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Abstract

We propose EDBench, a large-scale, high-quality dataset of electron density (ED)
designed to advance learning-based research at the electronic scale. EDBench
comprises 3,359,472 drug-like molecules with corresponding ED distributions and
a comprehensive set of quantum chemical properties, including energy components,
orbital energies, and multipole moments, thus providing a solid foundation for
systematically investigating the role of ED in molecular modeling. We outline
the Al tasks, data rationale, acceleration potential, and concrete pathway to data-
creation with cost and scalability of EDBench.

1 Al task definition

EDBench is purpose-built to support three tightly-coupled scientific tasks that together push machine-
learning models from the atomic scale to the electronic scale (The methods and significance of these
tasks see Appendix [A.T):

* Quantum property prediction: regress or classify ground-state quantum properties (energy
components, orbital energies, multipole moments, open/closed-shell character) directly from the
3D electron density.

* Cross-modal retrieval: Retrieve a molecule’s structure from its density and vice-versa, enabling
electron-level virtual screening and inverse design.

* ED generation: Electron density (ED) prediction from molecular structures, aimed at approximat-
ing DFT-level density accuracy at significantly reduced computational cost.

2 Dataset rationale

The rapid integration of deep learning into molecular-dynamics (MD) simulations has established
machine-learning force fields (MLFFs) as efficient and promising computational tools across physics,
chemistry, biology, and materials science [} 2, [3]]. Nevertheless, prevailing MLFFs emphasize
atom-level many-body interactions[4}, 5]], largely overlooking the pivotal role of microscopic electron
distribution in governing interatomic forces[6, 7, 18]. Electron density (ED), as a fundamental physical
quantity in quantum mechanics that describes the spatial distribution of electrons, offers a more fine-
grained and physically grounded representation of molecular systems according to Hohenberg—Kohn
theorem [9]]. Explicit incorporation of ED into MLFFs is therefore expected to bridge the gap
between microscopic electronic behavior and macroscopic force fields, enhancing both accuracy and
generalizability.

Advancing MLFFs toward electron-level modeling confronts two principal challenges: (i) the absence
of large-scale, high-quality ED datasets essential for pre-training and potentially paradigm-shifting
architectures, and (ii) the lack of an ED-centric benchmark for systematically evaluating the feasi-
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bility and efficacy of ED-based frameworks. ED data can be acquired experimentally (e.g., X-ray
diffraction)[l10} |11} |12]) or theoretically. Experimental routes are constrained by costly instrumentation
and limited throughput, whereas theoretical approaches—predominantly density-functional theory
(DFT)—are computationally demanding and resource-intensive, rendering large-scale ED curation
arduous|[[13} [14]. Concurrently, the MLFF community remains in its infancy regarding effective
ED representation learning, underscoring the urgency of establishing a comprehensive ED-based
evaluation protocol to accelerate methodological progress. For more background, see Appendix [A.2]
To address this gap, We construct a more comprehensive large-scale dataset:

* Scale: 3.3 million drug-like molecules.

* Type and resolution: Cube files containing electron density (ED) data with a grid spacing of 0.4
Bohr, a padding of 4.0 Bohr, and a density fraction threshold of 0.85.

* Molecule elements: H,C,N,O,Ti,Ar,S,Se,He,Be,F,P,Si,Ca,Ga,Zn,Ge,Mg,B,Cl,As,Br.

 Labels: Electron density p, 6 energy components(DF-RKS Final Energy, Nuclear Repulsion Energy,
One-Electron Energy, Two-Electron Energy, Exchange-Correlation Energy, Total Energy), 7 frontier
orbital energies(HOMO-2, HOMO-1, HOMO-0, LUMO+0, LUMO+1, LUMO+2, LUMO+3), 4
multipole moments(3 Dipoles X, Y, Z, Magnitude), ED visualization.

3 Acceleration potential

EDBench supports the next-generation machine-learning model development for exploring a broader
chemical space and designing molecules with target properties. It provides systematic and extensive
quantum mechanical data as rich training samples, enabling more accurate and efficient predictive
models for molecular property prediction, functional molecule design, and reaction pathway opti-
mization, thereby accelerating new material discovery and drug development. We have evaluated
several state-of-the-art deep learning models on the designed benchmark tasks, and the evaluation
results show that learning from Edbench is not only feasible, but also achieves high accuracy (For
more details about the experiment see Appendix [A.3)). Further impacts and visions are as follows:

* Replace or warm-start expensive DFT cycles in high-throughput screening.

* Enable joint geometric-electronic architectures that learn transferable chemical rules, improving
pK,, redox potential and binding-affinity prediction across chemical space.

* Provide “electronic fingerprints” for similarity search and retrosynthetic planning, accelerating
lead-optimization cycles by weeks.

* Drug/catalyst design by specifying desired density features at active sites.

4 Data-creation pathway

* Source and Engine: 3.36 M molecules from PCQM4Myv2 processed with Psi4 1.7.

* Functional and Basis-Set: B3LYP hybrid functional; 6-31G** for molecules without S, 6-31+G**
(diffuse functions) for S-containing molecules.

* Spin Treatment: Closed-shell (multiplicity = 1) — RHF reference; Open-shell (multiplicity > 1)
— UHF reference.

* Post-SCF cube files Generation: Grid spacing: 0.4 Bohr; Isosurface defined at 0.85 density-
fraction threshold..

Regarding data quality and reliability, refer to Appendix [A.4.1]

S Cost and scalability

Compute cost. All computations were carried out on a high-performance server equipped with 8
Intel(R) Xeon(R) Platinum 8270 CPUs, each with 26 physical cores and 2 threads per core, yielding
a total of 416 logical cores. The total computational cost exceeded 205,000 core-hours, equivalent to
approximately 23.4 years of single-core compute time.

Scalability. While the EDBench project has made significant progress in the scale and quality of ED
data, surpassing existing datasets, there remains room to further enhancement. In future work, we
plan to expand the dataset to include higher-level functionals and material-related molecules, and to
develop advanced models tailored for ED, enabling EDBench to support a broader range of scientific
applications in physical chemistry.
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A Appendix

A.1 Detailed introduction of AI tasks

A.1.1 Construction details of tasks

To comprehensively evaluate the capacity of the model to understand ED data, we define a suite of
tasks based on both molecular structures (MS) and ED, focusing on three fundamental capabilities:
prediction of quantum property, retrieval between MS and ED, and generation of ED based on
MS . These tasks are constructed and conditionally sampled from the EDBench. To facilitate the
development of ED-oriented machine learning methods within the community, we set the dataset
size to a moderate scale of up to n™** = 50, 000 molecules, with remaining data available for future
research on pre-training strategies. We use scaffold split to divide the dataset into 80% training set,
10% validation set and 10% test set, which is an out-of-distribution split setting and is widely used to
evaluate the generalization ability of the model [[15}[16]]. We summarize the statistics of the designed
datasets in Table[I]. We next explain the construction details of these tasks.

