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Figure 1: Generated multi-view images by applying MIRROR on SyncDreamer (Liu et al., 2023b) and VideoMV (Zuo
et al., 2024) for rectification. MIRROR effectively improves the consistency of generated results in both image-based and
text-based multi-view generation models.

Abstract
Multi-view Diffusion has greatly advanced the de-
velopment of 3D content creation by generating
multiple images from distinct views, achieving
remarkable photorealistic results. However, ex-
isting works are still vulnerable to inconsistent
3D geometric structures (commonly known as
Janus Problem) and severe artifacts. In this paper,
we introduce MIRROR, a versatile plug-and-play
method that rectifies such inconsistencies in a
training-free manner, enabling the acquisition of
high-fidelity, realistic structures without compro-
mising diversity. Our key idea focuses on tracing
the motion trajectory of physical points across
adjacent viewpoints, enabling rectifications based
on neighboring observations of the same region.
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Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada, PMLR 267, 2025. Copyright 2025
by the author(s).

Technically, MIRROR comprises two core mod-
ules: Trajectory Tracking Module (TTM) for
pixel-wise trajectory tracking that labels identical
points across views, and Feature Rectification
Module (FRM) for explicitly adjustment of each
pixel embedding on noisy synthesized images by
minimizing the distance to corresponding block
features in neighboring views, thereby achieving
consistent outputs. Extensive evaluations demon-
strate that MIRROR, through seamless integra-
tion with a variety of off-the-shelf object-level
multi-view diffusion models, achieves efficient
improvements in consistency and fidelity, thereby
functioning as a practical rectification tool.

1. Introduction
Recently, 3D asset generation has become one of the most
promising fields in computer vision, and demonstrated ex-
tensive application in artworks and creation. Inspired by the
success in text-to-image generation (Rombach et al., 2022),
text-to-3D generation models have increasingly attracted
significant attention. Regarding the scarcity of 3D data, the
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seminal works leverages 2D diffusion models as priors to
optimize 3D representations using score distillation (Poole
et al., 2022; Liu et al., 2023a; Wang et al., 2023; Lin et al.,
2023; Qian et al., 2023; Wang et al., 2024b). Unfortunately,
these methods suffer from serious inconsistencies, most no-
tably the Janus Problem and content drifting, due to the
lack of 3D prior knowledge. To address these issues, MV-
Dream (Shi et al., 2023b) was the first to introduce the
multi-view diffusion model, leveraging joint training on 2D
and 3D data to simultaneously generate four orthogonal
views. Building upon it, multi-view diffusion models such
as SyncDreamer (Liu et al., 2023b), MVD-Fusion (Hu et al.,
2024) and VideoMV (Zuo et al., 2024) have been proposed
to employ strategies for spatial and temporal alignment to
enhance multi-view consistency, thereby enabling the simul-
taneous generation of dense views at the object level.

Despite notable progress in multi-view diffusion models,
they continue to struggle with issues of poor quality and
inconsistencies across different perspectives as shown in
Fig. 1 and Fig. 5. These issues primarily stem from the
extensive resources required for training, the incomplete-
ness of training datasets, and inaccurate correspondences
between 3D spatial points and their projections across views.
Consequently, it is crucial to delve deeper into efficient 3D
asset generation method that accurately captures the real
correspondences. To this end, we devise an training-free
method, namely MIRROR, to amend the multiple images
produced by multi-view diffusion models during sampling
process, thereby providing consistent results to perform
high-quality 3D reconstruction. We showcase remarkable
rectification results in Fig. 1.

The core of MIRROR lies in modifying the current view-
point based on the content of adjacent viewpoints, thereby
enforcing neighbor-view consistency and naturally deriving
whole-view coherence. To achieve effective rectification,
we approach this from the following two aspects: (1) What
should we focus on in neighbor views for rectification?
Compared to image-level adjustments, we opt for point-to-
point corrections, ensuring that the features of each physical
point remain consistent across different viewpoints. The
main challenge of our approach lies in effectively tracking
the image coordinates of the same physical point across
neighbors. To tackle this, Trajectory Tracking Module
(TTM) is proposed to successfully track the motion trajec-
tory of physical points as viewpoints change. This strategy
enables precise adjustments for each point, selectively tar-
geting relevant features while disregarding irrelevant ones,
which is a key advantage of TTM over the epipolar corre-
spondence methods (Ye et al., 2024; Kant et al., 2024; Zhou
& Tulsiani, 2023; Li et al., 2024b). (2) How to perform
rectification effectively and efficiently? We observe that
cross-view attentions (Shi et al., 2023b; Li et al., 2024b)
inherently struggle to enforce 3D consistency, as they lack
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Figure 2: High-level Overview of MIRROR. This is a plug-
and-play rectification technique that can be seamlessly in-
corporated into multi-view diffusion models to enhance
consistency and fidelity without any training or fine-tuning.

explicit geometric constraints and rely solely on implicit
learning through network weights. Given the limited avail-
ability of 3D data, such methods are prone to becoming
trapped in local optima and often exhibit poor generaliza-
tion. Although CoSER (Li et al., 2024a) attempts to address
this by injecting local spatial correspondence information
from neighboring views into the cross-view attention to
promote multi-view consistency, its effectiveness remains
limited due to the absence of depth information—which
results in inaccurate view correspondences—and the intrin-
sic challenges in optimizing attention layers as discussed
earlier. Therefore, unlike previous approaches that rely on
fine-tuning within the attention mechanism, we propose Fea-
ture Rectification Module (FRM), which, without requiring
any training or fine-tuning, performs feature rectification
directly on the predicted images during inference, thereby
achieving enhanced performance in a more streamlined and
efficient manner. To this end, we compute the similarity
between each pixel’s feature in the current view and its
counterpart in adjacent views during sampling, producing a
gradient map that guides denoising. Additionally, to miti-
gate potential biases and maintain regional continuity, we
extend the reference pixel point into a block.

Technically, we propose a two-stage inference strategy. In
the first stage, we generate a set of images using the multi-
view diffusion model to extract depth information for each
view. Based on transformations in camera angles, in TTM,
we introduce a trajectory tracking operator guided by depth
maps to track motion trajectories of 3D physical points
from the current view to adjacent views at the fixed eleva-
tion. This enables precise localization of the corresponding
points in neighboring views. We then utilize DDIM Inver-
sion (Song et al., 2020) to progressively add noise to the
generated images, transitioning them to intermediate noisy
states for the subsequent denoising process. During each
sampling step of the second-stage inference, we apply a
corrective gradient map based on pixel-level similarity in
FRM to refine the denoising direction of the multi-view
diffusion model, resulting in images with improved quality
and consistency. To address background redundancy caused
by surrounding blocks, we implement a dual-anchor feature
fusion strategy, which fuses relevant features from adjacent
views. This not only identifies meaningful features but also
significantly improves computational efficiency.
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Furthermore, gradient-based guidance, as discussed in the
prior work (Dhariwal & Nichol, 2021), is known to be
computationally intensive due to the gradient computation
requirements for large neural networks. To mitigate this,
we provide a theoretical analysis demonstrating that omit-
ting the UNet Jacobian term in the diffusion model during
gradient-based denoising guidance introduces negligible
error. Experimentally, we validate that this optimization
achieves a twofold acceleration in the rectification process
without compromising the quality of the generated images.
An overview of MIRROR is depicted in Fig. 2.

In summary, our contributions are as follows:

• We innovatively introduce MIRROR, an efficient,
training-free, plug-and-play method that enhances
multi-view consistency in 3D asset generation by di-
rectly rectifying latent noisy images across views dur-
ing the sampling process.

• We present TTM based on depth information to pre-
cisely ascertain the corresponding positions of points
across distinct views, and FRM to eliminate ambiguity
by enforcing consistency in the representation of the
same physical point across different viewpoints.

• Extensive experiments demonstrate that MIRROR con-
sistently enhances the performance of various multi-
view generator, both quantitatively and qualitatively.

