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Abstract

We propose EDBench, a large-scale, high-quality dataset of electron density (ED)1

designed to advance learning-based research at the electronic scale. EDBench2

comprises 3,359,472 drug-like molecules with corresponding ED distributions and3

a comprehensive set of quantum chemical properties, including energy components,4

orbital energies, and multipole moments, thus providing a solid foundation for5

systematically investigating the role of ED in molecular modeling. We outline6

the AI tasks, data rationale, acceleration potential, and concrete pathway to data-7

creation with cost and scalability of EDBench.8

1 AI task definition9

EDBench is purpose-built to support three tightly-coupled scientific tasks that together push machine-10

learning models from the atomic scale to the electronic scale (The methods and significance of these11

tasks see Appendix A.1):12

• Quantum property prediction: regress or classify ground-state quantum properties (energy13

components, orbital energies, multipole moments, open/closed-shell character) directly from the14

3D electron density.15

• Cross-modal retrieval: Retrieve a molecule’s structure from its density and vice-versa, enabling16

electron-level virtual screening and inverse design.17

• ED generation: Electron density (ED) prediction from molecular structures, aimed at approximat-18

ing DFT-level density accuracy at significantly reduced computational cost.19

2 Dataset rationale20

The rapid integration of deep learning into molecular-dynamics (MD) simulations has established21

machine-learning force fields (MLFFs) as efficient and promising computational tools across physics,22

chemistry, biology, and materials science [1, 2, 3]. Nevertheless, prevailing MLFFs emphasize23

atom-level many-body interactions[4, 5], largely overlooking the pivotal role of microscopic electron24

distribution in governing interatomic forces[6, 7, 8]. Electron density (ED), as a fundamental physical25

quantity in quantum mechanics that describes the spatial distribution of electrons, offers a more fine-26

grained and physically grounded representation of molecular systems according to Hohenberg–Kohn27

theorem [9]. Explicit incorporation of ED into MLFFs is therefore expected to bridge the gap28

between microscopic electronic behavior and macroscopic force fields, enhancing both accuracy and29

generalizability.30

Advancing MLFFs toward electron-level modeling confronts two principal challenges: (i) the absence31

of large-scale, high-quality ED datasets essential for pre-training and potentially paradigm-shifting32

architectures, and (ii) the lack of an ED-centric benchmark for systematically evaluating the feasi-33

Submitted to AI for Science workshop (NeurIPS 2025).



bility and efficacy of ED-based frameworks. ED data can be acquired experimentally (e.g., X-ray34

diffraction)[10, 11, 12] or theoretically. Experimental routes are constrained by costly instrumentation35

and limited throughput, whereas theoretical approaches—predominantly density-functional theory36

(DFT)—are computationally demanding and resource-intensive, rendering large-scale ED curation37

arduous[13, 14]. Concurrently, the MLFF community remains in its infancy regarding effective38

ED representation learning, underscoring the urgency of establishing a comprehensive ED-based39

evaluation protocol to accelerate methodological progress. For more background, see Appendix A.2.40

To address this gap, We construct a more comprehensive large-scale dataset:41

• Scale: 3.3 million drug-like molecules.42

• Type and resolution: Cube files containing electron density (ED) data with a grid spacing of 0.443

Bohr, a padding of 4.0 Bohr, and a density fraction threshold of 0.85.44

• Molecule elements: H,C,N,O,Ti,Ar,S,Se,He,Be,F,P,Si,Ca,Ga,Zn,Ge,Mg,B,Cl,As,Br.45

• Labels: Electron density ρ, 6 energy components(DF-RKS Final Energy, Nuclear Repulsion Energy,46

One-Electron Energy, Two-Electron Energy, Exchange-Correlation Energy, Total Energy), 7 frontier47

orbital energies(HOMO-2, HOMO-1, HOMO-0, LUMO+0, LUMO+1, LUMO+2, LUMO+3), 448

multipole moments(3 Dipoles X, Y, Z, Magnitude), ED visualization.49

3 Acceleration potential50

EDBench supports the next-generation machine-learning model development for exploring a broader51

chemical space and designing molecules with target properties. It provides systematic and extensive52

quantum mechanical data as rich training samples, enabling more accurate and efficient predictive53

models for molecular property prediction, functional molecule design, and reaction pathway opti-54

mization, thereby accelerating new material discovery and drug development. We have evaluated55

several state-of-the-art deep learning models on the designed benchmark tasks, and the evaluation56

results show that learning from Edbench is not only feasible, but also achieves high accuracy (For57

more details about the experiment see Appendix A.3). Further impacts and visions are as follows:58

• Replace or warm-start expensive DFT cycles in high-throughput screening.59

• Enable joint geometric-electronic architectures that learn transferable chemical rules, improving60

pKa, redox potential and binding-affinity prediction across chemical space.61

• Provide “electronic fingerprints” for similarity search and retrosynthetic planning, accelerating62

lead-optimization cycles by weeks.63

• Drug/catalyst design by specifying desired density features at active sites.64

4 Data-creation pathway65

• Source and Engine: 3.36 M molecules from PCQM4Mv2 processed with Psi4 1.7.66

• Functional and Basis-Set: B3LYP hybrid functional; 6-31G** for molecules without S, 6-31+G**67

(diffuse functions) for S-containing molecules.68

• Spin Treatment: Closed-shell (multiplicity = 1) → RHF reference; Open-shell (multiplicity > 1)69

→ UHF reference.70

• Post-SCF cube files Generation: Grid spacing: 0.4 Bohr; Isosurface defined at 0.85 density-71

fraction threshold..72

Regarding data quality and reliability, refer to Appendix A.4.1.73

5 Cost and scalability74

Compute cost. All computations were carried out on a high-performance server equipped with 875

Intel(R) Xeon(R) Platinum 8270 CPUs, each with 26 physical cores and 2 threads per core, yielding76

a total of 416 logical cores. The total computational cost exceeded 205,000 core-hours, equivalent to77

approximately 23.4 years of single-core compute time.78

Scalability. While the EDBench project has made significant progress in the scale and quality of ED79

data, surpassing existing datasets, there remains room to further enhancement. In future work, we80

plan to expand the dataset to include higher-level functionals and material-related molecules, and to81

develop advanced models tailored for ED, enabling EDBench to support a broader range of scientific82

applications in physical chemistry.83
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A Appendix267

A.1 Detailed introduction of AI tasks268

A.1.1 Construction details of tasks269

To comprehensively evaluate the capacity of the model to understand ED data, we define a suite of270

tasks based on both molecular structures (MS) and ED, focusing on three fundamental capabilities:271

prediction of quantum property, retrieval between MS and ED, and generation of ED based on272

MS . These tasks are constructed and conditionally sampled from the EDBench. To facilitate the273

development of ED-oriented machine learning methods within the community, we set the dataset274

size to a moderate scale of up to nmax = 50, 000 molecules, with remaining data available for future275

research on pre-training strategies. We use scaffold split to divide the dataset into 80% training set,276

10% validation set and 10% test set, which is an out-of-distribution split setting and is widely used to277

evaluate the generalization ability of the model [15, 16]. We summarize the statistics of the designed278

datasets in Table 1 . We next explain the construction details of these tasks.279

Table 1: Statistical information of designed 6 benchmarks with a scaffold split.