Table 1: Statistical information of designed 6 benchmarks with a scaffold split.

Datasets #Mol #Train/#Valid/#Test  #Task Task type Task desc

EDS-EC 47,986 38,388/4,799/4,799 6 Regression 6 energy components (DF-RKS Final Energy [E1], Nuclear
Repulsion Energy [E2], One-Electron Energy [E3], Two-
Electron Energy [E4], DFT Exchange-Correlation Energy
[ES], Total Energy [E6])

ED5-OE 43,510  34,808/4,351/4,351 7 Regression 7 orbital energies (HOMO-2, HOMO-1, HOMO-0,
LUMO+0, LUMO+1, LUMO+2, LUMO+3)
ED5-MM 49917 39,933/4,992/4,992 4 Regression 4 multipole moment (3 Dipoles {X, Y, Z}, Magnitude)
ED5-0OCS 50,000 40,000/5,000/5,000 1 Classification open-/closed-shell classification
ED5-MER 50,000 40,000/5,000/5,000 2 Retrieval cross-modal retrieval between molecular structures and ED
ED5-EDP 50,000  40,000/5,000/5,000 1 Generation ED prediction from molecular structures

Prediction of quantum property. To construct four task-specific datasets—EDS5-EC (energy com-
ponents), ED5-OE (orbital energies), EDS-MM (multipole moments), and ED5-OCS (open/closed-
shell)—we design a structure- and label-balanced sampling strategy based on the full EDBench dataset
(n molecules). We first extract 2D ECFP4 fingerprints ( fp?” € R™*2%48) and 3D USR descriptors
(fp*P € R™*12) for each molecule, concatenate them, and apply k-means clustering (k = 100) to
obtain structure clusters C'*. For the multi-dimensional labels 4% (6D), y©F (7D), and y™ME (4D),
we similarly apply k-means (k = 100) to produce clusters C¥¢, COF and CMM | respectively; for
y©CS (binary), we use the original label. We then form sampling groups as (C*, CFC), (C*, COF),
(C*,CMM) "and (C*,y©¢?), and uniformly sample m = max(n™%*//n97°% 1) molecules from
each group to construct the final datasets, ensuring diversity in both structure and property space.

Retrieval between MS and ED. Retrieval between MS and ED is a fundamental task. Retrieving
molecular structures from ED (ED ~» MS) enables electron-level virtual screening, while retrieving
ED from structures (MS ~~ ED) supports electron-aware models—facilitating molecular representation
learning, inverse design, and quantum-informed modeling. To construct the ED5-MER dataset for
bidirectional retrieval between MS and ED, we group all molecules in EDBench by structure cluster
C? and uniformly sample m anchor (MS and ED) from each group. For each anchor, we sample
n™ = 10 negative samples: half from the same cluster (easy negatives) and half from different
clusters (hard negatives). The final task involves identifying the correct ED (or MS) from a set of 11
candidates given an anchor MS (or ED).

Generation of ED based on MS. Generating ED from MS (MS — ED) is a highly valuable task, as it
can significantly reduce the computational cost associated with DFT-based ED calculations. Since
ED is inherently dependent on both molecular connectivity and 3D geometry, we ensure diversity in
both structure and density by grouping molecules via C® and uniformly sampling m MS-ED pairs
from each group. In this task, the model is given an MS as input and is required to predict its ED.

A.1.2 Methods

To assess the model’s understanding of electron density (ED), we design tailored learning paradigms
for each task type (prediction, retrieval, and generation). For clarity, we formalize the molecular
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structure (MS) with n atoms as G = (V, 29), where V = {vy,vs,...,v,} € R"*! and 29 =
{ zlg , zzg sy z,gL } € R™*3 denote atomic types and their corresponding 3D coordinates, respectively.

The ED data with m points is denoted as P = (Z7, D), where 27 = {zF 2], ....2P} € R**3
represents the ED coordinates and the corresponding density values D = {d;,da, .., , dp, } € R**1.
We denote the MS encoder and ED encoder as Encg and Encp, respectively, to extract latent

representations from MS and ED.

For prediction tasks, we introduce an additional task-specific prediction head Enc;, whose output
dimension matches the number of target labels for each task. The learning paradigm is defined as
follows: the ED encoder Encp first extracts features from P, which are then passed through Enc; to
generate task-specific predictions g. This process can be formalized as:

9* = Enc} (Encp(P)) (1)

where e denotes a specific task, such as EC, OE, MM, or OCS. Accordingly, on the ED5-EC, ED5-OE,
ED5-MM, and ED5-OCS datasets, we compute the loss between 4* and the corresponding ground
truth y* to optimize the model. Specifically, cross-entropy loss is used for classification tasks, while
L2 loss is applied for regression tasks.

For retrieval tasks, we utilize Encg and Encp to extract latent representations hg and hp from the
MS G and ED P, respectively, which can be formalized as:

hg = Encg(G), hp = Encp(P) 2)
The models are trained with the InfoNCE loss [[17], which pulls matched pairs closer in the em-

bedding space while pushing apart mismatched ones. Formally, given a batch of n paired samples
{(Gs, P;) },, the loss for a positive pair (G;, P;) is defined as:

Lo = —log nexp(sim(hgi,hpi)/T)

> j=1 exp(sim(hg,, hp,)/T)

where sim(+, -) denotes a similarity function (e.g., cosine similarity), and 7 = 0.07 is a temperature.