2. Related Work
2.1. 3D Generation

Due to the scarcity of 3D data, numerous studies have turned
to high-quality 2D diffusion models for 3D generation tasks.
A fundamental technique in this domain, Score Distillation
Sampling (SDS), introduced by DreamFusion (Poole et al.,
2022), utilizes pre-trained 2D models as priors to optimize
3D representations, enabling zero-shot text-to-3D genera-
tion without 3D data. Inspired by it, several works adopt
this pipeline to optimize a neural radiance field (Milden-
hall et al., 2021) to generate 3D assets (Lin et al., 2023; Liu
et al., 2023a; Qian et al., 2023; Wang et al., 2024b; Zhu et al.,
2023; Huang et al., 2023). Furthermore, DreamGaussian
(Tang et al., 2023) and GaussianDreamer (Yi et al., 2024)
accelerate the optimization process by applying Gaussian
Splitting techniques (Kerbl et al., 2023) in Score Distillation
Sampling. However, these 2D-lifting methods exhibit crit-
ical drawbacks, such as severe multi-view inconsistencies
and slow generation speeds, often requiring tens of thou-
sands of iterations to produce a single 3D asset. In response
to these challenges, recent research on multi-view diffusion
models has emerged as a promising direction in 3D gener-
ation, wherein the model is capable of generating multiple
views of an object in a single inference process.

2.2. Multi-View Diffusion Methods

Recent advancements have extended 2D diffusion models to
generate multi-view images for reconstruction. Notable de-
velopments include MVDream (Shi et al., 2023b), Viewset
Diffusion (Szymanowicz et al., 2023), SyncDreamer (Liu
et al., 2023b). However, these methods face challenges
like texture ambiguity and high computational costs. To
address these, Wonder3D (Long et al., 2024) introduces
a cross-domain model for generating normal maps, while
Zero123++ (Shi et al., 2023a) and One-2-3-45 (Liu et al.,
2024) improve texture quality and accelerate 3D reconstruc-
tion. Despite these innovations, quality issues persist due to
reliance on limited synthetic data. Video generative models,
with their temporal modules ensuring frame consistency, are
increasingly favored for multi-view generation over image
diffusion models. SV3D (Voleti et al., 2024) and IM-3D
(Melas-Kyriazi et al., 2024) enhance 3D generation by lever-
aging advanced video diffusion models to optimize multi-
view synthesis for improved output quality. And VideoMV
(Zuo et al., 2024) also develops a consistent multi-view
generation model using video generative models, further im-
proving multi-view consistency with a 3D Aware Denoising
Sampling technique. While these methods improve con-
sistency, they lack explicit geometric constraints, entirely
relying on learned networks. With limited 3D data, they
are prone to local optima, and issues like Janus Problem
and content drifting remain at inference. Building on these
efforts, we propose MIRROR, an efficient, training-free
rectification technique specifically designed to enhance 3D
consistency in these dense multi-view diffusion models.

3. Preliminaries
3.1. Diffusion Models

Diffusion Models (DMs) (Ho et al., 2020) learn a target
distribution pθ(x0), by progressively denoising a standard
Gaussian distribution. This process is mathematically repre-
sented as: pθ(x0) =

∫
pθ(x0:T ) dx1:T , where x1:T denotes

intermediate noisy samples. In the forward process, DMs
iteratively add Gaussian noise ε to the clean data x0, con-
trolled by a pre-defined variance schedule, formulated as:

xt =
√
αtx0 +

√
1− αtε, ε ∼ N (0, I). (1)

Conversely, in the reverse process, DMs employ a denoiser
εθ, parameterized as a UNet, to predict the noise added at
each denoising time step t.

Furthermore, to reduce the computational demands asso-
ciated with synthesizing high-resolution images, Latent
Diffusion Models (LDMs) (Rombach et al., 2022) imple-
ment a pre-trained encoder E of VQGAN to compress im-
age x0 ∈ RH×W×C into a low-dimensional latent feature,
z0 = E(x0), where z0 ∈ Rh×w×c. In addition, LDMs uti-
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Figure 3: Pipeline of MIRROR. We employ a two-stage sampling strategy. In stage 1, given a single image or a text prompt
as input, we employ a base multi-view diffusion model to sample a set of images. In stage 2, we first apply DDIM Inversion
to convert generated images into the noisy state, and take it as the initial noise for the second stage. Then, Trajectory
Tracking Module (TTM) is employed to capture the motion trajectory of physical points from the current view to the
adjacent views using the depth maps derived from generated images in stage 1. For Feature Rectification Module (FRM),
the block features are fused based on dual anchors, Rpos(u) and Rneg(u). Then, we explicitly enforce consistency for the
same physical point across neighbor views by calculating the distance between the feature of point u and the corresponding
block features in adjacent views, and compute the overall gradient map ∇Lt to guide the denoising process for rectification.

lize deterministic DDIM sampling (Song et al., 2020) to
efficiently transform random noise zT into clean data z0
through a sequence of discrete time steps from t = T to
t = 1, which is formulated as:

zt−1 =
√
αt−1

(
zt −

√
1− αt εθ(zt, t)√

αt

)
+
√
1− αt−1 εθ(zt, t).

(2)

This sequence ultimately results in the recovery of the latent
clean state z0, which is then processed by the VQGAN
decoder D to reconstruct a high-fidelity image x0 = D(z0).

Evolved from classical LDMs (Rombach et al., 2022), Multi-
View Diffusion Models (MV-DMs) have broadened their fo-
cus from single images to handling sequences of multi-view
images, essentially treating them like videos. Specifically,
consider an image sequence x0 represented in RF×H×W×3,
where F denotes the number of frames. MV-DMs encode
this video into a latent space, represented as z0 = E(x0),
where z0 ∈ RF×h×w×c.

3.2. DDIM Inversion

In contrast to DDIM, DDIM inversion acts as a forward
process, where clean data z0 progressively transitions into a
noisy state zT , effectively reversing the original sampling

sequence Eq. (2) into:

zt+1 =
√

αt+1

(
zt −

√
1− αt εθ(zt, t)√

αt

)
+
√
1− αt+1 εθ(zt, t).

(3)

4. Methods
In this section, we propose MIRROR, a training-free modi-
fier specifically designed to enhance consistency across im-
ages generated by multi-view diffusion models. In Sec. 4.1,
we systematically outline our approach. Then, we intro-
duce Trajectory Tracking Module (TTM) that tracks point
transformation correspondences between adjacent views
(Sec. 4.2) and proposes a Feature Rectification Module
(FRM) that integrates 3D-aware feature information to rec-
tify inconsistencies during the sampling process (Sec. 4.3).

4.1. Framework of MIRROR

Given a pre-trained muti-view diffsuion, we adopt a two-
stage sampling strategy to rectify generated images. In the
first stage, the base multi-view model generates a set of
images x̂0, from which the depth map Z ′

absolute is derived
via monocular depth estimation. Subsequently, DDIM In-
version is then applied to convert clean images into noisy
state zT , serving as the initial noise for the second stage
of the sampling process. At each denoising step t, TTM
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tracks point correspondences of the predicted latent images,
ẑ0 = ẑ0(zt; t), across adjacent views with Z ′

absolute. Given
this, FRM integrates 3D-aware feature information accord-
ing to the correspondences from TTM, and computes a
pixel-level rectification loss gradient ∇Lt to refine the de-
noising direction of the predicted noise εθ. Finally, zt−1 is
generated through DDIM sampling with the rectified noise
ε̂θ, enhancing the quality and consistency of the final output.
The pipeline of MIRROR is illustrated in Fig. 3, with the
corresponding pseudocode provided in Algorithm 1.

