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Abstract

Online A/B tests have become increasingly popular and important for social plat-
forms. However, accurately estimating the global average treatment effect (GATE)
has proven to be challenging due to network interference, which violates the Stable
Unit Treatment Value Assumption (SUTVA) and poses great challenge to experi-
mental design. Existing network experimental design research was mostly based
on the unbiased Horvitz-Thompson (HT) estimator with substantial data trimming
to ensure unbiasedness at the price of high resultant estimation variance. In this
paper, we strive to balance the bias and variance in designing randomized network
experiments. Under a potential outcome model with 1-hop interference, we derive
the bias and variance of the standard HT estimator and reveal their relation to
the network topological structure and the covariance of the treatment assignment
vector. We then propose to formulate the experimental design problem as to op-
timize the covariance matrix of the treatment assignment vector to achieve the
bias and variance balance by minimizing a well-crafted upper bound of the mean
squared error (MSE) of the estimator, which allows us to decouple the unknown
interference effect component and the experimental design component. An effi-
cient projected gradient descent algorithm is presented to the implement of the
desired randomization scheme. Finally, we carry out extensive simulation studies2

to demonstrate the advantages of our proposed method over other existing methods
in many settings, with different levels of model misspecification.

1 Introduction

A/B test, also known as controlled experiment, is an effective way to evaluate treatment effect of new
product features and facilitate data-driven decision-making [14]. Due to its simplicity and efficiency,
it has become the gold standard in the industry. The theory of A/B test is based on the Stable Unit
Treatment Value Assumption (SUTVA), under Neyman-Rubin’s framework [33], which assumes
unit’s treatment effect isn’t influenced by other units’ treatment assignments. However, in situations
where social network connects units, SUTVA is often violated since an individual’s behavior can be
influenced by their friends. This violation of SUTVA is referred as network interference or social
interference, which brings challenges to both estimation and inference of parameters of interest. It
has been shown that ignoring network effect can induce much higher bias or variance [29].

To tackle the bias and variance induced by network interference, researchers have tried to design
randomization schemes in pre-treatment phase and estimators or adjustment methods in post-treatment
phase. In this paper, we will focus on designing randomization scheme, namely, experiment design.
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Specifically, we take the graph structure as known and leverage it to assist experiment design. Our
basic scheme is cluster-level randomization, which treats cluster or community in the graph as unit of
treatment and all units in the same cluster share the same treatment. [19] is an early work investigating
this approach, and [35] proposes to form clusters utilizing graph. The graph cluster randomization is
conceptually simple but effective in many scenes, and thus becomes a prevalent paradigm for network
experiment design. Moreover, we consider experimental design on a social network in this work.
Social network typically has organic structure and high clustering coefficient, which corresponds to
meaningful cluster structure and also motivates us to adopt cluster-level randomization. We assume
the cluster structure of the network is given. In practice, interpretable community detection algorithms
such as the Louvain algorithm [4] are typically applied for cluster construction. Moreover, we stress
the scalability of our method since social network is usually large-scale in reality.

Related works have shown that there exists an explicit bias-variance tradeoff [23, 41]. However, many
HT-style estimators that utilize exposure indicator to ensure unbiasedness are designed on the basis
of the neighborhood interference assumption that restricts global interference to 1-hop neighborhood
[10, 25, 36, 39, 9], and graph-dependent generalized propensity score [1]. Nonetheless, we argue
that pursuing unbiasedness by simple sample trimming leads to small effective sample size with high
variance, and thus is far from optimal. Moreover, computational cost is also high in this approach
since a large number of Monte Carlo simulations are usually needed for computing the generalized
propensity score, or the trimming probability for constructing sample weights. Having observed the
preceding drawbacks of the unbiased estimator, we consider the standard unit-level HT estimator
to achieve possible better bias and variance tradeoff with less computation burden at the meantime.
Based on a potential outcome model, we characterize the relationship among the bias, variance, the
network topology, and the treatment assignment mechanism. This development allows us to design
experimental schemes that minimizes MSE and achieve better bias-variance tradeoff.

Besides from the time-consuming Monte Carlo simulation for calculating generalized propensity score
mentioned above, the computational efficiency of experiment design is indeed a limitation of current
methods. For instance, the two-wave experiment [37], entails solving a mixed-integer quadratic
programming problem, which can be computationally expensive. The adaptive covariates-balancing
design [25] adopts a sequential process for treatment assignment and thus isn’t very scalable. To
address this limitation, we propose to utilize gradient-based optimization algorithm.

In this paper, we propose to treat the covariance matrix of treatment vector as decision variable in
optimization, which is nontrivial as a result of interference and corresponding complex variance
of estimator. Similar approach in optimization step is proposed in [17], where interference isn’t
considered, and making covariance covariance acting as decision variable is a natural choice owing
to the simple structure of variance there. We draw attention to the fact that related works concerning
experiment design mostly concentrates on a predetermined class of randomization schemes and
seeks to optimize the parameters to obtain designs that minimize variance or MSE of estimator
[37, 23, 5, 42]. However, we argue that these designs can all be understood as different patterns
of the covariance matrix of the treatment vector, and we propose to treat the covariance matrix
as decision variables rather than limiting our scope to a particular class of designs. One of major
challenges with this approach is generating a randomization scheme that supports legitimate sampling,
as there may not be a joint distribution that corresponds to the optimized covariance matrix in our
formulation. To address this issue, we propose to adopt projected gradient descent to guarantee
the validity of optimized covariance matrix. Furthermore, we also compare our method with other
popular designs through extensive simulation on a real online social network. Various interference
intensity levels and potential outcome models are considered. It is found that our method is robust to
model misspecification and outperforms in almost all settings, especially when the interference isn’t
too weak compared to the direct treatment effect, which is the scene we target.

Contributions. Our contributions are summarized as follows.

1. We derive a well-crafted upper bound for the MSE of the HT estimator that decouples the
estimation of causal mechanism and experimental design. This enables us to optimize the
experimental design by minimizing this bound, in which the covariance matrix of treatment
vector acts as decision variables.

2. We propose the formulation of covariance optimization problem with reparameterization of
covariance matrix and constraints that guarantees legitimate sampling subject to optimized
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covariance matrix, and a projected gradient descent algorithm is proposed for solving the
optimization problem.

3. We conduct systematic simulation on a social network and compare our method with several
methods proposed recently under a range of settings, providing credible reference for the
effectiveness of our method.

Related Works. A variety of interference has been considered in related works[12], such as spatial
[23], temporal [13] and network, which is the scene we target. Besides from the general network,
there is also another line of work focused on a two-sided marketplace or platform, where the graph is
bipartite [43, 24, 16, 30, 27].

In the field of network experiment design, most of extant research assumes that the graph structure
is known and leverage it to assist in modeling the interference[2], though several graph agnostic
methods are developed these days [40, 8]. Nevertheless, the interference is conducted through edges
of network, and agnostic methods aren’t effective enough.

Beyond unit-level randomization, cluster-level randomization on graph has attracted extensive atten-
tion, including both experimental design [23, 25, 5, 30] and estimation [26, 1, 6, 15]. The seminal
paper of this line of work is [35], which proposes graph cluster randomization that treats clusters as
units in randomization. This methodology is motivated by providing a better lower bound of exposure
probability in HT estimator that uses exposure probability as inverse weight, aiming at controlling
the variance of such an unbiased estimator. Along the same direction, [36] proposes a polynomial
lower bound on exposure probability through randomized local clustering algorithm.