3

For the generation task, we construct a heterogeneous graph [18], defined as:
Hg:{(v72g)7(ZP7D)78} (4)

where HG contains two types of nodes: atoms and electrons. To construct the edge set £, we perform
a k-nearest neighbor search (k = 9) for each node, retrieving the k closest nodes of the same type
and k of the opposite type, which results in 18 edges per node, forming atom—atom, atom—electron,
and electron—electron connections. Since the goal is to predict ED from MS, we mask all ED values
to obtain the masked graph HG. We extend Equivariant Graph Neural Network (EGNN) [19], called
HGEGNN, to support heterogeneous graph. In HGEGNN, we treat electrons as special atoms and

apply the same EGNN operations as used for regular atoms. We then input #G into an HGEGNN to
extract node representations 279, which are split into atomic features hgg and electronic features

h9. Finally, we apply a prediction head EnctP? to the electronic features to generate the masked
density values:

h*9 = HGEGNN(HG), D = EnctPP(h}i9) ®)

where D € R"?*1 is the predicted ED. We minimize the discrepancy between D and the ground-truth
D by the following L2 loss:

Low =D =D, p=2 (6)

A.1.3 Evaluations

In the prediction tasks, the predicted labels are obtained via Equation[I] Specifically, in ED5-EC,

ED5-OE, and ED5-MM, we evaluate the prediction performance using MAE between the predicted
and ground-truth values, i.e., (G5, yE©), (997, y@F), and (55 M, yA ). For ED5-OCS, we assess
classification performance using accuracy, ROC-AUC, AUPR, and F1-score between the predicted
logits §9°S and ground-truth labels y9°°. In the retrieval task, we evaluate the quality of the

latent features hg and hp extracted via Equation[2] Specifically, in ED5-MER, given a molecular
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feature hg, as the anchor, we retrieve from a set of ED features by computing cosine similarities
and ranking the results; Top-k accuracy (k = 1, 3,5) is used as the evaluation metric, where a hit
is counted if the correct match appears in the top k results. Similarly, we perform retrieval in the
opposite direction using hp, as the anchor and hg as the candidate set. In the generation task, the

predicted ED D is obtained via Equation We evaluate the generation performance using MAE,
Pearson and Spearman’s rank correlation coefficients between D and the ground-truth D in ED5-EDP.

A.1.4 Significance of tasks

We define three core tasks that capture distinct yet complementary capabilities of modeling electron
density (ED), each grounded in both scientific motivation and real-world utility:

* Prediction of quantum property. As ED fundamentally determines molecular quantum behavior,
predicting properties such as total energy, dipole moment, and orbital energies from ED allows
us to assess whether a model has captured the underlying physical principles linking electron
distributions to quantum observables. Despite ED being typically computed via expensive DFT
simulations, it encodes richer quantum information than molecular geometry alone. Accurate
property prediction from ED thus serves as a proxy for model fidelity to quantum mechanics
and offers a potential route to accelerate quantum property estimation in applications like drug
discovery, catalysis, and materials design.

* Retrieval between MS and ED. Bidirectional retrieval between MS and ED enables molecule-level
search in ED databases and supports structure inference from electronic environments. MS-to-ED
retrieval facilitates functional site localization and electron distribution analysis, while ED-to-
MS retrieval provides a foundation for inverse design driven by electronic requirements. This
dual capability is essential for high-resolution virtual screening pipelines grounded in electronic
behavior.

* Generation of ED based on MS (Molecular Structure). Learning to generate high-fidelity ED
distributions directly from molecular structures bypasses the computational burden of DFT, making
ED accessible to downstream tasks such as deep molecular dynamics, quantum-aware neural
force fields, and reaction path modeling. This capability bridges the gap between computational
efficiency and quantum-level accuracy, unlocking ED-driven learning for large-scale modeling
scenarios.

A.1.5 Detailed statistics of 6 benchmarks

We provide a detailed statistical analysis of six benchmarks in the EDBench suite: ED5-EC, ED5-OE,
ED5-MM, ED5-OCS, ED5-MER, and ED5-EDP. Figures|[I] [2] and [3]illustrate the distributions of the
number of atoms, the number of ED points at the threshold p, = 0, and the per-molecule mean ED
values at p, = 0, respectively. As shown, the number of ED points significantly exceeds the number
of atoms, which provides richer information for force field learning and related downstream tasks.

Furthermore, we report the distribution of ED point counts and mean ED values under a higher
threshold p, = 0.05 in Figures[d]and [5] respectively. By applying a larger threshold (e.g., p, = 0.05),
the overall ED point count is significantly reduced, which can lead to improved computational
efficiency. This suggests that threshold tuning offers a practical way to control the data volume
without severely compromising structural fidelity. In addition, Figure[5|reveals that increasing the
ED threshold implicitly forces the model to focus more on high-density regions, which are typically
more chemically informative and relevant for modeling interactions.
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Figure 4: Distribution of the number of ED points in the 6 benchmark datasets with ED threshold
pr = 0.05.

11



389

390

391

393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
423

count: 47986 count: 43510 5 count: 49917
2 mean: 0.2350 mean: 0.2351 mean: 0.2339
std: 0.0270 2 std: 0.0256 std: 0.0209
min: 0.1771 min: 0.1810 2 min: 0.1841
25%: 0.2186 25%: 0.2194 25%: 0.2207
15 50%: 0.2307 50%: 0.2309 50%: 0.2309
2 75%: 0.2457 Fd 75%: 0.2452 2z 75%: 0.2431
= max: 1.2951 = max: 0.8897 s max: 0.7523
3 3 3
8 8 8
v Sw H
£ & &0
5 5 s
0 o
02 0 06 08 10 12 02 03 o4 05 06 07 08 09 02 03 04 05 0% o7
Mean Density (thresh=0.05) Mean Density (thresh=0.05) Mean Density (thresh=0.05)
(a) ED5S-EC (b) ED5-OE (c) ED5-MM
2 »
count: 50000 count: 485648 » count: 50000
mean: 0.2330 mean: 0.2305 mean: 0.2303
std: 0.0234 std: 0.0240 std: 0.0222
» min: 0.1827 2 min: 0.1748 20 min: 0.1804
25%: 0.2192 25%: 0.2165 25%: 0.2165
50%: 0.2299 50%: 0.2272 50%: 0.2271
Z1s 75%: 0.2427 215 75%: 0.2400 2 75%: 0.2398
= max: 1.7579 = max: 3.7577 £ max: 0.7604
3 3 3
3 8 2
K S K
& 10 &0 &10
5 5 s
o

6 o8 10 12
Mean Density (thresh=0.05)

(d) ED5-0CS

o 15 20 25 30
Mean Density (thresh=0.05)

(e) ED5-MER

04 05 06
Mean Density (thresh=0.05)

(f) ED5-EDP

Figure 5: Distribution of per-molecule mean ED values in the 6 benchmark datasets with ED threshold
pr = 0.05.

