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ABSTRACT

The study of adversarial examples and their activation has attracted significant
attention for secure and robust learning with deep neural networks (DNNs). Dif-
ferent from existing works, in this paper, we highlight two new characteristics
of adversarial examples from the channel-wise activation perspective: 1) the ac-
tivation magnitudes of adversarial examples are higher than that of natural ex-
amples; and 2) the channels are activated more uniformly by adversarial exam-
ples than natural examples. We find that the state-of-the-art defense adversarial
training has addressed the first issue of high activation magnitudes via training
on adversarial examples, while the second issue of uniform activation remains.
This motivates us to suppress redundant activation from being activated by ad-
versarial perturbations via a Channel-wise Activation Suppressing (CAS) strat-
egy. We show that CAS can train a model that inherently suppresses adversarial
activation, and can be easily applied to existing defense methods to further im-
prove their robustness. Our work provides a simple but generic training strategy
for robustifying the intermediate layer activation of DNNs. Code is available at
https://github.com/bymavis/CAS_ICLR2021.

1 INTRODUCTION

Deep neural networks (DNNs) have become standard models for solving real-world complex prob-
lems, such as image classification (He et al., 2016), speech recognition (Wang et al., 2017), and
natural language processing (Devlin et al., 2019). DNNs can approximate extremely complex func-
tions through a series of linear (e.g. convolution) and non-linear (e.g. ReLU activation) operations.
Despite their superb learning capabilities, DNNs have been found to be vulnerable to adversarial
examples (or attacks) (Szegedy et al., 2014; Goodfellow et al., 2015), where small perturbations on
the input can easily subvert the model’s prediction. Adversarial examples can transfer across dif-
ferent models (Liu et al., 2017; Wu et al., 2020a; Wang et al., 2021) and remain destructive even in
the physical world (Kurakin et al., 2016; Duan et al., 2020), raising safety concerns in autonomous
driving (Eykholt et al., 2018) and medical diagnosis (Ma et al., 2021).

Existing defense methods against adversarial examples include input denoising (Liao et al., 2018;
Bai et al., 2019), defensive distillation (Papernot et al., 2016), gradient regularization (Gu & Rigazio,
2014), model compression (Das et al., 2018) and adversarial training (Goodfellow et al., 2015;
Madry et al., 2018; Wang et al., 2019), amongst which adversarial training has demonstrated the
most reliable robustness (Athalye et al., 2019; Croce & Hein, 2020b). Adversarial training is a data
augmentation technique that trains DNNs on adversarial rather than natural examples. In adversarial
training, natural examples are augmented (or perturbed) with the worst-case perturbations found
within a small Lp-norm ball around them. This augmentation has been shown to effectively smooth
out the loss landscape around the natural examples, and force the network to focus more on the pixels
that are most relevant to the class. Apart from these interpretations, it is still not well understood,
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from the activation perspective, how small input perturbations accumulate across intermediate layers
to subvert the final output, and how adversarial training can help mitigate such an accumulation.
The study of intermediate layer activation has thus become crucial for developing more in-depth
understanding and robust DNNs.

In this paper, we show that, if studied from a channel-wise perspective, strong connections between
certain characteristics of intermediate activation and adversarial robustness can be established. Our
channel-wise analysis is motivated by the fact that different convolution filters (or channels) learn
different patterns, which when combined together, describe a specific type of object. Here, adver-
sarial examples are investigated from a new perspective of channels in activation. Different from
the existing activation works assuming different channels are of equal importance, we focus on the
relationship between channels. Intuitively, different channels of an intermediate layer contribute
differently to the class prediction, thus have different levels of vulnerabilities (or robustness) to ad-
versarial perturbations. Given an intermediate DNN layer, we first apply global average pooling
(GAP) to obtain the channel-wise activation, based on which, we show that the activation magni-
tudes of adversarial examples are higher than that of natural examples. This means that adversarial
perturbations generally have the signal-boosting effect on channels. We also find that the channels
are activated more uniformly by adversarial examples than that by natural examples. In other words,
some redundant (or low contributing) channels that are not activated by natural examples, yet are
activated by adversarial examples. We show that adversarial training can effectively address the high
magnitude problem, yet fails to address the uniform channel activation problem, that is, some redun-
dant and low contributing channels are still activated. This to some extent explains why adversarial
training works but its performance is not satisfactory.

Therefore, we propose a new training strategy named Channel-wise Activation Suppressing (CAS),
which adaptively learns (with an auxiliary classifier) the importance of different channels to class
prediction, and leverages the learned channel importance to adjust the channels dynamically. The
robustness of existing state-of-the-art adversarial training methods can be consistently improved if
applied with our CAS training strategy. Our key contributions are summarized as follows:

• We identify, from a channel-wise activation perspective, two connections between DNN
activation and adversarial robustness: 1) the activation of adversarial examples are of higher
magnitudes than that of natural examples; and 2) the channels are activated more uniformly
by adversarial examples than that by natural examples. Adversarial training only addresses
the first issue of high activation magnitudes, yet fails to address the second issue of uniform
channel activation.

• We propose a novel training strategy to train robust DNN intermediate layers via Channel-
wise Activation Suppressing (CAS). In the training phase, CAS suppresses redundant chan-
nels dynamically by reweighting the channels based on their contributions to the class pre-
diction. CAS is a generic intermediate-layer robustification technique that can be applied
to any DNNs along with existing defense methods.

• We empirically show that our CAS training strategy can consistently improve the robust-
ness of current state-of-the-art adversarial training methods. It is generic, effective, and can
be easily incorporated into many existing defense methods. We also provide a complete
analysis on the benefit of channel-wise activation suppressing to adversarial robustness.

