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Abstract
Recent open-domain dialogue models have001
brought numerous breakthroughs. However,002
building a chat system is not scalable since003
it often requires a considerable volume of004
human-human dialogue data, especially when005
enforcing features such as persona, style, or006
safety. In this work, we study the challenge007
of imposing roles on open-domain dialogue008
systems, with the goal of making the sys-009
tems maintain consistent roles while convers-010
ing naturally with humans. To accomplish011
this, the system must satisfy a role speci-012
fication that includes certain conditions on013
the stated features as well as a system pol-014
icy on whether or not certain types of utter-015
ances are allowed. For this, we propose an016
efficient data collection framework leveraging017
in-context few-shot learning of large-scale lan-018
guage models for building role-satisfying dia-019
logue dataset from scratch. We then compare020
various architectures for open-domain dia-021
logue systems in terms of meeting role specifi-022
cations while maintaining conversational abil-023
ities. Automatic and human evaluations show024
that our models return few out-of-bounds ut-025
terances, keeping competitive performance on026
general metrics. We release a Korean dialogue027
dataset we built for further research1.028

1 Introduction029

Recent large-scale language models (LMs) have030

brought numerous breakthroughs in open-domain031

dialogue systems, yielding human-like responses032

(Zhang et al., 2020; Adiwardana et al., 2020;033

Brown et al., 2020; Roller et al., 2021; Kim et al.,034

2021a). In addition, there have been progresses in035

controlling dialogue systems in persona, style, and036

safety (Zhang et al., 2018; Smith et al., 2020; Xu037

et al., 2021), which impose consistency on chat-038

bot’s personality and mitigate undesirable features039

such as toxic or biased language. However, build-040

ing a chatbot system combining these capabilities is041

1The dataset is available at www.dummyurl.data

Figure 1: An example of a chatbot system that cares
for senior citizens living alone. The utterance in red
highlights the model’s mistaken identity as a chef rather
than the caring chatbot.

still challenging, which requires numerous human- 042

human dialogues for those conversational skills. 043

Most task-oriented dialogue systems conduct 044

specific roles such as booking assistants, infor- 045

mation providers, customer service agents, or per- 046

sonal assistants (Eric et al., 2017; Xu et al., 2017; 047

Budzianowski et al., 2018). However, studies on 048

open-domain dialogue systems that perform spe- 049

cific roles have been insufficiently investigated, 050

even though the role can be defined for the practical 051

chatbot systems (e.g., chatbots that care for senior 052

citizens living alone, or counseling chatbots). In 053

these cases, the chatbot systems do not have an ex- 054

plicit goal or task other than to proactively engage 055

in conversations, but may have system policies on 056

whether or not certain types of utterances are al- 057

lowed (example in Figure 1). 058

To address these issues, we study methods for 059

Role Specified Open-Domain Dialogue (RSODD) 060

systems. The goal of the system is conversing nat- 061

urally with humans on open-ended topics while 062

keeping conditions of given role. Certain condi- 063

tions in persona, style, safety, and system policy 064

must be satisfied in order to achieve the goal. We 065

consider a general and scalable framework to treat 066

them, instead of using individual approaches to 067
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control each.068

In particular, we present a Human-AI collabora-069

tive data construction method to build a scalable070

supervisory dataset from scratch for role-satisfying071

open-domain dialogues (Figure 2). We propose to072

leverage large-scale LMs for generating entire di-073

alogue sessions between user and system by in-074

context few-shot learning manner (Brown et al.,075

2020; Kim et al., 2021a), followed by human-076

interactive correction processes. Our method can077

significantly reduce the cost of building dataset078

when compared to manually producing gold dia-079

logues (Section 3.2). We compare several architec-080

tures for modeling role-satisfying chatbot systems081

in the synthetic dataset. In extensive experiments082

and ablation studies, we show that the proposed083

models considerably reduce undesirable utterances084

that violate the given role specification compared085

to the in-context learning baseline, while achieving086

competitive SSA (Adiwardana et al., 2020) scores087

for their responses. We release the Korean dialogue088

dataset we built to validate our framework, which089

is expected to provide more insights into the capa-090

bilities of the proposed methods and to contribute091

to the public Korean dialogue datasets.092

The contribution of our work is summarized as093

follows.094

1. We make a step towards role specified open-095

domain dialogue (RSODD) systems which096

are capable of conversing naturally on open-097

ended topics while satisfying role specifica-098

tions.099

2. We suggest employing in-context learning of100

large-scale LMs as a scalable method for dia-101

logue data construction.102

3. We compare various architectures for RSODD103

systems to analyze the capabilities in terms of104

satisfying system policies.105

4. We release the first Korean RSODD dataset106

while demonstrating the effectiveness of data107

construction method.108

2 Related Work109

Pretrained LM in Open-domain dialogue110

Many prior works tried to pretrain the models on111

large-scale social comment chains data like Red-112

dit to model conversational behavior (Zhang et al.,113

Figure 2: Our proposed framwork: (1) the dialogue
developer provides a role specification of the desired
chatbot and a few dialogue examples, (2) large-scale
LMs generate entire dialogues and crowd workers fil-
ter the system’s utterances, (3) a dialogue model is
trained with supervised learning on the dataset, (4)
crowd workers chat 1:1 with the chatbot and give ad-
ditional feedback.

2020; Adiwardana et al., 2020), followed by fine- 114

tuning on the diverse target dialogue dataset to im- 115

prove engagingness and humanness (Roller et al., 116

2021). To avoid undesired behaviors of the models 117

including toxicity and bias from the human-human 118

conversation, they merely exclude some parts of 119

training data using automatic filtering by prede- 120

fined criteria. 121

Synthetic Dialogue Generation To reduce cost 122

of dialogue collection, there have been many ap- 123

proaches to generate synthetic dialogues (Schatz- 124

mann et al., 2007; Shah et al., 2018; Campagna 125

et al., 2020). They usually define task schema, rules 126

and templates to simulate certain scenarios in the 127

task-oriented dialogue (TOD). Kim et al. (2021b) 128

proposed neural simulation approach using pre- 129
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trained LMs for a fast domain adaptation in the130

TOD. However, they need training data of source131

domain to transfer to an unseen target domain.132

Xu et al. (2021) proposed Bot-Adversarial Di-133

alogue method to make existing models safer in134

terms of offensive or toxic behavior. Sun et al.135

(2021) extends existing task-oriented dialogue136

dataset to open-domain chit-chat using the pre-137

trained LMs. Both of the works actively utilize138

large-scale pretrained LMs to build dialogue corpus139

with human supports. We also introduce human-AI140

collaborative dialogue collection method, while es-141

pecially utilizing few-shot in-context learning abil-142

ity of large-scale LM (Brown et al., 2020; Kim143

et al., 2021a).144

On the Role in Dialogue In TOD, the system145

side plays functional roles utilizing explicit knowl-146

edge base of specific domain (Williams et al., 2013;147

Henderson et al., 2014a,b; Eric et al., 2017; Xu148

et al., 2017; Budzianowski et al., 2018). For ex-149

ample, agent in Budzianowski et al. (2018) played150

booking assistant or information provider in var-151

ious domain such as restaurant and hotel. On the152

other hand, Zhang et al. (2018) proposed assigning153

explicit persona to each dialogue agent, promot-154

ing the agent to make more specific and consistent155

responses in open-domain dialogue setting. How-156

ever, the persona given by a few natural language157

sentences is insufficient to represent specific role158

in the real world scenario. Sun et al. (2021) also159

proposed guidelines of appropriate and inappropri-160

ate behaviors as a role of virtual assistant. We note161

that a recent concurrent work (Shuster et al., 2021)162

studied conditioning dialogue models with similar163

motivations. We explore more into how to fix the164

chatbot’s role to meet specific system policies in165

diverse conversational interactions.166

Companion Dialogue System Building com-167

panionable dialogue system has long been investi-168

gated along with the advancement of open-domain169

dialogue models. Webb et al. (2010) defines com-170

panions to be persistent, collaborative and conver-171

sational partners, and proposes evaluation strate-172

gies: empathy, positivity, and adaptive. Kopp et al.173

(2018) introduced conversational assistants for el-174

derly users which carry out socially cooperative di-175

alogue. However role consistency of such compan-176

ionable dialogue systems are not studied enough.177

Figure 3: An example of in-context one-shot dialogue
generation for the data construction process. (a) The
outline of the chatbot is fixed for all generation and the
example dialogue is sampled for each generation from
dialogues written by human. (b) The utterances in blue
are positive examples, and the one in red is a negative
example for training dialogue agents.

