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ABSTRACT

Accurate weather forecasting plays a critical role in a variety of sectors, includ-
ing disaster management, agriculture, transportation, and energy consumption.
Most deep learning approaches for weather forecasting rely on pixel-based rep-
resentations of weather data, leading to significant data redundancy and ineffi-
ciencies in capturing the weather’s continuous and dynamic nature. To address
these challenges, we propose a novel approach, EllipWeather, which leverages
Gaussian ellipsoids to represent weather patterns, as weather phenomena can be
effectively modeled using a mixture of Gaussian distributions. With this represen-
tation, we first develop an equivariant graph neural network to capture the intrin-
sic equivariance of weather variances, specifically tailored to process Gaussian
ellipsoids for weather prediction tasks. Then we also demonstrate the potential
of EllipWeather in downstream tasks such as data compression and downscaling
(super-resolution). Extensive experiments on widely used datasets show that El-
lipWeather achieves superior performance over previous works.

1 INTRODUCTION

Accurate weather modeling is fundamental to modern society, profoundly impacting a wide array
of sectors, including disaster management (Merz et al., 2020), agriculture (Bendre et al., 2015),
transportation (Dey et al., 2014), and energy consumption (Meenal et al., 2022). At its core, weather
forecasting involves predicting the state of the atmosphere at a specific time and location (Fathi et al.,
2022), providing the critical information needed to mitigate risks and facilitate informed decision-
making across these domains.

Data-driven models have revolutionized weather forecasting, with models like GraphCast (Lam
et al., 2023) and Aurora (Bodnar et al., 2025) achieving state-of-the-art perfromance that exceeds
traditional Numerical Weather Prediction (NWP) systems at a fraction of the computational cost.
However, both data-driven and physics-based models are fundamentally constrained by their re-
liance on a discretized, grid-based (i.e., pixel-level) representation of the atmosphere. This paradigm
of modeling a continuous fluid system on a discrete grid creates a critical representation bottleneck,
leading to significant challenges in computational efficiency, physical realism, and data handling.

The limitation of the grid-based representation is twofold. First, it leads to massive data volumes,
creating significant burdens for data storage, transmission, and processing (Brotzge et al., 2023;
Shi et al., 2025). Weather datasets are often terabytes in size, and the high resolution required
for accurate forecasts exacerbates this issue. Second, the rigid grid structure fails to capture the
inherently continuous and fluid nature of weather phenomena (Bonavita, 2024). Weather systems are
dynamic and evolve smoothly over space and time, yet a grid-based approach represents both areas
of intense activity and calm conditions with the same high resolution. This can result in predictions
that are spatially redundant or prone to artifacts, and it makes tasks like resolution enhancement
(super-resolution) non-trivial (Harder et al., 2023; Gruca et al., 2023).

To tackle these problems, we propose a paradigm shift from a discrete, pixel-based representation to
a continuous, object-based one. Instead of modeling weather as a field of pixel values, we propose
EllipWeather to represent it as a collection of continuous, physically meaningful gaussian ellipsoids
as weather phenomena can be effectively modeled using a mixture of Gaussian distributions (Wang
et al., 2015). In EllipWeather, a weather variable is no longer described by thousands of pixels but
by a collection of few Gaussian ellipsoids, which can be described by parameters including a mean
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vector to represent its location, a scaling factor to represent its shape, a rotation vector to represent
its orientation, and a weight to represent its intensity. This provides a compact, continuous, and
resolution-agnostic representation of the weather state.

Building on this representation, we construct a group equivariant graph neural network (EGNN) that
operates directly on the set of Gaussian ellipsoids. Each Gaussian ellipsoid is taken as a node and
edges are formed dynamically based on Euclidean distance, enabling adaptive relational reasoning
without committing to a rigid Eulerian grid. The EGNN updates both feature embeddings and
refined centers while preserving rotational and translational consistency.

Beyond forecasting, we also show the potential of EllipWeather for compression, i.e., storing O(K)
ellipsoid parameters instead of O(HW) pixels while retaining reconstruction fidelity,resolution-
agnostic downscaling (super-resolution), i.e., rendering ellipsoids onto arbitrary target grids without
retraining, and interpretable diagnostics, i.e., each component corresponds to a physically meaning-
ful mesoscale entity.

The main contributions of our work are as follows:

• We propose a novel weather representation using Gaussian ellipsoids, which is more com-
pact and efficient than traditional pixel-based methods.

• We design an equivariant graph neural network capable of processing Gaussian ellipsoids,
capturing the intrinsic equivariance of weather variances for forecasting tasks.

• We demonstrate the potential of this representation in downstream tasks such as data com-
pression and super-resolution.

2 RELATED WORK

2.1 DEEP LEARNING FOR WEATHER FORECASTING

Data-driven weather forecasting has seen rapid progress, with models like FourCastNet (Pathak
et al., 2022), GraphCast (Lam et al., 2023), Aurora (Bodnar et al., 2025) and so on achieving
performance that rivals or exceeds traditional Numerical Weather Prediction systems while being
significantly more computationally efficient. These models typically employ convolutional neural
networks (CNNs) or graph neural networks (GNNs) to capture spatial and temporal dependencies in
weather data. However, they build on pixel-based representations, which can lead to inefficiencies
in capturing the continuous nature of weather phenomena. Our work departs from this grid-based
paradigm, proposing an object-based representation to directly address these challenges.