2 RELATED WORK

Adversarial Defense. Many adversarial defense techniques have been proposed since the discovery
of adversarial examples. Among them, many were found to have caused obfuscated gradients and
can be circumvented by Back Pass Differentiable Approximation (BPDA), Expectation over Trans-
formation (EOT) or Reparameterization (Athalye et al., 2019). Adversarial training (AT) has been
demonstrated to be the most effective defense (Madry et al., 2018; Wang et al., 2019; 2020b), which
solves the following min-max optimization problem:

min
θ

max
x′∈Bε(x)

L(F(x′, θ), y), (1)

where, F is a DNN model with parameters θ, x is a natural example with class label y, x′ is
the adversarial example within the Lp-norm ball Bε(x) = {x′ :‖ x′ − x ‖p≤ ε} centered at x,
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F(x′, θ) is the output of the network, and L is the classification loss (e.g. the cross-entropy loss).
The inner maximization problem is dependent on the adversarial examples x′ generated within
the ε-ball, while the outer minimization problem optimizes model parameters under the worst-case
perturbations found by the inner maximization. There are other variants of adversarial training
with some new objective function or regularization. For example, TRADES (Zhang et al., 2019)
optimized a trade-off objective of adversarial robustness and accuracy. MART (Wang et al., 2020c)
applied a distinctive emphasis on misclassified versus correctly classified examples. AWP (Wu
et al., 2020b) incorporated the regularization on the weight loss landscape. However, apart from
these improvements, it is still not well understood how adversarial training can help produce state-
of-the-art robustness from the activation perspective.

Activation Perspective of Adversarial Robustness. Some previous works have investigated the
adversarial robustness from the architecture perspective, such as skip connection (Wu et al., 2020a)
and batch normalization (Galloway et al., 2019). As for intermediate activation, Ma et al. (2018)
characterized that adversarial activation forms an adversarial subspace that has much higher intrinsic
dimensionality. Zhang et al. (2018) certified the robustness of neural networks with different activa-
tion functions. Xu et al. (2019) explored the influence of adversarial perturbations on activation from
suppression, promotion and balance perspectives. Other works developed new activation operations
with the manifold-interpolating data-dependent function (Wang et al., 2020a) and adaptive quanti-
zation techniques (Rakin et al., 2018). While these works directly modify the activation functions,
there are also works focusing on the activation outputs. For instance, k-Winner-Takes-All (kWTA)
(Xiao et al., 2020) taked the largest k feature values in each activation layer to enhance adversar-
ial robustness. However, this has recently been shown not robust against adaptive attacks (Tramer
et al., 2020). Stochastic Activation Pruning (SAP) (Dhillon et al., 2018) taked the randomness and
the value of features into consideration. Each activation is chosen with a probability proportional to
its absolute value. Adversarial Neural Pruning (ANP) (Madaan & Hwang, 2020) pruned out the fea-
tures that are vulnerable to adversarial inputs using Bayesian method. Prototype Conformity Loss
(PCL) (Mustafa et al., 2019) was proposed to cluster class-wise features and push class centers away
from each other. Feature Denoising (FD) (Xie et al., 2019) added denoising layers to the network for
sample-wise denoising on feature maps. However, these methods were developed based on obser-
vations on the full output (e.g. the entire feature or activation map that does not distinguish different
channels) of DNN intermediate layers. In contrast, our CAS explores both channel importance and
channel correlations, and the suppressing is done with the guidance of the labels.

3 CHANNEL-WISE ACTIVATION AND ADVERSARIAL ROBUSTNESS

In this part, we investigate two characteristics of DNN intermediate activation from a channel-wise
perspective, and show two empirical connections between channel-wise activation and adversarial
robustness. Specifically, we train ResNet-18 (He et al., 2016) and VGG16 (Simonyan & Zisserman,
2014) on CIFAR-10 (Krizhevsky et al., 2009) using both standard training and adversarial training
under typical settings. We then apply global average pooling to extract the channel-wise activation
from the penultimate layer. We investigate the extracted channel-wise activation of both natural and
adversarial examples from two perspectives: 1) the magnitude of the activation, and 2) the activation
frequency of the channels.

Channel-wise Activation Magnitude. Figure 1 illustrates the averaged activation magnitudes for
both natural test examples and the corresponding adversarial examples crafted by PGD-20 attack
(Madry et al., 2018). For standard models (trained on natural examples), the activation magni-
tudes of adversarial examples are generally higher than that of natural examples as shown in Figure
1(a)/1(c). Adversarial perturbation exhibits a clear signal-boosting effect on the channels, which
leads to the accumulation of adversarial distortions from the input to the output layer of the net-
work. As shown in Figure 1(b)/1(d), adversarial training can effectively narrow the magnitude gaps
between natural and adversarial examples, interestingly by decreasing the activation magnitudes of
adversarial examples. This is because adversarial training can restrict the Lipschiz constant of the
model at deeper layers (i.e. layers close to the output), which reduces the magnitude gaps caused
by adversarial perturbations (Finlay et al., 2018; Sinha et al., 2019). Note that network architecture
also influences activation magnitudes. Figure 1 show that magnitudes in VGG have much more zero
values than those in ResNet, i.e. VGG produces more sparse channels than ResNet.
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(a) ResNet-18 (STD)
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(b) ResNet-18 (ADV)
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(c) VGG16 (STD)

0 100 200 300 400 500
Channel

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de
 o

f a
ct

iv
at

io
n natural examples

adversarial examples

(d) VGG16 (ADV)

Figure 1: The magnitudes (y-axis) of channel-wise activation at the penultimate layer (512 channels
at x-axis) for both standard (‘STD’) and adversarially trained (‘ADV’) models. In each plot, the
magnitudes are averaged and displayed separately for natural and adversarial test examples. The
512 channels are sorted in a descending order of the magnitude.
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(a) ResNet-18 (STD)
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(b) ResNet-18 (ADV)
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(c) ResNet-18 (our CAS)

Figure 2: The activation frequency (y-axis) of channel-wise activation at the penultimate layer (512
channels at x-axis) of ResNet-18 trained using (a) standard training (‘STD’), (b) adversarial train-
ing (‘ADV’), and (c) our CAS-based adversarial training (‘CAS’). The activation frequencies are
counted separately for the natural test examples and their PGD-20 adversarial examples. Channels
are sorted in a descending order of activation frequency of natural examples.