Datasets #Mol #Train/#Valid/#Test #Task Task type Task desc

ED5-EC 47,986 38,388/4,799/4,799 6 Regression 6 energy components (DF-RKS Final Energy [E1], Nuclear
Repulsion Energy [E2], One-Electron Energy [E3], Two-
Electron Energy [E4], DFT Exchange-Correlation Energy
[E5], Total Energy [E6])

ED5-OE 43,510 34,808/4,351/4,351 7 Regression 7 orbital energies (HOMO-2, HOMO-1, HOMO-0,
LUMO+0, LUMO+1, LUMO+2, LUMO+3)

ED5-MM 49,917 39,933/4,992/4,992 4 Regression 4 multipole moment (3 Dipoles {X, Y, Z}, Magnitude)
ED5-OCS 50,000 40,000/5,000/5,000 1 Classification open-/closed-shell classification

ED5-MER 50,000 40,000/5,000/5,000 2 Retrieval cross-modal retrieval between molecular structures and ED

ED5-EDP 50,000 40,000/5,000/5,000 1 Generation ED prediction from molecular structures

Prediction of quantum property. To construct four task-specific datasets—ED5-EC (energy com-280

ponents), ED5-OE (orbital energies), ED5-MM (multipole moments), and ED5-OCS (open/closed-281

shell)—we design a structure- and label-balanced sampling strategy based on the full EDBench dataset282

(n molecules). We first extract 2D ECFP4 fingerprints (fp2D ∈ Rn×2048) and 3D USR descriptors283

(fp3D ∈ Rn×12) for each molecule, concatenate them, and apply k-means clustering (k = 100) to284

obtain structure clusters Cs. For the multi-dimensional labels yEP (6D), yGE (7D), and yMMR (4D),285

we similarly apply k-means (k = 100) to produce clusters CEC , COE , and CMM , respectively; for286

yOCS (binary), we use the original label. We then form sampling groups as (Cs, CEC), (Cs, COE),287

(Cs, CMM ), and (Cs, yOCS), and uniformly sample m = max(nmax//ngroup, 1) molecules from288

each group to construct the final datasets, ensuring diversity in both structure and property space.289

Retrieval between MS and ED. Retrieval between MS and ED is a fundamental task. Retrieving290

molecular structures from ED (ED⇝ MS) enables electron-level virtual screening, while retrieving291

ED from structures (MS⇝ ED) supports electron-aware models—facilitating molecular representation292

learning, inverse design, and quantum-informed modeling. To construct the ED5-MER dataset for293

bidirectional retrieval between MS and ED, we group all molecules in EDBench by structure cluster294

Cs and uniformly sample m anchor (MS and ED) from each group. For each anchor, we sample295

nneg = 10 negative samples: half from the same cluster (easy negatives) and half from different296

clusters (hard negatives). The final task involves identifying the correct ED (or MS) from a set of 11297

candidates given an anchor MS (or ED).298

Generation of ED based on MS. Generating ED from MS (MS → ED) is a highly valuable task, as it299

can significantly reduce the computational cost associated with DFT-based ED calculations. Since300

ED is inherently dependent on both molecular connectivity and 3D geometry, we ensure diversity in301

both structure and density by grouping molecules via Cs and uniformly sampling m MS-ED pairs302

from each group. In this task, the model is given an MS as input and is required to predict its ED.303

A.1.2 Methods304

To assess the model’s understanding of electron density (ED), we design tailored learning paradigms305

for each task type (prediction, retrieval, and generation). For clarity, we formalize the molecular306
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structure (MS) with n atoms as G = (V,ZG), where V = {v1, v2, ..., vn} ∈ Rn×1 and ZG =307

{zG1 , zG2 , ..., zGn} ∈ Rn×3 denote atomic types and their corresponding 3D coordinates, respectively.308

The ED data with m points is denoted as P = (ZP ,D), where ZP = {zP1 , zP2 , ..., zPm} ∈ Rn×3309

represents the ED coordinates and the corresponding density values D = {d1, d2, .., , dm} ∈ Rn×1.310

We denote the MS encoder and ED encoder as EncG and EncP , respectively, to extract latent311

representations from MS and ED.312

For prediction tasks, we introduce an additional task-specific prediction head Enct, whose output313

dimension matches the number of target labels for each task. The learning paradigm is defined as314

follows: the ED encoder EncP first extracts features from P , which are then passed through Enct to315

generate task-specific predictions ŷ. This process can be formalized as:316

ŷ• = Enc•t (EncP(P)) (1)

where • denotes a specific task, such as EC, OE, MM, or OCS. Accordingly, on the ED5-EC, ED5-OE,317

ED5-MM, and ED5-OCS datasets, we compute the loss between ŷ• and the corresponding ground318

truth y• to optimize the model. Specifically, cross-entropy loss is used for classification tasks, while319

L2 loss is applied for regression tasks.320

For retrieval tasks, we utilize EncG and EncP to extract latent representations hG and hP from the321

MS G and ED P , respectively, which can be formalized as:322

hG = EncG(G), hP = EncP(P) (2)

The models are trained with the InfoNCE loss [17], which pulls matched pairs closer in the em-323

bedding space while pushing apart mismatched ones. Formally, given a batch of n paired samples324

{(Gi,Pi)}ni=1, the loss for a positive pair (Gi,Pi) is defined as:325

Lret = − log
exp(sim(hGi

, hPi
)/τ)∑n

j=1 exp(sim(hGi , hPj )/τ)
(3)

where sim(·, ·) denotes a similarity function (e.g., cosine similarity), and τ = 0.07 is a temperature.326