2.2 EQUIVARIANT NEURAL NETWORKS FOR WEATHER MODELING

Forcing a neural network to respect the fundamental symmetries of a physical system is a powerful
inductive bias. Group equivariant neural networks, which are equivariant to group operations, like
rotations, translations, and reflections, are designed to preserve these geometric properties by con-
struction (Suk et al., 2023; Xu et al., 2023). By building these symmetries directly into the network
architecture, models can achieve higher data efficiency and learn more physically plausible dynam-
ics (Satorras et al., 2021). Pioneering explorations led to the development of Spherical CNNs, which
generalize convolutions to the spherical domain using spherical harmonics (Cohen et al., 2018; Es-
teves et al., 2018). The Fourier basis in FourCastNet naturally handles spherical periodicity, while
the icosahedral mesh of GraphCast provides a more uniform discretization of the globe amenable
to periodic equivariant message passing (Pathak et al., 2022; Lam et al., 2023). EllipWeather builds
on this line of work by applying group equivariant GNN not to a grid or a set of particles, but to a
collection of parametric ellipsoid objects representing weather phenomena.

2.3 PRIMITIVE-BASED REPRESENTATIONS FOR WEATHER DATA

Representing images or scenes using a set of geometric primitives has been explored in computer
vision and graphics (Hu et al., 2025; Zhang et al., 2024). Inspired by recent breakthroughs in com-
puter vision like 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), Wang et al. adapted 3DGS
to represent dynamic scenes as a collection of anisotropic 3D Gaussians, and paired with Mamba
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Figure 1: Hierarchical graph neural encoder for EllipWeather. Top row: encoding an image into the
ellipsoid space; bottom row: HGNN architecture.

(Gu & Dao, 2023) for prediction. While this marks a significant advance, the prediction model
itself lacks explicit physical inductive biases. Our EllipWeather adopts a similar strategy of repre-
senting the weather field as a collection of geometric primitives but introduce a crucial innovation
in the prediction methodology. We replace the general sequence model with a group-equivariant
Graph Neural Network. This allows our model to learn the interactions and temporal evolution of
the primitives in a manner that explicitly respects fundamental physical symmetries, offering a more
principled and robust framework for dynamics modeling on these modern, efficient representations.
Besides, we also propose a one-step gaussian fitting algorithm to convert pixel-based weather data
into our proposed Gaussian ellipsoid representation and show its effectiveness in data compression
and super-resolution tasks.

3 METHODOLOGY

We first introduce the Gaussian ellipsoid representation for weather data. Then the design of an
equivariant graph neural network tailored for weather forecasting tasks. Finally, we discuss how to
leverage the proposed representation for downstream tasks, data compression and super-resolution.

3.1 PRELIMINARY

A weather variable (e.g., temperature, humidity, wind velocity) can be described per-pixel on a 2D
grid as a matrix X ∈ RH×W , where H and W are the height and width of the grid, respectively.
Each element Xij represents the value of the weather variable at the grid cell located at row i and
column j. We focus on a single weather variable and 2D spatial domain for simplicity. Without loss
of generality, our method can be extended to multiple variables and 3D spatial domains.

3.1.1 GAUSSIAN ELLIPSOID

We represent a weather variable matrix X with a set of K Gaussian ellipsoids G, where each ellip-
soid Gk = {µk, ak, rk, wk} is defined by a location vector µk ∈ R2, a scaling factor ak ∈ R2, a
rotation vector rk ∈ R3, and weight wk ∈ R. The grid value at location (i, j) can be reconstructed
from the Gaussian ellipsoids as:

X̂ij =

K∑
k=1

wk · exp
(
−1

2
(pij − µk)

TRkA
−1
k RT

k (pij − µk)

)
, (1)

where pij = [i, j]⊤,Ak = diag(ak), andRk are the coordinate of grid cell (i, j), scaling matrix, and
rotation matrix derived from the rotation vector rk using Rodrigues’ rotation formula (Rodrigues,
1840) respectively.
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3.1.2 EQUIVARIANCE FOR WEATHER VARIANCES

Weather phenomena exhibit intrinsic symmetries, particularly rotational and translational equivari-
ance. This means that if the input weather data is rotated or translated, the output predictions should
undergo the same transformation. Formally, let Tg be a transformation operator corresponding to a
group element g (e.g., rotation or translation). A function f is equivariant with respect to the group
G if:

f(Tg(X)) = Tg(f(X)), ∀g ∈ G (2)

In the context of weather forecasting, this property ensures that the model’s predictions remain
consistent under spatial transformations, which is crucial for accurately modeling the dynamics of
weather phenomena.