Channel-wise Activation Frequency. Given a specific class, different convolution filters learn dif-
ferent patterns associated with the class. Similar to the robust vs. non-robust feature differentiation
in adversarial training (Ilyas et al., 2019), the intermediate filters (or channels) can also be robust
or non-robust. Intuitively, for natural examples in the same class, robust channels produce more
generic patterns and should be activated more frequently, yet the non-robust ones should be acti-
vated less frequently. As such, non-robust channels can cause more variations to the next layer
if activated by adversarial perturbations, increasing the vulnerability to adversarial examples. To
investigate this, we visualize the activation frequency of the channel-wise activation in Figure 2.
Here, we take one specific class (e.g. class 0) of CIFAR-10 as an example. A channel is determined
as activated if its activation value is larger than a threshold (e.g. 1% of the maximum activation
value over all 512 channels). We count the activation frequency for each channel by natural exam-
ples and their PGD adversarial examples separately on standard or adversarially trained ResNet-18
models, and sort the channels in a descending order according to the activation frequency by natu-
ral examples. As can be observed in Figure 2(a), adversarial examples activate the channels more
uniformly, and they tend to frequently activate those that are rarely activated by natural examples
(e.g. the right region in Figure 2(a)). This observation is consistent across different classes. The
low frequency channels are non-robust channels, and correspond to those redundant activation that
are less important for the class prediction. It can also be observed that adversarial perturbations also
inhibit those high frequency channels of natural examples (the left region of Figure 2(a)). Figure
2(b) shows that, by training on adversarial examples, adversarial training can force the channels to
be activated in a similar frequency by both natural and adversarial examples. However, there are
still a certain proportion of the redundant channels (e.g. channels #350 - #500) that are activated by
adversarial examples. This motivates us to propose a Channel-wise Activation Suppressing (CAS)
training strategy to avoid those redundant channels from being activated by adversarial examples.
Figure 2(c) shows the effectiveness of our CAS strategy applied with adversarial training, that is,
our CAS can suppress all channels, especially those low frequency ones on natural examples. More
visualizations of channel-wise activation frequency can be found in Appendix C.
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4 PROPOSED CHANNEL-WISE ACTIVATION SUPPRESSING

In this section, we introduce our Channel-wise Activation Suppressing (CAS) training strategy,
which dynamically learns and incorporates the channel importance (to the class prediction) into
the training phase to train a DNN model that inherently suppresses those less important channels.

CAS Module FC Layer 𝑴
𝒚/ෝ𝒚𝒍
𝒍

ReLU ReLU

…… … FC

…

BlockInput

CE Loss

CAS LossGAP
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𝒚/ෝ𝒚𝒍
𝒍
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𝒇𝒍

ෝ𝒑𝒍

Figure 3: Framework of our proposed Channel-wise Activation Suppressing (CAS).

Overview. Figure 3 illustrates our CAS training strategy. The CAS module consists of a global
average pooling operation (i.e. GAP in the CAS module) to obtain the channel-wise activation, and
an auxiliary classifier (i.e. FC in the CAS module) to learn the channel importance. The learned
channel importance is then multiplied back to the original activation for adjustment, and the adjusted
activation are then passed into the next layer for model training. The entire network and the auxiliary
classifier are trained simultaneously using a combination of the CAS loss and the CE loss. The CAS
module can be attached to any intermediate layer of a DNN.

4.1 CAS MODULE

Denote the l-th activation layer output of network F as f l ∈ RH×W×K , where H,W,K represent
the height, width, channel of the activation map, respectively. In CAS module, we first apply the
GAP operation on the raw activation f l to obtain the channel-wise activation f̂ l ∈ RK . Formally,
for the k-th channel,

f̂ l
k =

1

H ×W

H∑
i=1

W∑
j=1

f l
k(i, j). (2)

The channel-wise activation f̂ l is then passed into the auxiliary classifier to perform multi-class
classification with a fully-connected (FC) layer. For C classes, the parameters of the auxiliary
classifier can be written as M l = [M l

1,M
l
2, ..,M

l
C ] ∈ RK×C , which can identify the importance

of each channel to a specific class, and will be applied to reweight the original activation f l in
a channel-wise manner. In the training phase, the ground-truth label y is utilized as the index to
determine the channel importance, i.e. M l

y ∈ RK . While in the test phase, since the ground-truth
label is not available, we simply take the weight component M l

ŷl ∈ RK that is associated to the
predicted class ŷl as the channel importance (detailed analysis can be found in Section 5.1). The
computed channel importance is then applied to reweight the original activation map f l as follows:

f̃ l =

{
f l ⊗M l

y, (training phase)
f l ⊗M l

ŷl , (test phase)
, (3)

where ⊗ represents the channel-wise multiplication. The adjusted f̃ l will be passed into the next
layer via forward propagation. Note that, so far, neither the auxiliary nor the network is trained, just
computing the channel importance and adjusting the activation in a channel-wise manner.

4.2 MODEL TRAINING

We can insert S Channel-wise Activation Suppressing (CAS) modules into S different intermediate
layers of DNNs. The CAS modules can be considered as auxiliary components of the network, and
can be trained using standard training or different types of adversarial training. Here, we take the
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original adversarial training (Madry et al., 2018) as an example, and define the loss functions to
simultaneously train the network and our CAS modules. Each of our CAS modules has a FC layer.
Taking one inserted CAS module after the l-th activation layer of network F for examples, the CAS
loss function can then be defined as,

LCAS(p̂
l(x′, θ,M), y) = −

C∑
c=1

1{c = y} · log p̂lc(x′), (4)

whereC is the number of classes, p̂l = softmax(f̂ lM l) ∈ RC is the prediction score of the classifier
in CAS module, and x′ is the adversarial example used for training. Note that LCAS is the cross
entropy loss defined on the auxiliary classifier. Similarly, it can also be extended to multiple CAS
modules. The overall objective function for adversarial training with our CAS strategy is:

L(x′, y; θ,M) = LCE(p(x
′, θ), y) +

β

S
·
S∑
s=1

LsCAS(p̂
s(x′, θ,M), y) (5)

where β is a tunable parameter balancing the strength of CAS. Besides the original adversarial
training (AT) (Madry et al., 2018), we can also combine CAS with other defense techniques such
as TRADES (Zhang et al., 2019) and MART (Wang et al., 2020c). In Appendix B, we summarize
the loss functions of the original AT, TRADES, MART, and their combined versions with our CAS.
The complete training procedure of our CAS is described in Algorithm 1 in Appendix A.

