three recombined regions—the tumor core, the entire tumor, and
the enhancing tumor—are used to quantify performance using 5-fold cross-validation.

3D Multi-organ Segmentation (BTCV Challenge):The 3D Multi-organ Segmen-
tation dataset from the BTCV Challenge (Landman et al., 2015) focuses on the segmenta-
tion of 13 abdominal organs. The dataset comprises 30 volumetric images, with 24 volumes
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allocated for training and the remaining 6 reserved for testing and evaluation. Each vol-
umetric image provides detailed 3D representations of abdominal structures, essential for
medical imaging and diagnosis. The task involves accurately delineating each of the 13
specified organs within these scans.

Spleen 3d Segmentation: The Spleen 3D Segmentation dataset (Antonelli et al.,
2022) focuses on segmenting spleens within portal-venous phase CT scans from patients
undergoing chemotherapy treatment for liver metastases. The dataset consists of 61 vol-
umetric CT scans, with 41 scans designated for training and the remaining 20 reserved
for testing and evaluation. Each scan provides detailed 3D representations of abdominal
anatomy, emphasizing the spleen and its surrounding structures during the portal-venous
phase. The segmentation task involves accurately delineating the spleen, which is critical
for assessing spleen-related conditions and treatment responses in oncology patients.

We used Dice loss and weighted ADAM optimizer for training. Dice similarity coefficient
was used for quantitative evaluations. Our experiments used the PyTorch framework with
Monai (Cardoso et al., 2022) for model implementation.

3.2. Results

Figure 2: Average Dice Scores for BTCV, Spleen, and BraTS2021 datasets plotted against
training memory (in GB) for different models using image size 128 × 128 × 128
for BTCV and BRATS dataset and 96 × 96 × 96 for Spleen dataset with batch
size 1.

Figure 2 illustrates the relationship between the peak memory consumption during train-
ing and segmentation accuracy, measured by the Average Dice Score, across various models.
It can be observed that our method uses comparatively less memory than other large models
like Swin Unetr and SegMamba while still maintaining comparable performance.
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Brain tumor segmentation performances of different SOTA models are shown in Table
1. SegResMamba achieves a competitive mean Dice score of 0.8839, which is comparable
to models like SwinUNETR (0.8861) and SegMamba (0.8863). Despite this, SegResMamba
operates with significantly lower Multiply-Accumulate operations (MACs), making it a
more computationally efficient model. This lower computational cost, combined with its
strong performance, highlights SegResMamba as an excellent choice for scenarios requiring
a balance between accuracy and resource efficiency.

Model MACs Mean Dice Dice TC Dice WT Dice ET
UNETR 203.29G 0.8617 0.8653 0.8708 0.8490

SegMamba 1575.13G 0.8863 0.8943 0.8962 0.8685
UNET 30.13G 0.8444 0.8435 0.8637 0.8260

SwinUnetr 792.08G 0.8861 0.8907 0.8970 0.8707
SegResMamba 340.52G 0.8839 0.8953 0.8958 0.8605

Table 1: Mean dice scores of different models on BraTS21 dataset for 5-fold cross-validation.
Dice TC, Dice WT, and Dice ET represent the Dice scores for Tumor Core, Whole
Tumor, and Enhancing Tumor, respectively.

Table 2 shows that SegResMamba, while having a reduced memory footprint and lower
MACs, delivers performance on the BTCV dataset comparable to more memory-intensive
computationally expensive models. In the spleen segmentation task, as shown in Table
3, the SegResMamba network achieved the highest average Dice score of 0.9147, outper-
forming UNETR (0.8642), UNET (0.8195), and SwinUNETR (0.9126). This highlights
SegResMamba’s superior performance compared to transformer-based models on a small
dataset.

Model MACs Avg Dice
UNETR 196.03G 0.8027

SegMamba 1554.86G 0.8430
UNET 60.10G 0.8192

SwinUnetr 784.46G 0.8389
SegResMamba 336.45G 0.8361

Table 2: Average Dice scores of models
on the BTCV dataset.

Model MACs Avg Dice
UNETR 82.52G 0.8642

SegMamba 655.32G 0.9004
UNET 11.53G 0.8195

SwinUnetr 328.68G 0.9126
SegResMamba 137.84G 0.9147

Table 3: Average Dice scores of models
on the Spleen dataset.