3.1.3 PROBLEM FORMULATION

Gaussian Ellipsoid Fitting. To obtain the Gaussian ellipsoid representation from pixel-based
weather data, the Gaussian ellipsoid fitting problem can be formulated as an optimization problem:

min
{Gk}K

k=1

H∑
i=1

W∑
j=1

(
Xij − X̂ij

)2

+ λ

K∑
k=1

∥wk∥2 (3)

where X̂ij is obtained through Eq. 1 and λ is a regularization parameter. The goal is to find the set
of Gaussian ellipsoids that best reconstruct the original weather variable matrix X .

Equivariant Weather Forecasting. Given a sequence of weather variable matrices {Xt}Tt=1, the
goal of weather forecasting is to predict the future stateXT+1 based on the past observations. Using
the Gaussian ellipsoid representation, this can be reformulated as predicting the future set of Gaus-
sian ellipsoids {GT+1

k }Kk=1 from the past sets {{Gt
k}Kk=1}Tt=1. The forecasting model f should be

equivariant to spatial transformations:

{GT+1
k }Kk=1 = f({{Gt

k}Kk=1}Tt=1) (4)

3.2 GAUSSIAN ELLIPSOID REPRESENTATION

We aim to fit a set of K Gaussian ellipsoids G = {Gk}Kk=1 to approximate the weather variable
matrix X . We use two ways to get the Gaussian ellipsoid representations: (1) following Wang et al.,
we can use an iterative fitting algorithm that starts with an initial guess of the Gaussian ellipsoids
and iteratively refines them to minimize the reconstruction error. (2) We also propose a hierarchical
graph neural network (HGNN) to predict the Gaussian ellipsoid parameters directly from the pixel-
based weather data as shown in Fig. 1. HGNN takes the weather variable matrixX of any resolutions
as input and outputs the parameters of K Gaussian ellipsoids. The network is trained to minimize
the reconstruction error betweenX and X̂ , where X̂ is obtained by rendering the predicted Gaussian
ellipsoids as Eq. 1.

Initialization. Given an input weather variable matrix X , we first represent it as a graph Gp =
(V p, Ep), where each pixel corresponds to a node vpi ∈ V p with feature xpi = Xij , and edges
epij ∈ Ep are formed based on spatial proximity. Then we initialize K Gaussian ellipsoids by
randomly sampling K nodes from the graph as their initial centers µk. The initial scaling factors
ak are set to a constant value, the rotation vectors rk are initialized as zero vectors, and the weights
wk are initialized based on the pixel values of the sampled nodes. Since weather matrices are
represented as graphs, our method can handle input matrices of any resolutions.

Hierarchical Graph Neural Network. HGNN intends to learn to represent a group of pixels as a
mixture of Gaussian distributions. With the initialized Gaussian ellipsoidsG and the pixel graphGp,
we first perform message passing on the pixel graph to update the pixel features, allowing each pixel
to aggregate information from its neighbors through graph attention layers (GAT) (Veličković et al.,
2018). Then we construct a bipartite graph Gb = (V p, V g, Eb) between the pixel nodes V p and the
Gaussian ellipsoid nodes V g . Edges ebik ∈ Eb are formed dynamically based on Euclidean distance
between pixel vpi and the center of Gaussian ellipsoid vgk . GAT layers are also used here for message
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passing on the bipartite graph to update the Gaussian ellipsoid features by aggregating information
from the connected pixel nodes. Finally, we construct a Gaussian ellipsoid graph Gg = (V g, Eg),
where each Gaussian ellipsoid corresponds to a node vgk ∈ V g with feature xgk = [µk, ak, rk, wk],
and edges egkl ∈ Eg are formed dynamically based on Euclidean distance between the centers of
the Gaussian ellipsoids. We perform message passing on the Gaussian ellipsoid graph to update the
Gaussian ellipsoid features by aggregating information from neighboring ellipsoids. The updated
features are then used to predict the final parameters of the Gaussian ellipsoids.

Training Objective. To train HGNN, we minimize the reconstruction error between the original
weather variable matrix X and the reconstructed matrix X̂ obtained by rendering the predicted
Gaussian ellipsoids using Eq. 1.

3.3 EQUIVARIANT GRAPH NEURAL NETWORK FOR WEATHER FORECASTING

Based on the EllipWeather representation, the variation of weather can be modeled as the temporal
evolution of a set of Gaussian ellipsoids. We design an equivariant graph neural network (EGNN)
to capture the intrinsic equivariance of weather variances for forecasting tasks.

3.3.1 MODEL ARCHITECTURE

Figure 2: Illustration of the equiv-
ariant update module.

Our model is designed to be equivariant with respect to the 2D
Euclidean group E(2) = SO(2) ⋉ R2. Following the prin-
ciple of E(n)GNN (Satorras et al., 2021), we ensure that each
update rule either depends only on group invariants or trans-
forms consistently with the group action applied to its inputs.
We consider four types of latent variables: location µ, rotation
r, scaling a, and weight w.