Irregular global interference may render the experimental design problem intractable [39], thus
structural assumptions are usually introduced to rule out such arbitrary interference. The first category
is partial interference [34, 19, 3, 11, 5], which assumes disjoint community structures and interference
only happens within each community. The second category is neighborhood interference, which
assumes the interference solely originates from units’ 1-hop neighborhood [25, 36, 41, 12, 8]. This
kind of assumption is more practical compared with partial interference, and thus widely applied. The
third category is potential outcome model, which directly assumes the expression of potential outcome,
e.g. classical Cliff-Ord auto-regressive model [7], linear potential outcome models[25, 39]. Actually,
some potential outcome model implies neighborhood interference assumption in its mathematical
expression. It’s also worth to be noted that there also appear works trying to weaken the structural
assumptions mentioned above and consider the interference of more general form [6, 22, 23, 18, 15].

2 Basic Framework

2.1 Setup

We consider a finite population of n units, and the treatment vector is represented as z =
(z1, z2, . . . , zn) ∈ {0, 1}n. In this paper, we consider the experiment design problem in which
a sensible random treatment assignment mechanism of all units is designed to achieve good perfor-
mance of the resultant treatment effect estimation. We follow the Neyman-Rubin’s framework [33].
Without SUTVA assumption, we define the potential outcome of unit i as Yi = Yi(z), which means
the potential outcome of unit i can depend on the treatment assignment of all units.

The parameter of interest is the global average treatment effect (GATE), which is denoted by τ ,

τ :=
1

n

∑
i∈[n]

(Yi(1)− Yi(0)) (1)

Here we use [n] to denote set {1, 2, ..., n}, and 1(0) is the n-dimensional vector of 1(0), which
corresponds to global treatment and global control.

We denote the social network as G = (V, E). The node set V is [n], corresponding to all units
considered above. Edge set E represents the social connection between units. Furthermore, we use di
to denote the degree of node i. We assume the graph structure G is known in advance.

In this paper, we consider graph cluster randomization [35]. Here we also assume that cluster structure
is given, which is generated from certain community detection algorithm. We define Sk as the k-th
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cluster, where k ∈ [K]. Clusters compose a splitting of node set, namely,

Sk ⊂ [n] Si ∩ Sj = ∅ ∪Kk=1 Sk = [n] (2)

The graph cluster randomization implies that units in the same cluster share the same treatment
assignment, namely,

zi = zj ∀i, j ∈ Sk, k ∈ [K] (3)

Since we consider randomization scheme at cluster level, it’s more convenient to define cluster-level
treatment vector t = (t1, t2, ..., tK) ∈ {0, 1}K . Specifically, we consider the balanced cluster-level
randomization scheme satisfying

P(tk = 1|G) = 1

2
E[zi] =

1

2
(4)

2.2 Potential Outcome Model and Estimators

One of the key ideas of this paper is to deduce an appropriate objective function to optimize experiment
design schemes under consideration. In this part, we will consider standard HT estimator, namely,

τ̂ =
1

n

∑
i∈[n]

(
(

zi
E[zi]

− (1− zi)

E[1− zi]
)Yi(z)

)
(5)

Then we introduce the considered potential outcome model.

Assumption 1 (Potential Outcome Model) The potential outcome of unit i is generated by

Yi(z) = αi + βizi + γ
∑
j∈Ni

zj (6)

where Ni is the 1-hop neighborhood of unit i.

In this potential outcome model, βi can be interpreted as direct treatment effect of unit i, and γ
measures the interference effect, characterizing the extent to which each unit is affected by its
neighborhood in the network. This model is a simplified (in interference part) version of over-
parameterized model in [39], in which heterogeneous interference effects are accommodated. We
make a somewhat stronger assumption to simplify the structure of the bias, variance and MSE. Under
this model, we can express the GATE in terms of the potential outcome model parameters,

τ =
1

n

∑
i∈[n]

(Yi(1)− Yi(0)) =
1

n

∑
i∈[n]

(βi + γdi) (7)

We will then derive the bias and variance of τ̂ under this potential outcome model. We point out that
the number of unknown parameters in this model is still greater than the number of known potential
outcomes, which can be understood as overparameterization, and we only utilize it to derive an
optimizable MSE upper bound that’s not concerned with estimation of βi and γ in this model. In
fact, when the interference effect and the direct treatment effect are comparable at cluster-level, a
multiplier of the MSE upper bound can be factored out, which is crucial in our methodology and will
be shown in section 3.1.

2.3 Bias of HT Estimator

Based on the potential outcome model, we can derive the bias and variance of our estimator ex-
plicitly. We firstly introduce cluster-level treatment assignment, t = (t1, t2, ..., tK), and matrix C
summarizing edges between(within) clusters with its elements defined as

Cij = |{(u, v) : (u, v) ∈ E , u ∈ Si, v ∈ Sj}| (8)

We have following proposition about bias.

4



Proposition 1 (Bias of HT Estimator) The bias of standard HT estimator is

E[τ̂ ]− τ =
γ

n

4 trace(C Cov[t])−
∑

i,j∈[K]

Cij

 (9)

where Cov[t] refers to the covariance matrix of treatment vector t.

Specifically, we can delineate the source of bias in our setting. If we consider graph cluster random-
ization as basic scheme, edges within cluster don’t contribute any bias, while every edge between
clusters contributes to bias according to the covariance of cluster-level treatment assignments. This
enlightens us that independent treatment assignments is far from optimal, and we can reduce bias by
assigning treatments with appropriate positive correlations that should be higher for more densely
connected cluster pair. Furthermore, we point out that bias may be of no account when a very sparse
network is considered, but it indeed counts in our context of social network.

We also note that the treatment vector is summarized by its covariance matrix in the expression of
bias. Hence, we denote the bias by B(Cov[t]).

2.4 Variance of HT Estimator

To derive the variance, we plug in the potential outcome model and express the estimator as

τ̂ =
2

n

n∑
i=1

−αi + (βi + 2αi − γdi)zi + 2γ
∑
j∈Ni

zizj (10)

An important difference in the derivation of variance contrasting that of bias is all base levels αi is no
longer negligible. Hence, we consider to target at the scenes that we can acquire knowledge of all
base levels in advance.

Assumption 2 (Known Base Levels) The base level αi of unit i is known in advance for all units i.

This assumption is strong in the classic context of experiment design, while we propose to target
the scene where AB tests are launched by social platforms. On the one hand, the improvement in
user activity indices brought by new traits or interventions, specifically, direct treatment effect and
interference, is typically much smaller than the base levels αi, which means the experiment design
may be quite challenging when agnostic to base levels. On the other hand, it’s very reasonable to
assume that we know all αis before conducting experiments since those indices we’re concerned with
are recorded and/or estimated daily or weekly by social platforms.

Utilizing this assumption, we can first adjust our estimator as

τ̂−α =
1

n

∑
i∈[n]

(
(

zi
E[zi]

− (1− zi)

E[1− zi]
)(Yi(z)− αi)

)
(11)

This adjustment has also been recommended by [39]. Notice that this adjustment helps us remove the
influence of base level αi when we consider variance. In the following, we’ll adhere to this format
and proceed to derive the variance term, which is summarized in the following proposition.

Proposition 2 (Variance of HT Estimator) The variance of standard HT estimator is

Var[τ̂ ] =
4

n2
(trace(hhT Cov[t]) + 4γ Cov[hT t, tTCt] + 4γ2 Var[tTCt]) (12)

where h is the vector (
∑

i∈Sk
βi − γdi)

K
k=1.

Notice that the expression of variance contains second-order term with regard to t, namely, Cov[t], as
well as third and fourth-order terms involving tTCt, a quadratic form of t. It’s feasible to analyze the
variance precisely with a specific randomization scheme, such as the independent block randomization
[5], but it is generally not straightforward to optimize a broad set of randomization schemes in its
exact form. In the following subsection, we will derive a bound of variance to transform third and
fourth-order terms into second-order, which also motivates our optimized covariance design.
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We comment that a bias-variance tradeoff is unveiled in the previous two propositions. Actually,
C is a matrix with non-negative elements, and introducing positive covariance between treatment
assignments of different clusters will reduce the bias. On the other hand, introducing positive
covariance means an increment in variance. In addition, though this paper doesn’t involve upstream
clustering algorithm, the resolution of clustering can also impact the relative importance of bias and
variance, namely, low resolution usually corresponds to a higher proportion of edges within cluster,
which weakens the importance of bias and stress on variance.