Exp Model Avg Dice (BTCV)

1 SegMamba Encoder + ResNet-based Decoder 0.8164
2 Exp. 1 + Convolution Mamba Mixed Block 0.8279
3 Exp. 2 + Additional Conv before downsampling 0.8361

Table 4: Average Dice scores of different setups on the BTCV dataset.

To investigate the contribution of various components in our model, we conducted an
ablation study on the BTCV dataset, with results shown in Table 4. In the first experiment,
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a Mamba encoder proposed by SegMamba(Xing et al., 2024) was paired with a lightweight
ResNet-based decoder. This helps us to reduce computational complexity and memory
efficiency. Next, we replaced the Global Spatial Context (GSC) block used in the SegMamba
encoder with our convolution mamba mixed block. This modification leverages both local
representation through convolution and global representation via the mamba layer and
improves the segmentation performance by 1.15%. Finally, we added a convolutional layer
before the downsampling operation to preserve essential features. When combined with the
improvements from Experiments 1 and 2, this experiment led to significant performance
gains, increasing the Dice score on the BTCV dataset from 0.8164 to 0.8361.

Figure 3: Mean dice score of BraTS dataset against CO2 emission with 5-fold cross-
validation settings for different models.

Furthermore, Figure 3 illustrates the relationship between CO2 emission and segmenta-
tion accuracy for brain tumor segmentation with 5-fold cross-validation across various mod-
els. These estimations were conducted using Amazon Web Services in region eu-central-1,
which has a carbon efficiency of 0.61 kgCO2eq/kWh. A cumulative training hours of com-
putation was performed on hardware of type A100 PCIe 40GB (TDP of 250W). Estimations
were conducted using the Machine Learning Impact calculator presented in (Lacoste et al.,
2019).

Among the high-performing models, SegResMamba demonstrates a notable advantage
by achieving a balance between environmental efficiency and segmentation performance.
Specifically, SegResMamba exhibits significantly lower CO2 emissions compared to other
high-performing models such as SwinUNETR and SegMamba, while maintaining a com-
parable dice score. Furthermore, when compared to UNET and UNETR, SegResMamba
achieves superior segmentation accuracy without a substantial increase in CO2 emissions,
highlighting its efficiency and effectiveness.
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4. Discussion

The experimental results demonstrate that SegResMamba is a robust and efficient model
for 3D medical image segmentation tasks. It consistently delivers competitive performance
across datasets while significantly reducing memory consumption and computational costs
compared to state-of-the-art models like SwinUNETR and SegMamba. The model’s design
prioritizes memory efficiency without compromising segmentation accuracy. The reduced
training memory requirements make this model an excellent choice for training and deploy-
ment on less resource-intensive hardware.

In terms of computational complexity, SegResMamba requires only 340.52 GMACs
for the BraTS21 dataset (Table 1), a significant improvement over SegMamba (1575.13
GMACs) and SwinUNETR (792.08 GMACs). Despite its lightweight design, SegResMamba
maintains a competitive mean Dice score of 0.8839, only 0.24% and 0.22% less than Seg-
Mamba and SwinUNETR respectively. This demonstrates the model’s ability to achieve
high segmentation accuracy while remaining computationally efficient which makes it more
suitable to be deployed in energy-sensitive situations.

SegResMamba’s performance across datasets further highlights its versatility. On the
BTCV dataset, the model achieves Dice scores comparable to memory-intensive counter-
parts like SegMamba and SwinUNETR (Table 2), while attaining the highest Dice score of
0.9147 on the spleen segmentation task (Table 3). These results emphasize its effectiveness
in addressing diverse segmentation challenges.

Environmental efficiency is another key aspect of the proposed model. SegResMamba
demonstrates significantly lower CO2 emissions compared to other SOTA models during
training due to reduced memory and computational requirements. This aligns with sus-
tainable AI practices, promoting the development of energy-efficient models that minimize
environmental impact without compromising performance.