A.2 Background

A.2.1 Introduction
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These models are generally built
upon many-body interactions at the
atomic level, including one-body
(atomic attributes such as types and
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Figure 6: (a) Advancing MLFFs from atomic-level in-
teractions—based on discrete atomistic representations—to
electronic-level modeling using continuous ED, enabling richer
and more physically grounded supervision; (b) Overview of the
proposed EDBench dataset; (c) DFT method selection guided
by Jacob’s ladder to balance accuracy and computational cost.

Although existing MLFFs have demonstrated great potential in modeling molecular force fields
(MFFs), they primarily focus on capturing coarse-grained, atom-level many-body interactions [4} 5]],
while often overlooking the critical role of microscopic electron distribution in understanding molec-
ular interactions [6] [7, [8]. It is well known that the spatial distribution of electrons directly influences
the interactions between atoms within a molecule, providing the most direct and fundamental infor-
mation for interpreting molecular force fields [27]. Electron density (ED), as a fundamental physical
quantity in quantum mechanics that describes the spatial distribution of electrons, offers a more fine-
grained and physically grounded representation of molecular systems according to Hohenberg—Kohn
(HK) theorem [9]]. Therefore, explicitly incorporating ED into the modeling process holds promise
for bridging the gap between microscopic electronic behavior and macroscopic force fields, further
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improving both the accuracy and generalization of MLFFs. Therefore, as illustrated in Figure[6{a), the
primary objective of this work is to advance current MLFFs beyond the atom-level learning paradigm
toward electron-level modeling, enabling a more accurate and physically grounded description of
molecular interactions.

However, advancing MLFFs toward an electron-level understanding faces two major challenges:
(1) the lack of large-scale, high-quality ED datasets, which are essential for pretraining and could
fundamentally reshape the paradigm of MLFFs modeling. (ii) the absence of an ED-centric bench-
mark to systematically explore the feasibility and effectiveness of ED-based modeling frameworks.
Specifically, the acquisition of ED data can be categorized into two approaches: experimental methods
(such as X-ray diffraction [10, [11]], electron diffraction [12]]) and theoretical calculation methods.
Due to the reliance on expensive physical equipment, experimental methods inevitably limit data
acquisition, making theoretical methods more popular. Theoretical calculations typically use density
functional theory (DFT) [[13 [14], the most common approach, to compute the ED of molecules.
Although DFT does not depend on specialized observation equipment, its calculations are highly
computationally intensive and time-consuming, making the acquisition of large-scale, high-quality
ED datasets particularly difficult. In addition, the MLFFs community is still in the early stages of
learning effective representations from ED, which makes the development of an ED-based evaluation
protocol particularly important for the rapid advancement of ED representation learning.

To address the two key challenges outlined above, we introduce EDBench, a large-scale and high-
fidelity dataset of ED, as shown in Figure [(b). Following Jacob’s ladder [28]], as shown in Figure
[elc), we adopt higher-rung hybrid functionals as the underlying DFT methods to ensure the quality of
the EDBench dataset.

A.2.2 Density functional theory (DFT)

The quantum mechanical description of many-electron systems is one of the core issues in modern
physics and chemistry. Schrodinger equation [29] as the fundamental equation of quantum mechanics,
is challenging to solve directly. Consequently, researchers introduced various wave function-based
approximation methods to simplify the problem, such as, Born—-Oppenheimer [30]] and Hartree-Fock
method [31]]. Those methods scale with the number of electrons n as O(n*) or more, its computational
cost remains prohibitive for large polyatomic molecules. In contrast, Density Functional Theory
(DFT) is more suitable for complex systems due to its lower computational cost (O(n?)) and
incorporation of electron correlation effects [32]. The core concept of DFT is to use electron density
(ED) as the fundamental variable instead of the wave function. The Hohenberg-Kohn theorem is the
cornerstone of DFT [9], which states that the external potential field and the ground-state energy can
be completely determined by ED. Thus, by solving for the ED distribution p(r) that achieves the
lowest energy, the properties of the stable system can be confirmed. The ED p(r) can be expressed
as:

p(r) = pa(r) + pp(r) @
where p, (r) and pg(r) are the density of a-spin electrons and 5-spin electrons.
This concept is concretely realized in the Kohn-Sham equations, which transforms the polyelectron

system with interactions into single-electron system without interaction, and adds interactions among
electrons to exchange-correlation potential [33]. The Kohn-Sham equations is shown as:

[_;VQ + %ff(r)] Vi(r) = ei(r) ®)

where ;(r) and ¢; are, respectively, the wave function and energy of the i-th single-electron orbital,
and Veg(r) is the effective single-electron potential energy. The basis of DFT is Hohenberg-Kohn
theorem, and Kohn-Sham equation is the practical application form of DFT. In Kohn-Sham equation,
Viete(r) is the effective single-electron potential energy, defined as

Verr(r) = Ve (r) + Vua(r) + Vae(r) ©))

The external potential Ve, (7) is typically provided by the atomic nuclei. Vi(r) is the Hartree potential,
which is represented by the convolution of the ED with the Coulomb kernel. The exchange-correlation
potential Vi (r) is the variational derivative of the exchange-correlation energy functional.

The solution of the Kohn-Sham equations is typically achieved through self-consistent field (SCF)
iterations, as shown in the figure Ekb). Initially, a set of initial electron densities p(r) is selected, and
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the effective potential Veg(r) is calculated based on this initial guess. The Kohn-Sham equations are
then solved to obtain new single-electron orbital wave functions v;(r) and energies ¢;, which are
used to update the ED p(r). This process is repeated until convergence is achieved, yielding the ED
p(r) and simultaneously stabilizing the total energy E.

In addition, to solve the equation, it is usually necessary to select the basis set, pseudopotential,
and exchange correlation functional. The basic set includes plane wave method, numerical atomic
orbital method, and augmented wave method. Norm-conserving pseudopotential (NCPP), ultrasoft
pesudopotential (USPP) and projector augmented wave (PAW) are common pseudopotential methods.
The exchange-correlation energy functional includes the Local Density Approximation (LDA) [34],
the Generalized Gradient Approximation (GGA) [335]], and hybrid functionals (such as B3LYP) [36].
In this paper, the exchange-correlation functional used is B3LYP, and the 6-31G**/+G** basis set is
selected for combination. B3LYP integrates the advantages of the Hartree-Fock method and DFT.
The 6-31G**/+G** basis set enhances computational accuracy by splitting the valence electron
orbitals into two sets of basis functions and further incorporating diffuse functions. This combination
achieves a great balance between precision and efficiency, making it more suitable.