Each update module consists of a equivariant convolutional
layer (EGL) and a gated recurrent unit as shown in Fig. 2.
Equivariance in our design goes beyond coordinates. The lo-
cation µ naturally transforms under translations and rotations.
For the rotation variable r, if the system is rotated by ϕ, its lo-
cal orientation should also shift by ϕ; otherwise the represen-
tation becomes inconsistent with the global frame. The scaling
variable a is not meaningful without an orientation, since (a, r)
together define anisotropic covariance structures that must rotate coherently under global transfor-
mations. Finally, w is scalar-valued and thus invariant. By ensuring that (µ, r, a) transform equiv-
ariantly while w remains invariant, the model maintains geometric consistency under E(2) actions.
This design enables robust generalization to translated and rotated sequences.

3.3.2 EQUIVARIANT UPDATE RULES

We take the first layer for illustration. Given the input Gaussian ellipsoid parameters at time step t
and layer 0, Gl=0

t = {al=0
t , rl=0

t , wl=0
t , µl=0

t }, we describe the update rules for each latent variable
as follows.

Embedding layer. We separate the input parameters into two parts: the positional part µl=0
t and

the non-positional part {al=0
t , rl=0

t , wl=0
t }. For the non-positional part, we embed it into a high-

dimensional feature space using an MLP as:

hl=0
t = MLP([log al=0

t , cos ∥rl=0
t ∥, sin ∥rl=0

t ∥, wl=0
t ]), (5)

where hl=0
t is the hidden feature vector, please refer to App. A.2 for more details.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: The grid-based weather matrix is encoded into Gaussian Ellipsoid space through a neural
network HGNN. The ellipsoid parameters can then be decoded back to the grid space through the
render. This process allows for (1) data compression by encoding weather data into the Gaussian
Ellipsoid space and (2) super-resolution by reconstructing a higher-resolution weather matrix from
the ellipsoid representation.

Equivariant convolutional layer (ECL). The ECL updates both th hidden features and the posi-
tion vectors as:

µl′

t,i = µl=0
t,i +

∑
j∈N (i)

ϕµ
(
hl=0
t,i , h

l=0
t,j , ∥µl=0

t,i − µl=0
t,j ∥2

)
(µl=0

t,i − µl=0
t,j ), (6)

hl
′

t,i = ϕh
(
hl=0
t,i ,

∑
j∈N (i)

ϕµ(h
l=0
t,i , h

l=0
t,j , ∥µl=0

t,i − µl=0
t,j ∥2)

)
, (7)

where N (i) is the set of neighbors of node i, ϕµ(·) and ϕh(·) are MLPs.

Gated recurrent unit (GRU). For temporal prediction, we introduce group-consistent gates for
hidden features and position vectors respectively. Each gate is computed only from E(2)-invariant
scalars, ensuring that the update preserves equivariance. The GRU updates both the hidden features
and the position vectors as:

µl+1
t,i = (1− gµt,i)µ

l′

t,i + gµt,i µ
l
t−1,i, (8)

hl+1
t,i = (1− ght,i)h

l′

t,i + ght,i h
l
t−1,i, (9)

where gt,i ∈ (0, 1) is the gate computed from invariant features ψt =
(
∥µt − µt∥2, ∥µt−1 −

µt−1∥2, ∥µt − µt−1∥2
)

through two different MLPs, σ(ϕgh(ψt)) and σ(ϕgµ(ψt)) respectively.

Output layer. Through L layers of ECL and GRU, we obtain the final hidden features hLt and
position vectors µL

t . Then predict the updates for the non-positional variables as:

∆rt = ϕr(h
L
t ), ∆ log at = ϕa(h

L
t ), ∆wt = ϕw(h

L
t ), (10)

where ϕr(·), ϕa(·) and ϕw(·) are MLPs. Finally, we have the variables of next time step t+ 1 as:

µt+1 = µL
t , (11)

rt+1 = rl=0
t + γt ∆rt, (12)

log at+1 = log al=0
t + ηt ∆ log at, (13)

wt+1 = wl=0
t + ζt ∆wt, (14)

where γt, ηt, ζt ∈ (0, 1) are gates computed from the same invariant feature set ψt.

Training Objective. To train the EGNN, we minimize the forecasting error directly on the Gaus-
sian ellipsoid parameters. Specifically, we compute the loss as the difference between the ground
truth Gaussian ellipsoid parameters {Gt+1

k }Kk=1 and the predicted parameters {Ĝt+1
k }Kk=1, ensuring

that the model learns to predict the evolution of the ellipsoids accurately.

Without loss of generality, we can perform EGNN on both 2D and 3D Gaussian ellipsoids.

6
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Table 1: Experiments on temporal forecasting. The arrows indicate whether higher (↑) or lower (↓)
values are better. Best results are in bold, and second best are underlined.

Method MAE ↓ SSIM ↑ LPIPS ↓ LPIPS-radar ↓ CSI-20 ↑ CSI-30 ↑ CSI-40 ↑
ConvGRU 0.006 0.819 0.205 1.621 0.306 - -
PhyDNet 0.017 0.373 0.320 2.058 0.311 0.089 0.002
SimVP 0.066 0.379 0.481 2.925 0.085 0.088 0.018
DiffCast 0.157 0.004 0.932 4.057 0.049 0.021 0.021
Mamba 0.004 0.899 0.129 0.699 0.309 0.165 0.074
GauMamba 0.003 0.907 0.122 0.600 0.361 0.205 0.089
Ours 0.003 0.912 0.118 0.538 0.404 0.258 0.148

3.4 DATA COMPRESSION & SUPER-RESOLUTION

Besides weather forecasting, the proposed Gaussian ellipsoid representation also enables down-
stream tasks such as data compression and super-resolution as shown in Fig. 3.