5 EXPERIMENTS

In this section, we first provide a comprehensive understanding of our CAS training strategy, then
evaluate its robustness on benchmark datasets against various white-box and black-box attacks.

5.1 EMPIRICAL UNDERSTANDING OF CAS

In this part, we first show the channel-suppressing effect and robustness of our CAS, then analyze
the effectiveness of our CAS when applied at different layers of DNN. The parameter analysis of
CAS can be found in Appendix D. In Appendix E, we show that CAS can also help representation
learning and natural training.

Experimental Settings. We adversarially train ResNet-18 for 200 epochs on CIFAR-10 using SGD
with momentum 0.9, weight decay 2e-4, and initial learning rate 0.1 which is divided by 10 at 75-th
and 90-th epoch. We use PGD-10 (ε = 8/255 and step size 2/255) with random start for training.
The robustness (accuracy on adversarial examples) is evaluated under attacks: FGSM (Goodfellow
et al., 2015), PGD-20 (Madry et al., 2018), and CW∞ (Carlini & Wagner, 2017) optimized by PGD.
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(b) SAP
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(c) PCL
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(d) CAS
Figure 4: Comparisons of activation frequency distribution between adversarial and natural exam-
ples on different activation or feature oriented defense methods (kWTA, SAP, PCL and our CAS).
Channel Suppressing Effect. We compare CAS with three activation- or feature-based defense
methods: kWTA (Xiao et al., 2020), SAP (Dhillon et al., 2018) and PCL (Mustafa et al., 2019).
Here, we train kWTA with 20% sparse largest values in each activation layer, SAP with typical
random pruning and PCL with warm-up training by CE loss and then fine-tuning with the added
PCL loss. Figure 4 shows the activation frequencies at the penultimate layer of ResNet-18 trained by
different methods. While kWTA, SAP and PCL demonstrate a certain level of channel suppressing,
their effects are not as significant as our CAS training. kWTA and SAP hardly have the channel
suppressing effect (e.g. channel #350 - #500 in Figure 4(a) and channel #380 - #500 in Figure
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Table 1: Robustness (%) of ResNet-18 trained by different defense (kWTA, SAP, PCL and our CAS)
on CIFAR-10. Avg-PGD-100 denotes 100-step averaged PGD attack (Tramer et al., 2020).

Defense Natural FGSM PGD-20 CW∞ Avg-PGD-100 EOT

kWTA 76.48 59.56 50.72 46.84 16.72 –
SAP 79.13 59.04 46.35 46.65 – 19.98
PCL 88.15 46.47 24.68 37.50 – –
CAS 86.79 61.23 48.88 53.33 53.20 56.47

Table 2: Effectiveness of the channel suppressing operation in CAS module on CIFAR-10 with
ResNet-18. CAS is inserted at Block4 of ResNet-18. Without suppressing means the CAS mod-
ule is inserted, however, the channel suppressing operation is not applied during either training or
testing. In this case, CAS is just a simple auxiliary classifier.

Defense Natural FGSM PGD-20 CW∞

AT 84.27 60.46 46.50 48.97

AT+CAS (without suppressing) 83.42 59.81 44.20 46.27
AT+CAS (with suppressing) 86.79 61.23 48.88 53.33

4(b)), for the reason that they improve robustness mainly by introducing certain randomness into the
activation, and thus can be easily attacked by some adaptive attacks (Tramer et al., 2020; Athalye
et al., 2019). PCL still frequently activates many redundant channels (e.g. channel #150 - #250 in
Figure 4(c)). This is because PCL does not directly enforce channel suppression. Different from
these methods, our CAS demonstrates the most effective channel suppression. As a side note, due
to the dynamic thresholding, the frequency distributions should be compared within the same model
between natural and adversarial examples not across different models. Within the same model, the
closer the frequency distribution of the adversarial examples is to that of the natural examples, the
better the adversarial robustness (i.e. the adversarial accuracy is closer to the natural accuracy).

From this point of view, our CAS can effectively reduce the activation frequency gaps between nat-
ural and adversarial examples, producing superior robustness. The natural accuracy and robustness
of these methods are reported in Table 1. Due to the randomness introduced in kWTA and SAP, they
are not robust against average PGD (Avg-PGD) using margin loss (Tramer et al., 2020) or Expecta-
tion Over Transformation (EOT) (Athalye et al., 2019) attacks. Our CAS training strategy does not
rely on randomness, thus is robust even against Avg-PGD or EOT attacks.

We next verify that explicit Channel Suppressing (CS) is indeed essential to the improved robustness
of CAS. Specifically, we remove CS defined in Equation 3 from CAS, then retrain ResNet-18 using
adversarial training with the CAS loss defined in Equation 5. Table 2 shows that the robustness can
not be improved without explicit channel suppressing.

CAS at Different Layers. We insert the CAS module into different blocks of ResNet-18, and
show the different robustness improvements in Table 3. Intuitively, deeper layer activation are more
correlated to the class prediction, thus should benefit more from our CAS training. Shallow layers,
however, may suffer from inaccurate channel importance estimations. As demonstrated in Table 3,
it is indeed the case: the largest improvement is obtained when applying CAS at Block4 (e.g. after
the ReLU output of Block4). The robustness can also be improved when inserting CAS into Block3
or both the Block3 and Block4 (‘Block3+4’), though notably less significant than that at Block4.

Table 3: Effectiveness of our CAS module at different blocks of ResNet-18 on CIFAR-10.