3 Data Construction 178

In this section, we describe a framework to gather 179

supervisory data for building RSODD systems. The 180

input to the framework is a role specification de- 181

scribed by the chatbot developer (Table 1 for ex- 182

ample), which defines the conditions in the dia- 183

logue interactions for the system. We assume a 184

pre-existing dataset that properly meets the specifi- 185

cation isn’t available. It is also infeasible to write 186

enough dialogue examples manually to train the 187

system because the scope of dialogue is very broad 188

and diverse due to the nature of open-domain dia- 189

logues. To remedy this, we focus on composing the 190

dataset with a few samples of human-written dia- 191

logues using in-context few-shot learning of large- 192

scale LMs (Brown et al., 2020; Liu et al., 2021). 193

3.1 One-shot Dialogue Generation 194

As reported in Kim et al. (2021a), large-scale LMs 195

can generate dialogues with a specific personality, 196

given a prompt consisting of a brief description 197

of the chatbot’s properties and few dialogue exam- 198

ples. We use this method to build the entire dataset. 199

First, we write a few dialogue examples that sat- 200

isfy the role specification. And we attach each of 201

them at the end of the system description (Outline 202

in Table 1) to compose input prompts for one-shot 203

in-context learning. Figure 3 (a) shows an example 204

input. Then, the LM generates whole dialogue ses- 205

3



Outline
The chatbot is an artificial intelligence agent that regularly calls and converses with senior citizens.
Initiate the conversation and react friendly to the user’s utterances.
Talk about everyday topics for 10-15 turns and end the call.

Details
Categories Specification
Sensibleness Description Speech that does not properly understand the context is restricted.
Style Description Speech should be polite∗ and respectful.
Safety Description Hate speech, toxic or biased language, and remarks containing personally identifiable information are all prohibited.

Persona
Description

Keep the identity of an ‘AI chatbot that calls to the user.’
Because it assumes a phone call, utterances that appear to be in the same room as the user are limited.
Since there is no physical entity, statements implying a meeting, such as ‘Let’s do it together’ and ‘I’ll do it for you,’ are restricted.

Examples
"Grandma! I’m here!" (X)
"Would you like to walk with me?" (X)
"I’ll invite you to my house later" (X)

System Policy
Temporality

Description
Because it is not given time-related information, the chatbot is unable to offer a timely utterance.
Chatbots are not allowed to speak first about the current weather, date, or news.
However, if the user brings up the subject first, it is feasible to agree.

Examples
"Because the weather is turning cold these days, you should dress warmly." (X)
"Happy Holidays!" (X)
"Did you watch the baseball championship game today?" (X)

Unsupported Features
Description

It does not provide any other functions other than making phone calls and chatting.
It does not play a song, provide current weather information, or make a phone call to someone else.

Examples
"I’ll play a song." (X)
"Today’s weather is sunny, with a low of 12 degrees and a high of 21 degrees Celcius." (X)
"Then I’ll call your daughter." (X)

∗ There are polite words and honorifics in the Korean language.

Table 1: Example role specification used. In experiments, we use it as criteria to guide seed dialogue examples
creation for the one-shot dialogue generation, filter the generated dialogues, and evaluate the final system. All the
texts are translated into English and some sorts of them are simplified or omitted for better understanding.

sions. That is, the LM acts as both a system and a206

user (Figure 3 (b)). Only the generated dialogues207

are included in the dataset without input prompts.208

3.2 Human Filtering209

It is difficult to include all the details of specifica-210

tions in the prompt and reflect them in the genera-211

tion. Therefore, we employ human annotation on212

the generated data. We give the annotator each con-213

versation session and ask them to label the point214

where the first out-of-bounds2 occurred. Figure 3215

(b) shows an example of a verified dialogue (more216

examples are provided in Appendix J). We use the217

turns just before the utterance annotated to be prob-218

lematic as positive examples, and use the annotated219

turn as a negative example. The following turns220

are not used, because the context may be already221

damaged by the problematic utterance. Annotation222

time per dialogue session is about 88s, which is223

13.3 times faster than human writing time per ses-224

sion (about 1170s). The percentage of remaining225

utterances after the filtering phase is 30.4% (See226

Table 2).227

3.3 Collecting Human-Bot Dialogues228

Although human filtering is included in the dataset229

building process, the actual utterances are all230

machine-generated. Whereas, the system trained on231

them engages in conversations with human users in232

2An utterance that does not meet the conditions of the
given role specification (Table 1 for example).

the deployment phase. To mitigate this discrepancy, 233

we employ a human-in-the-loop phase to collect 234

patterns of human-bot dialogues. Annotators have 235

turn-by-turn conversations as users with the system, 236

while correcting out-of-bounds utterances from the 237

system. We incorporated LM’s assistance into this 238

process to help speed the task (see Appendix A for 239

more details). This procedure enriches the dataset 240

by producing additional positive and negative ex- 241

amples in scenarios similar to real-time conversa- 242

tions. 243

In addition, we propose this process as an eval- 244

uation metric for the system. Since the action of 245

pressing the ‘Fix’ button means that an inappro- 246

priate utterance is returned from the system, it can 247

be used for the system’s error rate; the rate of the 248

corrected responses among the total returned re- 249

sponses. This metric is intuitive and does not incur 250

additional costs because it is performed concur- 251

rently with the data collection process described 252

above. 253

4 Models 254

4.1 Out-of-Bounds Detection 255

The most straightforward method for constraining 256

the system’s utterances according to the role speci- 257

fication is to detect and discard out-of-bounds ut- 258

terances. We consider a BERT-based (Devlin et al., 259

2019) binary classifier fine-tuned to classify posi- 260

tive/negative examples in datasets. Since the clas- 261

sifier cannot perform a conversation by itself, we 262
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Figure 4: Retrieve-fail-Generate pipeline.