For the generation task, we construct a heterogeneous graph [18], defined as:327

HG = {(V,ZG), (ZP ,D), E} (4)

where HG contains two types of nodes: atoms and electrons. To construct the edge set E , we perform328

a k-nearest neighbor search (k = 9) for each node, retrieving the k closest nodes of the same type329

and k of the opposite type, which results in 18 edges per node, forming atom–atom, atom–electron,330

and electron–electron connections. Since the goal is to predict ED from MS, we mask all ED values331

to obtain the masked graph ĤG. We extend Equivariant Graph Neural Network (EGNN) [19], called332

HGEGNN, to support heterogeneous graph. In HGEGNN, we treat electrons as special atoms and333

apply the same EGNN operations as used for regular atoms. We then input ĤG into an HGEGNN to334

extract node representations hHG , which are split into atomic features hHG
G and electronic features335

hHG
P . Finally, we apply a prediction head EncEDP

t to the electronic features to generate the masked336

density values:337

hHG = HGEGNN(ĤG), D̂ = EncEDP
t (hHG

P ) (5)

where D̂ ∈ RnP×1 is the predicted ED. We minimize the discrepancy between D̂ and the ground-truth338

D by the following L2 loss:339

Lgen = ∥D̂ − D∥p, p = 2 (6)

A.1.3 Evaluations340

In the prediction tasks, the predicted labels are obtained via Equation 1. Specifically, in ED5-EC,341

ED5-OE, and ED5-MM, we evaluate the prediction performance using MAE between the predicted342

and ground-truth values, i.e., (ŷEC
P , yEC

P ), (ŷOE
P , yOE

P ), and (ŷMM
P , yMM

P ). For ED5-OCS, we assess343

classification performance using accuracy, ROC-AUC, AUPR, and F1-score between the predicted344

logits ŷOCS
P and ground-truth labels yOCS

P . In the retrieval task, we evaluate the quality of the345

latent features hG and hP extracted via Equation 2. Specifically, in ED5-MER, given a molecular346
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feature hGi as the anchor, we retrieve from a set of ED features by computing cosine similarities347

and ranking the results; Top-k accuracy (k = 1, 3, 5) is used as the evaluation metric, where a hit348

is counted if the correct match appears in the top k results. Similarly, we perform retrieval in the349

opposite direction using hPi
as the anchor and hG as the candidate set. In the generation task, the350

predicted ED D̂ is obtained via Equation 5. We evaluate the generation performance using MAE,351

Pearson and Spearman’s rank correlation coefficients between D̂ and the ground-truth D in ED5-EDP.352

A.1.4 Significance of tasks353

We define three core tasks that capture distinct yet complementary capabilities of modeling electron354

density (ED), each grounded in both scientific motivation and real-world utility:355

• Prediction of quantum property. As ED fundamentally determines molecular quantum behavior,356

predicting properties such as total energy, dipole moment, and orbital energies from ED allows357

us to assess whether a model has captured the underlying physical principles linking electron358

distributions to quantum observables. Despite ED being typically computed via expensive DFT359

simulations, it encodes richer quantum information than molecular geometry alone. Accurate360

property prediction from ED thus serves as a proxy for model fidelity to quantum mechanics361

and offers a potential route to accelerate quantum property estimation in applications like drug362

discovery, catalysis, and materials design.363

• Retrieval between MS and ED. Bidirectional retrieval between MS and ED enables molecule-level364

search in ED databases and supports structure inference from electronic environments. MS-to-ED365

retrieval facilitates functional site localization and electron distribution analysis, while ED-to-366

MS retrieval provides a foundation for inverse design driven by electronic requirements. This367

dual capability is essential for high-resolution virtual screening pipelines grounded in electronic368

behavior.369

• Generation of ED based on MS (Molecular Structure). Learning to generate high-fidelity ED370

distributions directly from molecular structures bypasses the computational burden of DFT, making371

ED accessible to downstream tasks such as deep molecular dynamics, quantum-aware neural372

force fields, and reaction path modeling. This capability bridges the gap between computational373

efficiency and quantum-level accuracy, unlocking ED-driven learning for large-scale modeling374

scenarios.375

A.1.5 Detailed statistics of 6 benchmarks376

We provide a detailed statistical analysis of six benchmarks in the EDBench suite: ED5-EC, ED5-OE,377

ED5-MM, ED5-OCS, ED5-MER, and ED5-EDP. Figures 1, 2, and 3 illustrate the distributions of the378

number of atoms, the number of ED points at the threshold ρτ = 0, and the per-molecule mean ED379

values at ρτ = 0, respectively. As shown, the number of ED points significantly exceeds the number380

of atoms, which provides richer information for force field learning and related downstream tasks.381

Furthermore, we report the distribution of ED point counts and mean ED values under a higher382

threshold ρτ = 0.05 in Figures 4 and 5, respectively. By applying a larger threshold (e.g., ρτ = 0.05),383

the overall ED point count is significantly reduced, which can lead to improved computational384

efficiency. This suggests that threshold tuning offers a practical way to control the data volume385

without severely compromising structural fidelity. In addition, Figure 5 reveals that increasing the386

ED threshold implicitly forces the model to focus more on high-density regions, which are typically387

more chemically informative and relevant for modeling interactions.388
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Figure 1: Distribution of the number of atoms in the 6 benchmark datasets.

Figure 2: Distribution of the number of ED points in the 6 benchmark datasets with ED threshold
ρτ = 0.
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Figure 3: Distribution of per-molecule mean ED values in the 6 benchmark datasets with ED threshold
ρτ = 0.

Figure 4: Distribution of the number of ED points in the 6 benchmark datasets with ED threshold
ρτ = 0.05.
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Figure 5: Distribution of per-molecule mean ED values in the 6 benchmark datasets with ED threshold
ρτ = 0.05.

A.2 Background389

A.2.1 Introduction390

Figure 6: (a) Advancing MLFFs from atomic-level in-
teractions—based on discrete atomistic representations—to
electronic-level modeling using continuous ED, enabling richer
and more physically grounded supervision; (b) Overview of the
proposed EDBench dataset; (c) DFT method selection guided
by Jacob’s ladder to balance accuracy and computational cost.