Data Compression. Instead of storing the full pixel-based weather data, we can store the pa-
rameters of the Gaussian ellipsoids. Given a weather variable matrix X ∈ RH×W , we can fit K
Gaussian ellipsoids to it and store their parameters {Gk}Kk=1. The compression ratio can be calcu-
lated as: Compression Ratio = H×W

K×P where P is the number of parameters per Gaussian ellipsoid
(7 for 2D: 2 for location, 2 for scaling, 3 for rotation, and 1 for weight). By choosing an appropriate
K, we can achieve significant compression while retaining reconstruction fidelity.

Super-Resolution. The Gaussian ellipsoid representation allows for resolution-agnostic rendering
of weather data. Given a set of Gaussian ellipsoids {Gk}Kk=1, we can render them onto any target
grid size H ′ ×W ′ using Eq. 1. This means that we can generate high-resolution weather variable
matrices from a low-resolution input by fitting Gaussian ellipsoids to the low-resolution data and
then rendering them onto a higher-resolution grid. This approach enables super-resolution without
retraining the model, as the rendering process is independent of the grid resolution.

4 EXPERIMENTS

Setup. We first introduce the datasets and evaluation metrics used in our experiments. Then we
present the experimental results on weather forecasting, data compression, and super-resolution
tasks. For the Datasets, we evaluate our method on two widely used weather datasets, NEXRAD
(Department of Atmospheric Sciences, Texas A&M University & School of Meteorology, University
of Oklahoma, 2021) and RainNet (Chen et al., 2022). NEXRAD consists of radar observations of
major storms across the United States, including 6,255 frames of 3D radar observations with a grid
size of 512 × 512 × 44 and interval of 5 minites. Each voxel contains 7 radar features. RainNet
contains 62,400 pairs of high-quality low/high-resolution precipitation maps from 2002 to 2018
with an interval of 1 hour. The sizes of the high-resolution and low-resolution precipitation map
are 624× 999 and 208× 333, respectively. For the Evaluation Metrics, following previous works
(Pathak et al., 2022; Lam et al., 2023; Chen et al., 2022; Wang et al.), we mainly employ Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Critical Success Index (CSI) to evaluate
the forecasting performance. For data compression and super-resolution tasks, we use Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) as evaluation metrics.

4.1 EXPERIMENTAL RESULTS

We first evaluate the performance of our method on temporal forecasting. Then we demonstrate the
potential of our Gaussian ellipsoid representation for data compression and super-resolution tasks.

4.1.1 TEMPORAL FORECASTING RESULTS

For temporal forecasting, we mainly compare our method with ConvGRU Shi et al. (2017), PhyDNet
Guen & Thome (2020), SimVP Gao et al. (2022), DiffCast (Yu et al., 2024), Mamba (Zhu et al.,
2024), and STC-GS (Wang et al.) on NEXRAD and RainNet datasets.
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Table 2: Ablation study on the effectiveness of equivariant design in our EGNN. eµ denotes the
mean squared error of the predicted ellipsoid centers.

Equivariance eµ↓ MAE ↓ MSE ↓ SSIM ↑ LIPS ↓
19.19 0.00266 0.0004 0.911 0.107

✓ 3.77 0.00168 0.0002 0.950 0.056

The quantitative results are summarized in Table 1. Our method outperforms all baselines across
all metrics, demonstrating the effectiveness of the proposed Gaussian ellipsoid representation and
the equivariant graph neural network for weather forecasting tasks. Notably, our method achieves
significant improvements in MAE and SSIM, indicating better accuracy and structural preservation
in the forecasts. The improvements in LPIPS and CSI metrics further highlight the model’s ability
to capture perceptual quality and critical weather events.

Besides experiments on NEXRAD dataset, we also conduct experiments on RainNet dataset, where
the data is more sparse and the weather patterns are global. For MAE metric, our method achieves
0.003 which is the same as the best baseline STC-GS. For RMSE metric, our method achieves 0.015
which is slightly better than STC-GS (0.016). Our method also outperforms STC-GS on SSIM
(0.975 vs 0.972) metric. Our EGNN and STC-GS models perform comparably on the RainNet
dataset since the weather patterns in RainNet exhibit more global characteristics and rainfall shows
stronger location-specific associations.

4.1.2 ABLATION STUDIES

To validate the effectiveness of equivariance design in our EGNN, we conduct ablation stud-
ies on the NEXRAD dataset by removing the equivariant constraints and replacing the EGNN
with a standard GNN. We randomly rotate the input sequences during testing with angles of
{30◦, 60◦, 90◦, 120◦, 180◦}, and evaluate the performance of both the full model and the ablated
model as shown in Table 2 . We observe a significant drop in performance when equivariance is re-
moved, confirming the importance of incorporating physical symmetries into the model architecture
for weather forecasting tasks. Furthermore, any other physical dynamics can also be incorporated
into our EGNN framework, such as conservation laws and incompressibility constraints, which we
leave for future work. For more details, please refer to App. A.2.