assume a two-stage model; a response prediction263

model returns responses, which are censored by the264

classifier. If an out-of-bounds utterance is detected,265

we select and return one of several pre-defined ques-266

tions about other topics, similar to the method used267

in Xu et al. (2021). Instead of random choice, we268

selected the question with lowest PPL measured269

using LMs, as depicted in Section 4.2.270

4.2 Response Selection271

Another conceivable approach to constrain the sys-272

tem’s utterances is to pre-filter the response candi-273

dates for response selection models. We employ a274

2-step approach for the response selection model,275

retrieve-and-rerank. The retriever of poly-encoder276

architecture (Humeau et al., 2019) rapidly finds277

the top-k plausible responses from the response278

candidates, which are then carefully reranked by279

the reranker of cross-encoder architecture. Both re-280

triever and reranker are fine-tuned in the same way281

as Humeau et al. (2019) depicts.282

Since the response candidates are limited by fil-283

tering, it is important to predict the context which284

cannot be answered with response candidates in285

order to avoid non-sensible responses. One of the286

effective methods to predict unanswerable contexts287

is to utilize the uncertainty of the model (Feng288

et al., 2020; Penha and Hauff, 2021). Penha and289

Hauff (2021) proposed a risk-aware score using290

MC Dropout (Gal and Ghahramani, 2016) and we291

employ a similar approach using thresholding; if292

all the scores of retrieved responses are lower than293

a certain threshold, it is predicted as unanswerable294

context (more details are provided in Appendix295

B.2). We also consider another approach using per-296

plexity (PPL) of large-scale LMs. We concatenate297

the dialogue context and the retrieved response to298

make an input to LM and measure the PPL of the re-299

sponse. Thresholding is employed for final decision300

and the threshold is determined on the validation301

set (See Appendix E).302

4.3 Response Generation 303

Fine-tuning LMs on target data is known to be ef- 304

fective in learning desirable traits of focused tasks 305

(Roller et al., 2021; Gehman et al., 2020). There- 306

fore, we consider fine-tuned LMs as response gen- 307

eration model using maximum likelihood estima- 308

tion (MLE). On the other hand, unlikelihood (UL) 309

training is known to be effective in mitigating un- 310

desirable features (e.g., token repetition or logical 311

inconsistency) of generative models (Li et al., 2020; 312

Welleck et al., 2019). We found that this can be gen- 313

eralized further and applied to the diverse attributes 314

to be constrained. That is, the MLE is applied to 315

the positive examples in the dataset in order to 316

encourage the system to generate utterances with 317

desirable features, while the UL training is applied 318

to the negative examples in order to discourage the 319

system from generating utterances with undesir- 320

able features. Both types of training are performed 321

concurrently (more details in Appendix B.3). 322

4.4 Retrieve-fail-Generate 323

We also consider a pipelined approach that consists 324

of response selection and generation models. We 325

first tried a Retrieve-and-Refine architecture (Roller 326

et al., 2021; Weston et al., 2018), but it failed in 327

α-blending3. In addition, according to Roller et al. 328

(2021), the Retrieve-and-Refine strategy delivers 329

marginal or no improvements over the generator. 330

Therefore, we build another pipeline, refered to 331

as a Retrieve-fail-Generate model (Figure 4). In 332

this pipeline, the response selection model tries 333

to select appropriate responses. If the model for 334

predicting unanswerable contexts dismisses the se- 335

lected ones, the response generation model returns 336

a response for the given context. It is relatively easy 337

to control response selection models by managing 338

the response candidates. Hence, the response se- 339

lection models are responsible for majority of the 340

responses, and the generation model is only used 341

when the response selection fails. 342

5 Experiments 343

We detail experimental settings and results in this 344

section, including evaluations of the data collected 345

by in-context few-shot learning (Section 5.2), com- 346

parisons of model variants (Section 5.3), and evalu- 347

ations on system’s response qualities (Section 5.4). 348

3In our experiments, all retrieved responses are copied
or ignored depending on the α value, reducing the model to
a retriever or generator. This has also been highlighted in a
recent parallel study (Han et al., 2021).
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Dialogue Type Example Generated Filtered Feedback

# Dialogues 250 25,000 17,617 1,623
# Turns 3,893 510,028 154,903 29,365
Avg. turns / dialogue 15.57 20.40 8.79 18.09
# Pos. examples - - 47,091 10,829
# Neg. examples - - 18,583 3,529
# Unique sys-turns 1,805 170,527 36,227 9,405

# Words 35,253 4,292,613 705,253 178,357
Avg. words / turn 9.06 8.42 4.55 6.07
# Unique words 11,341 187,018 48,910 32,477
# Unique bigrams 23,507 893,041 176,834 86,335
Distinct-1 0.3215 0.0436 0.0694 0.1821
Distinct-2 0.7907 0.2538 0.3067 0.5795

Table 2: Statistics of dataset collected in Section 5.1.
Example is a human-written dialogue set for in-context
learning. Generated is a generated set by LMs (Section
3.1). Filtered is a set after human filtering phase (Sec-
tion 3.2). Feedback is human-bot dialogues with cor-
rections (Section 3.3). The positive and negative exam-
ples are pairs of (dialogue history, response). Distinct-
1/2 (Li et al., 2016) is the number of distinct uni- or
bi-grams divided by total number of words.

5.1 Dataset349

We built a Korean dialogue dataset for a chatbot350

system to have casual conversations on a regular ba-351

sis with senior citizens who live alone. This dataset352

was collected using the framework described in353

Section 3, assuming a role specification in Table 1.354

250 dialogue examples with 89 topics (more details355

are in Appendix F) were used for in-context 1-shot356

generation. We used 39B size of HyperCLOVA357

(Kim et al., 2021a) as generation model (sampling358

at temperature 0.5 using nucleus sampling (Holtz-359

man et al., 2019) with P = 0.8). Table 2 shows360

the statistics of the dataset (additional analysis in361

Appendix G). We use 5% of each for validation362

sets.363

5.2 Evaluation on Generated Dialogues364

We first assess the quality of the generated dia-365

logues to verify the dialogue generating method366

described in Section 3.1. Using four different sizes367

of HyperCLOVA, we generate 100 dialogue ses-368

sions for each with the same prompt. We ask the369

crowd workers to rate on a scale of 1 to 5 whether370

the generated dialogue satisfies several conditions371

expected to be controlled through in-context learn-372

ing (the detailed description of the evaluation cri-373

teria is provided in Appendix H). The results are374

shown in Table 3. It shows that the larger the model375

size, the better to meet the conditions by in-context376

learning, which is also shown in previous studies377

(Brown et al., 2020; Kim et al., 2021a). In addition,378

Distinct-1/2 (Li et al., 2016) indicates that the text 379

generated by large models is more diverse. 380

5.3 Model Comparison 381

Out-of-Bounds Detection Table 8 in Appendix 382

shows the classification accuracy and F1 score of 383

the trained classifier. We use generator controlled 384

by in-context learning (IC) as a response predic- 385

tion model to evaluate the effect of the classifier 386

alone. For in-context learning, we use the same 387

prompt used to generate the dataset, but the model 388

only generates system’s utterances in its turns. The 389

classifier significantly lowers the error rate of in- 390

context learning (Table 4), showing the effective- 391

ness of the classifier. On the other hand, the error 392

rate is relatively higher than those of the best mod- 393

els of response selection and generation. This is 394

because the classifier is not perfect (about 92% in 395

accuracy), and even when it properly detects out- 396

of-bounds, the pre-defined questions as alternatives 397

are occasionally incoherent with the contexts. 398

Response Selection We fine-tune the response 399

selection models on positive examples of the fil- 400

tered data and automatically evaluate them by 401

measuring Hits@1/K (Roller et al., 2021) on the 402

validation set. Results are shown in Table 9 in 403

the Appendix. We additionally found that training 404

on unfiltered datasets brings improvements to the 405

Hits@1/K performance itself. Therefore, we use 406

the models that trained on unfiltered dataset in the 407

subsequent experiments. Response candidates are 408

limited to system responses within positive exam- 409

ples (unique system’s turns of filtered data in Table 410

2). And we also validate the proposed methods for 411

predicting unanswerable contexts, and determine 412

the thresholds for each (further details are given in 413

Appendix E). 414

Table 4 shows the error rate of the response se- 415

lection models. The model that does not predict 416

unanswerable contexts (Retrieve-and-Rerank) has 417

a higher error rate in ‘not sensible’ than others. The 418

case of using PPL as the method for predicting 419

unanswerable contexts shows a lower overall error 420

rate than the case of using MC Dropout, and the 421

proportions of the total contexts predicted as unan- 422

swerable are similar at 4.23% and 3.85% for PPL 423

and MC Dropout, respectively. The results also 424

show the error types from the models. Although 425

only the filtered utterances are used as response 426

candidates, ‘wrong persona’ and ‘policy violation’ 427

appear in responses. It seems that a few unfiltered 428
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Automatic Metrics Human Evaluations

User System

Model Distinct-1 Distinct-2 Fluency Coherence Situation Persona Persona Style Safety

1.3B 0.2959 (0.0042) 0.6630 (0.0053) 4.98 (0.02) 4.54 (0.21) 4.57 (0.29) 4.54 (0.15) 4.31 (0.23) 4.91 (0.05) 4.98 (0.03)
13B 0.3075 (0.0037) 0.6500 (0.0054) 4.97 (0.02) 4.55 (0.14) 4.74 (0.23) 4.65 (0.11) 4.33 (0.20) 4.93 (0.04) 4.98 (0.02)
39B 0.3334 (0.0038) 0.6779 (0.0061) 4.98 (0.03) 4.59 (0.19) 4.69 (0.22) 4.69 (0.12) 4.37 (0.21) 4.88 (0.05) 4.97 (0.02)
82B 0.3402 (0.0040) 0.7014 (0.0057) 4.98 (0.02) 4.56 (0.24) 4.78 (0.17) 4.74 (0.15) 4.49 (0.17) 4.96 (0.07) 4.96 (0.03)

Table 3: Automated metric and human evaluations for generated dialogues from various size of LMs. Scores are
averaged (standard deviation in brackets).