4.2. Trajectory Tracking Module

Pixel-Wise Trajectory Tracking Transformation. In theory,
there exists a pixel-wise correspondence between two im-
ages of an object projected from different viewpoints. We
observe that large viewpoint gaps under arbitrary camera
trajectories tend to reduce cross-view correlation, resulting
in increased reconstruction errors and limited improvement.
In contrast, fixing the elevation angle strengthens inter-view
correspondence and yields better results by providing more
related information. Therefore, we adopt a standardized set-
ting with a fixed elevation angle. In this setup, we consider
F views captured by a camera rotating horizontally around
the object in a standardized manner. The circular camera tra-
jectories ensure stable and uniform coverage of the viewing
space, thereby enhancing view correlation and improving
the quality of 3D reconstruction. Furthermore, sampling
across multiple elevation settings helps recover occluded re-
gions that are invisible from a single elevation. Specifically,
this configuration maintains a constant elevation angle for
the images while distributing the azimuth angles uniformly
across 360°. Thus, let α represent the change in azimuth
angle between each pair of adjacent views.

Next, we establish the pixel-wise correspondence on the
imaging plane between two differing viewpoints. As the
camera angle variation is confined solely to the azimuth
direction, this motion can be modeled as the imaging plane
rotating around the object along the elevation axis. Conse-
quently, the y-coordinate (height) remains constant, while
the x-coordinate (width) undergoes a rotation transforma-
tion related to the z-coordinate (depth). Let V be the func-
tion space L2(R2,R), the specific transformation formula
defined on V is outlined in Definition 4.1.
Definition 4.1. The trajectory tracking operator Tα : V →
V , defined by an azimuthal rotation angle α ∈ R, is for-
mulated as Tα(Z(u)) = Zα(uα), where u = (x, y),uα =
(xα, yα). The coordinates transformation is given byxα = (x− W

2
) cosα+

W

2
− z sinα,

yα = y,
(4)

where z represents the depth (distance from the camera
center to the object), and W is the width of the image.

Depth Prior Estimation. Since images directly output by
multi-view dffusion models typically lack depth informa-
tion, we utilize a monocular depth estimation model H to
estimate this crucial detail z in Eq. (4). However, given the
potential for considerable bias in depth estimates derived
from noisy images, we feed the clean images x̂0 that have
been denoised by the multi-view diffusion model into H,
enabling us to accurately assess depth information for each
viewpoint, ultimately leading to the creation of a relative
normalized depth map Zrelative := H(x̂0) ∈ RF×H×W .
Although the depth is estimated from a monocular model,
the depth scale factor r remains consistent across views, as
each baseline multi-view diffusion model fixes the cam-
era distance under circular poses during training. This
consistency enables the transformation of relative depth
into absolute depth for cross-view alignment, formulated as
Zabsolute = r · Zrelative.

Furthermore, we establish that as the denoising step t de-
creases, the trajectory tracking of the predicted images
x̂0(xt, t) = 1√

αt
(xt −

√
1− αt εθ(xt, t)) at time step t

converges to that of the real images x0, which is detailed in
the following proposition.

Proposition 4.2. (Convergence Analysis). The trajectory
tracking error of Tα is upper-bounded by the error induced
by the diffusion model, which is given by

∥Tα(x̂0(xt, t))− Tα(x0)∥ ≤ O(∥x̂0(xt, t)− x0∥), (5)

where || · || is the L2 norm and O denotes a term of the same
infinitesimal order. Moreover, it converges to zero as t→ 0.

The proof is provided in Appendix B.1. Next, to leverage
TTM during sampling for guiding the denoising direction
via pixel-level correspondence, the depth map must be inter-
polated to match the resolution of the latent space, resulting
in: Z ′

absolute = B(Zabsolute, h, w), where B represents
the bilinear interpolation function. And the visualization
results of trajectory tracking based on depth information
are provided in Appendix G. Unlike methods (Ye et al.,
2024; Kant et al., 2024; Zhou & Tulsiani, 2023; Li et al.,
2024b) that integrate epipolar geometry into multi-view
attention, MIRROR uniquely employs a more precise and
efficient point-to-point correspondence tracking strategy. As
shown in Fig. 4, we demonstrate that epipolar correspon-
dence establishes an inaccurate relationship, thus introduces
irrelevant background features, leading to overly smooth
rectification that lacks detail and the Janus problem. In
contrast, MIRROR-rectified images maintain higher fidelity
and visual quality.

4.3. Feature Rectification Module

Feature Scrutiny. To maintain the continuity of pixel-wise
feature information and in consideration of potential biases
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Figure 4: Comparison of the rectification results between the
epipolar correspondence method and MIRROR. For better
presentation, the background of each image is removed.

in depth information estimation, we adopt a more robust
approach, which extracts the most relevant corresponding
features from adjacent views, thereby delivering a more
precise direction for consistency rectification. Specifically,
for each spatial point u in the current view, we select not
only its corresponding point uα, but also the surrounding
3× 3 block in adjacent views, making a total of nine points,
denoted as Buα , as the feature interaction block for point
u. This method is figuratively described as the ”looking
forward and back” feature scrutiny approach, emphasizing
a comprehensive examination of the contextual area.

Feature Information Fusion. As mentioned in the introduc-
tion, we directly utilize the predicted map ẑ0 = ẑ0(zt; t):

ẑ0 =
zt −

√
1− αt εθ(zt, t)√

αt
, ẑ0 ∈ RF×h×w×c, (6)

from each reverse step t as feature tensors, rather than ex-
tracting features from the intermediate layers of the UNet
network. Our approach offers a simpler and more effective
method of feature extraction, providing superior pixel-level
alignment at the same time. Since the interaction block Buα

may contain invalid background information, we employ
a feature information fusion method based on both posi-
tive and negative anchors. The target correction point u of
the current view is selected as the positive anchor Rpos(u),
while the mean of the four corners serves as the negative an-
chor Rneg(u). We calculate the cosine similarity between
points in the feature interaction block Buα

and dual an-
chors, Rpos(u) and Rneg(u). Subsequently, compute the
weighted map W , where higher values indicate closer dis-
tance to the positive anchor Rpos(u) and greater distance
from the negative anchor Rneg(u):

W = m+softmax
(
C+(u,v)

)
+ m−softmax

(
C−(u,v)

)
,

(7)
for all v ∈ Buα , where m± denote the combined coeffi-
cients satisfying m+ +m− = 1, and C±(u,v) refer to

C+(u,v) = Cosine Similarity (Rpos(u),v) ,

C−(u,v) = 1− Cosine Similarity (Rneg(u),v) .
(8)

Given the weighted map W , the feature interaction block

can be fused as a mapping M : V → V , where M is
defined by

M(Zα(uα)) ≜
∑

v∈Buα

Wv × Zα(v). (9)

This approach is strategically designed to distance the fused
feature points from irrelevant background and enhance their
relevance to the target correction point u.

Rectification Formulation. At first, We can define the ad-
jacent operator Fα and use its L2-norm to measure the
difference between two different views as follows.

Definition 4.3. The operator Fα : V → V is referred to as
the adjacent operator, and is defined as

Fα ≜ I −M ◦ Tα,

where I denotes the identity operator on space V , andM
and Tα is defined in Eq. (9) and Definition 4.1, respectively,
with ◦ indicating the composition of operators. Note that the
composition operatorM◦T is a group homomorphism (de-
tailed in Appendix B.4). Then, the correction loss function
of the spatial point u is given by:

Lα(u) ≜ ∥Fα(Z(u))∥22 = ∥(I−M◦Tα)(Z(u))∥22. (10)

Specifically, for each view i, we apply Lα to the feature
map ẑ

(i)
0 (u; t) at each point u, derived from Eq. (6), for

time step t. We use one preceding and one subsequent view
as reference neighboring views for adjustments. The loss
function is formulated as:

Li(u; t) =
∑
j∈Ai

ωj ∥ẑ(i)0 (u; t)−M(j) ◦ Tα(ẑ(i)0 (u; t))∥22,

(11)
where Ai = [i − 1, i + 1]\{i} denotes the set of adjacent
views for the i-th view, {ωj} are the weighted coefficients
that

∑
ωj = 1, andM(j) represents the feature interaction

block for the j-th view. Now, we can calculate the gradient
of the loss Li(u; t) with respect to z

(i)
t (u) at each spatial

point u across all views to get a gradient map denoted as
∇ztLt ∈ RF×h×w×c. We then use the gradient map to
rectify the denoising direction (detailed in Appendix B.2) at
each time step t, formulated as:

ε̂θ(zt, t)← εθ(zt, t) + s(t)
√
1− αt∇ztLt, (12)

where s(t) is the rectification scale with respect to t. Due
to the high computational cost and time when calculating
the UNet Jacobian ∂εθ

∂zt
during gradient computation, we

theoretically (detailed in Appendix B.3) and experimentally
(detailed in Appendix D) show that neglecting the UNet Ja-
cobian term causes negligible changes in rectification results.
The following theorem provides a specific explanation.
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Figure 5: Qualitative Results. The images at the top are multi-view images generated by each baseline, while those at the
bottom showcase the consistency rectification achieved through MIRROR. For easier observation, some areas with Janus
Problem or content drifting are marked with red circles. For visual consistency, we replace the gray background of the
generated images from text prompts with a pristine white one.

