
AI4HPC: Library to Train AI Models on HPC Systems
using CFD Datasets

Eray Inanc
Forschungszentrum Jülich
e.inanc@fz-juelich.de

Rakesh Sarma
Forschungszentrum Jülich
r.sarma@fz-juelich.de

Marcel Aach
Forschungszentrum Jülich

University of Iceland
m.aach@fz-juelich.de

Rocco Sedona
Forschungszentrum Jülich
r.sedona@fz-juelich.de

Andreas Lintermann
Forschungszentrum Jülich

a.lintermann@fz-juelich.de

Abstract

This paper introduces AI4HPC, an open-source library designed to integrate Ar-
tificial Intelligence (AI) models and workflows in High-Performance Computing
(HPC) systems for Computational Fluid Dynamics (CFD)-based applications. De-
veloped by CoE RAISE, AI4HPC addresses not only challenges in handling intri-
cate CFD datasets, model complexity, and scalability but also includes extensive
code optimizations to improve performance. Furthermore, the library encompasses
data manipulation, specialized ML architectures, distributed training, hyperpa-
rameter optimization, and performance monitoring. Integrating AI and CFD in
AI4HPC empowers efficient analysis of extensive and large-scale datasets. This
paper outlines the architecture, components, and potential of AI4HPC to accelerate
and augment data-driven fluid dynamics simulations and beyond, demonstrated by
showing the scaling results of this library up to 3,664 GPUs.

1 Introduction

Artificial Intelligence (AI) has tremendous potential to enhance data- and compute-driven methods in
domains such as Computational Fluid Dynamics (CFD). CFD simulations can be computationally
intensive, thus, require High-Performance Computing (HPC) resources. They usually produce
complex, large-scale datasets that need dedicated post-processing routines [1], providing many
opportunities for exploiting AI-driven methodologies. In various domains, it has already become a
common practice to apply AI techniques, which has shown remarkable results in the engineering
realm, such as in design and optimization tasks [2]. However, AI also faces challenges, especially in
demonstrating good scalability on HPC systems for compute and data-intensive tasks in processing
large datasets and generating complex and high-dimensional models.

To address these challenges, CoE RAISE1 has developed the open-source library AI4HPC2 that
aims to bridge the gap between CFD and AI by providing tools, methods, and code optimizations to
train Machine Learning (ML) models with complex and enormous CFD datasets on large-scale HPC
systems. AI4HPC consists of five main components:

1. Data manipulation methods (preprocessing, augmentation, normalization) for CFD datasets.

1CoE RAISE https://www.coe-raise.eu
2AI4HPC https://www.ai4hpc.com

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Systems
(WANT@NeurIPS 2023).

https://www.coe-raise.eu
https://www.ai4hpc.com


2. ML architectures (compression, generative, regression networks) for CFD use cases.
3. Interchangeable communication libraries to handle distributed training on HPC systems.
4. HyperParameter Optimizations (HPO) tool capable of scaling to large HPC systems.
5. Monitoring and performance benchmarking tool.

This paper introduces the design and implementation of AI4HPC and its features and functionalities.
Also, the scalability of AI4HPC on an HPC system is presented. This paper shows that AI4HPC can
enable efficient and effective AI training with CFD dataset on HPC platforms.

2 Compilation and design

AI4HPC is available in an open-access repository, which can be cloned with the following command.

git clone https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc

The following code snippet provides the manual to compile AI4HPC.

python setup.py --help

The setup script of AI4HPC only depends on a recent Python version (3.10 or later). At this stage, the
setup script is already pre-configured for five HPC systems, i.e., for the Jülich Wizard for European
Leadership Science (JUWELS) [3], Jülich Research on Exascale Cluster Architectures (JURECA) [4],
the Dynamical Exascale Entry Platform – Extreme Scale Technologies (DEEP-EST) [5] systems
at the Jülich Supercomuting Centre (JSC), the CTE-AMD3 system at Barcelona Supercomputing
Center (BSC), and the Large Unified Modern Infrastructure (LUMI)4 system at IT Center for
Science (CSC). Moreover, configuring AI4HPC for other HPC systems is trivial and straightforward.