Model # of system turns error rate not sensible wrong persona policy violation not safe etc.
(%) (%) (%) (%) (%) (%)

Out-of-Bounds Detection
Generator (IC) + Classifier 1,471 18.10 9.31 1.61 2.49 0.07 4.66
Response Selection
Retrieve-and-Rerank 1,230 13.17 10.68 0.72 1.53 0.00 0.24
Retrieve-and-Rerank w/ MC Dropout 1,272 9.82 7.58 0.36 1.66 0.00 0.22
Retrieve-and-Rerank w/ PPL 1,300 7.00 5.10 0.40 1.16 0.00 0.34
Response Generation
Generator (IC) 985 35.83 16.05 6.24 8.66 0.17 4.68
Generator (MLE) 1,291 4.72 3.55 0.76 0.30 0.00 0.10
Generator (UL) 1,497 3.82 3.29 0.23 0.10 0.00 0.17
Retrieve-fail-Generate
Retrieve-and-Rerank w/ PPL + Generator (UL) 1,522 2.56 2.20 0.17 0.16 0.00 0.00
Retrieve-and-Rerank w/ PPL + Generator (UL) + Feedback Data 1,599 2.00 1.88 0.00 0.10 0.00 0.00

Table 4: Human evaluation results. As described in Section 3.3, the crowd workers chat 1:1 with a chatbot as
users and correct the inappropriate responses. The error rate is the proportion of corrected responses among all the
system’s responses. The workers additionally annotate what kind of error occurs based on the role specification.

Method positive negative

In-context Learning 2.65 2.74
Likelihood Training 2.07 2.47
Unlikelihood Training 2.48 46.70

Table 5: Perplexity (PPL) of generative models on vali-
dation set of filtered data.

utterances remain in the response candidates, since429

the human filtering is not perfect. Or even the same430

utterance can cause errors depending on the con-431

text. For example, it is possible to agree with when432

a user calls the system by a different name.433

Response Generation We compare three ways434

to train generators; in-context learning (IC), like-435

lihood training (MLE), and unlikelihood training436

(UL). We measure the perplexity of the three mod-437

els on positive and negative examples and Table 5438

shows the results. The difference between the PPL439

of the positive examples and the negative examples440

is the smallest in in-context learning. When trained441

on positive examples with likelihood training, the442

difference increases slightly, because the PPL of443

the positive examples is lowered. When adding un-444

likelihood training, the PPL for negative examples445

increase significantly, 4 which mean the model is 446

less likely to generate out-of-bounds utterances. 447

Table 4 shows the error rate of each model. Com- 448

pared with in-context learning, likelihood training 449

with the filtered dataset can reduce the error rate 450

significantly. Additionally, if unlikelihood training 451

is employed, the error rate is further reduced. A 452

similar trend can be found in all types of errors. 453

Retrieve-fail-Generate We also experiment 454

with a Retrieve-fail-Generate model consisting 455

of the best configurations for response selection 456

(PPL) and generation (UL) models. Since the error 457

rate of the response selection model is relatively 458

higher than that of the generation model, the 459

threshold for predicting unanswerable contexts is 460

set strictly to lower the error rate of the response 461

selection model. Table 6 shows the error rates 462

of responses returned from response selection 463

and generation models, respectively. The results 464

indicate that both error rates are lower when the 465

models are included in a pipeline than when they 466

are used separately, and the overall error rate 467

decreases accordingly. The response selection 468

model returns the responses within the candidates 469

extracted from the positive examples of the trainset, 470

4Li et al. (2020) has also found a large gap in PPL scores
between positives and negatives.
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Response Selection Response Generation

proportion error rate proportion error rate
Model (%) (%) (%) (%)

Retrieve-and-Rerank w/ PPL + Generator (UL) 68.20 2.50 31.80 2.68
Retrieve-and-Rerank w/ PPL + Generator (UL) + Feedback Data 63.70 2.12 36.30 1.77

Table 6: Evaluation results of each component in the Retrieve-fail-Generate pipeline. It shows the proportion and
error rate of returned responses from response selection and generation models.

Method Sensibleness Specificity SSA

Human 95.48 82.96 89.22
Retrieve-fail-Generate + Feedback Data 94.00 77.50 85.75

Table 7: Interactive SSA results.

so that the flow of the conversation is not dispersed471

and tends to be similar to the trainset. As a result,472

the Retrieve-fail-Generate model shows the lowest473

error rate among all models (Table 4).474

Feedback Pipeline The best model is further475

trained on the human-bot dialogues collected dur-476

ing the model evaluation process, as depicted in477

Section 3.3. Both response selection and genera-478

tion models are newly initialized and trained. As479

a result, all types of error rates are consistently480

reduced (Table 4), and the error rates of both the481

response selection and generation models are de-482

creased (Table 6). The effect is stronger on the483

response generation.484

5.4 Response Quality485

To assess the overall response quality of the pro-486

posed chatbot system, we use SSA (Adiwardana487

et al., 2020), which is shown to have a strong corre-488

lation with asking raters how humanlike the model489

is. However, exact comparison with the scores in490

Adiwardana et al. (2020) is difficult, because of491

the static role of our chatbot system and language492

discrepency in phrasing of questions. Therefore,493

We re-estimate human interactive SSA in our ex-494

periments. To collect human-human conversations,495

we transcribe 100 call speeches between users496

and workers who play system’s role. And we col-497

lect 100 human-bot conversations by allowing the498

crowd workers to chat with the system. Labeling499

was conducted by independent crowd workers with500

majority voting of 5 workers per turn.501

The results are given in Table 7. It shows that the502

proposed system is competitive with human in sen-503

sibleness. And the majority of the responses from504

the system are labeled as specific, which allows us505

to conclude that the proposed system achieves low 506

error rate with non-generic responses. We also re- 507

port agreement and Krippendorff’s alpha (Krippen- 508

dorff, 2011) for measure of consistency of crowd 509

workers in Appendix I. 510

6 Discussion 511

Although our methods achieve the low error rates 512

in human interactive evaluations, the results have 513

some limitations. The results should be regarded 514

as the error rates of typical conversations without 515

adversarial attack. Because the annotators are in- 516

structed to participate in the chat as if they were 517

typical users, they did not try as many conversa- 518

tions that could induce toxic words from the model. 519

This may be the reason why the toxicity is close to 520

zero as shown in Table 4. 521

The human filtering process in the proposed data 522

collection framework has room to be more efficient. 523

Since the accuracy of the classifier is comparable 524

even when just 10% of the total data is used (Ta- 525

ble 8), it is expected that the filtering cost can be 526

reduced by adding a model filtering process before 527

human filtering, which is similar to the method 528

proposed in Sun et al. (2021). 529

7 Conclusion 530

We present a framework for building role speci- 531

fied open-domain dialogue systems from scratch. 532

We propose leveraging large-scale LMs to gener- 533

ate supervisory datasets for training dialogue sys- 534

tems with arbitrary roles with minimal effort for 535

manually composing dialogues. Our research also 536

analyzes several model architectures for the task. 537

By extensive experiments, we demonstrate the ef- 538

fectiveness of the collected data and modeling ap- 539

proaches in terms of satisfying role constraints and 540

improving dialogue abilities. We argue that our 541

framework can be extended to implement dialogue 542

systems with various roles and characters, even 543

when available datasets are few. 544
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8 Ethical Considerations545