4.1.3 DATA COMPRESSION & SUPER-RESOLUTION RESULTS

Table 3: Data compression and reconstruction re-
sults with different numbers of ellipsoids.

# Ellipsoids PSNR ↑ RMSE ↓ SSIM ↑
512 56.6275 0.001256 0.9929

1024 57.1933 0.001251 0.9943
2048 57.5952 0.001241 0.9952

We also show the potential of our EllipWeather
representation for data compression and super-
resolution tasks on the RainNet dataset.

Data Compression. We fit different numbers
(512, 1024, 2048) of Gaussian ellipsoids to the
original high-resolution precipitation maps and
evaluate the reconstruction quality using PSNR and SSIM metrics. As shown in Table 3, our method
achieves high reconstruction quality even with a small number of Gaussian ellipsoids, demonstrating
its effectiveness for data compression. For instance, using only 512 Gaussian ellipsoids (compres-
sion ratio = 22.62), we achieve a PSNR of 56.63 and an SSIM of 0.9929, which is satisfing for many
applications Salomon (2002); Wang et al. (2004). With the increase of the number of Gaussian ellip-
soids, the reconstruction quality further improves, indicating that our representation can effectively
capture the essential features of the weather data with a compact set of parameters.

Downscaling (Super-resolution). We conduct downscaling experiments on two settings, paired-
training and unpaired-training. In the paired-training setting, we input low-resolution precipitation
maps and train our model to predict the parameters of Gaussian ellipsoids by minimizing the recon-
struction error between the high-resolution ground truth and the rendered high-resolution maps from
the predicted Gaussian ellipsoids. In the unpaired-training setting, we input both high-resolution and
low-resolution precipitation maps during training, and train our model to reconstruct the input maps
by minimizing the reconstruction error. Our model is suppposed to learn a shared representation for
both high-resolution and low-resolution maps. During testing, we encode low-resolution maps into
Gaussian ellipsoids and render them onto high-resolution grids.

8
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Table 4: Results on paired downscaling
# Ellipsoids PSNR ↑ RMSE ↓ SSIM ↑

1024 48.7744 0.001273 0.9904
2048 49.5623 0.001280 0.9934

Table 5: Results on unpaired downscaling
# Ellipsoids PSNR ↑ RMSE ↓ SSIM ↑

1024 47.4491 0.001356 0.9860
2048 48.7268 0.001246 0.9906

Figure 4: A comparison of our method against a non-equivariant baseline. The first row shows
the ground truth, followed by the predictions of our method (Row 2) and a non-equivariant method
(Row 3). The final two rows show the predictions from our method and the non-equivariant method,
respectively, on a 180◦ rotated input. Please refer to App. C.2 for more details.

5 DISCUSSION

Why we need equivariance? Equivariance to spatial transformations is a critical inductive bias
for weather forecasting, as the underlying physical phenomena exhibit inherent symmetries. By
enforcing this property in our model architecture, we ensure its predictions remain consistent when
the input is transformed. This is visualized in Fig. 6, which compares our model to a non-equivariant
baseline. For an input sequence rotated by 180◦, the baseline model fails, producing a distorted
and inaccurate forecast. Our equivariant model, however, generates a prediction that is correctly
rotated, demonstrating its ability to capture the system’s true dynamics. This result underscores that
incorporating physical symmetries is essential for achieving robust and reliable weather forecasts.

Advantages of EllipWeather representation. In addition to enabling equivariant modeling, the
EllipWeather representation offers advantages over traditional pixel-based methods. First, it pro-
vides a more compact representation of weather data, allowing for efficient storage and transmission.
Second, the continuous nature of Gaussian ellipsoids enables smooth interpolation and extrapola-
tion, which is beneficial for tasks like super-resolution. Third, the parametric form of the represen-
tation facilitates the incorporation of physical constraints and domain knowledge directly into the
model. Furthermore, by representing weather phenomena as ellipsoids, weather data of any resolu-
tion can be effectively used as input, providing flexibility in handling diverse datasets from different
sources, which will be our future work. For additional visual results, please refer to App. C.

6 CONCLUSION

In this paper, we introduced EllipWeather, a novel framework for weather forecasting that leverages
a Gaussian ellipsoid representation and an equivariant graph neural network. Our approach ad-
dresses the limitations of traditional pixel-based methods by providing a more compact and efficient
representation of weather data, while also incorporating physical symmetries through equivariant
modeling. We demonstrated the effectiveness of our method on benchmark datasets, achieving
state-of-the-art performance in weather forecasting tasks. Additionally, we showcased the potential
of our representation for downstream applications such as data compression and super-resolution.
Future work will explore the integration of additional physical constraints and the extension of our
framework to multi-source data.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Detailed dataset descrip-
tions are provided in App. B.1, training configurations and hyperparameters are reported in App. B.2,
and method details in App. A. Upon acceptance, we will release our models, together withtraining
and inference code, to facilitate replication and further research.
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A METHOD DETAILS