While SegResMamba demonstrates substantial advantages, there are a few limitations
to consider. First, its segmentation performance, although competitive, is marginally lower
than other high-performing models like SwinUNETR and SegMamba, as observed in the
BraTS and BTCV datasets. This slight trade-off may be a consideration for applications
where peak accuracy is critical. Another limitation is the training and evaluation were per-
formed on datasets with well-defined segmentation tasks; performance on more challenging
or less-structured datasets remains to be explored.

5. Conclusion

SegResMamba marks a significant advancement in 3D medical image segmentation, bal-
ancing efficiency and performance by combining Mamba’s global context modeling with
convolutional layers for local feature extraction. Its reduced memory overhead, along with
improved computational and training efficiency, makes it well-suited for real-world clinical
applications, delivering excellent results while remaining resource-efficient. Future work
will focus on exploring new training strategies and data augmentation to further enhance
segmentation accuracy and generalization across various datasets.
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Appendix A. Additional Implementation Details

A.1. Brain Tumor Segmentation

BraTS2021 dataset (Baid et al., 2021) was used for brain tumor segmentation to compare the
performance across multiple folds for the SOTA models. We trained 5-fold cross-validation
for 200 epochs utilizing strategies like learning rate scheduling with CosineAnnealing, Adam
optimizer with weight decay of 1e-5, and gradient scaling. We used dice metric and dice
loss as metric and the loss function. Various dataset transforms like foreground cropping,
random spatial cropping, random flip with probability 0.5 in each direction, and random
intensity scaling were used.

A.2. Multi-organ Segmentation

We conducted experiments on the BTCV dataset for multi-organ segmentation (Landman
et al., 2015). The training process ran for 25,000 steps. We utilized the Adam optimizer with
a learning rate of 1e-4 for our experiments. Our data transformations included scaling inten-
sity range, orientation adjustment (Orientationd), foreground cropping (CropForegroundd),
and spacing adjustment (Spacingd). To optimize the model’s performance, we employed
DiceLoss as the loss function and evaluated using the dice metric for validation.

A.3. Spleen Segmentation

For the spleen segmentation task, we used the spleen 3D segmentation dataset (Antonelli
et al., 2022) and we limited training to 100 epochs. Extending the training to larger epoch
numbers, such as 200, results in overfitting due to the relatively small size of the dataset
compared to larger datasets like BraTS. Following a similar approach to the aforementioned
tasks we used Adam optimizer with a learning rate of 1e-4. Transformations like scaling
intensity range, normalizing the orientations of images, foreground cropping, and spacing
adjustment were used. DiceLoss was used as the loss function and dice metric as the metric
for validation.

Appendix B. Training Time and CO2 Footprint

Model Epoch Time Total Time 5-Fold Time CO2 Emissions (kg)
(in sec) (in hours) (in hours) Azure Google Amazon

UNETR 262.83 14.60 73.01 10.40 11.32 11.13
Segmamba 321.50 17.86 89.31 12.73 13.84 13.62
UNET 255.80 14.21 71.06 10.13 11.01 10.84

SwinUNETR 321.39 17.85 89.28 12.72 13.84 13.61
Segresmamba 267.83 14.88 74.40 10.60 11.53 11.35

Table 5: Comparison of models in terms of training time, and CO2 emissions across different
cloud providers for training of 5-fold cross-validation using BraTS dataset
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A detailed comparison of CO2 emissions across different cloud providers, including Ama-
zon Web Services, Google Cloud, and Azure, for 5-fold training of the BraTS dataset, is
presented in Table 5. It is important to note that these values represent only the emissions
from 5-fold training; incorporating hyperparameter optimization would result in signifi-
cantly higher CO2 emissions. These estimations were conducted using the Machine Learning
Impact calculator presented in (Lacoste et al., 2019).

Appendix C. Memory Efficiency

A comparison of training memory of different models is shown in Table 6 (using image size
128 × 128 × 128 for BTCV and BraTS dataset and 96 × 96 × 96 for Spleen dataset with
batch size 1).

Model BTCV (GB) Spleen (GB) BRATS (GB)

UNETR 3.08 0.14 3.02
SegMamba 13.51 5.68 13.44

UNET 1.42 0.48 1.13
SwinUNETR 7.77 3.21 7.68
SegResMamba 5.10 2.22 4.78

Table 6: Training memory (in GB) for different models on BTCV, Spleen, and BraTS
datasets.
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