3 Optimized Covariance Design

3.1 Constructing Objective for Optimization

Although we have derived the expression of bias and variance, the expression of variance is com-
plicated due to the existence of treatment effects βis, the interference effect γ, and the higher-order
terms involving the treatment vector. We will bypass the first hurdle by adding reasonable assumption
about the direct treatment effect and interference effect. The second challenge will be addressed by a
upper bound argument.

We first consider the former issue, which is the relationship between βi and γi. Since we consider the
interference, we propose to restrict our scope to the situation that network interference isn’t too weak,
which is formulated as following assumption.

Assumption 3 (Comparability between Direct Treatment Effect and Interference) Given
potential outcome model in equation (6), we assume there exists a constant ω > 0 such that

|hk| ≤ ωγ(
∑
i∈Sk

di) (13)

holds for each cluster k ∈ [K].

This assumption actually demands the magnitude of interference is comparable to direct effect at
cluster level. Namely, we allow a significant difference between direct treatment effect βi and
interference γdi for certain units, but there isn’t too much difference after aggregation in cluster. The
constant ω can be viewed as degree of tolerance on incomparability between direct causal effect and
interference and depends on the both nature of potential outcome and graph structure. It’s natural
that people may be more susceptible to the states of their friends in some social metrics. Since we’ll
utilize the MSE bound as optimization objective, this constant can also be viewed as tuning parameter
that’s determined by domain knowledge or pilot experiment. To demonstrate the robustness of our
method, we don’t tune ω according to the result and fix ω = 1 in the simulation, which corresponds
to a moderate constraint on comparability. Empirically, our result isn’t sensitive to the value of ω.

We then discuss the latter issue. We bound all high-order terms by second or lower order terms. This
effort leads to an upper bound which allows us to simply optimize the covariance matrix.

Proposition 3 (Variance Bound) The variance of the standard HT estimator has following upper
bound,

Var[τ̂ ] ≤ 8γ2(ω2 + 4)

n2
trace

(
ddT (Cov[t] +

1

4
11T )

)
(14)

where d is the vector (
∑

i∈Sk
di)

K
k=1.

In brief, we choose to bound the third-order term by the sum of second and fourth-order terms, and
bound the fourth-order term by the definition of binary treatment vector. The format is adjusted for
our optimization formulation later, where we choose the covariance matrix as decision variables.

Actually, we can find that experiment design is summarized by the covariance matrix in this upper
bound. Hence, we denote this upper bound by V̄ω(Cov[t]). Notice that there is a common multiplier
γ2, which is associated with the unknown interference effect, in the squared bias and variance. This
appealing feature allows us to optimize the MSE upper bound without estimating the parameter of
the potential outcome model.

Combining proposition 1 and 3, we derive following upper bound for MSE.
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Theorem 1 The MSE of the standard HT estimator has following upper bound

MSE ≤ B(Cov[t])2 + V̄ω(Cov[t]) (15)

3.2 Optimizing Covariance

Now we can discuss our experiment design. For a class of parameterized randomization schemes, one
can always analyze the covariance and express the bias and variance with parameters in randomization
schemes. Based on the derivation in previous section, we argue that these randomization schemes is
actually specifying the patterns of covariance matrix, e.g., the block diagonal pattern. We thus choose
to directly optimize the covariance matrix of randomization scheme, which is actually considering a
much larger hypothesis space.

Since our decision variable is a positive semi-definite matrix, it’s intuitive to make attempts for
formulating the problem as positive semi-definite programming with the MSE bound acting as
objective. However, notice that there is still one square term with regard to trace(CX), which appears
in the B(X)2. If we want to transform it into semi-definite programming (SDP), we must modify the
objective further. Moreover, there are some intrinsic disadvantages of this formulation. Primarily,
after we solve the optimal covariance matrix, we can’t directly sample from the multivariate Bernoulli
distribution that is subject to this covariance matrix. Secondly, method based on mathematical
programming is usually precise but not efficient enough.

To guarantee that we can sample treatment vector subject to the optimized covariance, we first present
a lemma that is equivalent to the Grothendieck’s identity [28].

Lemma 1 Suppose that (X,Y ) follows a bivariate Gaussian distribution with correlation r, namely,(
X
Y

)
∼ N

((
0
0

)
,

(
1 r
r 1

))
(16)

we have

Cov[sgn(X), sgn(Y )] =
2 arcsin(r)

π
(17)

This lemma enables us to sample from bivariate Bernoulli distribution with mean ( 12 ,
1
2 ) and any valid

covariance. Specifically, once we solve out the optimal covariance matrix X∗, we can sample from
multivariate Gaussian distribution with sin(2πX∗) acting as covariance matrix, here sin function
is element-wise. Nevertheless, it must be noted that this transformation isn’t omnipotent for n > 2
case, namely, arcsin(X)/2π can’t recover all possible covariance matrix of n-variable multivariate
Bernoulli distribution when X ⪰ 0, since otherwise the multivariate Bernoulli distribution can be
uniquely determined by its mean vector and covariance matrix, which is apparently false.

Moreover, we can’t guarantee sin(2πX∗) to be positive semi-definite even if X∗ is positive semi-
definite. Motivated by this, we adopt the Cholesky-based parameterization. We set our decision
variable as matrix R, and we guarantee the validity of the covariance matrix of Gaussian distribution
first, namely, we set the covariance matrix of Gaussian distribution as RRT and the covariance matrix
of (Bernoulli) treatment vector is

X(R) =
arcsin(RRT )

2π
(18)

Now we can propose our final formulation

min
R

M(R) = B(X(R))2 + V̄ω(X(R))

s.t. (RRT )i,j ∈ [−1, 1] ∀i ̸= j, i, j ∈ [K]

(RRT )i,i = 1 ∀i ∈ [K]

(19)

This optimization problem is no longer convex with the introduction of arcsin function, for which
we design a projected gradient descent algorithm. Since it’s a non-convex optimization problem,
adaptive optimizer, such as Adam [20] can be applied to improve the performance of the gradient
descent step.
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Algorithm 1 Optimizing Covariance Matrix
Input: G, {Sk}Kk=1, N , ω

1: Initialization: R0, i← 0
2: repeat
3: Calculate objective M(R)
4: R← Adam(R,∇RM(R))
5: Update R with row normalization (2-norm)
6: i← i+ 1
7: until i > N

Output: Optimized matrix R∗

We would like to draw attention to the fact that row normalization can be viewed as a projection
operator to the domain in the aforementioned formulation, with the Frobenius norm of the matrix.
This fact can be verified through the Cauchy-Schwarz inequality. Additionally, we actually optimize a
total of K ×K parameters using gradient information, which is both efficient and easy to implement.

After the optimization problem is solved, we can sample from it directly through a reparameterization
of the multivariate Gaussian distribution,

t =
1+ sgn(R∗N (0, IK))

2
(20)

4 Simulation Study

4.1 Basic Setting

In this part, we carry out simulation based on a linear/multiplicative potential outcome model on a
social network FB-Stanford3[32].3. We consider following linear potential outcome model,

Yi(z) = α+ β · zi + c · di
d̄

+ σ · ϵi + γ

∑
j∈Ni

zj

di
(21)

and multiplicative model, which is a simplified version of that in [36], with removing a covariate.