A.2.3 Molecular geometry learning in quantum chemistry

Geometric Deep Learning (GDL) has become a dominant approach for modeling machine learning
force fields (MLFFs), primarily focusing on atom-level information such as atomic attributes and
interatomic interactions. Specifically, GDL models are built upon first-order atomic features, including
atom types and 3D coordinates [19}37]]. To capture geometric relationships while preserving physical
consistency, GDL methods incorporate symmetries such as rotational and translational invariance in
3D space [38,139]. Consequently, a wide range of models have been developed with built-in invariance
or equivariance to Euclidean group E(3) [[19] or special Euclidean group SE(3) [40,41], ensuring that
predictions are physically meaningful. Given that atomic interactions—such as bonding, repulsion,
and van der Waals forces—play a crucial role in molecular fields, modern GDL methods further
incorporate second-order geometric features, including interatomic distances [42} 43]], bond types
[44]], and spatial neighborhood structures [45]. To more precisely capture local structural features,
some approaches even extend to higher-order geometric relations such as bond angles (three-body
interactions) [21} [22] and torsional angles (four-body interactions) [23} 24} 25]], thereby improving the
expressiveness and accuracy of force field modeling. In contrast to prior works that focus primarily
on atom-level representations, our proposed EDBench introduces a large-scale dataset of electronic
density (ED), laying the foundation for extending molecular modeling from the atomic scale to the
electronic scale. It also provides a new platform and evaluation benchmark for developing GDL
methods tailored to electronic structure modeling.

A.3 Experiment and discussion
A.3.1 Experiment settings

Baseline. For comprehensiveness of the evaluation, we evaluate both molecular structure-based
and electron density-based methods. Specifically, we selected several state-of-the-art baselines for
evaluation on the proposed benchmark: (i) two geometric models based on molecular structure (MS):
GeoFormer [46] and EquiformerV2 [47]]; (ii) two point cloud models based on electron density (ED):
PointVector [48]] and X-3D [49]. GeoFormer and EquiformerV2 are Transformer-based architectures
that use Interatomic Positional Encoding (IPE) and higher-degree tensors, respectively, to learn
the interaction relationships between atoms. Unlike GeoFormer and EquiformerV2, which are
specifically designed for molecules, PointVector and X-3D are the latest methods that focus on
real-world point clouds. They are MLP(Multi-layer Perceptron)-based and explict structure-based
architectures, respectively, offering excellent computational efficiency to handle large-scale point
clouds.

Setup. The codes of all baselines are available from their GitHub repositories and we reproduce them
on our benchmarks. We use the same experimental settings as these baselines. All datasets are split
using a scaffold split [[15] based on the out-of-division (OOD) scenario, which enables evaluating the
generalization of the model. We repeat the experiments three times with different random seeds and
report the means and standard variances on the test set. The test set results are selected according to
the best validation set performance. Due to the excessive length of the ED vectors (Figure ??(c)), we
introduce a threshold p. to filter out electrons in regions with negligible density (all ED values below
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pr are discarded). All models were trained using either NVIDIA A100 (80GB PCle) or GeForce
RTX 3090 (24GB) GPUs, depending on their memory requirements.

A.3.2 Details of computational efficiency

We conduct a computational efficiency analysis of all baseline models presented in this work,
including molecular geometry-based methods—HGEGNN, EquiformerV2, and GeoFormer—and ED
point cloud-based methods—PointVector and X-3D. As a first step, we report the parameter count of
each model to assess their relative model capacities. The details are summarized in Table[2] We find
that the model sizes of EquiformerV2 and GeoFormer are significantly larger than the other models.

Table 2: The number of parameters of different models. #Params represents the number of parameters
of the model. M stands for Million.

HGEGNN Equiformerv2 GeoFormer PointVector X-3D
#Params (M) 0.574 27.9 9.5 1.5454 0.9476

Next, we report the GPU memory usage and training time for each model. Due to varying memory
requirements across models, we had to use different GPU devices to accommodate specific models
and avoid out-of-memory (OOM) issues. Tables [3| and 4| present the computational efficiency of
PointVector and X-3D, respectively. As expected, both GPU memory consumption and training time
increase consistently with the number of sampling points &.

Table 3: The computational efficiency of PointVector with different number of sampling points £ on
EDS5-OE dataset with batch size of 32 and epoch of 100. Time refers to the total time spent on the
entire training process.

¢ GPU Memory (MiB) Time (minutes) GPU
512 4,425 ~100 3090
1024 6,623 ~150 3090
2048 11,453 ~325 3090
4096 20,757 ~433 a100-80gb-pcie
8192 38,083 ~850 al00-80gb-pcie

Table 4: The computational efficiency of X-3D with different number of sampling points & on
EDS5-OE dataset with batch size of 32 and epoch of 100. Time refers to the total time spent on the
entire training process.

13 GPU Memory (MiB) Time (minutes) GPU

512 3,431 ~T1 3090
1024 4,747 ~88 3090
2048 7,951 ~156 3090
4096 13,701 ~305 3090
8192 21,351 ~750 3090

Additionally, Table [5|shows the time efficiency of HGEGNN on the ED5-EDP dataset. A similar
trend is observed: as the ED threshold p, decreases, the number of ED points increases, leading to
higher memory usage and longer training times. These results collectively highlight the sensitivity of
model efficiency to both the resolution of input data and the complexity of the architecture.
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Table 5: The computational efficiency of HGEGNN with different ED threshold p, on ED5-EDP
dataset. MiB/mol represents the total memory usage divided by the batch size.

pr  GPU Memory (MiB/mol) Time (minutes/epoch) GPU

0.1 2,153 ~15 al00-80gb-pcie
0.15 907 ~7.5 al00-80gb-pcie
0.2 616 ~5 a100-80gb-pcie

A.3.3 Performance on prediction tasks

Table 6: The MAE performance on 6 energies from the ED5-EC dataset with p, = 0.05.

E1 E2 E3 E4 E5 E6
PointVector ~ 243.49+£74.72  325.65+160.17  858.77+£496.74  389.244+217.51 17.544+10.85  243.49+£74.73
X-3D 190.77£1.98 109.21+2.82 369.88+1.34 150.05+0.27 8.13£0.51 190.77+1.98

Table 7: The performance of MAE x 100 on 7 orbital energies of the ED5-OE with p, = 0.05.