Theorem 4.4. In the denoising process, the rectification
error induced by neglecting the UNet Jacobian term, has an
upper bound controlled by a constant γ, formulated as

∥∇ztLt −
1√
αt
∇ẑ0Lt∥ ≤ γ, (13)

and this error converges to zero as t→ 0.

Therefore, we can rewrite the rectification formula Eq. (12):

ε̂θ(zt, t)← εθ(zt, t) + s(t)

√
1− αt√
αt
∇ẑ0Lt, (14)

where ∇ẑ0Lt denotes the gradient map with respect to ẑ0.
We demonstrate that Eq. (14) achieves nearly a twofold
speedup compared to Eq. (12) (Tab. 2), enabling faster rec-
tification without sacrificing the quality of the generation.
The rectified noise ε̂θ is then subsequently fed into Eq. (2) to
carry out the sampling procedure utilized in standard DDIM
(Song et al., 2020), but with the rectified noise predictions.

5. Experiments
5.1. Experimental Setup

Baselines. In this section, we conduct experimental eval-
uations based on image-based and text-based multi-view
generation tasks. For image-based tasks, we choose Sync-
Dreamer (Liu et al., 2023b), MVD-Fusion (Hu et al., 2024),
and VideoMV (Zuo et al., 2024) as our baselines. For text-
based tasks, we adopt VideoMV as baseline method. Each
method provides a pretrained multi-view model for generat-
ing multiple views from a single image or a text prompt.

Metrics. Building on these baselines, we quantitatively
evaluate performance using metrics including PSNR, SSIM
(Wang et al., 2004), and LPIPS (Zhang et al., 2018). We also
report Clip-Score for both image-based and text-based gen-
eration tasks to evaluate the alignment between generated
images and the corresponding input.

7



MIRROR: Make Your Object-Level Multi-View Generation More Consistent with Training-Free Rectification

Stage2 + Rectification (ours)Stage1 (baseline) Stage1 + Rectification Stage2
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Figure 6: Ablation Study on the Two-Stage Rectification Process. Results generated using baseline methods often exhibit
severe Janus Problem. Attempts to rectify these directly at stage 1, as well as outcomes from a two-stage baseline process,
have proven inadequate in resolving these issues. In contrast, our method significantly reduces these inconsistencies.

Implementation Details. We implement MIRROR on top
of the baseline models discussed earlier in this section. This
integration of the rectification process occurs exclusively
during the inference phase, thereby obviating the need for
any supplementary training or fine-tuning. Given that TTM
relies on depth guidance, we employ the state-of-the-art
monocular depth estimation model, Depth-Anything-V2-
Small (Yang et al., 2024), to generate depth information. We
also provide an ablation study on alternative depth guidance
methods, as detailed in Appendix E, and demonstrate that
MIRROR’s performance improves with the advancement
of depth estimation models. Following baselines, we use
NeuS (Wang et al., 2021) for 3D reconstruction. Although
calculating the UNet Jacobian in Eq. (12) is time-consuming
and significantly increases inference time, our method, as
described in Eq. (14), shows that by omitting this term and
integrating MIRROR into the baseline models, the inference
time is considerably reduced. As shown in Tab. 2, our two-
stage sampling process is completed in just a few minutes.
Additional experimental details are provided in Appendix C.

5.2. Comparison with Baseline Methods

We implement MIRROR across diverse open-source multi-
view diffusion models and carry out both quantitative and
qualitative comparisons.

Qualitative Analysis. For image-based generation, Fig. 5
clearly illustrate that although baseline models can produce
plausible views from angles near the input perspective, they
exhibit inconsistencies (Janus Problem and content drift) in
lateral and rear views, along with undesirable indentations,
and misalignments. Fig. 5 shows that text-based genera-
tion of VideoMV also suffers from low-quality outcomes
with undesirable artifacts and inconsistencies, such as an
‘elephant’ with multiple trunks and missing legs, and a
‘chameleon’ without a head. By comparison, incorporat-
ing MIRROR into these baselines successfully resolves the
prominent artifacts and multi-face issues encountered in
baselines, as observed in Fig. 1 and Fig. 5, which not only

Table 1: Quantitative Comparison with Baselines. Image-
based and text-based generation results are evaluated on
GSO (Downs et al., 2022) and T3Bench (He et al., 2023)
datasets, respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓ ClipS ↑
SyncDreamer 18.75 0.739 0.198 76.60
+MIRROR (ours) 19.37 0.794 0.172 78.28

MVD-Fusion 18.90 0.785 0.172 68.66
+MIRROR (ours) 20.15 0.801 0.168 71.52

VideoMV (image-based) 17.64 0.755 0.197 71.77
+MIRROR (ours) 18.26 0.793 0.176 73.30

VideoMV (text-based) 21.67 0.814 0.206 26.96
+MIRROR (ours) 24.82 0.898 0.115 32.78

enhances consistency but also significantly improves quality
and geometric fidelity, clearly surpassing all baseline results.
More results are provided in Appendix K.

Quantitative Analysis. The quantitative results in Tab. 1
are in strong concordance with the visualization outcomes.
Incorporating MIRROR significantly boosts 3D consistency-
related metrics (PSNR, SSIM, and LPIPS) over all baseline
methods, clearly demonstrating notable enhancements in
consistency and quality for multi-view generation. More-
over, we calculate the average CLIP score between gen-
erated images and the input, and we observed a marked
increase in it, indicating stronger alignment between the
generated content and the input. Moreover, 3D reconstruc-
tion metrics are also reported in Appendix C.4.

Inference Time. Our experiments are conducted using a
single NVIDIA L40S GPU, with the two-stage sampling
process completing in just a few minutes. Notably, incorpo-
rating MIRROR into the baseline models does not result in
a substantial increase in computational load or processing
time. We test the inference time of the baseline methods
and the methods with MIRROR applied, as shown in Tab. 2.
Although the computation of the UNet Jacobian is time-
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Table 2: Inference Time of Baseline Models and Their MIRROR-Enhanced Versions. The time multiples relative to the
baseline are shown in parentheses.

Models Baseline MIRROR
(w. UNet Jacobian)

MIRROR (ours)
(w/o UNet Jacobian)

SyncDreamer 16 s 91 s (×5.7) 43 s (×2.7)
MVD-Fusion 20 s 112 s (×5.6) 52 s (×2.6)
VideoMV (image-based) 22 s 103 s (×4.7) 64 s (×2.9)
VideoMV (text-based) 34 s 154 s (×4.5) 98 s (×2.9)

Baseline w/o Depth Guidance Ours

An elephant 
wearing a 

red scarf, 3D 
asset.

A DSLR 
photo of a bear 
in medieval 
armor, 3D 

asset.

Input

Figure 7: Ablation Study on Depth Guidance. TTM without
depth guidance exhibits errors in correspondence, leading
to unsatisfactory and inconsistent results.

A DSLR photo of 

the Imperial State 

Crown of England, 
3D asset.

No anchors OursOnly positive anchors Only negative anchorsInput

Figure 8: Ablation Study on Dual-Anchor-Based Fusion.
Alternative methods yield suboptimal results, while the dual-
anchor-based method (ours) markedly reduces background
interference and improves the continuity of local features.

consuming (w. UNet Jacobian), increasing the inference
time by 4.5 to 5.7 times compared to the baselines, our
method demonstrates that the UNet Jacobian term can be
omitted, leading to a significant reduction in inference time,
with only a 2.6 to 2.9 times increase (w/o UNet Jacobian).
This computational cost is still minimal when compared to
training-based methods, enabling the generation of high-
quality dense images within minutes.