Yi(z) = (α+ σ · ϵi) ·
di
d̄
· (1 + βzi + γ

∑
j∈Ni

zj

di
) (22)

We choose to fix all parameters except for interference density, γ. Namely, we set (α, β, c, σ) =
(1, 1, 0.5, 0.1) for both models, and set γ ∈ {0.5, 1, 2} to construct three regimes. ϵi ∼ N (0, 1).

It should be noted that these two models correspond to different model misspecification forms, aiming
to demonstrate the robustness of our method.

Besides our optimized covariance design (OCD), we implement following randomization schemes.
We first consider two baselines, independent Bernoulli randomization (Ber) and complete randomiza-
tion (CR), both of which are cluster-level. We also implement two adaptive schemes, rerandomized-
adaptive randomization (ReAR) and pairwise-sequential randomization (PSR) [25, 31], which balance
heuristic covariates adaptively and act as competitive baselines, since the average degree is considered
as a covariate in these two methods and exactly appear in both two of our models, explicitly. Then we
implement the independent block randomization (IBR) [5], which represents methods that optimize
parameterized randomization schemes. Nevertheless, we argue that an appropriate objective for
optimization is crucial, and we propose a randomization scheme based on IBR with optimizing
variance in equation (12) as objective. We nominate it as IBR-p since the heuristic solution of this
scheme in our optimization problem is pairing cluster with cluster size, namely, each block is of size
2. Notice that all randomization schemes satisfy equation (4).

For every randomization scheme we consider, we perform Monte Carlo simulation that repeats
randomization schemes 10,000 times and calculates the sample mean and variance of estimators.

3Network topology data can be found in https://networkrepository.com/socfb-Stanford3.php
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Table 1: The average bias, standard deviation and MSE of HT estimator under linear model

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.293 0.521 0.358 -0.588 0.584 0.688 -1.178 0.709 1.893
CR -0.292 0.409 0.253 -0.586 0.459 0.554 -1.177 0.562 1.702
ReAR -0.393 0.227 0.206 -0.700 0.251 0.554 -1.317 0.303 1.829
PSR -0.295 0.235 0.143 -0.587 0.264 0.415 -1.179 0.323 1.496
IBR -0.298 0.273 0.164 -0.593 0.308 0.447 -1.181 0.380 1.541
IBR-p -0.294 0.232 0.141 -0.596 0.261 0.423 -1.185 0.318 1.507
OCD -0.198 0.411 0.209 -0.388 0.469 0.371 -0.764 0.585 0.926

Table 2: The average bias, standard deviation and MSE of HT estimator under multiplicative model

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.365 0.348 0.255 -0.736 0.394 0.698 -1.475 0.493 2.421
CR -0.368 0.235 0.191 -0.744 0.274 0.629 -1.477 0.336 2.297
ReAR -0.402 0.178 0.194 -0.809 0.174 0.685 -1.548 0.226 2.450
PSR -0.366 0.134 0.152 -0.738 0.153 0.569 -1.479 0.192 2.227
IBR -0.369 0.155 0.161 -0.737 0.178 0.576 -1.484 0.221 2.252
IBR-p -0.368 0.163 0.163 -0.739 0.185 0.581 -1.482 0.232 2.252
OCD -0.258 0.040 0.069 -0.517 0.050 0.271 -1.034 0.054 1.073

Moreover, the oracular GATE are utilized to calculate bias.

τ1 = (α+ β + c · d̄
d̄
+ γ)− (α+ c · d̄

d̄
) = β + γ

τ2 = α(1 + β + γ)− α = α(β + γ)

(23)

At last, we set the clusters as given by Louvain algorithm with fixed random seed and resolution
parameter as 10, which gives K = 192 clusters. We also consider other two resolution levels, namely,
2 and 5, corresponding to K = 30, 95, respectively. The outcome under these two levels is presented
in the appendix.

4.2 Analysis of Results

From table 1 to table 2, we show the bias, standard deviation, and MSE of standard HT estimator. We
also present the result under different estimator (such as difference-in-means estimator), different
clustering resolution and different dataset (network topology) in the appendix due to limited space.
Overall, it meets our expectation that the proposed method OCD demonstrates greater advantages
over other methods when interference intensity, namely, γ, increases. We emphasize the outstanding
performance of our method in the multiplicative model and give the credit to handling the bias-
variance tradeoff better. We also discover that our approach OCD isn’t sensitive to the resolution
level of upstream clustering, which isn’t often the case for other methods, according to the thorough
simulation results presented in the appendix. In reality, when there are certain densely connected
cluster pairings that are assumed to have merged but have not, the clustering outcome is poor and
resolution level may be inappropriate. Such pair would typically receive a high positive covariance
from the optimization process in OCD, which could be regarded as adaptively fixing the fault.

In addition, we highlight that the bias usually dominates in MSE in many settings, and it almost scales
linearly with interference intensity, which is exactly as shown in the expression of bias. According to
our theoretical derivation, we attribute the dominance of bias to the density of social network. There
is a trend that all other methods perform similarly with two baselines, since bias is dominating in a
denser network, while this component is usually ignored in the experiment design, on account of the
introduction of HT estimator with exposure indicator. Moreover, although we fix ω = 1 in presented
result, we actually observe that our method is very robust to the choice of ω in related experiment.

9



Finally, we point out that the distribution of proportion of treated units of optimized randomization
scheme is usually bimodal (e.g. peak at 45%, 55%) in our randomization scheme, with the mean
still 50%. This bimodal pattern is the outcome of introducing non-zero covariance on almost all
off-diagonal positions of covariance matrix. This is different from other methods we considered here,
for which the proportion is usually strictly 50% or unimodal and concentrates at its mean, 50%.

5 Discussion

In this article, we derive the bias and variance of the standard HT estimator under a parametric
potential outcome model and construct an optimizable objective based on the derived MSE. We then
propose an appropriate formulation to transform the experiment design into an optimization problem
with the covariance matrix of treatment vector acting as decision variables. Besides, we propose an
algorithm based on projected gradient descent to provide optimized covariance design that supports
legitimate sampling. Finally, we implement a series of methods and compare their performance in
diverse settings, where the advantage of our methods is demonstrated.

We stress the significance of bias and propose our method to make attempts for balancing bias and
variance better. Actually, almost all potential outcome models used in the simulation part of related
works admit neighborhood interference assumption, which makes the estimator using exposure
indicator unbiased or nearly unbiased. However, we argue that this assumption is reasonable but
also restricts our scope. There have recently been some works considering interference beyond this
assumption, where bias is also demonstrated to be important.

Although there has been a lot of variance bound in this area, few of them can guide experiment design
directly, and we have actually made many attempts on finding appropriate variance bound. For exam-
ple, the gradient of fourth-order term E[

(
tTCt

)2
] can be estimated directly through REINFORCE

estimator [38] without need of upper bound. Nevertheless, the optimized covariance matrix tends to
give a proportion of densely linked cluster pairs high correlation (near to 1), causing the covariance
matrix to become nearly singular. This, in turn, leads to catastrophic gradient variance that can’t be
reduced by conventional technique such as [21]. In addition, weaker assumption on comparability
between direct effect and interference is feasible. We can only demand there exists ω′ > 0 such that
∥h∥2 ≤ ω′γ∥d∥2. This weaker assumption corresponds to spectral norm bound on the second order
term hTE[ttT ]h, which is a looser bound and finally produces a empirically worse solution. This
bound is also utilized in [17] and is expressed as the worst-case variance, which is concerned with
maximizing a convex objective over bounded potential outcomes. The optimal value is taken when
potential outcome is taken as the endpoint value of its domain, which is too conservative to have good
empirical performance. The simulation result of IBR can support this claim, since similar worst-case
variance is utilized in IBR.