Defense Block Natural FGSM PGD-20 CW∞

AT+CAS

Block2 71.89 49.69 40.26 46.46
Block3 83.05 59.20 47.84 48.19
Block4 86.79 61.23 48.88 53.33

Block3+4 83.77 58.32 48.27 54.62

Robustness of the CAS Module. Since our CAS module suppresses channel-wise activation ac-
cording to the label (during training) or the prediction (during testing), it might raise the concerns of
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whether the CAS module itself is robust or how the misclassification in CAS module would affect
the final results. One observation is that, when the CAS module is inserted to deep layers that are
close to the final layer of the network, it can learn to make very similar predictions with the final
layer. For an empirical analysis, we test the robustness of the CAS module against different attacks
in Table 4. The results indicate that our CAS module is robust by itself, leading to both higher
natural accuracy and adversarial robustness. More evaluations can be found in Appendix F.5.

Table 4: Robustness of defense ResNet-18 models trained with (+CAS) or without CAS module on
CIFAR-10 against different attacks. For +CAS models, we only apply the attack on the CAS module
using the CAS loss (Equation 4). For baseline defenses, we attack the final layer of the model.

Defense Attack Place Natural FGSM PGD-20 CW∞

AT / +CAS Final / CAS 84.27/84.95 60.46/61.40 46.50/47.99 48.97/57.79

TRADES / +CAS Final / CAS 83.50/83.84 63.68/64.31 52.80/54.11 50.90/64.01

MART / +CAS Final / CAS 82.16/84.89 63.91/65.14 52.67/54.48 49.44/66.92

5.2 ROBUSTNESS EVALUATION

In this section, we evaluate our CAS on CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer
et al., 2011) datasets with ResNet-18 (He et al., 2016). We apply our CAS training strategy to
several state-of-the-art adversarial training approaches: 1) AT (Adversarial Training) (Madry et al.,
2018), 2) TRADES (Zhang et al., 2019), and 3) MART (Wang et al., 2020c). We follow the default
settings as stated in their papers. More results on WideResNet-34-10 (Zagoruyko & Komodakis,
2016) and VGG16 (Simonyan & Zisserman, 2014) can be found in Appendix F.1 and F.2.

Experimental Settings. The training settings for CIFAR-10 are the same as Section 5.1. For SVHN,
we adversarially train ResNet-18 using SGD with momentum 0.9, weight decay 5e-4, initial learning
rate 0.01 which is divided by 10 at 75-th and 90-th epoch, and training attack PGD-10 ( ε = 8/255
and step size 1/255) with random start.

White-box Robustness. We evaluate the robustness of all defense models against three types of
white-box attacks: FGSM, PGD-20 (step size ε/10) and CW∞ (optimized by PGD). To fairly com-
pare our method with baselines, we use adaptive white-box attack for our CAS models, i.e. the
attacks are performed on the joint loss of CE and CAS. Here, we report the robustness of the models
obtained at the last training epoch in Table 5. As shown in Table 5, our CAS can improve both
the natural accuracy and the robustness of all baseline methods, resulting in noticeably better ro-
bustness. The improvement against CW∞ attack is more significant than against FGSM or PGD-20
attacks. This is because the prediction margins are enlarged by our CAS training with the channel
suppression. As shown in Figure 9 (Appendix E), the deep representations learned by CAS-trained
models are more compact within each class, while are more separated across different classes. This
makes margin-based attacks like CW∞ more difficult to success.

Robustness results obtained at the best checkpoint throughout the entire training process and the
learning curves are provided in Appendix F.3. Our CAS can also improve the robustness of the
best checkpoint model for each baseline defense. Thus the improvement of our CAS is reliable and
consistent, and is not caused by the effect of overfitting (Rice et al., 2020). We have also evaluated
our CAS training strategy under AutoAttack (Croce & Hein, 2020b) and different attack perturbation
budget ε in Appendix F.4 and F.5.

Black-box Robustness. We evaluate the black-box robustness of CAS and the baseline methods
against both transfer and query-based attacks. For transfer attack, the adversarial examples are
generated on CIFAR-10/SVHN test images by applying PGD-20 and CW∞ attacks on a naturally
trained ResNet-50. For query-based attack, we adopt NAttack (Li et al., 2019). Since NAttack
requires a lot of queries, we randomly sample 1,000 images from CIFAR-10/SVHN test set and
limit the maximum query to 20,000. We test both black-box attacks on the models obtained at the
last training epoch. The results are reported in Table 6. For both transfer and query-based attacks,
our CAS can improve the robustness of all defense models by a considerable margin. Especially
against the NAttack, our CAS training strategy can improve AT, TRADES and MART by ∼ 30%
- 40%. One reason why our CAS is particularly more effective against NAttack is that NAttack
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Table 5: White-box robustness (accuracy (%) on various white-box attacks) on CIFAR-10 and
SVHN, based on the last checkpoint of ResNet-18. ‘+CAS’ indicates applying our CAS training
strategy to existing defense methods. The best results are boldfaced.

Defense SVHN CIFAR-10
Natural FGSM PGD-20 CW∞ Natural FGSM PGD-20 CW∞

AT 89.62 65.09 42.55 50.96 84.27 60.46 46.50 48.97
AT+CAS 90.39 67.51 51.98 53.53 86.79 61.23 48.88 53.33
TRADES 91.16 69.85 50.90 50.85 83.50 63.68 52.80 50.90
TRADES+CAS 91.69 70.97 55.26 60.10 85.83 65.21 55.99 67.17
MART 91.16 67.31 48.72 50.52 82.16 63.91 52.67 49.44
MART+CAS 93.05 70.30 51.57 53.38 86.95 63.64 54.37 63.16

utilizes a similar margin objective function as CW∞, which can be effectively blocked by channel
suppressing.

Table 6: Black-box robustness (accuracy (%) on various black-box attacks) of ResNet-18 on SVHN
and CIFAR-10. ‘+CAS’ indicates applying our CAS training strategy to existing defense methods.
The best results are boldfaced.