HOMO-2 HOMO-1 HOMO-0 LUMO+0
LUMO+1 LUMO+2 LUMO+3

PointVector ~ 1.73£0.01  1.68+0.01  1.924+0.01  3.08+0.05
2.86+0.05 3.05+0.02  3.01+0.02

X-3D 1.75+0.02 1.7240.02 1.98+0.00  3.21+0.01
3.02+0.02 3.2540.04  3.20+£0.03

Tables [6] Bl and [ re- Table 8: The MAE performance on multipole moments from the
port the performance of recent  ED5-MM dataset with p, = 0.05.

models on the ED5-EC, ED5- Dipole X Dipole Y Dipole Z Magnitude

E, ED5-MM, and ED5-
OE, ED5 ,a_d 5-0CS PointVector ~ 0.912340.0203  0.9605+0.0053  0.7540.0068  0.739740.0467
datasets, respectively. We ob- X-3D 0.8818+0.0010  0.9427+0.0008  0.7416+.0.0023  0.6820-0.0005

serve that X-3D consistently
outperforms PointVector, achieving the best results on ED5-EC (Table @, ED5-MM (Table BI), and
EDS5-OCS (Table[9). Notably, both X-3D and PointVector exhibit significantly stronger performance
on orbital energy prediction (Table[7) than on energy component prediction (Table[6). This is likely
due to the stronger locality of orbital energies, which are more directly linked to local ED patterns, al-
lowing models to extract relevant features more effectively. In contrast, predicting energy components
requires integrating over the entire ED, demanding the learning of more complex global interactions.
These results further validate the effectiveness of using ED as a model input and demonstrate its
utility in capturing physically meaningful patterns.

While X-3D and PointVector were not de-  Table 9: The performance (%) of open/closed-shell pre-
signed for ED data, their strong perfor- diction on the ED5-OCS dataset with p, = 0.05.

mance on our benchmarks underscores the

ol of 1 ) 8 Accuracy ROC-AUC AUPR F1-Score
potential of ED-based learning in quantum  —oc 2 o o e e o e
property prediction. We expect tailored X-3D ST.6540.18 60484038 61541031  61.41+1.02

models to further improve performance,
advancing more accurate and efficient quantum modeling.

A.3.4 Performance on retrieval tasks

We first use GeoFormer and EquiformerV2 as molecular structure (MS) encoders, and PointVec-
tor and X-3D as electron density (ED) encoders. These encoders are combined pair-
wise—GeoFormer+PointVector, GeoFormer+X-3D, EquiFormer+PointVector, and EquiFormer+X-
3D—to systematically evaluate cross-modal retrieval performance. Table 10| reports the Top-k
accuracy on both ED — MS and MS — ED tasks. Results reveal substantial performance differences
among combinations. For example, GeoFormer+PointVector achieves only 17.67% Top-1 accuracy,
while GeoFormer+X-3D reaches 68.32%, yielding an absolute improvement of 50.65%. Similarly,
EquiFormer+PointVector achieves just 10.24% Top-1 accuracy, whereas EquiFormer+X-3D reaches
78.71%—an absolute gain of 68.47%. These results highlight the critical importance of selecting
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appropriate encoder architectures for effective cross-modal representation learning between MS and
ED.

Table 10: The Top-k accuracy (%) on ED5-MER dataset. ED — MS represents using electron density
(ED) to retrieve molecular structure (MS).

ED — MS MS — ED
MS model ED model Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
PointVector 17.67+2.10  46.09+4.53  67.63+5.92 27.01£1.69  59.02+£2.49  77.42+3.01
GeoFormer X-3D 68.324+3.70  92.18+2.41 97.31+£1.29 70.01+2.93 92.08+2.01 97.17+£0.92
PointVector | 1024E128  32.4712.69  53.4212.67 | 22.1840.64 54.61£2.80  76.8322.00
EquiformerV2 X-3D 78.71+£0.69  94.78+0.40  98.13+0.07 | 78.361+0.65 94.194+0.14  97.741+0.29
(a) GeoFormer+PointVector (b) GeoFormer+X-3D
11
10
9
8
7
6
5
4
3
1 5 9 13 17 21 25 29 33 37 41 17 21 25 29 33 37 41 45 49

—e—Train —e—Valid

Figure 7: Comparative Learning Loss of GeoFormer+PointVector and GeoFormer+X-3D on ED5-
MER training (Train) and validation (Valid) sets.

To further understand the performance gap, we closely analyzed the training logs of Geo-
Former+PointVector and GeoFormer+X-3D. Figures |Zka) and mb) show their contrastive learn-
ing loss curves on the training and validation sets, respectively. While both combinations exhibit
steadily decreasing training loss, GeoFormer+PointVector suffers from overfitting—as evidenced
by its increasing validation loss despite continued improvement on the training set. In contrast,
GeoFormer+X-3D maintains a consistently decreasing loss on both training and validation sets,
explaining its significantly better retrieval performance.

Overall, the strong bidirectional retrieval performance of GeoFormer+X-3D and EquiFormerV2+X-
3D demonstrates the feasibility of learning the complex mapping between MS and ED, providing
a solid foundation for retrieval-based applications. For example, retrieving the most compatible
MS given an ED can enable a novel perspective on high-throughput virtual screening—particularly
valuable in scenarios where the ED is known but the MS is unknown or ambiguous. Conversely,
retrieving approximate ED distributions from MS opens a promising direction for building structure-
driven, density-aware models, potentially enhancing the physical faithfulness of downstream tasks
such as molecular property prediction and reactivity analysis.

We employ {GeoFormer (G), EquiformerV2 (E)} and (a) ED - MS (b) MS — ED
{PointVector (P), X-3D (X)} as the MS encoder Encg 100

and ED encoder Encp, respectively, in Equation[I] These o / /
components are paired to form four combinations: G-P,

G-X, E-P, and E-X. Their retrieval performance is eval-
uated in Figure 8] The results show that combinations

Accuracy (%)
[9)]
o

involving E (i.e., E-P and E-X) consistently outperform 2
those involving G, highlighting the importance of select- O o3 TS Tt Tond Toos
ing an appropriate encoder for retrieval tasks. Overall, the o i eap o

strong performance of E-P and E-X demonstrates their
potential for ED-based virtual screening and MS-based Figure 8: The retrieval performance on
electronic-level molecular understanding. ED5-MER.