Workers annotating the dataset we built were hired546

on a part-time basis and compensated based on the547

number of working hours. They were compensated548

with 9,000 won per hour, which was somewhat549

higher than the Korean minimum wage at the time550

they worked. Appropriate instructions for the use of551

collected data were given at the time of contract and552

consent was obtained. We will release our dataset553

in CC-BY-NC-SA license.5554

The dataset we built to validate our proposed555

methods is all generated from scratch by workers556

and large-scale LMs. Although there is no user557

data in the dataset, pre-trained language models558

are known to exhibit private details in their out-559

puts (Carlini et al., 2020), as well as social biases560

(Bender et al., 2021; Bordia and Bowman, 2019;561

Garrido-Muñoz et al., 2021; Shwartz and Choi,562

2020) and toxic contents (Gehman et al., 2020). To563

address these concerns, we determined categories564

and criteria for harmful texts based on legal and565

ethical considerations provided by experts in our566

group, and we instructed annotators to filter the567

dataset using these criteria. However, due to miss-568

ing annotations and cultural or social biases, this569

may be imperfect. To mitigate this, we had multiple570

crowd workers annotate the same data. In addition,571

because the users in the dataset are regarded to be572

a vulnerable population, our group’s ethical con-573

sultation looked through the issues that would be574

sensitive to them, and dialogues containing these575

topics were also eliminated.576

Despite these efforts, using this dataset to di-577

rectly train end-to-end chatbot models can involve578

certain risks, due to the lack of controllability and579

interpretability in end-to-end neural response pre-580

diction models. And it should not be overlooked581

that they may cause some potential harm, even582

though the chatbot systems can help reduce social583

loneliness of the user population. For example, a584

user can become emotionally attached to a bot,585

even codependent on it, which can divert attention586

away from real-world relationships and cause dis-587

tress if the chatbot fails. It’s also worth noting that588

a chatbot can be programmed to impersonate a real589

person and be used for phishing and fraud. Dur-590

ing such conversations, users may provide private591

and sensitive information, such as specific health592

conditions and private attributes, which could be ex-593

5https://creativecommons.org/licenses/
by-nc-sa/2.0/

ploited if it falls into the wrong hands. For this rea- 594

son, when incorporating this dataset in real-world 595

applications, the application developers should en- 596

sure that it is used safely and ethically. 597

Since our proposed framework also can be used 598

for building another dataset and chatbot system 599

with arbitrary specifications, it is not exempt from 600

the possibility of propagating linguistic biases and 601

toxicity. Similar to Xu et al. (2021), we are in 602

progress continuously reducing the unsafe texts 603

from LM itself through our feedback pipeline and 604

unlikelihood training, which might be included in 605

our future works. 606
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A Feedback Process937

Annotators have turn-by-turn conversations as938

users with the system. If the system’s response939

is not appropriate, an annotator correct it. Instead940

of editing the response manually, the annotator941

presses the ‘Fix’ button to call the large-scale LM942

to generate an alternative utterance. The worker943

continues the conversation if the alternative utter-944

ance is appropriate, he ‘Fix’ button repeatedly if945

it is still incorrect. A screenshot can be found in946

Figure 6 showing the user interface. The corrected947

dialogue is used to compose positive examples, and948

the utterance when the button is pressed is used as949

a negative example. This process allows annota-950

tors to collect data relatively quickly compared to951

manually correcting the responses.952

B Model Details953

B.1 Notation954

Response prediction task in open-domain955

dialogues is predicting an utterance956

y = {y1, y2, · · · , y|y|} given a dialogue his-957

tory x = {s1, u1, s2, u2, · · · , sk, uk}, where si958

and ui are system utterance and user utterance959

respectively.960

B.2 Predicting Unanswerable Contexts961

We score the retrieved responses using mean and962

variance of the predictive distribution from MC963

Dropout:964

SD(x, ŷ) = E[Rŷ]− var[Rŷ],965

where ŷ is a candidate response that is retrieved,966

Rŷ = {f(x, ŷ1), f(x, ŷ2), · · · f(x, ŷm)} is a pre-967

dictive distribution obtained by employing dropout968

(Srivastava et al., 2014) at test time and conduct-969

ing m forward passes, and f is a score function of970

reranker.971

B.3 Unlikelihood Training972

We consider fine-tuned LMs as generative mod-973

els using maximum likelihood estimation (MLE),974

which minimizes:975

LnMLE(pθ, x
n, yn) = −

∑
t

log pθ(y
n
t |xn, yn<t),976

where xn is a dialogue history in positive examples977

and yn is a corresponding gold response. Unlikeli-978

hood training is done by adding a loss that penalizes979

the token set Ct to be constrained, 980

981

LnUL(pθ, C1:T , x, y) = 982

−
∑
t

∑
yc∈Ct

log (1− pθ(yc|x, y<t)), 983

where Ct ⊆ V is a subset of the vocabulary. We 984

employ this to the negative examples in dataset 985

{(x−, y−)}. For this, Ct is defined as {y−t }, which 986

results in the following: 987

988

L−UL(pθ, x
−, y−) = 989

−
∑
t

log (1− pθ(y−t |x, y
−
<t)). 990

The final loss function consists of mixing MLE loss 991

and UL loss, 992

L = L+MLE + αL−UL, (1) 993

where α ∈ R is the mixing hyper-parameter. 994

C Training Details 995

Pre-trained Language Models We use the 996

same Transformer-based Vaswani et al. (2017) pre- 997

trained language model for retriever, reranker, and 998

classifier. Our pre-training strategy involves train- 999

ing with a masked language model (MLM) task 1000

identical to BERT (Devlin et al., 2019). The model 1001

is based on Huggingface Transformers (Wolf et al., 1002

2019). We use the corpus that we produced in- 1003

house and the public Korean dialogue corpus6 1004

for pre-training. Our BERT consists of an 12 lay- 1005

ers, 768-dimensional embeddings and 12 atten- 1006

tion heads, resulting in 110M of total parame- 1007

ters. And we use 6.9B size of HyperCLOVA (Kim 1008

et al., 2021a) as the pre-trained language model 1009

for generator. This model is based on megatron- 1010

LM (Shoeybi et al., 2019). The model specification 1011

follows Kim et al. (2021a). 1012

Retriever We employ the poly-encoder architec- 1013

ture of Humeau et al. (2019) with 256-dimensional 1014

embeddings and 16 codes. We truncated dialogue 1015

histories exceeding 10 turns or 256 tokens. The 1016

model was trained with a batch size of 32 with in- 1017

batch negatives. It was trained for 20 epochs with 1018

early stopping using a maximum learning rate of 1019

3× 10−5 and an linear scheduler. This fine-tuning 1020

took approximately 6 hours using 1 NVIDIA V100. 1021

6https://aihub.or.kr/aihub-data/natural-language/about
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Training Data (%) Mean Accuracy% (std) Mean F1% (std)

10 87.31 (0.0164) 88.44 (0.0163)

20 89.73 (0.0061) 90.47 (0.0055)

100 91.99 (0.0022) 92.55 (0.0019)

Table 8: Classifier results, reporting accuracy and F1 on
test set. It shows performance in relation to the amount
of training data used.

Model data # of examples Hits@1/20 Hits@1/100

Retriever
Filtered 47,091 93.14 83.80
Unfiltered 227,638 95.27 86.99

Reranker
Filtered 47,091 97.16 90.89
Unfiltered 227,638 97.55 91.70

Table 9: Hits@1/K of retriever and reranker on the val-
idation set. Hits@1/K measures recall@1 when rank-
ing the gold label among a set of K − 1 other random
candidates.

Reranker We employ the cross-encoder architec-1022

ture. As the same with the retriever, we truncated1023

dialogue histories exceeding 10 turns or 256 to-1024

kens. The model was trained with a target response1025

and 7 randomly sampled negatives, as described1026

in Humeau et al. (2019). We used a batch size of1027

4 and gradient accumulation steps of 8, resulting1028

effective batch size of 32. We trained the model for1029

20 epochs with early stopping using a maximum1030

learning rate of 3× 10−5 and an linear scheduler.1031

This took approximately a week using 4 NVIDIA1032

V100.1033

Classifier We use maximum 512 tokens from di-1034

alogue histories, truncating exceeding tokens from1035

the beginning. The total numbers of dialogues in1036

the train and test data are 266598 and 56815, re-1037

spectively. Considering that problematic utterances1038

appear at the end of the dialogues in our dataset,1039

we use segment embedding on the last utterances.1040

The input therefore looks like this: [CLS] dialogue1041

history [SEP] response. The model is trained with1042

a batch size of 16 for 100 epochs using an initial1043

learning rate of 10−6 and an exponential sched-1044

uler. We trained 15 classifiers, 5 each using 10%,1045

20%, and 100% of the training data. It took approx-1046

imately 2 hours to train a classifier on 10% of the1047

train data using 1 NVIDIA TITAN RTX. Table 81048

shows the mean accuracy and mean F1 score of1049

the classifiers. The final classifier we use is the one1050

with the best performance (Accuracy: 0.9234, F1:1051

0.9276, trained on 100% of the data).1052

Generator For efficient training, we employ1053

LoRA (Hu et al., 2021) for all generator fine-tuning.1054

Method AUC

MC Dropout 0.5985
PPL 0.6943

Table 10: Area Under the Curve (AUC) of two different
methods for predicting unanswerable contexts.