Defense SVHN CIFAR-10
PGD-20 CW∞ NAttack PGD-20 CW∞ NAttack

AT 64.42 70.60 40.36 79.13 79.87 45.05
AT+CAS 65.50 72.35 75.72 85.80 86.54 83.32
TRADES 67.81 74.43 44.16 78.18 78.95 49.25
TRADES+CAS 68.48 75.66 81.82 84.77 85.54 79.42
MART 66.85 73.90 41.66 76.93 77.49 49.05
MART+CAS 68.45 75.45 80.12 85.68 86.59 81.93

6 CONCLUSION

In this paper, we investigated intermediate activation of deep neural networks (DNNs) from a novel
channel-wise perspective, in the context of adversarial robustness and adversarial training. We high-
light two new characteristics of the channels of adversarial activation: 1) higher magnitude, and 2)
more uniform activation frequency. We find that standard adversarial training improves robustness
by addressing the first issue of the higher magnitude, however, it fails to address the second issue of
the more uniform activation frequency. To overcome this, we proposed the Channel-wise Activation
Suppressing (CAS), which dynamically learns the channel importance and leverages the learned
channel importance to suppress the channel activation in the training phase. When combined with
adversarial training, we show that, CAS can train DNNs that inherently suppress redundant channels
from being activated by adversarial examples. Our CAS is a simple but generic training strategy that
can be easily plugged into different defense methods to further improve their robustness, and can be
readily applied to robustify the intermediate layers of DNNs.
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A ALGORITHM OF CAS TRAINING

Algorithm 1 Robust Training with CAS.
Input: Training data {xi, yi}i=1,2,...,n, DNN F(θ), CAS modules with parameters M , maximum

training epochs T
Output: Robust Network F

1: for t in [1, 2, · · · , T ] do
2: for minibatch {x1, · · · ,xb} do
3: Generate adversarial examples using PGD attack on Equation 5
4: Compute the CAS loss in Equation 4 using the channel-wise activation f̂ l

5: Reweight the original features f̃ l = f l ⊗M l
y using the parameters M l

y in CAS
6: Forward with the adjusted f̃ l and compute the CE loss at the output layer
7: end for
8: Optimize all parameters (θ,M ) by Equation 5 using gradient descent
9: end for

B A SUMMARY OF THE ADVERSARIAL LOSS FUNCTIONS USED WITH CAS

When combined with our CAS, the training loss is a combination of the original adversarial loss and
our CAS loss. Table 7 defines the exact loss functions used for AT (Madry et al., 2018), TRADES
(Zhang et al., 2019), MART (Wang et al., 2020c) and their CAS enhanced versions. Here, we assume
the CAS module is attached to S number of layers of the network. p̂s and Ms denote the prediction
score and weights of the auxiliary classifier in the s-th CAS module, respectively.

Table 7: A summary of the loss functions used for standard adversarial training (AT), TRADES,
MART, and their corresponding versions with our CAS (‘+CAS’).

Defense Loss Function

AT CE(p(x′, θ), y)

+CAS + β
S

∑S
s=1 CE(p̂s(x′, θ,Ms), y)

TRADES CE(p(x, θ), y) + λ · KL(p(x, θ)||p(x′, θ))

+CAS + β
S

∑S
s=1 CE(p̂s(x, θ,Ms), y) +β · ( λS ·

∑S
s=1 KL(p̂s(x, θ,Ms)||p̂s(x′, θ,Ms)))

MART BCE(p(x′, θ), y) + λ · KL(p(x, θ)||p(x′, y)) · (1− py(x, θ))

+CAS + β
S

∑S
s=1 BCE(p̂s(x′, θ,Ms), y) +β · ( λS ·

∑S
s=1 KL(p̂s(x, θ,Ms)||p̂s(x′, θ,Ms)) · (1− p̂sy(x, θ,M

s))

C CHANNEL-WISE ACTIVATION SUPPRESSING ON MORE DATASETS AND
DEFENSE MODELS

Here, we visualize the channel suppressing effect of our CAS training strategy on more defense
models: TRADES (Zhang et al., 2019) and MART (Wang et al., 2020c). We train ResNet-18 (He
et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009). The CAS modules are attached to the final
block of ResNet-18.

Figure 5 illustrates the channel activation frequencies of the original defense models and their im-
proved versions with our CAS. As can be observed, our CAS can suppress the redundant channels
consistently in both defense models. This restricts the channel-wise activation to be more class-
correlated. More importantly, the channel activation are suppressed to a similar frequency distribu-
tion between the natural and the adversarial examples.

We further compare the channel-wise activation of natural versus adversarial examples on SVHN
and ImageNet in Figure 6 and Figure 7. For SVHN, we choose examples of class 0 and construct
the adversarial examples by PGD-20 with ε = 8/255. We count the channel activation frequency of
naturally trained, adversarially trained and CAS trained models. As shown in Figure 6, neurons #200
- #500 in Figure 6(a) and neurons #250 - #400 in Figure 6(b), are frequently activated by adversarial
examples while in Figure 6(c), our CAS can effectively suppress these redundant activation.
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For ImageNet, as it is extremely time consuming to perform adversarial training, we adopt the stan-
dard pre-trained ResNet-152 from torchvision.models * and an adversarially trained ResNet-152
from the Github repository†. We select 5,900 dog images from the validation set of ImageNet (class
#151-#269) and generate the adversarial examples using PGD-30 (ε=16/255, α=1/255). We count
the channel activation at the penultimate layer of ResNet-152. It can be observed in Figure 7(a) that
adversarial examples activate more uniformly than natural examples. While in Figure 7(b), adver-
sarially trained models can align the activation distribution of the natural examples with that of the
adversarial examples to some extent, however, the activation frequencies of the adversarial exam-
ples are still higher than that of the natural examples. This indicates that there are still redundant
channels and non-robust features in this adversarially trained ResNet-152 model.
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(b) TRADES+CAS
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(c) MART
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(d) MART+CAS

Figure 5: The distributions of channel activation frequency of both natural and adversarial examples
in different defense models (e.g. TRADES and MART). The frequency distribution gap between
natural and adversarial examples is effectively narrowed down by our CAS training, and the redun-
dant channels (channel #200 - #512) are significantly suppressed by CAS.
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(a) ResNet-18 (STD)
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(b) ResNet-18 (ADV)
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(c) ResNet-18 (our CAS)

Figure 6: The distributions of channel activation frequency of both natural and PGD-20 adversarial
examples for ResNet-18 on SVHN.
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(a) ResNet-152 (STD)
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(b) ResNet-152 (ADV)

Figure 7: The distributions of channel activation frequency of both natural and PGD-30 adversarial
examples for ResNet-152 on ImageNet.