A.1 GAUSSIAN ELLIPSOID FITTING ALGORITHM

Iterative Fitting Algorithm. For the iterative fitting algorithm, we follow Wang et al. to fit a
set of K Gaussian ellipsoids to the weather variable matrix X . The algorithm starts with an initial
guess of the Gaussian ellipsoids and iteratively refines them to minimize the reconstruction error. In
each iteration, we perform the following steps: 1. Compute the reconstruction X̂ using the current
set of Gaussian ellipsoids. 2. Calculate the reconstruction error between X and X̂ . 3. Update the
parameters of the Gaussian ellipsoids using gradient descent to minimize the reconstruction error.
The process is repeated until convergence or a maximum number of iterations is reached. please
refer to Wang et al. for more details.

Hierarchical Graph Neural Network. We provide more details about the architecture of HGNN.
For the bipartite graph construction, we connect each pixel node to its M nearest Gaussian ellipsoid
nodes based on Euclidean distance. For the Gaussian ellipsoid graph construction, we connect each
Gaussian ellipsoid node to its N nearest neighbors. We use 3 GAT layers for message passing on
the pixel graph, 3 GAT layers for message passing on the bipartite graph, and 3 GAT layers for
message passing on the Gaussian ellipsoid graph. The hidden dimension of all GAT layers is set to
64. We use ReLU as the activation function and apply layer normalization after each GAT layer. The
network is trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 16. For
the bipartite graph update mechanism, we illustrate it in Fig. 5. We update the edges dynamically
based on the updated centers of the Gaussian ellipsoids after each message passing step.

Equivariance for Weather Variances. We illustrate the concept of equivariance in Fig. 6. When
the input weather data is rotated or translated with an operation δ, the output predictions should
undergo the corresponding transformation δ′. This property ensures that the model’s predictions re-
main consistent under spatial transformations, which is crucial for accurately modeling the dynamics
of weather phenomena.

A.2 EQUIVARIANCE DETAILS

Clarification on non-positional embedding. It is important to emphasize that the embedding of
non-positional parameters (a, r, w) into h is not required to be strictly E(2)-invariant. Specifically:

1. the weight w is a scalar and thus invariant under any E(2) action;
2. the rotation r and scaling a are not invariants by themselves, but jointly define the

anisotropic covariance Σ(a, r) = R(r) diag(a2)R(r)⊤, which remains equivariant under
global rotations;
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Figure 5: Bipartite graph update mechanism in EllipWeather.

Figure 6: Illustration for equivariance.

3. in our design, the MLP embedding h = MLP([a, r, w]) only serves as a high-dimensional
feature representation. The equivariance property is ensured by the update rules: the coor-
dinate update depends only on E(2)-invariant quantities, while the updates of r and a are
defined in an explicitly equivariant manner (e.g., r 7→ r +∆r, log a 7→ log a+∆ log a).

Therefore, although h itself is not strictly E(2)-invariant, the overall EGNN module remains rigor-
ously E(2)-equivariant due to the symmetry-preserving update rules.

A.2.1 EQUIVARIANCE

Lemma A.1 (Gate invariance). Let g = (R, t) ∈ E(2) act on µt by µt 7→ Rµt + t. Then each
component of ψt is invariant: ∥µt∥2 7→ ∥Rµt + t∥2 depends on a choice of origin; using centered
coordinates (i.e., relative to a global origin or mean) removes t, and ∥Rµ∥2 = ∥µ∥2. Likewise,
∥µt − µt−1∥2 7→ ∥R(µt − µt−1)∥2 = ∥µt − µt−1∥2. Hence ψt and any function (MLP + sigmoid)
are invariant: g′t = gt.

Proposition A.2 (Equivariance of gated location update). Under the same action, the update of
gate is E(2)-equivariant.
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Proof. Since gt is invariant (Lemma A.1), applying g yields

µnew
t 7→ (1− gt)(Rµt + t) + gt(Rµt−1 + t) (15)

= R
(
(1− gt)µt + gtµt−1

)
+ t (16)

= Rµnew
t + t. (17)

Proposition A.3 (Equivariance of gated non-positional updates). Assume gates γt, ηt, ζt are
E(2)-invariant. Then the gated updates for r, a, w above preserve the same group behavior as the
ungated ones.

Proof.

1. Rotation: global action r 7→ r + ϕ implies (rt + ϕ) + γt∆rt = (rt + γt∆rt) + ϕ, hence
SO(2)-equivariant.

2. Scale in log-space is a scalar pair independent of R; its coupling to geometry is via
Σ(a, r) = R(r)diag(a2)R(r)⊤. Since log at+1 = log at + ηt∆ log at, the resulting Σ
transforms as RϕΣR

⊤
ϕ .

