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Abstract

Large language models (LLMs) have shown
remarkable success in various tasks, yet their
internal mechanisms remain inadequately un-
derstood. This paper investigates these mech-
anisms by analyzing how input query infor-
mation propagates within task-specific spaces.
Specifically, we propose a prompt-pair de-
tection method that constructs a task-specific
label space and projects hidden representa-
tions onto it to examine information propaga-
tion during the understanding, generation, and
decision-making stages. Our findings reveal
that LLMs compress and decompress query
information into hidden representations near
the task-specific label space during the under-
standing and generation stages. In the decision-
making stage, labels with distributions similar
to the query are predicted, but these labels do
not always match the true labels, leading to
errors. To address this, we analyze the query
distribution and find that queries tend to cluster
around semantically similar queries, regardless
of proximity to the true label. Based on this,
we propose a similarity-based voting method
(Si1V) that aggregates votes from semantically
similar queries to improve prediction accuracy,
mitigating errors caused by relying solely on
label similarity. Extensive experiments show
that SiV enhances both accuracy and speed,
while also enabling incremental updates with-
out training.

1 Introduction

Large language models (LLLMs) have been widely
applied to tasks such as text generation (Liu et al.,
2024; Long et al., 2024), logical reasoning (Fu
et al., 2022; Wang et al., 2022; Yao et al., 2023)
and emotion recognition (Yang et al., 2024; Qian
et al., 2023), achieving significant results. Exist-
ing research mainly focuses on their surface per-
formance (Radford et al., 2019; Luo et al., 2023;
Agrawal et al., 2022), neglecting a deeper explo-
ration of task execution, particularly how informa-
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Figure 1: Task completion in LLMs and internal mech-
anisms under our information propagation hypothesis
(IPH). Our IPH: LLMs compress information to the tar-
get label space during understanding, decompress and
approach the label during generation, and predict results
based on similarity during decision-making.

tion flows within the model during the understand-
ing, generation, and decision-making processes and
how it impacts final predictions, a question that re-
mains unanswered.

In this paper, we reveal the internal mechanisms
of LLMs by observing and analyzing the flow of
internal hidden representations in a task-specific
space. Inspired by neuroscience research on hidden
representations in LLMs (Olah, 2023; Park et al.,
2023; Liu et al., 2024), we propose a prompt-pair
detection method that constructs the task-specific
label space and projects the LLMs’ hidden repre-
sentations into it. By analyzing the mutual infor-
mation and similarity of the projection during the
understanding, generation, and decision-making
processes, we identify the following patterns of
information transfer: (i) Understanding Stage:



LLMs progressively compress the input query in-
formation from shallow to deep layers, ultimately
mapping it to a target label space. As shown in
Figure 1, for the query “my grandpa is coming to
visit!” with the emotion “joyful,” LLMs compress
the information through the layers at time step 0,
mapping it to spaces near labels like “joyful” and
“excited.” (ii) Generation Stage: LLMs gradually
decompress the compressed information, forming
hidden representations closest to the target category
at specific time steps. As shown in Figure 1, LLMs
gradually decompress the query information to gen-
erate tokens, with the hidden representation closest
to the target “joyful” emotion formed at the 1st
time step. (iii) Decision Stage: LL.Ms compare the
decompressed hidden representations to the labels
in the label space, with higher similarity increas-
ing the likelihood of the corresponding label being
predicted. As shown in Figure 1, at the 2nd time
step, the hidden representation is closer to “joyful”
than “excited,” making the former more likely to
be predicted as the result. Based on these observa-
tions, we propose the Information Propagation
Hypothesis (IPH): LLMs compress query infor-
mation in the understanding stage, progressively
decompress it in the generation stage, and make
predictions based on label distribution similarity.