5.3. Ablation Study

Two-Stage Rectification Process. Fig. 6 highlights that
replacing our two-stage rectification process with a single-
stage correction (the second column) fails to resolve the
Janus problem evident in baselines, as inaccuracies in depth
extraction lead to deformed ‘horse’ and ‘elephant’ models
with missing or unrealistic features. And relying solely on a
two-stage denoising process without rectification (the third
column) still leads to inconsistencies. Conversely, MIR-

ROR utilizes depth information from the initial denoising
stage for more accurate tracking and rectification in the
subsequent stage, which significantly improves multi-view
consistency and model fidelity, as shown in the final column.

Depth Guidance. Within TTM, our approach leverages
depth information to obtain more accurate spatial corre-
spondences between different viewpoints. However, in the
absence of depth guidance (i.e., z = 0 in Eq. (4)), it fails to
precisely establish correspondences between adjacent views,
leading to unsatisfactory results, as depicted in the second
column of Fig. 7, with the missing head in the first row and
content drift problem of ‘red scarf’ in the second row.

Dual-Anchor-Based Fusion. To validate our method’s ef-
fectiveness and generalizability, we conducte ablation stud-
ies on multi-view generation against white and gray back-
grounds. Our findings, detailed in Fig. 8, show that moving
away from a dual-anchor approach to using average pool-
ing or single-anchor feature fusion leads to various issues.
Specifically, omitting the anchor-based approach results in
excessive saturation and discontinuity in details, while using
only positive anchors improve local feature precision but is
prone to background interference. Sole reliance on negative
anchors minimizes distractions but lacks focus on essential
target characteristics. Conversely, our integrated approach,
which combines positive and negative anchors, substantially
enhances relevant detail attention and consistency, thereby
outperforming other methods. More ablation study results
are provided in Appendix J.

6. Conclusions
In this paper, we introduce MIRROR, a novel plug-and-play
technique that effectively resolves inconsistencies in 3D
geometry and artifacts in diffusion-based multi-view gener-
ation without training. Using trajectory tracking and feature
rectification modules, MIRROR successfully enhances the
photorealism of synthesized images across views. Gen-
eralization evaluations confirm MIRROR’s compatibility
with various multi-view diffusion models, making it a uni-
versal correction tool that markedly improves generation
consistency and fidelity, thereby delivering higher-quality
multi-view images for 3D asset reconstruction.
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A. Appendix Overview
In the appendix, we provide the following supplementary material to support the main text:

• Derivation and Proofs (Appendix B);

• Additional Implementation Details (Appendix C);

• Convergence and Stability Analysis of MIRROR (Appendix D);

• Depth Guidance (Appendix E);

• Discussion with Multi-View Depth Estimation (Appendix F);

• Correspondence Visualization of Trajectory Tracking Transformation (Appendix G);

• Discussion with Point Tracking Method (Appendix H);

• Limitations and Future Work (Appendix I);

• More Ablation Studies (Appendix J);

• More Results (Appendix K);

• Failure Cases (Appendix L).

B. Derivation and Proofs
B.1. Proof of Proposition 4.2

Proof. Based on Definition 4.1 of TTM, the trajectory tracking error between the predicted image x̂0(xt, t) and the true
image x0 can be scaled as:

∥Tα(x̂0(xt, t))− Tα(x0)∥2 ≤ ∥uα(x̂0(xt, t))− uα(x0)∥2 ≤ r2∥H(x̂0(xt, t))−H(x0)∥2 (15)

Using the first-order Taylor expansion, we obtain:

H(x0) = H(x̂0(xt, t)) +∇H(x0)(x0 − x̂0(xt, t)) + o(∥x0 − x̂0(xt, t)∥), (16)

where o represents a higher-order infinitesimal. AndH is a pretrained ViT network with a continuous, bounded gradient that
outputs scale-consistent absolute depth, showing that the depth-level error is of the same order as the pixel-level error:

∥H(x̂0(xt, t))−H(x0)∥ ≈ ∥∇H(x0)(x0 − x̂0(xt, t))∥ ≃ O(∥x0 − x̂0(xt, t)∥). (17)

Then, substituting Eq. (17) into Eq. (15) results in the following inequality:

∥Tα(x̂0(xt, t))− Tα(x0)∥2 ≤ O(∥x̂0(xt, t)− x0∥2). (18)

Moreover, note that the right side of the inequality Eq. (18) is equivalent to the Kullback-Leibler (KL) divergence between
forward process posteriors q and reverse process posteriors estimation pθ of diffusion process:

O(∥x̂0(xt, t)− x0∥2) ≃ KL(q(xt−1|xt, x0)||pθ(xt−1|xt)), (19)

since both terms represent the training objective of the diffusion model. Therefore, in the inference process, the trajectory
tracking error is controlled by the diffusion model, which has a finite upper bound. Besides, as t decreases, the predicted
image x̂0(xt, t) approaches the clean image x0, causing the error to converge to zero.
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B.2. The Derivation of the Rectification Formula Eq. (12)

According to Bayes’ Theorem, the objective function can be decomposed into the following two terms:

∇zt log pθ(zt|c) = ∇zt log pθ(zt) +∇zt log pθ(c|zt), (20)

where c denotes the azimuth angles of the cameras in the multi-view images. Furthermore, since pθ is a Gaussian distribution,
the transformation relationship between the score function and the denoiser of the diffusion model can be easily derived, i.e.,

∇zt log pθ(zt) = −
1√

1− αt
εθ(zt, t). (21)

According to Eq. (20) and Eq. (21), we can derive the following expression:

εθ(zt, t, c) = εθ(zt, t)−
√
1− αt∇zt log pθ(c|zt). (22)

By substituting the exponential form of the loss function, exp(−Lt), into Eq. (22), the rectification formula of the denoising
direction is derived as follows:

ε̂θ(zt, t, c)← εθ(zt, t) + s(t)
√
1− αt∇ztLt, (23)

where s(t) is the rectification scale with respect to t. For brevity, ε̂θ(zt, t, c) is denoted as ε̂θ(zt, t) in the main paper.

B.3. Proof of Theorem 4.4

Proof. First, by applying the chain rule, the gradient∇ztLt can be expanded as follows:

∇ztLt =
∂ẑ0
∂zt
∇ẑ0Lt =

1√
αt

(1−
√
1− αt

∂εθ
∂zt

)∇ẑ0Lt, (24)

with ∂εθ
∂zt

being the UNet Jacobian of the diffusion model. When the UNet Jacobian term is neglected, the gradient error
between the two terms can be expressed as:∥∥∥∥∇ztLt −

1√
αt
∇ẑ0Lt

∥∥∥∥ =

√
1− αt√
αt

∥∥∥∥∂εθ∂zt
∇ẑ0Lt

∥∥∥∥ . (25)

Note that as t decreases, the noise εθ(zt, t) becomes increasingly independent of the data distribution, causing the UNet
Jacobian term to converge to zero as t→ 0. Then, ∥∂εθ∂zt

∇ẑ0Lt∥ → 0 as t→ 0. Therefore, there exists a constant γ such

that ∥∂εθ∂zt
∇ẑ0Lt∥ ≤ γ, for all t. Moreover, since the coefficient

√
1−αt√
αt
∈ [0, 1], the gradient error of Eq. (25) has a finite

upper bound.