AI4HPC is based on PyTorch with Python as the host language and uses the Distributed Data
Parallelization (DDP) strategy to train models on large CFD datasets. DDP splits and distributes
the data among various devices, e.g., Central Processing Units (CPUs), Graphics Processing Units
(GPUs), or Intelligent Processing Units (IPUs). It synchronizes the model parameters using one of
four open-source external libraries, i.e., the standard communication package of PyTorch (PyTorch-
DDP), Horovod [6], DeepSpeed [7], or HeAT [8]. The libraries PyTorch-DDP and HeAT use
the NVIDIA Collective Communications Library (NCCL) by NVIDIA or Gloo by Facebook for
communication. Horovod and DeepSpeed uses Message Passing Interface (MPI) for inter-node
and NCCL for intra-node communication. AI4HPC gives users the alternative to choose the best
communication library for different systems. It also supports computation and communication
overlap, meaning that gradient computation and exchange can happen simultaneously. This can
speedup the training by using multiple CUDA operations. AI4HPC also uses an elastic launch strategy
to adjust the number of devices dynamically and works with the SLURM scheduler.

AI4HPC uses external libraries for input, output, and post-processing. For input datasets in HDF5
format, NumPy-based methods are used and converted to PyTorch tensors. The standard PyTorch
checkpointing operation saves the model state of the first device.

3 Components and optimizations

AI4HPC consists of separate modules for ML models, data loading routines, parsable variables, and
post-processing routines. This way, the backbone of AI4HPC does not need to be modified when
extending this framework for individual cases. The following two subsections describe two important
modules and how they operate. This is followed by two important issues tackled by AI4HPC, i.e.,
training error definition and the large minibatch size problem. The last two subsections introduce the
HPO and monitoring tools.

3.1 Models

AI4HPC includes several state-of-the-art ML architectures tailored to CFD problems. Due to the
limited length of this paper, the following architectures are briefly explained: (i) Convolutional

3CTE-AMD https://www.bsc.es/innovation-and-services/technical-information-cte-amd
4LUMI https://www.lumi-supercomputer.eu

2

https://www.bsc.es/innovation-and-services/technical-information-cte-amd
https://www.lumi-supercomputer.eu


AutoEncoders (CAEs) are Deep Learning (DL) methods that perform dimensionality reduction using
convolutional filters, which can effectively reduce the local disk space requirements of a CFD field; (ii)
Convolutional Defiltering Models (CDMs) are based on Diffusion Probabilistic Models (DPMs) and
are used for super-resolution tasks, generating highly-resolved CFD fields from low-resolution data;
(iii) Convolutional AutoEncoder - Prediction Networks (CAE-PNs) are types of CAEs combined with
a Convolutional Neural Network (CNN) to predict a quantity of interest, e.g., the total power-saving of
an actuated airfoil (as in [1]) as a function of operational conditions; and (iv) Flow Transformers (FlTs)
predict the next time-step of input, this way, expensive time integration methods can be replaced.

3.2 Data loader

AI4HPC consists of a specific multi-process dataloader, which can process datasets with irregular
dimensions. The large input is primarily reshaped into smaller patches, where each patch is treated as
a batch. This way, irregular CFD grids (e.g., non-equidistant meshes) can be handled effortlessly. For
faster input, the data transfer between the CPU (as host) and the GPU (as device) uses page-locked
(or pinned) memory; thus, cudaMemcpy operations can be skipped.

3.3 Training error

The training error in CFD problems is usually based on predicting a tensor field instead of a classifiable
target. To account for this, AI4HPC uses a training error computed using the Mean-Squared Error
(MSE) between the reference and the reconstructed fields [9]. As each device in the DDP strategy
has its own share of training data resulting in corresponding training errors, AI4HPC averages the
error across all devices using an allreduce operation.

3.4 Large minibatch size problem

Two approaches to circumvent the issue of large minibatch sizes are implemented in AI4HPC. Briefly,
this problem occurs as each device has its own batch, named microbatch. The total minibatch size of
the training becomes the sum of the microbatch sizes over the total number of devices. Therefore, the
minibatch size increases since training data is distributed across multiple resources in data parallelism,
impacting the model’s accuracy [10]. AI4HPC provides solutions to this problem by using either (i)
the Adaptive Summation (AdaSum) algorithm [11] or (ii) scaling the learning rate with the number
of devices.