To validate the hypothesis, we manipulate LLMs’
hidden representations to block or enhance informa-
tion transfer in emotion classification (Chatterjee
et al., 2019; Rashkin et al., 2019), topic classifica-
tion (Li and Roth, 2002; Hovy et al., 2001), and
question answering (Mallen et al., 2023). The re-
sults show that blocking information significantly
reduces performance, while enhancing it signif-
icantly improves performance. Further analysis
reveals the underlying reason: blocking informa-
tion causes the hidden representations to deviate
from the true label distribution, making it harder
for LLMs to select the correct label with lower
similarity, resulting in poorer performance. Con-
versely, performance improves when information is
enhanced. These findings validate the information
propagation hypothesis: LLMs compress and de-
compress query information and make predictions
based on similarity to label distributions.

However, in practice, query information does
not always align with the true label distribution,
resulting in lower similarity and inaccurate predic-
tions. Thus, relying on labels to predict results is
not always effective. To optimize this process, we

analyze query distributions and find that semanti-
cally similar queries tend to have similar distribu-
tions, regardless of their alignment with the true
label distribution. Therefore, using semantically
similar queries is reliable in predictions. Based on
this insight, we propose a Similarity-based Voting
method (SiV), which retrieves semantically simi-
lar queries and uses their corresponding labels to
determine the final prediction.

To validate the effectiveness, we conduct experi-
ments using Phi3.5-mini, Llama3.1g;, and Mistral-
Nemo on question answering (Mallen et al., 2023),
emotion classification (Chatterjee et al., 2019),
topic classification (Li and Roth, 2002; Hovy
et al., 2001), and fine-grained emotion recogni-
tion tasks (Rashkin et al., 2019). The results show
that SiV improves average accuracy and macro
F1 scores by 19% and over 10%, respectively,
while achieving a 2.0x speedup. Furthermore, the
method’s ability to flexibly expand and modify ref-
erence queries without retraining allows for incre-
mental iteration and adjustment, offering high flex-
ibility and adaptability.

Overall, our contributions are as follows:
(i) We introduce a prompt-pair detection method
that enables the construction of a label space, fa-
cilitating the exploration of LLMs’ internal mecha-
nisms. (ii) Building on the label space, we present
the Information Propagation Hypothesis, which
posits that LLMs compress information during the
understanding stage, progressively decompress it in
the generation stage, and make predictions based
on distributional similarity in the decision stage.
(iii) We propose a simple yet effective similari-
ty-based voting method to enhance the information
propagation process in LLMs. (iv) Extensive exper-
iments demonstrate that our approach significantly
boosts performance and speed, while enabling in-
cremental updates and iterative improvements with-
out retraining

2 Label Space Construction

To investigate how Large language models (LLMs)
perform tasks, we propose a prompt-pair detection
method that constructs a task-specific label space,
enabling us to analyze changes in internal represen-
tations.

2.1 Prompt-Pair Detection Method

Our prompt-pair detection method is based on the
linear representation and superposition hypothe-



Infer the dialogue from the perspective of the
emotion “joyful”.

Dialogue Context: <sample s;>.

Response Format: “Emotion: <emotion ¢;>".

Table 1: Positive prompt for the emotion recognition.

ses (Olah, 2023; Park et al., 2023), extracting
shared label representations of labels across sam-
ples to form category-specific representations.

For clarity, we use the label ¢; (e.g., “joyful”) as
an example. Given this label, we collect N samples
S = [s1,..., Si, ...sN] belonging to the same cate-
gory and construct positive and negative prompt
pairs. The positive prompt is shown in Table 1. The
key difference between these prompts is that the
positive prompt is labeled with c;, while the nega-
tive prompt uses a random label from the task label
set C'. Both positive and negative prompts are then
input into the LLM, and token generation is per-
formed using a teacher-forcing approach, defined
as follows:

Uiy, = LLM(PJ,y%,) (1)
where P;: , P; are the positive and negative

prompts, respectively. v; s, and y<; refer to the
token at time step t and the tokens before time step
t, respectively.