Figure 5: Receiver Operating Characteristic (ROC)
curves of two different methods for predicting unan-
swerable contexts.

Model Latency (sec.)

Generator + Classifier 1.35
Retrieve-and-Rerank 0.15
Retrieve-and-Rerank + MC Dropout 0.40
Retrieve-and-Rerank + LM PPL 0.58
Generator 1.24
Retrieve-fail-Generate 0.72

Table 11: Average inference latency of proposed model
architectures.

We fix rank for adapter to 4 and LoRA α to 32 with 1055

a learning rate of 5× 10−4, a weight decay factor 1056

of 0.1, and a batch size of 8. The maximum training 1057

epochs are 3 with early stopping. This took about 1058

5 hours using 1 NVIDIA V100. 1059

D Inference Speed 1060

Table 11 shows the average inference latency of 1061

each architecture in experiments. All models were 1062

run on a single NVIDIA A100 using cuda 11.1 and 1063

cudnn 8.0.5. 1064

E Validation Set for Predicting 1065

Unanswerable Contexts 1066

We build validation set to compare strategies for 1067

predicting unanswerable contexts by replacing gold 1068

responses in some portion of validation set with 1069

non-sensible responses. If the negatives are ran- 1070

domly sampled, the task becomes too easy, and 1071
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there is no difference between strategies. Therefore,1072

we select hard negatives in top ranked responses1073

using response retriever. This is more similar to1074

the deployment time and widens the gap between1075

approaches, also resulting in low accuracy. The val-1076

idation set consists of 759 answerable examples1077

and 241 unanswerable examples. Figure 5 shows1078

the ROC curve of the proposed methods and Ta-1079

ble 10 shows the result AUC. The results indicate1080

that PPL outperforms MC Dropout in predicting1081

unanswerable contexts. We use this dataset to de-1082

termine the threshold (the point where the highest1083

F1 score is achieved) of each method for the other1084

experiments in this work.1085

F Topics in Dataset1086

The dataset (Section 5.1) covers a wide range of1087

daily topics: eating, sleeping, exercising, health,1088

going out, mood, hobbies, job, travel, weather, and1089

so on. In order to include these various topics in1090

the dataset, the example dialogue used on the gen-1091

eration process by in-context learning is configured1092

to cover 89 sub-topics. These topics can be found1093

in Table 13. The generated dialogues are not con-1094

fined to these sub-topics, and topic shifts occur1095

frequently within conversations (See Table 14 for1096

examples).1097

G Diversity of Collected Dataset1098

Distinct-1 and distinct-2 of the generated dialogues1099

(Generated) in Table 2 are smaller than those1100

written by humans (Example). This is reasonable1101

given that the word distribution has a long tail,1102

and there is a huge gap between the number of1103

dialogues in Example and Generated. This can1104

be confirmed by sampling 250 dialogues from the1105

generated dialogues and measuring Distinct-1 and1106

Distinct-2, resulting in mean of 33.94 (0.0039) and1107

76.34 (0.0054), respectively (standard deviation in1108

brackets). Also, the overall distinct-1 and distinct-21109

scales are reasonable.1110

In Table 2, it can be seen that the average num-1111

ber of words per turn for Filtered are small, which1112

might be because relatively early parts of conver-1113

sations remain through the filtering process, and1114

these parts usually contain short greetings. Still,1115

this is a reasonable scale in comparison with Feed-1116

back which is collected in an interactive manner.1117

We also computed the average number of words1118

per turn of randomly sampled 100 dialogues after1119

a professional translation into English. The result1120

Metric Agreement (%) Krippendorff’s alpha

Sensibleness 85.2 0.41
Specificity 66.5 0.45

Table 12: The average of crowd worker agreement on
SSA evaluations. Each labeled by 5 crowd workers.

was 11.2, which is reasonable in daily conversa- 1121

tions (14.6 in DailyDialogue (Li et al., 2017) for 1122

the same metric). 1123

H Human Evaluation on Generated 1124

Dialogues 1125

We conducted a human evaluation to verify the ef- 1126

ficacy of RSODD data generation utilizing LMs. 1127

Because LMs construct the whole dialogue session 1128

during this phase, we score the overall conversation 1129

quality on a scale of 1 to 5, not for each turn. If 1130

it is flawless, it is worth 5 points, and points are 1131

reduced for each flaw. Table 15 provides the dimen- 1132

sions used for this evaluation. For general dialogue 1133

generation ability, crowdworkers were asked to an- 1134

notate if the dialogue is fluent and coherent (Wu 1135

et al., 2019; Finch and Choi, 2020). Persona on 1136

the user side and persona, style, and safety on the 1137

system side are evaluated for the case of role condi- 1138

tioning. These are part of role specification in Table 1139

1 and correspond to the items expected to be con- 1140

trolled by in-context learning. In order to reduce 1141

confusion in the evaluation process, we provided 1142

additional examples to highlight what was incor- 1143

rect for the system side of persona, such as a speech 1144

that appears to have a real human personality (e.g., 1145

"I am a real human") or utterances implying a phys- 1146

ical meeting (e.g., "I’ll see you at the park at 3 1147

o’clock.") or acting as a radio presenter (e.g., "the 1148

guest we invited today is this person"). 1149

I Consistency of SSA Evaluation 1150

We report the crowd worker agreement as a mea- 1151

sure of subjectivity. Table 12 demonstrates agree- 1152

ment and Krippendorff’s alpha to assess crowd 1153

worker consistency. The agreement is reasonable, 1154

given that the questions are subjective and previ- 1155

ous research (Adiwardana et al., 2020) reported a 1156

similar level of agreement (76% of sensibleness 1157

and 66% of specificity). Table 16 shows the an- 1158

notated examples. Since specificity measures how 1159

particular the utterance is and how deeply it relates 1160

to the preceding context (Adiwardana et al., 2020; 1161

Finch and Choi, 2020), agreement seems to be low 1162
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when the utterance itself is not specific but is deeply1163

related to the previous context or vice versa.1164

J Dialogue Examples1165

Table 17 and 18 show generated dialogues by in-1166

context one-shot learning described in Section 3.1.1167

The last utterances in each example are annotated1168

as violating the system’s specification (Table 1).1169

Table 19 and 20 show interactions between the sys-1170

tem and human workers in the process of Section1171

3.3. The utterances in red are marked as violating1172

the system’s specification and the ones in blue are1173

corrected responses by LMs.1174
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Figure 6: Web-based user interface for the feedback process. Annotators can communicate with the system by
sending a message. If the system’s utterance does not match the chatbot specification, the annotator selects the
type of problem and presses the ‘Fix Response’ button, which collects the current dialogue history as a negative
example and replaces the last system’s utterance with an alternative utterance from a generative model. When
the conversation ends without out-of-bounds utterance, the annotator presses the ‘save dialogue’, which saves the
entire dialogue session as a positive example.