3.5 Hyperparameter Optimization tool

Optimizing the hyperparameters is an important aspect of an ML training. AI4HPC includes a
scalable HPO tool that optimally performs such tasks using HPC resources. This is done by the Ray
Tune library5 that features a smooth integration of PyTorch-based training scripts and enables two
stages of parallelism: (i) run each trial (model with different hyperparameters) in parallel on multiple
GPUs using the DDP strategy, and/or (ii) run several trials in parallel on an HPC system (via Ray
Tune itself).

3.6 Monitoring tools

The performance of AI4HPC can be monitored using NVIDIA’s system-wide performance analysis
tool Nsight API6 and PyTorch’s standard profiler. AI4HPC also prints important performance metrics
to the standard output file, such as the epoch runtimes, loss, or memory print. GitLab’s CI routines
are also implemented that continuously compile and benchmark AI4HPC.

4 Benchmarks

The benchmarking tool of AI4HPC is run on JUWELS up to 916 compute nodes, which is equivalent
to parallel usage of 3,664 NVIDIA A100s7. The scaling behavior results are shown in Fig. 1. Here,

5Ray Tune https://docs.ray.io/en/latest/tune/index.html
6Nsight API https://developer.nvidia.com/nsight-perf-sdk
7NVIDIA A100 https://www.nvidia.com/en-us/data-center/a100

3

https://docs.ray.io/en/latest/tune/index.html
https://developer.nvidia.com/nsight-perf-sdk
https://www.nvidia.com/en-us/data-center/a100


4 128256 512 1,024 2,048 2,400 3,072 3,664
1
32
64

128

256

512

600

768

916

GPUs

Sp
ee

du
p

AI4HPC
Ideal

Figure 1: Results of the benchmarking tool of AI4HPC run on JUWELS up to 916 compute nodes
(3,664 NVIDIA A100s). The U-Net architecture with over 52 million trainable parameters that
occupies 36 GB memory is trained with synthetically created CFD dataset. The black-dashed line
depicts the ideal speedup.

U-Net architecture [12] for super-resolution purposes with over 52 million trainable parameters that
occupy 90% of available GPU memory per device (36 GB / 40 GB) is trained with synthetically
created CFD dataset (i.e., input/output routines are disabled) using AI4HPC with Horovod’s commu-
nication backend. The benchmark shows that a speedup of 881.92 (maximum theoretical speedup is
916) is achieved with 3,664 GPUs in parallel, where the training with 4 GPUs is used as the baseline.
This leads to a scaling efficiency higher than 0.96. Note that this scaling performance is only possible
with a significantly large dataset. Using small datasets would suffer from a communication bottleneck
due to insufficient data per device.

Moreover, the code optimizations implemented in AI4HPC to leverage the HPC system’s performance
drastically reduce the training runtimes. Current tests show that a factor of 10 speedup is achieved
compared to the non-optimized frameworks (not shown for brevity).

5 Conclusion

This paper presented AI4HPC, which empowers researchers and engineers to effectively harness AI
techniques for complex CFD datasets on HPC systems. The components of the library include data
manipulation methods, ML architectures, communication libraries, HPO techniques, and performance
monitoring tools, which collectively contribute to a holistic solution.

The successful implementation and deployment of AI4HPC are demonstrated through its integration
with leading HPC systems and its compatibility with diverse communication libraries. This inter-
operability optimally utilizes the capabilities of various hardware devices, enabling efficient device
management. Furthermore, AI4HPC’s ability to handle non-equidistant CFD grids and training errors
unique to CFD problems showcases its adaptability and sophistication.

The presented benchmarks on the JUWELS system highlight AI4HPC’s scalability and performance
enhancements. The remarkable speedup achieved on up to 3,664 GPUs with a scaling efficiency
of 0.96 emphasizes the ability of the library to leverage the computational resources efficiently,
ultimately leading to a substantial reduction in training runtimes.