Furthermore, after individually rectifying the noise estimation based on the two gradients in Eq. (12) and Eq. (14),
respectively, the error of zt−1 obtained through sampling process also converges to zero as t decreases. The detailed
derivation process is as follows:∥∥∥z(zt)t−1 − z

(ẑ0)
t−1

∥∥∥ =

∥∥∥∥∥
(√

αt−1

(
zt −

√
1− αt ε̂

(zt)
θ√

αt

)
+
√
1− αt−1 ε̂

(zt)
θ

)

−

(√
αt−1

(
zt −

√
1− αt ε̂

(ẑ0)
θ√

αt

)
+
√
1− αt−1 ε̂

(ẑ0)
θ

)∥∥∥∥∥
=

∣∣∣∣√αt−1

√
1− αt√

αt
−
√
1− αt−1

∣∣∣∣ · ∥∥∥ε̂(zt)θ − ε̂
(ẑ0)
θ

∥∥∥
=s(t)

∣∣∣∣√αt−1(1− αt)√
αt

−
√
(1− αt−1)(1− αt)

∣∣∣∣ · ∥∥∥∥∇ztLt −
1√
αt
∇ẑ0Lt

∥∥∥∥
=s(t)

√
1− αt√
αt

∣∣∣∣√αt−1(1− αt)√
αt

−
√
(1− αt−1)(1− αt)

∣∣∣∣ · ∥∥∥∥∂εθ∂zt
∇ẑ0Lt

∥∥∥∥
≤γ · A(t), (26)

where the superscripts (zt) and (ẑ0) correspond to the two gradient correction methods in Eq. (12) and Eq. (14), respectively.

And the coefficient A(t) = s(t)
√
1−αt√
αt

∣∣∣∣√αt−1(1−αt)√
αt

−
√

(1− αt−1)(1− αt)

∣∣∣∣→ 0 as time step t→ 0.
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Algorithm 1 Framework of MIRROR
Input: a single image or a text prompt c
Pretrained baseline model: BM
Parameter: rectification scale s(t) with respect to t
Output: multi-view consistent images x̂0

1: zT ← sample from N (0, I)
2: zt ← zT .
3: for t = T, T − 1, · · · , 1 do
4: εθ ← BM(zt, c, t).
5: zt−1 ← DDIM(zt, εθ)
6: end for
7: x̂0 ← D(z0).
8: Z ′

absolute ← DEPTH ESTIMATION(x̂0).
9: zT ← DDIM INV ERSION(z0,BM, T, c).

10: zt ← zT .
11: for t = T, T − 1, · · · , 1 do
12: εθ ← BM(zt, c, t).
13: Lt ← ∥Fα(zt,Z ′

absolute)∥22.
14: ε̂θ ← εθ + s(t)

√
1−αt√
αt
∇ẑ0Lt.

15: zt−1 ← DDIM(zt, ε̂θ)
16: end for
17: x̂0 ← D(z0)
18: return x̂0

B.4. Group Homomorphism Property of OperatorM◦ Tα

To prove this property, we first establish the following lemma.

Lemma B.1. The trajectory tracking operator Tα is a group homomorphism. Specifically, for any α1, α2 ∈ R, it holds that:
Tα1 ◦ Tα2 = Tα1+α2 .

Proof. It is important to note that Tα represents a rotation operator of angle α around the y-axis within the special orthogonal
group SO(3), which can be expressed using the matrix exponential of the Lie algebra element associated with the rotation
group. Specifically, it is given by:

Tα = exp(αA), A =

0 0 −1
0 0 0
1 0 0

 . (27)

By leveraging the properties of the matrix exponential, we observe that the composition of two such rotation operators
results in a new rotation operator. That is, the combination of two rotations is given by:

Tα1 ◦ Tα2 = exp(α1A) · exp(α2A) = exp((α1 + α2)A) = Tα1+α2 . (28)

Therefore, the rotation operators Tα are closed under the operation of parameter addition, demonstrating the group property
of SO(3) with respect to the rotation angle.

Proposition B.2. For any α1, α2 ∈ R, the composition of two operatorsM◦ Tα1
andM◦ Tα2

adheres to the following
operational relation:

(M◦ Tα1
) ◦ (M◦ Tα2

) =M◦ Tα1+α2
. (29)

In other words,M◦ Tα is a group homomorphism.

Now, we proceed to prove Proposition B.2.
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T=10 T=20 T=50T=40T=30Input

Figure 9: Ablation Study on the Step T in DDIM Inversion. When T is too small, noise disrupts the sampling; too large, it
increases inference time. Therefore, after balancing inference time and generation quality, we set T = 50 .

Proof. It is important to observe that, since the operator Tα is solely dependent on the coordinates of the spatial points and
is independent of the feature values, it can be deduced that

(M◦ Tα1) ◦ (M◦ Tα2) =M◦ (Tα1 ◦ Tα2) =M◦ Tα1+α2 , (30)

where the second equality is derived from Lemma B.1.

C. Additional Implementation Details
C.1. Feature Rectification Module

In Algorithm 1, we systematically present the pseudocode for the entire rectification algorithm. Below are the parameter
selection strategies for several key parameters used in FRM. First, we have determined the weights for the fusion of positive
and negative anchors at (m+ = 0.5, m− = 0.5) based on empirical observations. Fig. 8 shows the (m+ = 1, m− = 0)
would cause grayish or bright tones and (m+ = 0, m− = 1) may fail to focus on the current point, leading to poor results.
To maintain general applicability, we chose (m+ = 0.5, m− = 0.5) as the robust option. Second, we define the rectification
scale s(t) to match the consistency gradient magnitude with εθ of each baseline. As geometric prototypes primarily develop
during the initial sampling stages of the inference process, with subsequent stages dedicated to refining detailed textures, it
is essential to focus on the early phases since we aim to adjust geometric shapes to address inconsistencies such as Janus
Problem. In the later stages, we intentionally decrease the correction scale to prevent overcorrection. Besides, based on
experimental observations, the first five denoising steps contain excessive noise, and applying the correction algorithm
during this stage leads to redundant information. Therefore, we start applying our correction algorithm after the fifth step.
Technically, we define the rectification scale s(t) as a gradient function dependent on t. Its specific form is given by Eq. (31)
for SyncDreamer and MVD-Fusion, and by Eq. (32) for VideoMV, and can be further adapted to accommodate different
models.

s(t) =



0.002, t ∈ (40, 45],

0.008, t ∈ (30, 40],

0.005, t ∈ (20, 30],

0.003, t ∈ (10, 20],

0.001, t ∈ [1, 10].

(31) s(t) =



0.005, t ∈ (40, 45],

0.024, t ∈ (30, 40],

0.015, t ∈ (20, 30],

0.008, t ∈ (10, 20],

0.003, t ∈ [1, 10].

(32)

Furthermore, adjustments per model are feasible. Third, the weights {ωj} in the rectification formulation of the adjacent
views, both preceding and succeeding, are assigned randomly, as the feature information provided by these two neighboring
views is considered equally important. Additionally, we acknowledge that camera parameter noise is unavoidable, but its
impact is minimal since the baselines were trained with standard parameters. To alleviate this, we employed block-based
trajectory tracking, using a 3× 3 block to fuse the corresponding features. While we experimented with larger windows, it
introduced excessive redundant information, ultimately affecting performance. Additionally, increasing the window size
further increased the computational load. As a trade-off between computation time and generation quality, we selected the
3× 3 block size.
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C.2. The Step of DDIM Inversion

The number of DDIM sampling and inversion steps is both set to T = 50. The number of DDIM sampling steps in the
two-stage process is kept the same as the baselines. And we have tried with different T for DDIM Inversion. As shown
in Fig. 9, when T is too small, the added noise becomes excessively coarse, negatively impacting the denoising process
in the second stage. Conversely, when T is too large, it significantly increases the overall inference time. Therefore, we
have settled on T = 50, which strikes a balance between maintaining high quality and ensuring computational efficiency,
consistent with the inference process steps.

C.3. Evaluation Datasets

For image-based generation, we evaluated 100 objects from Google Scanned Objects (GSO) (Downs et al., 2022) dataset,
using the 16, 16, and 24 views provided by SyncDreamer, MVD-Fusion, and VideoMV, respectively. Following text-based
generation in VideoMV, we used 100 single-object prompts from T3Bench (He et al., 2023), sampling half of the equidistant
views (12 views) for neural field reconstruction, employing them as pseudo ground truth for quantitative comparisons.