With the widespread adoption of391

deep learning in molecular dy-392

namics (MD) simulations, machine393

learning force fields (MLFFs) have394

become efficient and promising395

computational tools, significantly396

advancing research in physics,397

chemistry, biology, and materi-398

als science [1, 2, 3]. State-399

of-the-art MLFFs methods typi-400

cally employ geometric deep learn-401

ing to model atomic interactions402

within molecules, a strategy that403

has proven to be effective [5].404

These models are generally built405

upon many-body interactions at the406

atomic level, including one-body407

(atomic attributes such as types and408

coordinates [19]), two-body (inter-409

atomic distances [20, 2]), three-410

body (bond angles [21, 22]), four-411

body (torsions [23, 24, 25] and im-412

proper torsions [5]), and five-body interactions [26].413

Although existing MLFFs have demonstrated great potential in modeling molecular force fields414

(MFFs), they primarily focus on capturing coarse-grained, atom-level many-body interactions [4, 5],415

while often overlooking the critical role of microscopic electron distribution in understanding molec-416

ular interactions [6, 7, 8]. It is well known that the spatial distribution of electrons directly influences417

the interactions between atoms within a molecule, providing the most direct and fundamental infor-418

mation for interpreting molecular force fields [27]. Electron density (ED), as a fundamental physical419

quantity in quantum mechanics that describes the spatial distribution of electrons, offers a more fine-420

grained and physically grounded representation of molecular systems according to Hohenberg–Kohn421

(HK) theorem [9]. Therefore, explicitly incorporating ED into the modeling process holds promise422

for bridging the gap between microscopic electronic behavior and macroscopic force fields, further423
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improving both the accuracy and generalization of MLFFs. Therefore, as illustrated in Figure 6(a), the424

primary objective of this work is to advance current MLFFs beyond the atom-level learning paradigm425

toward electron-level modeling, enabling a more accurate and physically grounded description of426

molecular interactions.427

However, advancing MLFFs toward an electron-level understanding faces two major challenges:428

(i) the lack of large-scale, high-quality ED datasets, which are essential for pretraining and could429

fundamentally reshape the paradigm of MLFFs modeling. (ii) the absence of an ED-centric bench-430

mark to systematically explore the feasibility and effectiveness of ED-based modeling frameworks.431

Specifically, the acquisition of ED data can be categorized into two approaches: experimental methods432

(such as X-ray diffraction [10, 11], electron diffraction [12]) and theoretical calculation methods.433

Due to the reliance on expensive physical equipment, experimental methods inevitably limit data434

acquisition, making theoretical methods more popular. Theoretical calculations typically use density435

functional theory (DFT) [13, 14], the most common approach, to compute the ED of molecules.436

Although DFT does not depend on specialized observation equipment, its calculations are highly437

computationally intensive and time-consuming, making the acquisition of large-scale, high-quality438

ED datasets particularly difficult. In addition, the MLFFs community is still in the early stages of439

learning effective representations from ED, which makes the development of an ED-based evaluation440

protocol particularly important for the rapid advancement of ED representation learning.441

To address the two key challenges outlined above, we introduce EDBench, a large-scale and high-442

fidelity dataset of ED, as shown in Figure 6(b). Following Jacob’s ladder [28], as shown in Figure443

6(c), we adopt higher-rung hybrid functionals as the underlying DFT methods to ensure the quality of444

the EDBench dataset.445

A.2.2 Density functional theory (DFT)446

The quantum mechanical description of many-electron systems is one of the core issues in modern447

physics and chemistry. Schrödinger equation [29] as the fundamental equation of quantum mechanics,448

is challenging to solve directly. Consequently, researchers introduced various wave function-based449

approximation methods to simplify the problem, such as, Born–Oppenheimer [30] and Hartree-Fock450

method [31]. Those methods scale with the number of electrons n as O(n4) or more, its computational451

cost remains prohibitive for large polyatomic molecules. In contrast, Density Functional Theory452

(DFT) is more suitable for complex systems due to its lower computational cost (O(n3)) and453

incorporation of electron correlation effects [32]. The core concept of DFT is to use electron density454

(ED) as the fundamental variable instead of the wave function. The Hohenberg-Kohn theorem is the455

cornerstone of DFT [9], which states that the external potential field and the ground-state energy can456

be completely determined by ED. Thus, by solving for the ED distribution ρ(r) that achieves the457

lowest energy, the properties of the stable system can be confirmed. The ED ρ(r) can be expressed458

as:459

ρ(r) = ρα(r) + ρβ(r) (7)
where ρα(r) and ρβ(r) are the density of α-spin electrons and β-spin electrons.460

This concept is concretely realized in the Kohn-Sham equations, which transforms the polyelectron461

system with interactions into single-electron system without interaction, and adds interactions among462

electrons to exchange-correlation potential [33]. The Kohn-Sham equations is shown as:463 [
−1

2
∇2 + Veff(r)

]
ψi(r) = ϵiψi(r) (8)

where ψi(r) and ϵi are, respectively, the wave function and energy of the i-th single-electron orbital,464

and Veff(r) is the effective single-electron potential energy. The basis of DFT is Hohenberg-Kohn465

theorem, and Kohn-Sham equation is the practical application form of DFT. In Kohn-Sham equation,466

Veff(r) is the effective single-electron potential energy, defined as467

Veff(r) = Vext(r) + VH(r) + Vxc(r) (9)

The external potential Vext(r) is typically provided by the atomic nuclei. VH(r) is the Hartree potential,468

which is represented by the convolution of the ED with the Coulomb kernel. The exchange-correlation469

potential Vxc(r) is the variational derivative of the exchange-correlation energy functional.470

The solution of the Kohn-Sham equations is typically achieved through self-consistent field (SCF)471

iterations, as shown in the figure 6(b). Initially, a set of initial electron densities ρ(r) is selected, and472
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the effective potential Veff(r) is calculated based on this initial guess. The Kohn-Sham equations are473

then solved to obtain new single-electron orbital wave functions ψi(r) and energies εi, which are474

used to update the ED ρ(r). This process is repeated until convergence is achieved, yielding the ED475

ρ(r) and simultaneously stabilizing the total energy E.476

In addition, to solve the equation, it is usually necessary to select the basis set, pseudopotential,477

and exchange correlation functional. The basic set includes plane wave method, numerical atomic478

orbital method, and augmented wave method. Norm-conserving pseudopotential (NCPP), ultrasoft479

pesudopotential (USPP) and projector augmented wave (PAW) are common pseudopotential methods.480

The exchange-correlation energy functional includes the Local Density Approximation (LDA) [34],481

the Generalized Gradient Approximation (GGA) [35], and hybrid functionals (such as B3LYP) [36].482