A.3.5 Performance on generation task

17



606
607
608
609
610
611
612
613
614

615
616
617
618

619

621
622
623
624
625
626
627
628
629
630

631
632
633
634
635
636
637
638
639
640
641

642

643
644
645
646
647
648

649
650

Table 11: The performance of HGEGNN on ED generation

Table @ presents the results of of ED5-EDP dataset. The unit of Time is second/mol.

HGEGNN on the ED prediction task

A pr MAE Pearson (%) Spearman (%) Time
under different ED thresholds p,. We 0.1 03362402900  81.0+£8.1 5644137  0.024
observe that, given the molecular . = (s 00163+00157  98.0+63 87.0£27 0015
structure (MS), the model can accu- 0.2 0.0448+0.0133  99.24+0.8 91.049.1 0.013
rately predict ED values, achieving DFT R _ _ R 245.8

low MAE and high Pearson and Spear-
man correlations. This indicates that the deep learning method can significantly accelerate the
generation of ED while reducing the computational cost associated with DFT calculations.

Notably, the model performance improves with increasing p,, indicating it effectively captures
high-ED regions. This aligns with chemical intuition, as high-density regions often correspond to
chemically significant areas such as atomic cores and bonding regions, where the spatial patterns are
more structured and consistent across molecules, making them easier for the model to learn.

A.3.6 Quality analysis of ED outputs from the generation task Average MAE on ED5-EC

(p‘l.' =0.2)
To assess the quality of the ED data generated by HGEGNN, we 220,459

employ models trained with three different random seeds, as de- 21° . ﬁ:ésﬁ

scribed in Section[A.3.3} to generate ED5-EC data with a density 2% l118:3j(3)8/0 :

threshold of p, = 0.2, denoted as G#1, G#2, and G#3. Figure ['1;0] 1:2

compares the average MAE performance of different data sources I I
DFT  G#l G G#3

1 12.7%
182.75

. . : ; 170
using the PointVector as baseline, where red values denote relative 160

improvements compared to DFT-based data source. We observe #2

that G#1, G#2, and G#3 consistently outperform the DFT-based

data, indicating that HGEGNN generates high-quality ED. These Figure 9: The average MAE of
demonstrate the potential of using predicted ED directly to enhance PointVector on ED5-EC gen-
the model’s understanding of MFFs. erated by DFT and G#{1,2,3}.

To evaluate the quality of ED outputs in the generation task, we

replace the DFT-based ED5-EC data (with a density threshold of p, = 0.2) with new ED data
generated by HGEGNN models trained on the original ED5-EC dataset. These new datasets are
denoted as HGEGNN(2024), HGEGNN(2025), and HGEGNN(2026), where the numbers indicate
different random seeds used during training. We then train PointVector—configured with the minimal
ED length sampling rate—on each of these generated datasets. Detailed results are shown in
Table @ Compared to PointVector trained on the DFT-based ED5-EC, PointVector models trained
on HGEGNN(2024)-, HGEGNN(2025)-, and HGEGNN(2026)-based ED5-EC all achieve superior
performance. These findings support the feasibility of using deep learning models to accelerate
DFT-level computations and suggest that the generated data is more learnable, thereby improving
downstream model performance.

Table 12: MAE Performance of PointVector on DFT-based and HGEGNN-generated ED5-EC datasets
with p, = 0.2. 2024, 2025, 2026 represent seeds of training HGEGNN on original ED5-EC dataset.

El E2 E3 E4 ES E6 Mean

DFT 224.131+43.47 155.85+28.75  451.59458.53 190.47+25.62  9.57+1.56  224.131+43.47 209.29
HGEGNN (2024) 195.4842.77 137.694+11.48  408.40+10.61 172.984+7.30 8.251+0.12 195.484+2.77 186.38
HGEGNN (2025)  208.18+16.43 142.33+9.94 428.24+7.31 180.90+5.02 8.85+0.36  208.181+16.43 196.11
HGEGNN (2026) 190.3742.50 128.614+3.79 408.33+3.40 170.47+2.34 8.354+0.04 190.36+2.50 182.75

A.3.7 Ablation study on thresholds and sampling points

Overview.Due to the substantial number of ED points and their direct influence on computational
efficiency, it is crucial to study the effects of ED thresholds (p,) and sampling point counts (£) on
model performance. Figure [10[shows the ablation results of PointVector under varying p and &.
We observe that performance does not improve proportionally with decreasing p, or increasing &,
highlighting the importance of carefully selecting these hyperparameters to strike a balance between
accuracy and computational cost.

Ablation Study on the ED Threshold p,. The ED threshold p, plays a critical role in representing
electron density, as it governs the trade-off between model performance and computational efficiency.
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In this ablation study, we evaluate the impact of p, using the PointVector model with a default number
of sampled points £ = 2048. However, when p, exceeds 0.05, the total number of ED points in
some molecules falls below 2048, causing PointVector to fail due to insufficient input length. To
minimize modifications to the original PointVector implementation, we set & to the minimum ED
length across the dataset. Table [I3]shows the MAE of PointVector on the ED5-EC dataset under
various ED thresholds. The results indicate that the best performance is achieved at p, = 0.2, with
an average MAE of 209.29. This demonstrates that tuning p, can effectively balance accuracy and
computational cost.

Table 13: Ablation study (ED5-EC dataset) of PointVector on ED threshold p, with MAE metric.

or ¢ El E2 E3 E4 E5 E6 Mean

0.05 2048  243.49£74.72  325.65+160.17  858.77+£496.74  389.24+217.51 17.54+10.85  243.49£74.73  346.36
0.1 716 187.294+7.78 189.331+73.71 548.924+113.00 239.124+63.24 12.08+3.59 187.29+7.78 227.34
0.2 218 224.13+43.47 155.85428.75 451.59+58.53 190.47425.62 9.57+£1.56 224.13+43.47  209.29
0.3 66 197.77+£6.97 179.51+15.69 501.98+51.22 218.294+19.69 9.73+0.69 197.761+6.97 217.51
0.4 28 188.67+2.60 233.841+14.46 666.75+111.88 282.531+24.46 12.91+1.96 188.07+3.16 262.13