In essence, AI4HPC emerges as a pivotal contribution to the fields of AI, CFD, and HPC. As
these fields continue to evolve, AI4HPC holds the potential to play a transformative role in driving
cutting-edge research and applications in compute- and data-driven fluid dynamics and beyond.

4



Acknowledgements

The research leading to these results has been conducted in the CoE RAISE project, which receives
funding from the European Union’s Horizon 2020 – Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733. We acknowledge the EuroHPC Joint
Undertaking for awarding this project access to the EuroHPC supercomputer LUMI, hosted by CSC
(Finland) and the LUMI consortium.

References
[1] M. Albers, P. S. Meysonnat, W. Schröder, Actively reduced airfoil drag by transversal surface

waves, Flow Turbul. Combust. 102 (4) (2019) 865–886. doi:10.1007/s10494-018-9998-z.

[2] S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu.
Rev. Fluid Mech. 52 (1) (2020) 477–508. doi:10.1146/annurev-fluid-010719-060214.

[3] D. Krause, JUWELS: modular tier-0/1 supercomputer at the Jülich Supercomputing Centre, J.
of Large-Scale Research Facilities 5 (A135). doi:10.17815/jlsrf-5-171.

[4] Jülich Supercomputing Centre, JURECA: data centric and booster modules implementing
the modular supercomputing architecture at Jülich Supercomputing Centre, J. of Large-Scale
Research Facilities 7 (A182). doi:10.17815/jlsrf-7-182.

[5] E. Suarez, A. Kreuzer, N. Eicker, T. Lippert, The DEEP-EST project, Schriften des
Forschungszentrums Jülich IAS Series (2021) 9–25.

[6] A. Sergeev, M. Del Balso, Horovod: fast and easy distributed deep learning in TensorFlow.
doi:10.48550/arXiv.1802.05799.

[7] J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, DeepSpeed: System optimizations enable train-
ing deep learning models with over 100 billion parameters, in: Proc. 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505–3506.
doi:10.1145/3394486.3406703.

[8] M. Götz, C. Debus, D. Coquelin, K. Krajsek, C. Comito, P. Knechtges, B. Hagemeier, M. Tar-
nawa, S. Hanselmann, M. Siggel, et al., HeAT – a Distributed and GPU-accelerated Tensor
Framework for Data Analytics, in: 2020 IEEE Int. Conf. on Big Data, IEEE, 2020, pp. 276–287.
doi:10.1109/BigData50022.2020.9378050.

[9] X. Jin, P. Cheng, W.-L. Chen, H. Li, Prediction model of velocity field around circular cylinder
over various Reynolds numbers by fusion convolutional neural networks based on pressure on
the cylinder, Phys. Fluids 30 (4) (2018) 047105. doi:10.1063/1.5024595.

[10] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
K. He, Accurate, large minibatch SGD: training ImageNet in 1 hour, CoRR abs/1706.02677.
doi:10.48550/arXiv.1706.02677.

[11] S. Maleki, M. Musuvathi, T. Mytkowicz, O. Saarikivi, T. Xu, V. Eksarevskiy, J. Ekanayake,
E. Barsoum, Scaling distributed training with adaptive summation, CoRR abs/2006.02924.
doi:10.48550/arXiv.2006.02924.

[12] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image
segmentation, CoRR abs/1505.04597. doi:10.48550/arXiv.1505.04597.

5

http://dx.doi.org/10.1007/s10494-018-9998-z
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.17815/jlsrf-5-171
http://dx.doi.org/10.17815/jlsrf-7-182
http://dx.doi.org/10.48550/arXiv.1802.05799
http://dx.doi.org/10.1145/3394486.3406703
http://dx.doi.org/10.1109/BigData50022.2020.9378050
http://dx.doi.org/10.1063/1.5024595
http://dx.doi.org/10.48550/arXiv.1706.02677
http://dx.doi.org/10.48550/arXiv.2006.02924
http://dx.doi.org/10.48550/arXiv.1505.04597

	Introduction
	Compilation and design
	Components and optimizations
	Models
	Data loader
	Training error
	Large minibatch size problem
	Hyperparameter Optimization tool
	Monitoring tools

	Benchmarks
	Conclusion