*https://pytorch.org/docs/stable/torchvision/models.html
†https://github.com/facebookresearch/ImageNet-Adversarial-Training
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Figure 8: Robustness of AT+CAS against white-box attacks FGSM, PGD-20 and CW∞ under dif-
ferent β. As β increases, the robustness is also improved, especially against the CW∞ attack.

D SENSITIVITY OF CAS TO PARAMETER β

As mentioned in Section 4, the parameter β on the CAS loss controls the suppressing strength. To
test the sensitivity of CAS training under different β, we insert a CAS module to Block4 of ResNet-
18, and train the network on CIFAR-10 using AT+CAS under β ∈ [0, 0.5, 1, 2, 5, 10, 20]. Note that
β = 0 indicates the standard adversarial training (AT). We test the robustness of the models in a
white-box setting against FGSM, PGD-20 and CW∞. As shown in Figure 8, the models trained
with larger β are generally more robust, especially against the CW∞ attack. This is because larger
β increases the strength of channel suppressing, leading to larger inter-class margins. As we further
show in Figure 9, the representations learned with CAS are more separated between different classes,
and are more compact within the same class. This tends to increase the difficulty of margin-based
attacks like white-box CW∞ attack and black-box N attack.

E CAS IMPROVES REPRESENTATION LEARNING

The representations learned by natural or adversarial training with or without our CAS strategy are
illustrated in Figure 9. The t-SNE (Maaten & Hinton, 2008) 2D embeddings are computed on deep
features extracted at the penultimate layer of ResNet-18 on CIFAR-10. As can be observed, our
CAS training improves representation learning for both natural training and adversarial training.
This is largely attributed to the strong channel suppressing capability of our CAS training. Channel
suppressing helps learn high-quality representations with high inter-class separation and intra-class
compactness. Interestingly, our CAS training can even improve the performance of natural training
from 92.75% to 94.56%. This implies that our CAS is a generic training strategy that can benefit both
model training and representation learning. Although CAS is not a direct regularization technique,
it can achieve a similar representation regularization effect as existing representation enhancing
techniques like the center loss (Wen et al., 2016).

F MORE EXPERIMENTAL RESULTS

F.1 WIDERESNET RESULTS ON CIFAR-10

The white-box robustness of WideResNet-34-10 (Zagoruyko & Komodakis, 2016) models trained
using AT, AT+CAS, TRADES, TRADES+CAS, MART and MART+CAS are reported in Table 8.
We attach the CAS module to the last two convolution layers of the network, and set β = 2. The
training settings are the same as used for ResNet-18, except that, here we use weight decay 5e-4. The
‘best’ and ‘last’ results indicate the best and last checkpoints, respectively. For our CAS, we generate
the attacks using the same adaptive white-box attacks as used in Section 5.2. The robustness of AT,
TRADES and MART can be consistently improved by our CAS training. The most improvements
are achieved on AT. These results confirm that our CAS training can lead to consistent improvements
to different adversarial training methods on more complex models.
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(a) ADV (Natural Examples)
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(b) ADV+CAS (Natural Examples)
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(c) ADV (Adversarial Examples)
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(d) ADV+CAS (Adversarial Examples)
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(e) STD (Natural Examples)
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(f) STD+CAS (Natural Examples)

Figure 9: The t-SNE 2D embeddings of deep features extracted at the penultimate layer of ResNet-
18 models trained using natural (‘STD’) or adversarial training (‘ADV’) on CIFAR-10. The em-
beddings are shown separately for natural versus adversarial examples. Our CAS training can help
improve inter-class separation and intra-class compactness for both types of training.

Table 8: White-box robustness (accuracy (%) on various white-box attacks) of WideResNet-34-10
on CIFAR-10 dataset. ‘+CAS’ indicates applying our CAS training to existing defense methods.
The best results are boldfaced.

Defense
CIFAR-10

Natural FGSM PGD-20 CW∞
Best Last Best Last Best Last Best Last

AT 84.16 84.23 66.62 61.27 53.75 49.53 50.52 47.68
AT+CAS 88.25 89.06 67.14 66.98 56.28 53.22 58.54 54.77
TRADES 86.23 86.41 66.41 65.63 54.42 52.64 53.45 52.43
TRADES+CAS 87.07 87.15 66.92 66.15 55.43 53.15 61.46 57.07
MART 84.09 85.69 67.24 66.41 57.56 54.49 54.42 52.55
MART+CAS 87.87 89.20 68.09 67.96 58.24 54.95 61.48 57.11

16



Published as a conference paper at ICLR 2021

F.2 VGG16 RESULTS ON CIFAR-10

Similar to the above WideResNet experiments, here we report the results of VGG16 (Simonyan &
Zisserman, 2014) on CIFAR-10 in Table 9. For VGG16, we attach the CAS module to its last three
convolution layers, and set β = 3. We can see that our CAS training can enhance the robustness of
‘best’ models by a remarkable margin of 7%-10%. Note that the accuracy of natural training is also
improved by a considerable margin. Compared with complex models like WideResNet, our CAS
training is even more beneficial for small capacity models (e.g. VGG16).

Table 9: White-box robustness (accuracy (%) on various white-box attacks) of VGG16 on CIFAR-
10. ‘+CAS’ indicates applying our CAS training strategy to existing defense methods. The best
results are boldfaced.