C.4. 3D Reconstruction

We follow the baseline SyncDreamer (Liu et al., 2023b) to utilize NeuS (Wang et al., 2021) for 3D reconstruction.
Specifically, the training process for one object consists of 10,000 steps with a warm-up of 100 steps and loss weights
λrgb = 0.5, λmask = 1.0, λeikonal = 0.1. We provide the commonly used Chamfer Distance (CD) and Volume IoU
between ground-truth shapes and reconstructed shapes in Tab. 3 to further validate the effectiveness of our method in
improving the quality and consistency of both multi-view images and 3D reconstruction.

Table 3: Quantitative Comparison with Baselines on 3D Reconstruction Metrics. Image-based and text-based generation
results are evaluated on GSO and T3Bench datasets, respectively.

Method Chamfer Distance ↓ Volume IoU ↑
SyncDreamer 0.042 0.514
+MIRROR (ours) 0.039 0.530

MVD-Fusion 0.033 0.602
+MIRROR (ours) 0.029 0.656

VideoMV (image-based) 0.031 0.643
+MIRROR (ours) 0.026 0.667

VideoMV (text-based) 0.046 0.538
+MIRROR (ours) 0.028 0.626

D. Convergence and Stability Analysis of MIRROR
We experimentally validate the convergence and stability of our algorithm on baseline methods. Firstly, as shown in Fig. 10
(a), we observe that as t decreases, the predicted noise ε̂θ rectified by MIRROR steadily decreases. Second, Fig. 10 (b) and
(c) demonstrates that both the loss gradient error of Eq. (25) and the error about zt−1 during one-step DDIM sampling of
Eq. (26), which are caused by neglecting the UNet Jacobian term, gradually converge to zero as t decreases. Furthermore,
Fig. 11 demonstrates that both rectification formulas effectively produce consistent multi-view images. Therefore, by
combining the results in Fig. 10 and Fig. 11, we can conclude that the error introduced by omitting the UNet Jacobian term
is negligible. Therefore, using Eq. (14) as the rectification formula is a more efficient and reasonable strategy.

E. Depth Guidance
We evaluated the performance of the current state-of-the-art monocular depth estimation method, Depth-Anything-V2 (Yang
et al., 2024) and an alternative method, MiDaS (Ranftl et al., 2020). Experimental results demonstrate that Depth-Anything-
V2 is the optimal choice for depth estimation in the TTM framework.
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(a) (b) (c)

Figure 10: Convergence and Stability Analysis of MIRROR. (a) The trend of predicted noise ε̂θ variation during the
inference process with MIRROR; (b) The convergence of gradient errors in Eq. (25); (c) The convergence of one-step DDIM
sampling errors in Eq. (26) when omitting the UNet Jacobian term during the inference process.

w/o
Unet Jacobian

w.
Unet Jacobian

Figure 11: Comparison of generated results with (w.) and without (w/o) considering the UNet Jacobian term, generated
from VideoMV (Zuo et al., 2024) rectified with MIRROR. Both rectification formulas are capable of generating multi-view
images with strong consistency.

First, we evaluate the error of Eq. (5) for depth estimation in TTM using three image-based baseline models, VideoMV (Zuo
et al., 2024), SyncDreamer (Liu et al., 2023b) and MVD-Fusion (Hu et al., 2024), with Depth-Anything-V2 on GSO dataset.
Fig. 12 (a) demonstrates that during the denoising process, the trajectory tracking error is minimal with the depth guidance
from Depth-Anything-V2 (DA2), and as t decreases from T to 0, it gradually converges to zero. Besides, Fig. 12 (b)-(d)
show the comparison of depth estimation errors for each baseline model using DA2 (blue) or MiDaS (orange). In particular,
in Fig. 12 (d), for MVD-Fusion, we also utilize the depth values predicted by its pretrained model to facilitate TTM, which
serves as the reference standard (green). It is noteworthy that the depth estimation error of DA2 is the smallest among all the
baseline methods.

Moreover, we also evaluate the qualitative results (Fig. 13) and quantitative metrics (Tab. 4) on VideoMV (Zuo et al., 2024)
rectified with MIRROR. using different monocular depth estimation models for guidance. We found that both the absence
of depth estimation and the use of the alternative MiDaS model introduced significant errors to TTM, resulting in 3D
inconsistency in the generated multi-view images. In contrast, when using DA2 for depth estimation, the generated results
were more consistent and achieved the best performance across all quantitative metrics.

F. Discussion with Multi-View Depth Estimation
We replaced Depth-Anything-V2 (DA2) with the multi-view depth estimator, DUSt3R (Wang et al., 2024a). As shown in
Tab. 5, DUSt3R does not significantly increase inference time but requires more memory, whereas DA2 incurs minimal
overhead. In low-memory environments (e.g., a single NVIDIA 3090 GPU), DUSt3R fails to run. While DUSt3R slightly
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(a)

(c)

(b)

(d)

Figure 12: Convergence Analysis of Depth Guidance Models. (a) shows that the trajectory tracking error is minimal with
Depth-Anything-V2 (DA2) guidance, converging to zero as t decreases. (b)-(d) compare the depth estimation errors of each
baseline model using Depth-Anything-V2 (DA2, blue) and MiDaS (orange). In (d), for MVD-Fusion, we additionally use
the depth values predicted by its pretrained model to facilitate TTM, which is set as the reference standard (green).

Baseline w/o Depth Guidance Depth-Anything-V2 (Ours)MiDaSInput

A paint 

splattered easel, 

3D asset.

A bright blue 

plastic swimming 

goggles, 3D asset.

Figure 13: Ablation Study on Depth Guidance Models: MiDaS vs. Depth-Anything-V2.

improves PSNR and LPIPS, SSIM and CLIP Score remain comparable to DA2. Visual results in Fig. 14 show marginal
improvement, but in some cases, DUSt3R underperforms DA2.

In summary, multi-view depth provides modest gains but with memory trade-offs. As depth estimation is independent of our
core contribution, these results—along with those in Appendix E—show that MIRROR can benefit from ongoing advances
in depth estimation.

19



MIRROR: Make Your Object-Level Multi-View Generation More Consistent with Training-Free Rectification

Table 4: Quantitative Ablation Study on Different Depth Guidance Methods.

Ablation Study PSNR ↑ SSIM ↑ LPIPS ↓ ClipS ↑
Baseline 21.67 0.814 0.206 26.96
w/o Depth Guidance 16.13 0.757 0.369 26.51
MiDaS 22.41 0.863 0.258 25.79
Depth-Anything-V2 (ours) 24.82 0.898 0.115 32.78

Baseline OursDUSt3RInput

A bear dressed 
as a lumberjack, 

3D asset.

A sleek 
stainless steel 

teapot, 3D asset.

Figure 14: Qualitative Comparison with multi-view depth estimation model DUSt3R (Wang et al., 2024a). The first row
shows that depth estimated with DUSt3R leads to more realistic generation results, while our DA2-based approach also
produces consistent and reasonable outputs. The second row presents a failure case of DUSt3R-based correction, where our
method successfully resolves the hand inconsistency in the baseline. We use the text-based model VideoMV for evaluation,
with details consistent with Appendix C.3.

G. Correspondence Visualization of Trajectory Tracking Transformation
In both image-based and text-based generation tasks, we employ the TTM method to track the correspondence of 3D
physical points across adjacent views, as illustrated in Fig. 15. TTM without depth guidance (z = 0 in Eq. (4)) exhibits
substantial correspondence errors. In contrast, the depth-guided TTM method achieves more precise correspondences,
thereby enhancing the outcomes of multi-view generation tasks.

H. Discussion with the Point Tracking Method
We incorporate the recent point tracking SOTA method, CoTracker3 (Karaev et al., 2024), as a substitute for TTM for
comparison. Tab. 6 shows that while CoTracker3 improves the baseline’s generation quality to some extent, the gains are
less significant than those achieved with TTM. Moreover, Fig. 16 shows CoTracker3 fails to resolve multi-face artifacts,
exhibiting noticeable inconsistencies such as multiple legs and misaligned heads, which TTM effectively mitigates. Both
quantitative and qualitative results demonstrate that TTM outperforms point tracking methods like CoTracker3 in addressing
multi-view inconsistency.