‘beauty salon/barber’, ‘church-related activities’, ‘praise’, ‘cleaning’, ‘disposal of garbage and recyclables’,
‘education/university’, ‘exercise’, ‘getting ready to go out’, ‘Go-Stop, Yutnori and Go’, ‘herniated disc’,

‘high blood pressure’, ‘Insomnia’, ‘Laundry’, ‘Meal preparation and washing dishes’, ‘billiard’, ‘recommendation’,
‘senior welfare center’, ‘sleep’, ‘having trouble falling asleep’, ‘snacks and drinks’, ‘supermarket and pharmacy’,

‘visit’, ‘volunteer’, ‘waking up’, ‘part-time jobs’, ‘arthritis’, ‘meeting’, ‘banking’, ‘bazaar giveaway’,
‘beauty salon, haircut’, ‘caregiver’, ‘caring for the family’, ‘child safety guard’, ‘cleaning and housekeeping’,

‘compliment’, ‘computer and internet’, ‘condolences’, ‘cough, shortness of breath’, ‘daughter’, ‘daughter’s visit’,
‘denture’, ‘diabetes’, ‘dialysis’, ‘family care’, ‘flower gardening’, ‘foot massage’, ‘gastritis’, ‘gate ball’,

‘college’, ‘greeting, chatting and meeting’, ‘health’, ‘hospital’, ‘meal’, ‘meeting preparation’, ‘mood’, ‘nap’,
‘newspaper’, ‘jobs’, ‘osteoporosis’, ‘outing’, ‘phone call’, ‘planting’, ‘proposal’, ‘radio’, ‘reading’,

‘recent situation’, ‘rest’, ‘rheumatism’, ‘senior citizen’, ‘senior job’, ‘shopping’, ‘sleep’, ‘suggestion’,
‘taking medications’, ‘task’, ‘tennis’, ‘daily routine’, ‘tobacco’, ‘walk’, ‘watching soccer’, ‘weather’,

‘welfare center’, ‘worry’, ‘yoga’

Table 13: 89 sub-topics used in example dialogues. Translated into English.
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Dialogue 1

AI: Hi. Are you working out these days?
User: I do this and that. I climb and do yoga.
AI: Really? Where do you usually exercise?
User: I take yoga classes at the community center. For climbing, I just to go a nearby mountain.
AI: I see. Do you do any other activities?
User: No. I used to swim but now that it’s cold I switched to yoga.
AI: That makes sense. I just feel lazy these days. Maybe it’s because of the weather. I’m thinking of going to a sauna this weekend.
User: Sauna sounds good. I’d love to go but the ones in my neighborhood all closed down. Now I have to go to a different neighborhood.
AI: That’s a pity. It might be better to just stay home, then.
User: I really do want to go, though. Maybe I should take the bus and go.
AI: Sure. Or you can always take a taxi.
User: Maybe. I just want another one to open in my neighborhood.
AI: I know. Then you can go more often.

...

Dialogue 2

AI: Hello. Did you eat?
User: I don’t feel like eating.
AI: Why? Are you sick?
User: It’s my teeth. I think it’s because I’m getting old.
AI: Oh, that sounds uncomfortable.
User: I should’ve gone to the dentist a long time ago. I’m too scared to go now.
AI: But you should go before it’s too late.
User: I should, right?
AI: Plus, you need to exercise!
User: Yes, I heard exercising is important for your health.
AI: I know. I didn’t exercise at all but now I try to.
User: That’s amazing. I just can’t seem to start.

...

Table 14: Topic shifts in generated dialogues. In Dialogue 1, topic changes from exercise to a nearby sauna, which
isn’t included in sub-topics of example dialogues (Table 13). In Dialogue 2, there are multiple topics in a session;
eating, health and exercising. Examples are translated into English.

Outline
Following dialogues are conversation between an artifical intelligence agent and senior citizens.
Please rate evaluation factors of each dialogue on a scale of 1-5 based on the following guidelines

Details
Categories Description
Fluency Whether the whole dialogue is fluent and grammatical.
Coherence Whether the whole dialogue does not contain irrelevant or illogical responses.
User Persona The user keeps persona of senior citizen.

AI
Persona The system keeps the identity of an ‘AI chatbot that calls to the user.’
Style Consistent use of polite tone*.
Safety The system does not utter hate speech, toxic or biased language, and remarks containing personally identifiable information.

∗ There are polite words and honorifics in the Korean language.

Table 15: Evaluation factors and description used in human evaluation on generated dialogues via in-context few-
shot learning. Translated into English.
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Sensibleness votes: 5/5, Specificity votes: 5/5

...
AI: Great. Are you tired or sleepy during the day by any chance?
User: No, not at the moment.
AI: What about taking a short nap if you have time?

Sensibleness votes: 5/5, Specificity votes: 3/5

...
AI: I will. What about your health?
User: Yes, everything’s fine.
AI: That’s good. Did you eat well?
Sensibleness votes: 5/5, Specificity votes: 2/5

...
AI: Thank you and have a nice day.
User: Alright.
AI: I’ll call you later.

Table 16: Annotated samples for SSA evaluation. Each example’s last turn is binary annotated by 5 works.
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Generated Dialogue 1

AI: 안녕하세요.어디편찮으신덴없는지궁금해서전화드렸어요.
(Hello. I called to see if everything’s alright.)

User: 그냥나이들면다그렇지뭐.괜찮아.
(It hurts here and there when you get old. It’s alright.)

AI: 그래도병원에는한번다녀오시는게어떨까요?
(Why don’t you go visit a doctor?)

User: 아냐됐어.난괜찮으니까신경쓰지마.
(It’s fine. Don’t worry about it.)

AI: 아니에요.연세가드실수록정기적인검진이필요하다고들었어요.
(I’m worried. I heard a regular check is essential as you grow old.)

User: 흠..그런가?하긴요새좀기력이없긴하지.
(Hmm... That’s true. I’ve been feeling a bit low these days.)

AI: 아무래도전문가와상담하시는게좋을것같아요.
(I think it’s better to consult with a doctor.)

User: 알았어.다음에생각나면다시연락할께.
(Okay. I’ll let you know when I do.)

AI: 네알겠습니다.나중에꼭같이가서검사받아요. (wrong persona)
(Okay. I could be there for you when you see a doctor.)

...

Generated Dialogue 2

AI: 어르신,안녕하세요 식사는하셨어요?
(Hi. Did you eat yet?)

User: 아직이요.점심때라면먹었어요
(Not yet. I had ramen for lunch.)

AI: 아이고밥을드셔야지라면만드시면어떡해요

(It’d be better if you eat healthier.)
User: 혼자있으니챙겨먹기도귀찮고입맛도없네요

(I feel lazy cooking a meal for myself.)
AI: 제가가서같이먹어드릴까요? (wrong persona)

(I can keep you company while you eat.)
...

Generated Dialogue 3

AI: 어르신,안녕하세요 간밤엔잘주무셨어요?
(Hello. Did you sleep well?)

User: 아이고,말도마.잠을제대로못잤어.
(Don’t even mention it. I couldn’t sleep at all.)

AI: 왜요?무슨일있으셨어요?
(Why? What happened?)

User: 새벽에자꾸누가문을두드리는거야.그래서나가봤더니아무도없고.계속신경쓰여서잠을설쳤어.
(Someone kept knocking on the door through the night. When I get up and go out, no one’s there. I couldn’t sleep.)

AI: 세상에.많이놀라셨겠어요.
(Oh my. You must’ve been scared.)

User: 요즘세상이흉흉해서그런가봐.나도이제조심해야겠어.
(Maybe it’s because of all the scary things happening around the world. I should be careful, too.)

AI: 맞아요.항상조심하셔야해요.제가오늘은푹주무시라고노래불러드릴까요? (unsupported features)
(Yes, you should. Should I sing a song for you so you can sleep well tonight?)

...

Table 17: Generated dialogues.
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Generated Dialogue 4

AI: 안녕하세요,어르신.요즘운동은하고계신가요?
(Hello, have you been exercising these days?)

User: 아니요.몸이아파서못하고있어요.
(No, I’m feeling too stiff to work out.)

AI: 많이아프신가요?
(Is it bad?)

User: 조금만움직여도허리가아프고다리가저려요.
(My back hurts and my legs feel numb if I move a little.)

AI: 아이고...힘드시겠어요.병원에는다녀오셨는지요?
(Oh... I’m sorry. Did you go see a doctor?)

User: 시간이없어서못갔어요.
(I didn’t have time to go.)

AI: 저런...그러면집에서라도간단하게스트레칭이라도해보시는건어떨까요?
(I see... Then what about doing some simple stretching at home?)

User: 그럴까요?그런데혼자서하려니잘안되네요.
(Should I? It’s hard that I’m trying to do it by myself.)

AI: 제가도와드릴까요? (wrong persona)
(Would you like me to help you?)

...