In this paper, the exchange-correlation functional used is B3LYP, and the 6-31G**/+G** basis set is483

selected for combination. B3LYP integrates the advantages of the Hartree-Fock method and DFT.484

The 6-31G**/+G** basis set enhances computational accuracy by splitting the valence electron485

orbitals into two sets of basis functions and further incorporating diffuse functions. This combination486

achieves a great balance between precision and efficiency, making it more suitable.487

A.2.3 Molecular geometry learning in quantum chemistry488

Geometric Deep Learning (GDL) has become a dominant approach for modeling machine learning489

force fields (MLFFs), primarily focusing on atom-level information such as atomic attributes and490

interatomic interactions. Specifically, GDL models are built upon first-order atomic features, including491

atom types and 3D coordinates [19, 37]. To capture geometric relationships while preserving physical492

consistency, GDL methods incorporate symmetries such as rotational and translational invariance in493

3D space [38, 39]. Consequently, a wide range of models have been developed with built-in invariance494

or equivariance to Euclidean group E(3) [19] or special Euclidean group SE(3) [40, 41], ensuring that495

predictions are physically meaningful. Given that atomic interactions—such as bonding, repulsion,496

and van der Waals forces—play a crucial role in molecular fields, modern GDL methods further497

incorporate second-order geometric features, including interatomic distances [42, 43], bond types498

[44], and spatial neighborhood structures [45]. To more precisely capture local structural features,499

some approaches even extend to higher-order geometric relations such as bond angles (three-body500

interactions) [21, 22] and torsional angles (four-body interactions) [23, 24, 25], thereby improving the501

expressiveness and accuracy of force field modeling. In contrast to prior works that focus primarily502

on atom-level representations, our proposed EDBench introduces a large-scale dataset of electronic503

density (ED), laying the foundation for extending molecular modeling from the atomic scale to the504

electronic scale. It also provides a new platform and evaluation benchmark for developing GDL505

methods tailored to electronic structure modeling.506

A.3 Experiment and discussion507

A.3.1 Experiment settings508

Baseline. For comprehensiveness of the evaluation, we evaluate both molecular structure-based509

and electron density-based methods. Specifically, we selected several state-of-the-art baselines for510

evaluation on the proposed benchmark: (i) two geometric models based on molecular structure (MS):511

GeoFormer [46] and EquiformerV2 [47]; (ii) two point cloud models based on electron density (ED):512

PointVector [48] and X-3D [49]. GeoFormer and EquiformerV2 are Transformer-based architectures513

that use Interatomic Positional Encoding (IPE) and higher-degree tensors, respectively, to learn514

the interaction relationships between atoms. Unlike GeoFormer and EquiformerV2, which are515

specifically designed for molecules, PointVector and X-3D are the latest methods that focus on516

real-world point clouds. They are MLP(Multi-layer Perceptron)-based and explict structure-based517

architectures, respectively, offering excellent computational efficiency to handle large-scale point518

clouds.519

Setup. The codes of all baselines are available from their GitHub repositories and we reproduce them520

on our benchmarks. We use the same experimental settings as these baselines. All datasets are split521

using a scaffold split [15] based on the out-of-division (OOD) scenario, which enables evaluating the522

generalization of the model. We repeat the experiments three times with different random seeds and523

report the means and standard variances on the test set. The test set results are selected according to524

the best validation set performance. Due to the excessive length of the ED vectors (Figure ??(c)), we525

introduce a threshold ρτ to filter out electrons in regions with negligible density (all ED values below526
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ρτ are discarded). All models were trained using either NVIDIA A100 (80GB PCIe) or GeForce527

RTX 3090 (24GB) GPUs, depending on their memory requirements.528

A.3.2 Details of computational efficiency529

We conduct a computational efficiency analysis of all baseline models presented in this work,530

including molecular geometry-based methods—HGEGNN, EquiformerV2, and GeoFormer—and ED531

point cloud-based methods—PointVector and X-3D. As a first step, we report the parameter count of532

each model to assess their relative model capacities. The details are summarized in Table 2. We find533

that the model sizes of EquiformerV2 and GeoFormer are significantly larger than the other models.534

Table 2: The number of parameters of different models. #Params represents the number of parameters
of the model. M stands for Million.

HGEGNN Equiformerv2 GeoFormer PointVector X-3D

#Params (M) 0.574 27.9 9.5 1.5454 0.9476

Next, we report the GPU memory usage and training time for each model. Due to varying memory535

requirements across models, we had to use different GPU devices to accommodate specific models536

and avoid out-of-memory (OOM) issues. Tables 3 and 4 present the computational efficiency of537

PointVector and X-3D, respectively. As expected, both GPU memory consumption and training time538

increase consistently with the number of sampling points ξ.539

Table 3: The computational efficiency of PointVector with different number of sampling points ξ on
ED5-OE dataset with batch size of 32 and epoch of 100. Time refers to the total time spent on the
entire training process.

ξ GPU Memory (MiB) Time (minutes) GPU

512 4,425 ∼100 3090
1024 6,623 ∼150 3090
2048 11,453 ∼325 3090
4096 20,757 ∼433 a100-80gb-pcie
8192 38,083 ∼850 a100-80gb-pcie

Table 4: The computational efficiency of X-3D with different number of sampling points ξ on
ED5-OE dataset with batch size of 32 and epoch of 100. Time refers to the total time spent on the
entire training process.

ξ GPU Memory (MiB) Time (minutes) GPU

512 3,431 ∼71 3090
1024 4,747 ∼88 3090
2048 7,951 ∼156 3090
4096 13,701 ∼305 3090
8192 21,351 ∼750 3090

Additionally, Table 5 shows the time efficiency of HGEGNN on the ED5-EDP dataset. A similar540

trend is observed: as the ED threshold ρτ decreases, the number of ED points increases, leading to541

higher memory usage and longer training times. These results collectively highlight the sensitivity of542

model efficiency to both the resolution of input data and the complexity of the architecture.543
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Table 5: The computational efficiency of HGEGNN with different ED threshold ρτ on ED5-EDP
dataset. MiB/mol represents the total memory usage divided by the batch size.

ρτ GPU Memory (MiB/mol) Time (minutes/epoch) GPU

0.1 2,153 ∼15 a100-80gb-pcie
0.15 907 ∼7.5 a100-80gb-pcie
0.2 616 ∼5 a100-80gb-pcie

A.3.3 Performance on prediction tasks544

Table 6: The MAE performance on 6 energies from the ED5-EC dataset with ρτ = 0.05.