Ablation Study on the Number of Point Cloud 400 (a) ED5-EC 28 (b) ED5-OE
Samples ¢. Point cloud-based methods (e.g., § 300 B gg m
PointVector and X-3D) commonly adopt farthest ¢ 200 | 25 W

point sampling (FPS) [50] to reduce the num- £ 103 H gg |_|

ber of input points. Therefore, the number of 00501 02 03 04 512 1,024 2,048 4,096 8,192
sampled points, denoted as &, is a critical hyper- ED threshold p, #Sampling points ¢

parameter that directly affects both the model’s  Fjgure 10: Ablation results of PointVector on (a)

capacity to capture spatial structures and its com-  different ED thresholds p, and (b) different num-
putational efficiency. A larger number of points  per of sampling points &.

allows the model to better represent the geomet-

ric details of ED, particularly in regions with ambiguous boundaries or sharp density gradients, facili-
tating the learning of fine-grained spatial features. However, increasing £ also leads to higher memory
consumption and longer training and inference times, especially when dealing with large-scale ED
datasets. Therefore, choosing an appropriate number of points is essential to balance representational
power and computational cost. To investigate this trade-off, we evaluate the performance of the point
cloud-based PointVector model under different sample sizes £ = {512,1024, 2048, 4096, 8192}.
Table [I4] reports the results on the ED5-OE dataset. We observe that PointVector achieves the
best performance when £ = 2048, reaching an average MAE of 0.0248. Additionally, the model
performance does not monotonically improve with increasing £. This may be attributed to the model’s
limited capacity—PointVector contains only 1.5454M parameters—which may constrain its ability
to effectively leverage a large number of ED points. This observation highlights the need for more
strong and ED-specialized architectures in future work.

Table 14: Ablation study (ED5-OE dataset) of PointVector on the number of sampling points £ with
MAE x 100 metric and p, = 0.05.

3 HOMO-2 HOMO-1 HOMO-0 LUMO+0 LUMO+1 LUMO+2 LUMO+3  Mean

512 1.78+0.01 1.75+0.01 2.00+£0.00  3.15£0.02  2.94£0.02  3.17£0.01 3.1410.02 2.56
1024 1.79+0.01 1.74£1.98  3.194£299  3.1940.02  2.9940.02  3.1940.02  3.1440.01 2.75
2048 1.734£0.01 1.68+0.01 1.9240.01 3.08+0.05  2.86+0.05 3.05+0.02  3.01£0.02 2.48
4096 1.87£0.09 1.76+£0.07  2.01£0.02  3.40£0.07 3.21£0.12  3.38+£0.19  3.2940.13 2.70
8192 1.82+0.03 1.78+0.03 1.99£0.03  3.174£0.22 2964021  3.23+027  3.22+0.24 2.60

A.4 Details of the EDBench Database
A.4.1 Discussion on the Quality of the EDBench Database

To ensure the reliability and scientific utility of EDBench, we adopted a systematic and well-
established protocol for electronic density (ED) calculation grounded in density functional theory
(DFT) [32]. The entire workflow was designed to maximize both physical fidelity and computational
robustness, while minimizing potential sources of error or bias.

First, all ED data were generated using Psi4 1.7, a widely used and validated open-source quantum
chemistry package that supports high-accuracy ab initio and DFT calculations [51} 152} |53} [54].
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We selected the B3LYP hybrid functional, a time-tested method known for its balance between
computational efficiency and accuracy across a wide variety of molecules. Currently, B3LYP has
been extensively applied in the domains of synthetic chemistry [55]], molecular dynamics [56],
phytochemistry [57], spectroscopy [58]], medicine [S3}159]] and physics [60]. This choice ensures
that the resulting ED data reflect physically meaningful electron distributions rather than numerical
artifacts.

Meanwhile, basis sets were systematically assigned based on molecular composition, employing
6-31G** for general cases and 6-31+G** for sulfur-containing molecules to capture diffuse electronic
effects [61]. Compared with the basic 6-31G, 6-31G**/+G** provides the description of polarizable
electron distribution and electron correlation effect by adding polarization function, which improves
the processing ability of molecular polarization effect. This tailored approach enhances the accuracy
of electron densities, particularly in chemically relevant regions such as lone pairs, -systems, or
polarizable atoms.

In addition, the reference wavefunction was selected according to spin multiplicity, with restricted
Hartree-Fock (RHF) applied to closed-shell systems and unrestricted Hartree-Fock (UHF) used for
open-shell systems [62], in line with Hund’s rule. This guarantees correct treatment of and spin
components, reducing the risk of spin contamination and ensuring consistent modeling of open-shell
species. To further control data quality, we enforced strict self-consistent field (SCF) convergence
criteria before ED extraction [63}64]. Electron density grids were then generated using a uniform
grid spacing of 0.4 Bohr and a 4.0 Bohr padding, ensuring comprehensive spatial coverage without
introducing undersampling or boundary artifacts. Additionally, a density fraction threshold of 0.85
was applied to focus on the physically relevant isosurface, filtering out low-density noise while
preserving chemically meaningful features.

In sum, the quality of EDBench is supported by:

* A chemically sound and standardized computational protocol,

» Systematic and molecule-composition-based basis set selection,

» Accurate and consistent treatment of spin multiplicity,

* Rigorous convergence criteria and grid generation settings,

» Comprehensive spatial coverage and meaningful feature preservation.

These efforts collectively ensure that EDBench provides physically meaningful, reproducible, and
high-resolution ED data at scale. We believe these safeguards sufficiently mitigate concerns of noise,
bias, or low-quality samples, and position EDBench as a reliable benchmark for ED-aware machine
learning research.

A.4.2 Example of ED visualization

Figure |l 1|illustrates the visualization of a molecule’s electron density (ED) under varying threshold
values p,. A higher p, retains only regions with a higher probability of electron presence. When
pr = 0, all possible electron positions are preserved, resulting in a dense, cuboid-like distribution.
As p; increases, the number of ED points gradually decreases, and the molecular contour becomes
more visually distinct.

It is worth noting that p, = 0 leads to an overly dense ED representation, which poses challenges
for both storage and computation. By tuning p,, we can achieve a balance between ED information
retention and computational efficiency. In our experiments, we adopt p, < 0.2 as a practical choice.
As shown in Figure [IT] this setting significantly reduces the number of ED points while preserving
the essential ED structural features of the molecule.
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Figure 11: Example of ED visualization of a molecule with different thresholds p.-. Point represents

the number of ED points.
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