3. Weight w is scalar and remains invariant.

A.2.2 GAUSSIAN ELLIPSOID

where pij = [i, j]⊤ is the coordinate vector of grid cell (i, j), Ak = diag(ak) is the scaling matrix,
and Rk is the 2D rotation matrix given by

Rk =

[
cos rk − sin rk
sin rk cos rk

]
. (18)

B EXPERIMENT DETAILS

B.1 DATASET DETAILS

We use two widely used weather datasets, NEXRAD (Department of Atmospheric Sciences, Texas
A&M University & School of Meteorology, University of Oklahoma, 2021) and RainNet (Chen
et al., 2022), for evaluation. NEXRAD consists of radar observations of major storms across the
United States, including 6,255 frames of 3D radar observations with a grid size of 512 × 512 × 44
and interval of 5 minites. Each voxel contains 7 radar features. We follow Wang et al. to split
the dataset into training, validation, and testing sets with a ratio of 7:1:2 based on time. RainNet
contains 62,400 pairs of high-quality low/high-resolution precipitation maps from 2002 to 2018
with an interval of 1 hour. The sizes of the high-resolution and low-resolution precipitation map are
624×999 and 208×333, respectively. We follow Chen et al. (2022) to split the dataset into training,
validation, and testing sets with a ratio of 7:1:2 based on time.

B.2 IMPLEMENTATION DETAILS

We train all the models on 8 NVIDIA H800 80GB GPUs and 8 NVIDIA 4090Ti 24GB GPUs. The
network is trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 16.
The hidden dimension of all MLPs is set to 128. We use ReLU as the activation function and apply
layer normalization after each MLP. The code will be released upon acceptance.

B.3 METRIC DETAILS

Following previous works (Pathak et al., 2022; Lam et al., 2023; Chen et al., 2022; Wang et al.),
we mainly employ Mean Squared Error (MSE), Mean Absolute Error (MAE), and Critical Success
Index (CSI) to evaluate the forecasting performance. For data compression and super-resolution
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tasks, we utilize the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure
(SSIM) as evaluation metrics. For CSI, we follow Wang et al. to report the CsI at pooling scale 4×4,
which relaxes the pixel-wise matching to evaluate the accuracy on neighborhood aggregations.

C ADDITIONAL RESULTS

C.1 ADDITIONAL ABLATION STUDY RESULTS

We also provide the ablation study results on each rotation angle in Table 6. One can observe that
our equivariant design consistently outperforms the non-equivariant counterpart across all rotation
angles, demonstrating the effectiveness of incorporating physical symmetries into the model archi-
tecture for weather forecasting tasks. Besides, the performance gap between the two models widens
as the rotation angle increases, indicating that the equivariant model is more robust to larger trans-
formations. Therefore, the equivariant design is crucial for achieving robust and accurate weather
forecasting. Furthermore, other physical symmetries and dynamics can also be incorporated into the
model to further enhance its performance and generalization ability, which we leave as future work.

Table 6: Ablation study on the effect of equivariance under different rotation angles. The arrows
indicate whether higher (↑) or lower (↓) values are better.

Equivariance Angles eµ↓ MAE ↓ MSE ↓ SSIM ↑ LIPS ↓
30 7.09 0.00261 0.0004 0.913 0.105
60 12.50 0.00262 0.0004 0.913 0.105
90 18.86 0.00265 0.0004 0.912 0.106

120 23.92 0.00267 0.0004 0.911 0.107
150 26.24 0.00270 0.0004 0.910 0.108
180 26.49 0.00273 0.0004 0.910 0.109

✓

30 2.97 0.00166 0.0002 0.95 0.056
60 3.12 0.00166 0.0002 0.95 0.056
90 3.42 0.00167 0.0002 0.95 0.056

120 3.86 0.00168 0.0002 0.95 0.056
150 4.32 0.00169 0.0002 0.95 0.056
180 4.95 0.00170 0.0002 0.95 0.057

C.2 ADDITIONAL VISUAL RESULTS

Equivariance We randomly select three gaussian ellipsoids and visualize their evolution over a
sequence of 8 time steps as shown in Fig. 7. One can observe that the Gaussian ellipsoids can ef-
fectively capture the motion and deformation of weather patterns over time.The predicted Gaussian
ellipsoids by both our EGNN and the non-equivariant baseline can capture the general motion of the
weather patterns (the first three rows). However, when the input sequence is rotated by 180◦, the pre-
dicted Gaussian ellipsoids by the non-equivariant baseline become distorted and misaligned with the
actual weather patterns while our EGNN produces Gaussian ellipsoids that are correctly rotated and
aligned with the weather patterns, demonstrating its ability to maintain geometric consistency under
spatial transformations (the final three rows). Especially for the red ellipsoid, the non-equivariant
baseline fails to capture its motion entirely, while our EGNN accurately tracks its trajectory. This
result underscores the importance of incorporating physical symmetries into the model architecture
for robust and reliable weather forecasting.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs (GPT-5.0 and Gemini 2.5 pro) to polish our writing and check our grammar only.
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Figure 7: Prediction of Gaussian ellipsoid variation over time. First row: the ground truth ellipsoids.
Second row: the predicted ellipsoids by our model. Third row: the predicted ellipsoids by the non-
equivariant baseline. Fourth row: rotated ground truth ellipsoids. Fifth row: prediction with rotated
input by our model. Sixth row: prediction with rotated input by non-equivariant baseline.
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