Additionally, our work can be improved and extended in several aspects. Firstly, the optimization
objective can be improved with a tighter but still optimizable upper bound on variance. Moreover, the
situation of non-balanced treatment assignment, i.e., E[zi] ̸= 1

2 , is worthy of exploration. Besides, the
derivation for more complex estimator is kept explorable, e.g., the difference-in-means estimator, and
HT estimator with exposure indicator. Our derivation is performed on the standard HT estimator, and
structural assumption is introduced when the derivation encounters essential difficulties. In addition,
the basic setting beyond neighborhood interference assumption also warrant further extension.
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A Proofs

A.1 Proof of Proposition 1

Firstly, we notice that

E[zi] =
1

2
Var[zi] = E[zi]− E[zi]

2 =
1

4
(24)

Then we substitute Yi(z) in HT estimator

τ̂ =
1

n

∑
i∈[n]

((
zi

E [zi]
− (1− zi)

E [1− zi]

)
Yi(z)

)
(25)

with our potential outcome model and take expectation w.r.t. treatment assignments,

E[τ̂ ] =
2

n

(
n∑

i=1

E[(zi − (1− zi))Yi(z)]

)

=
2

n

n∑
i=1

αiE[2zi − 1] + βiE[z2i ] + γ
∑
j∈Ni

E[(2zi − 1)zj ]


=

2

n

n∑
i=1

βiE[zi] + 2γ Cov[zi,
∑
j∈Ni

zj ]


=

1

n

n∑
i=1

βi + 4γ Cov[zi,
∑
j∈Ni

zj ]



(26)

Moreover, we can calculate the GATE under our potential outcome model

τ =
1

n

n∑
i=1

(Yi(1)− Yi(0)) =
1

n

n∑
1=1

(βi + γdi) (27)

Hence, the bias of HT estimator is

E[τ̂ ]− τ =
1

n

n∑
i=1

4γ Cov[zi,
∑
j∈Ni

zj ]− γdi


=

γ

n

n∑
i=1

(
Cov[zi,

∑
j∈Ni

zj ]

Var[zi]
− di

) (28)

Then we derive the matrix form with cluster-level treatment vector t.

E[τ̂ ]− τ =
γ

n

n∑
i=1

(
Cov[zi,

∑
k∈Ni

zk]

Var[zi]
− di

)

=
γ

n

4
∑

i ̸=j∈[K]

Cov[ti, tj ]Cij −
∑
i∈[n]

di


=

γ

n

4
∑

i,j∈[K]

Cov[ti, tj ]Cij −
∑

i,j∈[K]

Cij


=

γ

n

4 trace(C Cov[t])−
∑

i,j∈[K]

Cij



(29)
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A.2 Proof of Proposition 2

Firstly we rewrite the estimator

τ̂ =
2

n

∑
i∈[n]

(βi − γdi)zi + 2γ
∑
j∈Ni

zizj


=

2

n

∑
i∈[n]

(βi − γdi)zi + 2γ
∑

(j,k)∈E

zjzk

 (30)

We then expand the variance directly, and get

Var[τ̂ ] =
4

n2
(
∑

i,j∈[n]

(βi − γdi)(βj − γdj) Cov[zi, zj ]

+
∑
i∈[n]

∑
(j,k)∈E

4γ(βi − γdi) Cov[zi, zjzk]

+
∑

(i,j)∈E

∑
(k,l)∈E

4γ2 Cov[zizj , zkzl])

(31)

then we write it as matrix form with cluster-level treatment vector t,

τ̂ =
2

n
(hT t+ 2γtTCt) (32)

and expand the variance as covariance, we get the desired format

Var[τ̂ ] =
4

n2
(trace(hhT Cov[t]) + 4γ Cov[hT t, tTCt]

+ 4γ2 Var[tTCt])
(33)

A.3 Proof of Proposition 3

Firstly we consider the estimator of matrix form again

τ̂ =
2

n
(hT t+ 2γtTCt) (34)

Since our assumption can’t guarantee E[τ̂ ] > 0 always hold, we drop the square of expectation term,
namely

Var[τ̂ ] = E[τ̂2]− E[τ̂ ]2 ≤ E[τ̂2] (35)
Notice that all elements of matrix E[ttT ] is non-negative, we have

hTE[ttT ]h ≤ ω2dTE[ttT ]d = ω2 trace(ddTE[ttT ]) (36)

Similarly, since all elements of matrix C, namely, Cij is also non-negative, we have

E[(tTCt)2] = trace(E[CttTCttT ])

≤ trace(E[C11TCttT ]

= trace(C11TCE[ttT ])
(37)

In summary, we have

Var[τ̂ ] ≤ E[τ̂2]

≤ 8

n2
(hTE[ttT ]h+ 4γ2E[(tTCt)2])

≤ 8γ2

n2

(
ω2 trace(ddTE[ttT ]) + 4 trace(C11TCE[ttT ])

) (38)

By definition, we have
C1 = d (39)
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Thus the upper bound above is actually

Var[τ̂ ] ≤ 8γ2(ω2 + 4)

n2

(
trace(ddTE[ttT ])

)
(40)

At last, plug in following equation.

E[ttT ] = Cov[t] +
1

4
11T (41)

A.4 Proof of Lemma 1

Here we provide an intuitive proof. Utilizing Box-Muller transformation or pure algebraic analysis
are also feasible.

We consider X and Y is generated from multivariate Gaussian distribution,

X = ⟨x, g⟩ Y = ⟨y, g⟩ (42)

where g ∼ N (0, In) and x, y are two n-dim real vectors. Then we know that

Cov[X,Y ] = ⟨x, y⟩ (43)

Moreover, we have
E[sgn(X)] = 0 E[sgn(Y )] = 0 (44)

thus
Cov[sgn(X), sgn(Y )] = E[sgn(X) sgn(Y )] (45)

Then we think geometrically that sgn(⟨x, g⟩) sgn(⟨y, g⟩) > 0 holds iff. g lies above or below both of
the hyperplanes that is orthogonal to x and y respectively.

Notice that the direction of g is uniform, it follows that

P(sgn(⟨x, g⟩) sgn(⟨y, g⟩) > 0) =
2

2π
(π − arccos(⟨x, y⟩) (46)

Now we put things together

E[sgn(X) sgn(Y )] = P(sgn(X) sgn(Y ) > 0)− P(sgn(X) sgn(Y ) < 0)

= 2P(sgn(X) sgn(Y ) > 0)− 1

= 2(
1

π
(π − arccos(⟨x, y⟩))− 1

= 1− 2

π
arccos(⟨x, y⟩)

=
2

π
arcsin(⟨x, y⟩)

(47)

which gives the desired outcome.

B Simulation Details

B.1 Methods

We consider following linear potential outcome model,

Yi(z) = α+ β · zi + c · di
d̄

+ σ · ϵi + γ

∑
j∈Ni

zj

di
(48)

and multiplicative model, which is a simplified version of that in [36], with removing a covariate.

Yi(z) = (α+ σ · ϵi) ·
di
d̄
· (1 + βzi + γ

∑
j∈Ni

zj

di
) (49)
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We choose to fix all parameters except for interference density, γ. Namely, we set (α, β, c, σ) =
(1, 1, 0.5, 0.1) for both models, and set γ ∈ {0.5, 1, 2} to construct three regimes. ϵi ∼ N (0, 1).

We set the clusters as given by Louvain algorithm with fixed random seed and resolution parameter
as 2, 5, 10.

We consider social network FB-Stanford3[32],4 and FB-Cornell5[32].5. These two social networks
provide the network topology, and we generate potential outcome for each unit with mentioned
potential outcome models.

Besides our optimized covariance design (OCD), we implement following randomization schemes.
We first consider two baselines, independent Bernoulli randomization (Ber) and complete randomiza-
tion (CR), both of which are cluster-level. We also implement two adaptive schemes, rerandomized-
adaptive randomization (ReAR) and pairwise-sequential randomization (PSR) [25, 31], which balance
heuristic covariates adaptively and act as competitive baselines, since the average degree is considered
as a covariate in these two methods and exactly appear in both two of our models, explicitly. Then we
implement the independent block randomization (IBR) [5] and heuristic version IBR-p that creates
blocks with size 2.