Defense
CIFAR-10

Natural FGSM PGD-20 CW∞
Best Last Best Last Best Last Best Last

AT 70.32 70.38 51.87 51.85 42.23 42.01 43.63 43.81
AT+CAS 82.25 82.61 59.77 57.56 49.22 42.73 53.03 49.68
TRADES 74.98 76.67 52.10 52.99 41.53 41.13 45.50 45.25
TRADES+CAS 83.45 83.25 61.36 61.51 49.86 49.56 52.60 52.47
MART 71.70 72.20 54.72 54.90 46.55 46.53 44.52 44.72
MART+CAS 81.53 83.28 61.89 61.70 52.01 49.13 50.97 49.10

F.3 ROBUSTNESS RESULTS AT THE BEST CHECKPOINT

We report the white-box robustness of the ‘best’ (i.e. the best checkpoint) models of ResNet-18
on SVHN and CIFAR-10 in Table 10, as a supplementary to the ‘last’ (i.e. the last checkpoint)
results in Table 5. Again, our CAS can also improve the robustness of the ‘best’ checkpoint models
consistently. This proves that our CAS can improve both the robustness and the natural accuracy
throughout the entire training process.

Table 10: White-box robustness (accuracy (%) on various white-box attacks) of ResNet-18 on
CIFAR-10 and SVHN on the best checkpoint. ‘+CAS’ indicates applying our CAS training strategy
to existing defense methods. The best results are boldfaced.

Defense SVHN CIFAR-10
Natural FGSM PGD-20 CW∞ Natural FGSM PGD-20 CW∞

AT 91.41 69.52 53.07 50.38 84.20 63.32 52.01 50.97
AT+CAS 92.69 71.83 54.78 54.13 86.72 62.92 54.40 62.72
TRADES 90.40 71.22 57.71 54.49 82.68 63.15 53.05 50.46
TRADES+CAS 91.41 71.39 59.32 66.94 84.75 63.94 57.20 67.77
MART 87.37 68.58 57.72 51.48 78.90 63.29 54.92 50.31
MART+CAS 91.04 72.32 60.29 57.05 85.99 64.23 58.21 69.91

F.4 ROBUSTNESS AGAINST AUTOATTACK

We report the white-box AutoAttack (Croce & Hein, 2020b) evaluation results of ResNet-18 on
CIFAR-10 in Table 11. AutoAttack is an ensemble of two proposed Auto-PGD attacks and the other
two complementary attacks (Croce & Hein, 2020a). AutoAttack has been shown can produce more
accurate robustness evaluations on a wide range of adversarial training defenses. As shown in Table
11, although less significant than against regular attacks like PGD and CW, CAS with proper training
can still improve the robustness of AT, TRADES and MART by a noticeable margin. This confirms
that the improvements brought by our CAS training is ‘real’ and substantial, rather than obfuscated
gradients nor improper evaluation.
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Table 11: White-box robustness (accuracy (%) against AutoAttack) of ResNet-18 on CIFAR-10.
‘+CAS’ indicates applying our CAS training strategy to existing defense methods. The best results
are boldfaced.

Defense AutoAttack
Best Last

AT 46.58 41.90
AT+CAS 47.40 44.74
TRADES 48.28 47.46
TRADES+CAS 48.40 48.38
MART 47.06 45.45
MART+CAS 48.45 46.39

F.5 MORE ROBUSTNESS EVALUATIONS OF CAS

The robustness of the CAS module is further evaluated in this section. By producing large margins,
the CAS module and the channel suppression operation can make more boundary adversarial ex-
amples be correctly classified than that in the baseline models. However, this may also increase the
risk of causing imbalanced margin and imbalanced gradients. To test this, we evaluate CAS against
a recent Margin Decomposition (MD) attack (Jiang et al., 2020). We use the default setting of MD
attack as stated in the original paper. The results are reported in Table 12, where it shows our CAS is
robust against the MD attack. We also test our CAS against PGD-20 with step size ε/10 and various
attack strengths. This result is presented in Table 13. The robustness of CAS decreases with the
increase of ε, which proves that the robustness of CAS is not a result of obfuscated gradients.

Table 12: Robustness of CAS against Margin Decomposition (MD) attack. This experiment was
conducted with ResNet-18 on CIFAR-10.

Defense Adversarial Loss Type
MD (CE) MD (CAS) MD (CE+CAS)

AT 43.35 – –
AT+CAS – 46.27 49.56
TRADES 48.47 – –
TRADES+CAS – 53.51 55.53
MART 46.99 – –
MART+CAS – 49.89 55.75

Table 13: Robustness (%) of CAS with ResNet-18 on CIFAR-10 against PGD-20 under different ε.

Attack strength ε 2/255 4/255 8/255 16/255 32/255

AT+CAS 79.15 70.26 48.88 16.64 2.48
TRADES+CAS 80.09 72.69 55.99 27.94 5.10
MART+CAS 81.01 73.56 54.37 20.49 2.19

F.6 CHANNEL ACTIVATION FREQUENCY UNDER DIFFERENT THRESHOLDS

In Figure 2, we have shown the activation frequency of standard training (STD), adversarial training
(AT) and CAS-based adversarial training (AT+CAS) on a ResNet-18 model with the threshold of
1%. That is, a channel is determined as activated if its activation count is larger that 1% of the
maximum activation count over all 512 channels. In Figure 10, we show the distribution of activation
frequency under different thresholds (e.g. 0.5%, 1%, 5%). Larger threshold will truncate more
low-count activation. The plots show that different thresholds will introduce some noise to the
distributions but the general patterns do not change.
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(a) ResNet-18 (AT 0.5%)
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(b) ResNet-18 (AT 1%)
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(c) ResNet-18 (AT 5%)
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(d) ResNet-18 (AT+CAS 0.5%)
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(e) ResNet-18 (AT+CAS 1%)
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(f) ResNet-18 (AT+CAS 5%)

Figure 10: The activation frequency (y-axis) of channel-wise activation at the penultimate layer
of adversarial training (AT) and our CAS-based adversarial training (AT+CAS) for ResNet-18 on
CIFAR-10. The activation frequencies are visualized with respect to different thresholds (e.g. 0.5%,
1% and 5%).
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