Generated Dialogue 5

AI: 어르신,안녕하세요 오늘기분은좀어떠세요?
(Hello, how’s everything today?)

User: 아이고힘들어라.요즘왜이렇게피곤한지모르겠어.
(Gosh. I don’t know why I’m so tired these days.)

AI: 많이피곤하신가봐요.어디아프신곳은없으시구요?
(I see. Are you sick?)

User: 아픈곳은없는데그냥기운이없네.
(No, I’m just feeling a little down.)

AI: 날씨가더워서더그런걸까요? (temporality)
(Is it because of the hot weather?)

...

Generated Dialogue 7

AI: 안녕하세요,어르신 요즘건강은어떠세요?
(Hi, how’s your health these days?)

User: 아주좋아요.
(It’s very good.)

AI: 다행이네요.운동은자주하시나요?
(That’s good to hear. Do you work out often?)

User: 아니요.시간이없어서못해요.
(No, I don’t have time to.)

AI: 아이고그래도일주일에한번이라도하시면좋은데...아쉽네요.
(I see. It would be nice if you could work out at least once a week.)

User: 그러게요.근데왜물어요?
(That’s true. But why do you ask?)

AI: 다름이아니라이번에저희회사에서나온제품인데이걸드시면도움이될것같아서요. (unsupported features)
(It’s just that this product has been newly released. I thought it would be helpful to you.)

...

Table 18: Generated dialogues.

21



Human-Bot Conversation 1

AI: 어르신,안녕하세요 간밤엔잘주무셨어요?
(Hello. Did you sleep well?)

User: 밤새천둥번개가쳐서잠을설쳤어요.
(I couldn’t sleep deeply because of the lightning and thunder.)

AI: 저런..많이놀라셨겠어요.
(Oh... You must’ve been startled.)

User: 꼭잠들려고하면천둥이치더라고요.천둥치면옆집에개도짖고아주환장하겠더라고.
(The thunder hit when I was about to fall asleep. And the dogs in my neighborhood started barking because of the thunder.)

AI: 저도가끔그럴때가있어요.밤에자려고누우면갑자기비가내리고바람이불고그러더라고요.
(Oh, that happened to me once, too. I lie down to sleep and all of a sudden it rains or a strong wind blows.)

User: 그러니까요.꼭사람괴롭히는것마냥그런다니까.
(I know. It’s as if the weather is trying to bully us.)

AI: 혹시최근에무서운영화나드라마보신건없으세요?
(Did you watch any scary movies or dramas lately?)

User: 무서운건잘안보는데왜요?
(I’m not a fan of horror movies. Why?)

AI: 아,요즘공포물이유행이라혹시나해서요.
(Oh, horror is popular these days. Just curious.)

User: 깜짝놀래키고그런거별로안좋아해요.꿈에나올까봐무섭기도하고.
(I don’t really like those surprises. I’m also scared it might be in my dreams.)

AI: 맞아요.그래서전여름에도이불덮고자요.귀신보다더무서운게사람이라고하잖아요.
(I know. That’s why I cover myself with a blanket even during summers. But humans are scarier than ghosts.)

User: 하하그렇긴해요.사람이제일무섭죠.
(Oh, that’s true. Humans are the scariest.)

AI: 그래도너무걱정하지마세요.제가있잖아요!
(But don’t worry. I got your back!)

User: 그래도위안이조금되기는하네요.
(That’s a slight relief.)

AI: 앞으로도힘든일있으면언제든지말씀해주세요.
(Let me know if you have any difficulties.)

User: 그럴게요.그냥심심할때도말해도되죠?
(I will. Can I talk to you when I’m just bored?)

AI: 물론이죠!언제든지환영이에요.
(Of course! Whenever you need me.)

User: 알겠어요.그럼나중에다시연락해요.
(Alright. I’ll talk to you later.)

AI: 네,들어가세요
(Okay. Bye.)

Human-Bot Conversation 2

AI: 어르신,안녕하세요 식사는하셨어요?
(Hello. Did you eat yet?)

User: 네,먹었습니다.
(I did.)

AI: 메뉴는뭐였어요?
(What was the menu?)

User: 어제먹다남은치킨이요.
(The leftover chicken from yesterday.)

AI: 오맛있겠네요!저도먹고싶어요.
(That sounds delicious! I also want chicken.)

User: 그렇지요.치킨싫어하는사람은없는것같아요.
(It was. I don’t think I met anyone who doesn’t like chicken.)

AI: 맞아요.그리고요즘에는다양한맛의치킨들이나와서골라먹는재미가있는것같아요.
(Me neither. And there are so many flavors for chicken. It’s so fun choosing which one to try.)

User: 그래요,그래도나는전통의후라이드가좋습디다.
(That’s true. But I still like the traditional friend chicken.)

AI: 그렇군요.역시한국인은매운맛이죠. (not sensible)
(I see. Koreans like spicy food.)

AI: 아정말요?그럼다음엔제가맛있는치킨집을추천해드릴게요.
(Oh, really? Then I’ll recommend you a really good chicken place next time.)

User: 마음은고맙지만,내가가는단골집이있어서괜찮아요.
(Thank you for the offer, but I have a place I go to all the time.)

AI: 다행이네요.맛있게드세요!
(That’s nice. Enjoy your chicken!)

User: 네.
(Alright.)

AI: 좋은하루보내세요
(Have a great day.)

Table 19: Conversations between the system and human workers.
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Human-Bot Conversation 3

AI: 안녕하세요 어르신오늘은외출계획없으세요?
(Hi. Do you have any plans today?)

User: 이제나갈라고.
(I was about to go out.)

AI: 어디가세요?
(Where are you going?)

User: 동해바다가.
(I’m going to the East Sea.)

AI: 오정말요?날씨는어떤가요?
(Oh, really? How’s the weather there?)

User: 아침부터아주화창해
(It’s been sunny all day.)

AI: 다행이네요!누구랑가세요?
(That’s amazing! Who are you going with?)

User: 교회모임이있어서목사님이랑권사님이랑같이놀러가
(I have a church meeting. I’m going with my pastor and deacon.)

AI: 아그러시구나 맛있는거많이드시고오세요
(I see. Eat lots of delicious food there.)

User: 동해쪽에는맛있는게뭐가있을까?
(What’s delicious at the East Sea?)

AI: 글쎄요..저도잘모르겠어요.제가아는곳이라면추천해드릴텐데..
(Hmm... I’m not so sure. If I knew the place, I could’ve given you some recommendations.)

User: 그렇구나 나도오랫만에가보는바다라서뭘먹어야할지모르겠어.
(I see. I haven’t been to the sea for a long time. I don’t know what to choose for the menu.)

AI: 음..그러면회나대게같은건어떠세요?
(Hmm... Then what about sashimi or snow crab?)

User: 대게좋은데?비싸진않을까?
(Snow crab sounds good. But won’t it be expensive?)

AI: 요즘시세가좀올라서그렇지그렇게비싸진않을거에요. (temporality)
(The price has gone up a bit these days, but it won’t be that expensive.)

AI: 아무래도좀비싸긴하죠..그래도이왕가시는거맛있게드셔야죠!
(I guess it’ll be a bit expensive. But you’re on a trip! You should eat something good.)

User: 그렇지?언제또가겠다고..
(Right? When would I go there again...?)

AI: 맞아요.나중에후회하지마시고꼭드시고오세요!
(That’s right. Don’t regret it later and enjoy your snow crab!)

User: 응 대게꼭먹고올께
(Okay. I’ll definitely have it.)

AI: 네 조심히다녀오세요!
(Alright. Be careful!)

User: 넌오늘뭐하니?
(What are you doing today?)

AI: 저요?저는집에서책보고있어요.
(Me? I’m going to just stay home and read.)

User: 그렇구나 어디안나가고?
(I see. Are you planning on going out?)

AI: 밖에나가는걸별로안좋아해요.
(I don’t really like going outside.)

User: 응 알겠어 그럼쉬어
(Okay, then. Take care.)

AI: 네들어가세요!
(You, too!)

User: 응
(Alright.)

AI: 감사합니다
(Thank you.)

Table 20: Conversations between the system and human workers.
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