In the methods mentioned above, ReAR is the only one concerned with hyperparameters setting. We
set (q,B, α) = (0.85, 400, 0.1), which corresponds to the recommendation in the original paper.

We estimate GATE with standard HT estimator and difference-in-means (DIM) estimator, where the
latter refers to

τ̂DIM =
∑
i∈[n]

((
zi∑

j∈[n] zj
− (1− zi)∑

j∈[n](1− zj)

)
Yi(z)

)
(50)

To summarize, we provide the bias, standard deviation and MSE of two estimators under two potential
outcome models, three γ levels and two datasets. All of these three metrics are calculated by repetition
of Monte Carlo simulation of randomization, 10,000 times. In the main paper we’ve presented the
results of HT estimator on FB-Stanford3, and we’ll present the detailed results in this section.

B.2 Discussion on Estimators

Here we also provide discussion on another popular estimator that’s considered in existing literature,
which is the HT estimator with exposure indicator. We consider the exposure condition that’s fully
treated or fully controlled in 1-hop neighborhood here, and the corresponding indicator is defined as
δi(z0) = I{

∑
j∈Ni

zj = diz0}. The estimator is

τ̂ ′ =
1

n

∑
i∈[n]

(
(

δi(1)

E[δi(1)]
− δi(0)

E[δi(0)]
)Yi(z)

)
(51)

We don’t consider this estimator not only because of it’s high variance resulted from low effective
sample size, and but also its high calculation cost. For calculating it in our repeated simulations, we
need to estimate E[δi(1)], the probability of fully treated, for each unit i. We denote the number of
clusters a unit i connects to by ci. For a unit i in the exterior of its cluster, namely, ci > 1, such a
quantity can very high in a social network, which is also decided by the resolution of clustering, we
present an instance in figure 1.

Unfortunately, we must estimate such generalized propensity score [10] by Monte Carlo simulation for
most of randomization schemes, even if it’s just a little bit more complex than independent Bernoulli
randomization, where such quantity can be calculated directly, (1/2)ci . For every simulation, we
should visit every node and query the treatment assignment of its 1-hop neighborhood, whose
time complexity is O(|E|). Roughly, we need 2ci repetitions of randomization to achieve effective
estimation on δi(1), δi(0), which is too time-consuming to be acceptable for many units.

4Network topology data can be found in https://networkrepository.com/socfb-Stanford3.php
5https://networkrepository.com/socfb-Cornell5.php
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Figure 1: Distribution of ci with 95 clusters on FB-Stanford3

We stress the computational issue here since the resulted variance can be reduced by self-
normalization, which corresponds to the Hájek estimator.

τ̂ ′ =
∑
i∈[n]

(

δi(1)
E[δi(1)]∑

j∈[n]
δj(1)

E[δj(1)]

)− (

δi(0)
E[δi(0)]∑

j∈[n]
δj(0)

E[δj(0)]

)

Yi(z) (52)

However, we argue that the computational cost can’t be bypassed without further modification and
restricts the practicality of such HT estimator with exposure indicator. [25] proposes the so-called
cluster-adjusted estimator that assign the units on the exterior of same cluster the same modified
propensity score, which reduces the computation complexity at the cost of unpredictable distortion of
estimator, which can be viewed as heuristics.

Therefore, we choose to consider the standard HT estimator and DIM estimator in our simulation.

B.3 Detailed Simulation Results

We present the results according to following sequence: HT-DIM estimator, linear-multiplicative
model, 2-5-10 clustering resolution. In every table, we report the average bias, standard deviation
(SD) and MSE of randomization schemes with three γ levels. There are 24 tables in total, which are
organized to demonstrate the advantage and robustness of our proposed method, optimized covariance
design (OCD).

18



Table 3: Simulation results of DIM estimator under linear model with resolution 2 on FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.247 0.121 0.076 -0.497 0.122 0.262 -0.988 0.131 0.995
CR -0.247 0.120 0.075 -0.494 0.120 0.259 -0.990 0.125 0.996
ReAR -0.248 0.063 0.066 -0.482 0.065 0.237 -0.958 0.062 0.923
PSR -0.243 0.059 0.063 -0.486 0.059 0.240 -0.974 0.062 0.954
IBR -0.248 0.107 0.073 -0.493 0.109 0.255 -0.985 0.112 0.985
IBR-p -0.244 0.090 0.068 -0.490 0.092 0.249 -0.980 0.094 0.969
OCD -0.195 0.067 0.043 -0.388 0.068 0.156 -0.776 0.072 0.608

Table 4: Simulation results of HT estimator under linear model with resolution 2 on FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.228 1.028 1.110 -0.489 1.148 1.558 -0.966 1.370 2.810
CR -0.252 0.635 0.467 -0.494 0.697 0.730 -0.977 0.836 1.654
ReAR -0.236 0.190 0.092 -0.486 0.173 0.267 -0.940 0.173 0.914
PSR -0.241 0.233 0.113 -0.481 0.253 0.296 -0.972 0.297 1.033
IBR -0.247 0.226 0.112 -0.494 0.252 0.308 -0.987 0.302 1.067
IBR-p -0.246 0.154 0.085 -0.489 0.168 0.268 -0.981 0.203 1.006
OCD -0.189 0.219 0.084 -0.385 0.252 0.212 -0.775 0.312 0.699

Table 5: Simulation results of DIM estimator under multiplicative model with resolution 2 on
FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.294 0.419 0.263 -0.603 0.479 0.593 -1.209 0.605 1.830
CR -0.291 0.414 0.257 -0.607 0.473 0.593 -1.210 0.593 1.818
ReAR -0.324 0.209 0.149 -0.573 0.237 0.386 -1.274 0.317 1.725
PSR -0.307 0.208 0.138 -0.619 0.236 0.440 -1.236 0.297 1.618
IBR -0.305 0.374 0.234 -0.605 0.427 0.549 -1.220 0.536 1.778
IBR-p -0.304 0.315 0.192 -0.611 0.366 0.508 -1.214 0.457 1.684
OCD -0.250 0.232 0.117 -0.507 0.265 0.328 -1.006 0.333 1.123

Table 6: Simulation results of HT estimator under multiplicative model with resolution 2 on FB-
Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.290 0.811 0.742 -0.578 0.923 1.187 -1.176 1.144 2.694
CR -0.301 0.519 0.361 -0.605 0.582 0.705 -1.213 0.739 2.019
ReAR -0.327 0.257 0.173 -0.547 0.259 0.367 -1.236 0.374 1.668
PSR -0.303 0.322 0.196 -0.617 0.368 0.517 -1.230 0.461 1.727
IBR -0.307 0.341 0.211 -0.611 0.384 0.521 -1.224 0.486 1.736
IBR-p -0.307 0.294 0.181 -0.614 0.342 0.494 -1.218 0.427 1.666
OCD -0.255 0.078 0.071 -0.510 0.089 0.268 -1.018 0.116 1.052
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Table 7: Simulation results of DIM estimator under linear model with resolution 5 on FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.277 0.096 0.086 -0.558 0.097 0.322 -1.116 0.101 1.257
CR -0.279 0.095 0.087 -0.556 0.095 0.319 -1.117 0.097 1.259
ReAR -0.319 0.030 0.103 -0.575 0.048 0.334 -1.143 0.045 1.311
PSR -0.275 0.055 0.079 -0.554 0.056 0.311 -1.110 0.056 1.236
IBR -0.276 0.088 0.085 -0.555 0.089 0.316 -1.110 0.090 1.241
IBR-p -0.209 0.074 0.049 -0.490 0.074 0.246 -1.049 0.074 1.106
OCD -0.194 0.102 0.048 -0.390 0.102 0.163 -0.782 0.104 0.623