E1 E2 E3 E4 E5 E6

PointVector 243.49±74.72 325.65±160.17 858.77±496.74 389.24±217.51 17.54±10.85 243.49±74.73
X-3D 190.77±1.98 109.21±2.82 369.88±1.34 150.05±0.27 8.13±0.51 190.77±1.98

Table 7: The performance of MAE×100 on 7 orbital energies of the ED5-OE with ρτ = 0.05.

HOMO-2 HOMO-1 HOMO-0 LUMO+0
LUMO+1 LUMO+2 LUMO+3

PointVector 1.73±0.01 1.68±0.01 1.92±0.01 3.08±0.05
2.86±0.05 3.05±0.02 3.01±0.02

X-3D 1.75±0.02 1.72±0.02 1.98±0.00 3.21±0.01
3.02±0.02 3.25±0.04 3.20±0.03

Table 8: The MAE performance on multipole moments from the
ED5-MM dataset with ρτ = 0.05.

Dipole X Dipole Y Dipole Z Magnitude

PointVector 0.9123±0.0203 0.9605±0.0053 0.754±0.0068 0.7397±0.0467
X-3D 0.8818±0.0010 0.9427±0.0008 0.7416±.0.0023 0.6820±0.0005

Tables 6, 7, 8, and 9 re-545

port the performance of recent546

models on the ED5-EC, ED5-547

OE, ED5-MM, and ED5-OCS548

datasets, respectively. We ob-549

serve that X-3D consistently550

outperforms PointVector, achieving the best results on ED5-EC (Table 6), ED5-MM (Table 8), and551

ED5-OCS (Table 9). Notably, both X-3D and PointVector exhibit significantly stronger performance552

on orbital energy prediction (Table 7) than on energy component prediction (Table 6). This is likely553

due to the stronger locality of orbital energies, which are more directly linked to local ED patterns, al-554

lowing models to extract relevant features more effectively. In contrast, predicting energy components555

requires integrating over the entire ED, demanding the learning of more complex global interactions.556

These results further validate the effectiveness of using ED as a model input and demonstrate its557

utility in capturing physically meaningful patterns.558

Table 9: The performance (%) of open/closed-shell pre-
diction on the ED5-OCS dataset with ρτ = 0.05.

Accuracy ROC-AUC AUPR F1-Score

PointVector 55.57±2.14 55.97±5.17 57.62±3.91 66.96±2.08
X-3D 57.65±0.18 60.48±0.38 61.54±0.31 61.41±1.02

While X-3D and PointVector were not de-559

signed for ED data, their strong perfor-560

mance on our benchmarks underscores the561

potential of ED-based learning in quantum562

property prediction. We expect tailored563

models to further improve performance,564

advancing more accurate and efficient quantum modeling.565

A.3.4 Performance on retrieval tasks566

We first use GeoFormer and EquiformerV2 as molecular structure (MS) encoders, and PointVec-567

tor and X-3D as electron density (ED) encoders. These encoders are combined pair-568

wise—GeoFormer+PointVector, GeoFormer+X-3D, EquiFormer+PointVector, and EquiFormer+X-569

3D—to systematically evaluate cross-modal retrieval performance. Table 10 reports the Top-k570

accuracy on both ED → MS and MS → ED tasks. Results reveal substantial performance differences571

among combinations. For example, GeoFormer+PointVector achieves only 17.67% Top-1 accuracy,572

while GeoFormer+X-3D reaches 68.32%, yielding an absolute improvement of 50.65%. Similarly,573

EquiFormer+PointVector achieves just 10.24% Top-1 accuracy, whereas EquiFormer+X-3D reaches574

78.71%—an absolute gain of 68.47%. These results highlight the critical importance of selecting575
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appropriate encoder architectures for effective cross-modal representation learning between MS and576

ED.577

Table 10: The Top-k accuracy (%) on ED5-MER dataset. ED → MS represents using electron density
(ED) to retrieve molecular structure (MS).

MS model ED model
ED → MS MS → ED

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

GeoFormer
PointVector 17.67±2.10 46.09±4.53 67.63±5.92 27.01±1.69 59.02±2.49 77.42±3.01

X-3D 68.32±3.70 92.18±2.41 97.31±1.29 70.01±2.93 92.08±2.01 97.17±0.92

EquiformerV2
PointVector 10.24±1.28 32.47±2.69 53.42±2.67 22.18±0.64 54.61±2.89 76.83±2.90

X-3D 78.71±0.69 94.78±0.40 98.13±0.07 78.36±0.65 94.19±0.14 97.74±0.29

Figure 7: Comparative Learning Loss of GeoFormer+PointVector and GeoFormer+X-3D on ED5-
MER training (Train) and validation (Valid) sets.

To further understand the performance gap, we closely analyzed the training logs of Geo-578

Former+PointVector and GeoFormer+X-3D. Figures 7(a) and 7(b) show their contrastive learn-579

ing loss curves on the training and validation sets, respectively. While both combinations exhibit580

steadily decreasing training loss, GeoFormer+PointVector suffers from overfitting—as evidenced581

by its increasing validation loss despite continued improvement on the training set. In contrast,582

GeoFormer+X-3D maintains a consistently decreasing loss on both training and validation sets,583

explaining its significantly better retrieval performance.584

Overall, the strong bidirectional retrieval performance of GeoFormer+X-3D and EquiFormerV2+X-585

3D demonstrates the feasibility of learning the complex mapping between MS and ED, providing586

a solid foundation for retrieval-based applications. For example, retrieving the most compatible587

MS given an ED can enable a novel perspective on high-throughput virtual screening—particularly588

valuable in scenarios where the ED is known but the MS is unknown or ambiguous. Conversely,589

retrieving approximate ED distributions from MS opens a promising direction for building structure-590

driven, density-aware models, potentially enhancing the physical faithfulness of downstream tasks591

such as molecular property prediction and reactivity analysis.592

Figure 8: The retrieval performance on
ED5-MER.