Table 5: Quantitative Comparison with multi-view depth estimation model DUSt3R (Wang et al., 2024a). Our experiments
are conducted using a single NVIDIA L40S GPU, with VideoMV (Zuo et al., 2024) serving as the baseline. There is a
trade-off between memory usage and performance between the two methods.

Ablation Study Time ↓ Memory Usage ↓ PSNR ↑ SSIM ↑ LPIPS ↓ ClipS ↑
Baseline 34 s 25.00 GB 21.67 0.814 0.206 26.96
DUSt3R 107 s (×3.15) 27.04 GB (+2.04) 25.09 0.865 0.109 30.82
DA2 (ours) 98 s (×2.89) 25.08 GB (+0.08) 24.82 0.898 0.115 32.78
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A bear dressed in medieval armor, 3d asset.

A pig wearing a backpack, 3d asset. An old vintage car, 3d asset.

A cute steampunk elephant, 3d asset.
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Figure 15: Correspondence visualization of TTM on both image-based and text-based generation. The upper rows illustrate
TTM without depth guidance, whereas the lower rows represent the depth-guided TTM. The depth-guided approach more
precisely identifies the correspondence of spatial points between adjacent views. For greater accuracy, readers are encouraged
to zoom in on the picture. The areas with the Janus Problem or content drifting are marked with red circles.
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Table 6: Quantitative Comparison of TTM and the point tracking method, CoTracker3 (Karaev et al., 2024). Notably, while
CoTracker3 provides slight improvements over the baseline across all metrics, our method achieves more significant gains.

Ablation Study PSNR ↑ SSIM ↑ LPIPS ↓ ClipS ↑
Baseline 21.67 0.814 0.206 26.96
CoTracker3 23.01 0.871 0.124 28.35
TTM (ours) 24.82 0.898 0.115 32.78

Baseline OursPoint Tracking (CoTraker3)Input

A DSLR photo 
of a bear 

dressed in 
medieval armor, 

3D asset.

An elephant 
wearing a red 

scarf, 3D asset.

Figure 16: Qualitative Comparison of TTM and the point tracking method, CoTracker3 (Karaev et al., 2024). We use
the text-based model VideoMV (Zuo et al., 2024) for evaluation, with details consistent with Appendix C.3. The second
column, based on CoTracker3, exhibits noticeable inconsistencies such as multiple legs and misaligned heads. In contrast,
our method effectively corrects these issues.

I. Limitations and Future Work
To ensure uniform multi-view coverage, all baseline models in our paper adopt a fixed elevation setting, and MIRROR
is similarly designed under this constraint. While this facilitates consistent geometric modeling and simplifies the corre-
spondence estimation across views, it inevitably limits the applicability of the method in scenarios requiring images from
diverse or freely varying viewpoints. This constraint becomes more pronounced in real-world applications where arbitrary
camera poses are often necessary. To address this, future work will explore integrating more powerful priors from recent
advances in free-viewpoint multi-view diffusion models, thereby extending our trajectory tracking approach to support
flexible viewpoint transformations and enhancing the generality of the method.

In addition, our current task setting focuses exclusively on object-level generation. Although this scope allows for
fine-grained consistency and controllability, it leaves out a broader class of problems centered around scene-level 3D
generation—an increasingly important direction in the field. Nevertheless, the core principles of MIRROR remain relevant.
We believe our approach provides valuable insights that can help bridge the gap toward scalable scene-level generation. To
enable MIRROR to handle such tasks, future work could incorporate layout-aware priors or explicit scene maps to better
account for larger spatial contexts and inter-object relationships.

Ultimately, we view MIRROR as a foundational step toward training-free rectification methods for more complex tasks such
as the generation of real-world environments, dynamic scenes, and deformable objects, where geometric consistency and
view correspondence remain essential yet challenging components.

J. More Ablation Studies
We conducted quantitative ablation studies on stages and dual anchors for the text-based generation task (VideoMV) using
50 prompts from T3Bench, comparing our method with alternative approaches, as shown in Tab. 7 and Tab. 8. In Tab. 7,
the first three rows correspond to ablation experiments on the two-stage strategy, while the last row shows the metrics for
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the results generated using our two-stage rectification. And in Tab. 8, the first three rows are ablation experiments on the
dual-anchor points, and the last row shows the metrics of our dual anchors design. The results of both tables demonstrate
that our method outperforms others across multiple metrics.

Table 7: Ablation Study Results on Stages.

Ablation Study PSNR ↑ SSIM ↑ LPIPS ↓ ClipS ↑
Stage 1 w/o Rec 21.67 0.814 0.206 26.96
Stage 1 w. Rec 12.03 0.668 0.469 23.35
Stage 2 w/o Rec 23.90 0.884 0.117 24.77

Stage 2 w. Rec
(ours) 24.82 0.898 0.115 32.78

Table 8: Ablation Study Results on Dual Anchors.

Ablation Study PSNR ↑ SSIM ↑ LPIPS ↓ ClipS ↑
No Anchors 24.56 0.782 0.165 27.36
Only Positive Anchors 23.27 0.877 0.140 28.15
Only Negative Anchors 24.13 0.854 0.122 28.69

Dual Anchors
(ours) 24.82 0.898 0.115 32.78

K. More Results
We present additional results demonstrating the application of MIRROR to rectify baseline models. SyncDreamer (Liu
et al., 2023b) and MVD-Fusion (Hu et al., 2024) can generate images from 16 distinct perspectives simultaneously, whereas
VideoMV (Zuo et al., 2024) is capable of producing 24 views in a single session. The reduced angle between adjacent
frames of VideoMV facilitates a more precise identification of view correspondences, thereby enhancing the accuracy of the
refinements. For image-based and text-based generation tasks, please refer to Fig. 17-19 and Fig. 20, respectively. Fig. 17
illustrates the generated results with SyncDreamer as the baseline. In the first two examples, the baseline model exhibits
significant issues with content drift. And the subsequent two examples display problematic geometric shapes. Fig. 18
displays the outcomes generated with MVD-Fusion as the baseline. All cases suffer from severe multi-view inconsistency in
the baseline. In Fig. 19, the first example exhibits the color drift issue on the ‘train’ of the baseline model. In the ‘teapot’
and ‘lunch bag’, the results generated by the baseline model show inconsistencies across multiple views in terms of shape.
And in the last example, it exhibits issues with multiple faces. Fig. 20, which utilizes VideoMV as the baseline model,
presents generated results based on text prompts that similarly struggle with a pronounced Janus Problem and low fidelity.
After refinement with MIRROR, the generated results significantly surpass all the baseline models. These figures illustrate
that our method markedly improves multi-view consistency through incremental refinements during the sampling process,
resulting in enhanced quality and superior accuracy.

L. Failure Cases
Some failure cases are presented in Fig. 21. When the baseline model fails to generate a reasonable geometric structure, is
severely flawed, or is completely inconsistent with the prompt, our method struggles to correct such fundamental errors, as
the expert priors we rely on are inaccurate. However, by changing the seed to generate well-formed geometric structures
from the baseline, this limitation can be mitigated to the greatest extent.
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Figure 17: Generated multi-view images by applying MIRROR on SyncDreamer for image-based diffusion rectification.
The areas with the Janus Problem or content drifting are marked with red circles.
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Figure 18: Generated multi-view images by applying MIRROR on MVD-Fusion for image-based diffusion rectification.
The areas with the Janus Problem or content drifting are marked with red circles.
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Figure 19: Generated multi-view images by applying MIRROR on VideoMV for image-based diffusion rectification. The
areas with the Janus Problem or content drifting are marked with red circles.
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Figure 20: Generated multi-view images by applying MIRROR on VideoMV for text-based diffusion rectification.
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3D asset.

+MIRROR (Ours)Input Baseline

Figure 21: Failure Cases for both image-based (SyncDreamer) and text-based (VideoMV) models.
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