Table 8: Simulation results of HT estimator under linear model with resolution 5 on FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.276 0.666 0.521 -0.535 0.749 0.847 -1.078 0.910 1.991
CR -0.316 0.488 0.338 -0.610 0.540 0.664 -1.159 0.664 1.786
ReAR -0.063 0.084 0.011 -0.410 0.219 0.216 -0.873 0.215 0.809
PSR -0.272 0.222 0.123 -0.544 0.250 0.359 -1.108 0.310 1.326
IBR -0.272 0.276 0.150 -0.553 0.313 0.404 -1.103 0.390 1.370
IBR-p -0.694 0.064 0.486 -1.025 0.074 1.057 -1.688 0.097 2.861
OCD -0.198 0.386 0.189 -0.391 0.439 0.346 -0.772 0.547 0.896

Table 9: Simulation results of DIM estimator under multiplicative model with resolution 5 on
FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.338 0.333 0.226 -0.687 0.387 0.622 -1.382 0.480 2.142
CR -0.340 0.333 0.226 -0.680 0.387 0.613 -1.382 0.477 2.138
ReAR -0.417 0.171 0.204 -0.860 0.163 0.767 -1.485 0.228 2.260
PSR -0.336 0.192 0.150 -0.680 0.219 0.511 -1.375 0.277 1.968
IBR -0.344 0.310 0.214 -0.680 0.351 0.586 -1.379 0.439 2.097
IBR-p -0.098 0.272 0.084 -0.407 0.312 0.263 -1.025 0.392 1.205
OCD -0.241 0.357 0.185 -0.497 0.407 0.413 -0.994 0.511 1.249

Table 10: Simulation results of HT estimator under multiplicative model with resolution 5 on
FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.340 0.463 0.330 -0.683 0.523 0.740 -1.366 0.656 2.297
CR -0.383 0.289 0.230 -0.733 0.328 0.645 -1.430 0.412 2.215
ReAR -0.289 0.138 0.102 -0.685 0.121 0.484 -1.288 0.230 1.712
PSR -0.335 0.128 0.129 -0.684 0.146 0.490 -1.373 0.182 1.919
IBR -0.346 0.180 0.153 -0.694 0.207 0.525 -1.387 0.259 1.992
IBR-p -0.488 0.190 0.275 -0.852 0.217 0.774 -1.581 0.271 2.574
OCD -0.255 0.049 0.068 -0.508 0.057 0.262 -1.020 0.069 1.045
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Table 11: Simulation results of DIM estimator under linear model with resolution 10 on FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.298 0.076 0.095 -0.595 0.077 0.361 -1.191 0.080 1.426
CR -0.297 0.076 0.095 -0.595 0.076 0.360 -1.191 0.078 1.427
ReAR -0.296 0.022 0.088 -0.589 0.019 0.348 -1.191 0.029 1.422
PSR -0.297 0.035 0.090 -0.596 0.036 0.357 -1.193 0.039 1.425
IBR -0.296 0.054 0.091 -0.593 0.055 0.356 -1.188 0.058 1.415
IBR-p -0.297 0.049 0.091 -0.593 0.049 0.354 -1.186 0.052 1.411
OCD -0.190 0.115 0.050 -0.384 0.116 0.161 -0.772 0.118 0.611

Table 12: Simulation results of HT estimator under linear model with resolution 10 on FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.293 0.521 0.358 -0.588 0.584 0.688 -1.178 0.709 1.893
CR -0.292 0.409 0.253 -0.586 0.459 0.554 -1.177 0.562 1.702
ReAR -0.393 0.227 0.206 -0.700 0.251 0.554 -1.317 0.303 1.829
PSR -0.295 0.235 0.143 -0.587 0.264 0.415 -1.179 0.323 1.496
IBR -0.298 0.273 0.164 -0.593 0.308 0.447 -1.181 0.380 1.541
IBR-p -0.294 0.232 0.141 -0.596 0.261 0.423 -1.185 0.318 1.507
OCD -0.198 0.411 0.209 -0.388 0.469 0.371 -0.764 0.585 0.926

Table 13: Simulation results of DIM estimator under multiplicative model with resolution 10 on
FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.369 0.264 0.206 -0.731 0.301 0.626 -1.475 0.375 2.318
CR -0.363 0.265 0.202 -0.737 0.303 0.636 -1.470 0.380 2.307
ReAR -0.351 0.061 0.127 -0.715 0.095 0.520 -1.480 0.121 2.207
PSR -0.369 0.122 0.151 -0.738 0.141 0.565 -1.481 0.176 2.227
IBR -0.367 0.190 0.171 -0.737 0.218 0.592 -1.476 0.271 2.254
IBR-p -0.364 0.168 0.161 -0.742 0.192 0.588 -1.480 0.244 2.253
OCD -0.247 0.402 0.223 -0.501 0.459 0.463 -1.013 0.577 1.360

Table 14: Simulation results of HT estimator under multiplicative model with resolution 10 on
FB-Stanford3

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.365 0.348 0.255 -0.736 0.394 0.698 -1.475 0.493 2.421
CR -0.368 0.235 0.191 -0.744 0.274 0.629 -1.477 0.336 2.297
ReAR -0.402 0.178 0.194 -0.809 0.174 0.685 -1.548 0.226 2.450
PSR -0.366 0.134 0.152 -0.738 0.153 0.569 -1.479 0.192 2.227
IBR -0.369 0.155 0.161 -0.737 0.178 0.576 -1.484 0.221 2.252
IBR-p -0.368 0.163 0.163 -0.739 0.185 0.581 -1.482 0.232 2.252
OCD -0.258 0.040 0.069 -0.517 0.050 0.271 -1.034 0.054 1.073
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Table 15: Simulation results of DIM estimator under linear model with resolution 2 on FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.240 0.092 0.066 -0.480 0.093 0.239 -0.960 0.103 0.933
CR -0.238 0.090 0.065 -0.480 0.092 0.239 -0.958 0.100 0.929
ReAR -0.239 0.019 0.058 -0.469 0.026 0.221 -0.925 0.032 0.858
PSR -0.235 0.056 0.059 -0.470 0.056 0.225 -0.944 0.058 0.894
IBR -0.235 0.091 0.064 -0.477 0.093 0.237 -0.950 0.096 0.913
IBR-p -0.235 0.103 0.066 -0.471 0.104 0.234 -0.944 0.108 0.903
OCD -0.188 0.059 0.039 -0.374 0.060 0.144 -0.751 0.070 0.569

Table 16: Simulation results of HT estimator under linear model with resolution 2 on FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.228 1.087 1.234 -0.456 1.240 1.746 -0.913 1.469 2.993
CR -0.228 0.913 0.885 -0.440 1.018 1.230 -0.914 1.231 2.350
ReAR -0.209 0.110 0.056 -0.469 0.128 0.237 -0.965 0.135 0.950
PSR -0.235 0.146 0.077 -0.473 0.164 0.251 -0.940 0.202 0.926
IBR -0.232 0.530 0.335 -0.465 0.595 0.571 -0.942 0.720 1.407
IBR-p -0.233 0.180 0.087 -0.472 0.209 0.268 -0.939 0.263 0.951
OCD -0.184 0.213 0.079 -0.376 0.241 0.200 -0.752 0.302 0.657

Table 17: Simulation results of DIM estimator under multiplicative model with resolution 2 on
FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.260 0.318 0.169 -0.546 0.363 0.430 -1.075 0.461 1.369
CR -0.261 0.317 0.169 -0.533 0.362 0.416 -1.080 0.457 1.375
ReAR -0.252 0.064 0.068 -0.515 0.090 0.273 -1.073 0.135 1.172
PSR -0.268 0.190 0.108 -0.536 0.223 0.338 -1.069 0.276 1.221
IBR -0.268 0.319 0.174 -0.535 0.368 0.422 -1.074 0.453 1.359
IBR-p -0.258 0.362 0.198 -0.526 0.416 0.450 -1.050 0.514 1.367
OCD -0.215 0.201 0.087 -0.428 0.228 0.235 -0.866 0.291 0.835