We employ {GeoFormer (G), EquiformerV2 (E)} and593

{PointVector (P), X-3D (X)} as the MS encoder EncG594

and ED encoder EncP , respectively, in Equation 1. These595

components are paired to form four combinations: G-P,596

G-X, E-P, and E-X. Their retrieval performance is eval-597

uated in Figure 8. The results show that combinations598

involving E (i.e., E-P and E-X) consistently outperform599

those involving G, highlighting the importance of select-600

ing an appropriate encoder for retrieval tasks. Overall, the601

strong performance of E-P and E-X demonstrates their602

potential for ED-based virtual screening and MS-based603

electronic-level molecular understanding.604

A.3.5 Performance on generation task605
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Table 11: The performance of HGEGNN on ED generation
of ED5-EDP dataset. The unit of Time is second/mol.

ρτ MAE Pearson (%) Spearman (%) Time

HGEGNN
0.1 0.3362±0.2900 81.0±8.1 56.4±13.7 0.024
0.15 0.0463±0.0157 98.0±6.3 87.0±2.7 0.015
0.2 0.0448±0.0133 99.2±0.8 91.0±9.1 0.013

DFT - - - - 245.8

Table 11 presents the results of606

HGEGNN on the ED prediction task607

under different ED thresholds ρτ . We608

observe that, given the molecular609

structure (MS), the model can accu-610

rately predict ED values, achieving611

low MAE and high Pearson and Spear-612

man correlations. This indicates that the deep learning method can significantly accelerate the613

generation of ED while reducing the computational cost associated with DFT calculations.614

Notably, the model performance improves with increasing ρτ , indicating it effectively captures615

high-ED regions. This aligns with chemical intuition, as high-density regions often correspond to616

chemically significant areas such as atomic cores and bonding regions, where the spatial patterns are617

more structured and consistent across molecules, making them easier for the model to learn.618

A.3.6 Quality analysis of ED outputs from the generation task619

Figure 9: The average MAE of
PointVector on ED5-EC gen-
erated by DFT and G#{1,2,3}.

To assess the quality of the ED data generated by HGEGNN, we620

employ models trained with three different random seeds, as de-621

scribed in Section A.3.5, to generate ED5-EC data with a density622

threshold of ρτ = 0.2, denoted as G#1, G#2, and G#3. Figure 10623

compares the average MAE performance of different data sources624

using the PointVector as baseline, where red values denote relative625

improvements compared to DFT-based data source. We observe626

that G#1, G#2, and G#3 consistently outperform the DFT-based627

data, indicating that HGEGNN generates high-quality ED. These628

demonstrate the potential of using predicted ED directly to enhance629

the model’s understanding of MFFs.630

To evaluate the quality of ED outputs in the generation task, we631

replace the DFT-based ED5-EC data (with a density threshold of ρτ = 0.2) with new ED data632

generated by HGEGNN models trained on the original ED5-EC dataset. These new datasets are633

denoted as HGEGNN(2024), HGEGNN(2025), and HGEGNN(2026), where the numbers indicate634

different random seeds used during training. We then train PointVector—configured with the minimal635

ED length sampling rate—on each of these generated datasets. Detailed results are shown in636

Table 12. Compared to PointVector trained on the DFT-based ED5-EC, PointVector models trained637

on HGEGNN(2024)-, HGEGNN(2025)-, and HGEGNN(2026)-based ED5-EC all achieve superior638

performance. These findings support the feasibility of using deep learning models to accelerate639

DFT-level computations and suggest that the generated data is more learnable, thereby improving640

downstream model performance.641

Table 12: MAE Performance of PointVector on DFT-based and HGEGNN-generated ED5-EC datasets
with ρτ = 0.2. 2024, 2025, 2026 represent seeds of training HGEGNN on original ED5-EC dataset.

E1 E2 E3 E4 E5 E6 Mean

DFT 224.13±43.47 155.85±28.75 451.59±58.53 190.47±25.62 9.57±1.56 224.13±43.47 209.29
HGEGNN (2024) 195.48±2.77 137.69±11.48 408.40±10.61 172.98±7.30 8.25±0.12 195.48±2.77 186.38
HGEGNN (2025) 208.18±16.43 142.33±9.94 428.24±7.31 180.90±5.02 8.85±0.36 208.18±16.43 196.11
HGEGNN (2026) 190.37±2.50 128.61±3.79 408.33±3.40 170.47±2.34 8.35±0.04 190.36±2.50 182.75

A.3.7 Ablation study on thresholds and sampling points642

Overview.Due to the substantial number of ED points and their direct influence on computational643

efficiency, it is crucial to study the effects of ED thresholds (ρτ ) and sampling point counts (ξ) on644

model performance. Figure 10 shows the ablation results of PointVector under varying ρτ and ξ.645

We observe that performance does not improve proportionally with decreasing ρτ or increasing ξ,646

highlighting the importance of carefully selecting these hyperparameters to strike a balance between647

accuracy and computational cost.648

Ablation Study on the ED Threshold ρτ . The ED threshold ρτ plays a critical role in representing649

electron density, as it governs the trade-off between model performance and computational efficiency.650
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In this ablation study, we evaluate the impact of ρτ using the PointVector model with a default number651

of sampled points ξ = 2048. However, when ρτ exceeds 0.05, the total number of ED points in652

some molecules falls below 2048, causing PointVector to fail due to insufficient input length. To653

minimize modifications to the original PointVector implementation, we set ξ to the minimum ED654

length across the dataset. Table 13 shows the MAE of PointVector on the ED5-EC dataset under655

various ED thresholds. The results indicate that the best performance is achieved at ρτ = 0.2, with656

an average MAE of 209.29. This demonstrates that tuning ρτ can effectively balance accuracy and657

computational cost.658

Table 13: Ablation study (ED5-EC dataset) of PointVector on ED threshold ρτ with MAE metric.

ρτ ξ E1 E2 E3 E4 E5 E6 Mean

0.05 2048 243.49±74.72 325.65±160.17 858.77±496.74 389.24±217.51 17.54±10.85 243.49±74.73 346.36
0.1 716 187.29±7.78 189.33±73.71 548.92±113.00 239.12±63.24 12.08±3.59 187.29±7.78 227.34
0.2 218 224.13±43.47 155.85±28.75 451.59±58.53 190.47±25.62 9.57±1.56 224.13±43.47 209.29
0.3 66 197.77±6.97 179.51±15.69 501.98±51.22 218.29±19.69 9.73±0.69 197.76±6.97 217.51
0.4 28 188.67±2.60 233.84±14.46 666.75±111.88 282.53±24.46 12.91±1.96 188.07±3.16 262.13

Figure 10: Ablation results of PointVector on (a)
different ED thresholds ρτ and (b) different num-
ber of sampling points ξ.

Ablation Study on the Number of Point Cloud659

Samples ξ. Point cloud-based methods (e.g.,660

PointVector and X-3D) commonly adopt farthest661

point sampling (FPS) [50] to reduce the num-662

ber of input points. Therefore, the number of663

sampled points, denoted as ξ, is a critical hyper-664

parameter that directly affects both the model’s665

capacity to capture spatial structures and its com-666

putational efficiency. A larger number of points667

allows the model to better represent the geomet-668

ric details of ED, particularly in regions with ambiguous boundaries or sharp density gradients, facili-669

tating the learning of fine-grained spatial features. However, increasing ξ also leads to higher memory670

consumption and longer training and inference times, especially when dealing with large-scale ED671

datasets. Therefore, choosing an appropriate number of points is essential to balance representational672

power and computational cost. To investigate this trade-off, we evaluate the performance of the point673

cloud-based PointVector model under different sample sizes ξ = {512, 1024, 2048, 4096, 8192}.674

Table 14 reports the results on the ED5-OE dataset. We observe that PointVector achieves the675

best performance when ξ = 2048, reaching an average MAE of 0.0248. Additionally, the model676

performance does not monotonically improve with increasing ξ. This may be attributed to the model’s677

limited capacity—PointVector contains only 1.5454M parameters—which may constrain its ability678

to effectively leverage a large number of ED points. This observation highlights the need for more679

strong and ED-specialized architectures in future work.680

Table 14: Ablation study (ED5-OE dataset) of PointVector on the number of sampling points ξ with
MAE×100 metric and ρτ = 0.05.

ξ HOMO-2 HOMO-1 HOMO-0 LUMO+0 LUMO+1 LUMO+2 LUMO+3 Mean

512 1.78±0.01 1.75±0.01 2.00±0.00 3.15±0.02 2.94±0.02 3.17±0.01 3.14±0.02 2.56
1024 1.79±0.01 1.74±1.98 3.19±2.99 3.19±0.02 2.99±0.02 3.19±0.02 3.14±0.01 2.75
2048 1.73±0.01 1.68±0.01 1.92±0.01 3.08±0.05 2.86±0.05 3.05±0.02 3.01±0.02 2.48
4096 1.87±0.09 1.76±0.07 2.01±0.02 3.40±0.07 3.21±0.12 3.38±0.19 3.29±0.13 2.70
8192 1.82±0.03 1.78±0.03 1.99±0.03 3.17±0.22 2.96±0.21 3.23±0.27 3.22±0.24 2.60

A.4 Details of the EDBench Database681

A.4.1 Discussion on the Quality of the EDBench Database682

To ensure the reliability and scientific utility of EDBench, we adopted a systematic and well-683

established protocol for electronic density (ED) calculation grounded in density functional theory684

(DFT) [32]. The entire workflow was designed to maximize both physical fidelity and computational685

robustness, while minimizing potential sources of error or bias.686

First, all ED data were generated using Psi4 1.7, a widely used and validated open-source quantum687

chemistry package that supports high-accuracy ab initio and DFT calculations [51, 52, 53, 54].688
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We selected the B3LYP hybrid functional, a time-tested method known for its balance between689

computational efficiency and accuracy across a wide variety of molecules. Currently, B3LYP has690

been extensively applied in the domains of synthetic chemistry [55], molecular dynamics [56],691

phytochemistry [57], spectroscopy [58], medicine [53, 59] and physics [60]. This choice ensures692

that the resulting ED data reflect physically meaningful electron distributions rather than numerical693

artifacts.694

Meanwhile, basis sets were systematically assigned based on molecular composition, employing695

6-31G** for general cases and 6-31+G** for sulfur-containing molecules to capture diffuse electronic696

effects [61]. Compared with the basic 6-31G, 6-31G**/+G** provides the description of polarizable697

electron distribution and electron correlation effect by adding polarization function, which improves698

the processing ability of molecular polarization effect. This tailored approach enhances the accuracy699

of electron densities, particularly in chemically relevant regions such as lone pairs, -systems, or700

polarizable atoms.701

In addition, the reference wavefunction was selected according to spin multiplicity, with restricted702

Hartree-Fock (RHF) applied to closed-shell systems and unrestricted Hartree-Fock (UHF) used for703

open-shell systems [62], in line with Hund’s rule. This guarantees correct treatment of and spin704

components, reducing the risk of spin contamination and ensuring consistent modeling of open-shell705

species. To further control data quality, we enforced strict self-consistent field (SCF) convergence706

criteria before ED extraction [63, 64]. Electron density grids were then generated using a uniform707

grid spacing of 0.4 Bohr and a 4.0 Bohr padding, ensuring comprehensive spatial coverage without708

introducing undersampling or boundary artifacts. Additionally, a density fraction threshold of 0.85709

was applied to focus on the physically relevant isosurface, filtering out low-density noise while710

preserving chemically meaningful features.711

In sum, the quality of EDBench is supported by:712

• A chemically sound and standardized computational protocol,713

• Systematic and molecule-composition-based basis set selection,714

• Accurate and consistent treatment of spin multiplicity,715

• Rigorous convergence criteria and grid generation settings,716

• Comprehensive spatial coverage and meaningful feature preservation.717

These efforts collectively ensure that EDBench provides physically meaningful, reproducible, and718

high-resolution ED data at scale. We believe these safeguards sufficiently mitigate concerns of noise,719

bias, or low-quality samples, and position EDBench as a reliable benchmark for ED-aware machine720

learning research.721

A.4.2 Example of ED visualization722

Figure 11 illustrates the visualization of a molecule’s electron density (ED) under varying threshold723

values ρτ . A higher ρτ retains only regions with a higher probability of electron presence. When724

ρτ = 0, all possible electron positions are preserved, resulting in a dense, cuboid-like distribution.725

As ρτ increases, the number of ED points gradually decreases, and the molecular contour becomes726

more visually distinct.727

It is worth noting that ρτ = 0 leads to an overly dense ED representation, which poses challenges728

for both storage and computation. By tuning ρτ , we can achieve a balance between ED information729

retention and computational efficiency. In our experiments, we adopt ρτ ≤ 0.2 as a practical choice.730

As shown in Figure 11, this setting significantly reduces the number of ED points while preserving731

the essential ED structural features of the molecule.732
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Figure 11: Example of ED visualization of a molecule with different thresholds ρτ . Point represents
the number of ED points.
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