Table 18: Simulation results of HT estimator under multiplicative model with resolution 2 on
FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.260 0.853 0.795 -0.517 0.973 1.214 -1.020 1.213 2.514
CR -0.265 0.700 0.561 -0.536 0.801 0.929 -1.053 1.011 2.133
ReAR -0.267 0.057 0.075 -0.515 0.076 0.271 -1.073 0.106 1.164
PSR -0.269 0.151 0.095 -0.539 0.176 0.322 -1.070 0.218 1.194
IBR -0.264 0.419 0.246 -0.526 0.487 0.515 -1.074 0.614 1.531
IBR-p -0.264 0.243 0.129 -0.534 0.277 0.362 -1.066 0.344 1.255
OCD -0.218 0.059 0.051 -0.436 0.068 0.195 -0.873 0.085 0.770
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Table 19: Simulation results of DIM estimator under linear model with resolution 5 on FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.281 0.070 0.084 -0.560 0.070 0.319 -1.124 0.074 1.269
CR -0.280 0.069 0.084 -0.561 0.069 0.320 -1.123 0.072 1.268
ReAR -0.282 0.048 0.082 -0.559 0.045 0.315 -1.113 0.035 1.241
PSR -0.274 0.052 0.078 -0.552 0.053 0.308 -1.106 0.055 1.227
IBR -0.280 0.069 0.083 -0.560 0.070 0.319 -1.120 0.073 1.261
IBR-p -0.278 0.086 0.085 -0.558 0.086 0.319 -1.113 0.088 1.247
OCD -0.196 0.120 0.053 -0.393 0.120 0.169 -0.784 0.125 0.631

Table 20: Simulation results of HT estimator under linear model with resolution 5 on FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.268 0.676 0.529 -0.551 0.755 0.874 -1.106 0.918 2.067
CR -0.279 0.558 0.389 -0.553 0.622 0.693 -1.092 0.748 1.753
ReAR -0.305 0.376 0.234 -0.608 0.427 0.553 -1.243 0.516 1.812
PSR -0.275 0.373 0.215 -0.547 0.419 0.475 -1.088 0.511 1.446
IBR -0.275 0.409 0.243 -0.556 0.461 0.522 -1.100 0.557 1.521
IBR-p -0.274 0.332 0.185 -0.550 0.377 0.445 -1.112 0.466 1.454
OCD -0.194 0.433 0.225 -0.385 0.490 0.389 -0.781 0.616 0.991

Table 21: Simulation results of DIM estimator under multiplicative model with resolution 5 on
FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.314 0.239 0.156 -0.634 0.276 0.479 -1.269 0.344 1.729
CR -0.313 0.238 0.154 -0.630 0.273 0.472 -1.273 0.344 1.741
ReAR -0.330 0.157 0.134 -0.623 0.164 0.416 -1.256 0.181 1.613
PSR -0.309 0.180 0.128 -0.622 0.207 0.430 -1.252 0.262 1.636
IBR -0.312 0.244 0.157 -0.635 0.277 0.481 -1.266 0.349 1.725
IBR-p -0.305 0.298 0.182 -0.625 0.342 0.508 -1.251 0.427 1.747
OCD -0.212 0.417 0.219 -0.428 0.477 0.412 -0.868 0.600 1.114

Table 22: Simulation results of HT estimator under multiplicative model with resolution 5 on
FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.302 0.496 0.338 -0.629 0.548 0.696 -1.245 0.690 2.027
CR -0.320 0.375 0.243 -0.632 0.430 0.586 -1.262 0.539 1.885
ReAR -0.310 0.230 0.150 -0.623 0.242 0.447 -1.308 0.360 1.841
PSR -0.307 0.203 0.136 -0.618 0.233 0.436 -1.252 0.290 1.654
IBR -0.318 0.239 0.159 -0.632 0.277 0.477 -1.274 0.349 1.747
IBR-p -0.315 0.148 0.121 -0.634 0.168 0.431 -1.265 0.211 1.647
OCD -0.225 0.042 0.053 -0.451 0.050 0.206 -0.904 0.059 0.821
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Table 23: Simulation results of DIM estimator under linear model with resolution 10 on FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.312 0.038 0.099 -0.624 0.040 0.392 -1.249 0.044 1.563
CR -0.312 0.039 0.099 -0.624 0.040 0.392 -1.249 0.043 1.563
ReAR -0.308 0.031 0.096 -0.625 0.024 0.392 -1.253 0.029 1.572
PSR -0.314 0.035 0.100 -0.625 0.035 0.393 -1.252 0.038 1.569
IBR -0.312 0.036 0.099 -0.625 0.038 0.392 -1.250 0.041 1.566
IBR-p -0.311 0.036 0.098 -0.623 0.036 0.390 -1.246 0.042 1.555
OCD -0.188 0.098 0.045 -0.374 0.100 0.150 -0.749 0.106 0.574

Table 24: Simulation results of HT estimator under linear model with resolution 10 on FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.311 0.388 0.247 -0.621 0.437 0.576 -1.237 0.517 1.799
CR -0.311 0.264 0.167 -0.623 0.290 0.473 -1.243 0.345 1.665
ReAR -0.306 0.069 0.099 -0.618 0.087 0.390 -1.238 0.098 1.544
PSR -0.310 0.067 0.101 -0.622 0.076 0.394 -1.245 0.094 1.560
IBR -0.312 0.105 0.108 -0.627 0.116 0.407 -1.250 0.139 1.583
IBR-p -0.311 0.065 0.102 -0.623 0.073 0.395 -1.246 0.090 1.562
OCD -0.182 0.345 0.152 -0.375 0.397 0.299 -0.749 0.495 0.807

Table 25: Simulation results of DIM estimator under multiplicative model with resolution 10 on
FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.354 0.136 0.144 -0.702 0.155 0.518 -1.404 0.195 2.012
CR -0.352 0.138 0.143 -0.702 0.154 0.517 -1.407 0.194 2.019
ReAR -0.354 0.077 0.131 -0.699 0.099 0.499 -1.394 0.142 1.964
PSR -0.355 0.119 0.141 -0.708 0.136 0.520 -1.411 0.174 2.023
IBR -0.352 0.126 0.141 -0.704 0.145 0.517 -1.411 0.182 2.025
IBR-p -0.350 0.124 0.138 -0.703 0.142 0.516 -1.403 0.178 2.003
OCD -0.215 0.343 0.164 -0.438 0.395 0.348 -0.878 0.490 1.013

Table 26: Simulation results of HT estimator under multiplicative model with resolution 10 on
FB-Cornell5

gamma 0.5 1.0 2.0
metric Bias SD MSE Bias SD MSE Bias SD MSE
method
Ber -0.355 0.325 0.232 -0.698 0.370 0.625 -1.396 0.469 2.171
CR -0.349 0.238 0.179 -0.704 0.266 0.567 -1.401 0.335 2.075
ReAR -0.353 0.077 0.131 -0.708 0.090 0.511 -1.399 0.131 1.976
PSR -0.353 0.101 0.135 -0.707 0.116 0.513 -1.408 0.147 2.005
IBR -0.351 0.141 0.143 -0.703 0.162 0.521 -1.409 0.207 2.029
IBR-p -0.349 0.107 0.134 -0.703 0.122 0.509 -1.404 0.154 1.997
OCD -0.224 0.038 0.052 -0.448 0.041 0.203 -0.895 0.053 0.805
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