For the generated token at time step ¢, the hidden
representations at [-th layer for the positive and
negative representations are denoted as hi; and

hi; respectively. By subtracting these representa-
tions, we maximize the acquisition of label-specific
information (Liu et al., 2024; Turner et al., 2023),
yielding the representation hé s

1+ l,—
hi,si = ht,si o ht,si )
where i} . hiT. hio € R% and d is the hidden
representation dimension of LLMs. To obtain sta-
ble label representations across different contexts,
we collect the representations from N samples and
apply Principal Component Analysis (PCA) to ex-
tract common features. The representation for label
¢ is hlcl_ € R, as follows:
H. = [h}

1,817 °

Y T 4)
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hi, = PCA(H,,) 5)

Heatmap for Phi-3.5-mini on PQA

- 1.0

football .. .. .
-0.9
iran

poland .
france .. .. .. [°7
romania

.. .. . -06

japan

i-pop

india . . .
-03
canada

ournalist -02

football
iran
poland
france
omania
japan
j-pop
india
canada
urnalist

Figure 2: Heatmap for Phi-3.5-mini on PQA dataset.

2.2 Label Space Analysis

After constructing the label representations, we
treat the collection of these vectors as the la-
bel space. To clearly present the label space,
we visualize the label distributions for the mod-
els Phi3.5-mini, Llama3.1g;, and Mistral-Nemo
across emotion recognition (EC) (Chatterjee et al.,
2019), topic classification (TREC) (Li and Roth,
2002; Hovy et al., 2001), question answering
(PQA) (Mallen et al., 2023), and empathy dialogue
datasets (ED) (Rashkin et al., 2019).

Figure 3 shows the label distribution visualiza-
tion. The results reveal that labels with emotional
and semantic meanings are more dispersed. For in-
stance, label distributions in the empathy dialogue
dataset (ED) and question answering dataset (PQA)
are more scattered, while those in emotion-related
datasets (ED and EC) are more concentrated. This
suggests that the label representations are generally
well-distributed. Figure 2 illustrates label visual-
izations on the PQA dataset. According to the
results, semantically similar categories, like "Iran"
and "France," exhibit higher similarity, whereas cat-
egories with larger semantic differences, like "Iran"
and "J-pop," show lower similarity. Further experi-
ments and analysis in the Appendix A confirm the
reasonableness of the label distributions.

3 Information Propagation Hypothesis

LLMs complete specific tasks by understanding
the input query and progressively converting the
information into the target label. For example, in
the emotion recognition task, given the query “my
grandpa is coming to visit!”, the LLM understands
the emotion and outputs the corresponding target
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Figure 3: Visualization of label distribution.

emotion “‘joyful.” This process raises an impor-
tant question: how does the LLM internalize and
transfer the information from the input to the target
label? From the perspective of the label space, we
define this problem as: how do LLMs propagate
and convert information during the understanding,
generation, and decision-making processes to map
it to the target label space?

To address this question, we examine the target
labels predicted by LLMs. We find that LLMs
often struggle to accurately predict the emotion of a
query, such as “my grandpa is coming to visit!”—it
may not predict the correct emotion, “joyful,” but
usually predicts a similar emotion, such as “happy”
or “excited.” That is, expanding the target label
space is necessary. Therefore, we define the correct
label ¢; and its k; most similar neighbors as the
target label space h;g, as formulated below:

he, Mean(hl )i he, = Mean(hl )

his = TOpkl (hcia th)

(6)
)

where h., € R bl € RF*d ¢, ¢; € C. ¢jand ¢;
are label categories, while C' is the set of labels for
the task. M ean refers to the mean pooling function.
Topy, is the selection function, which selects the
top k labels with the highest similarity scores. hs
represents the representation of the most similar
neighbor labels, including the label itself, while
hfgs refers to the corresponding representation of
the [-th layer.

For the query’s hidden representation, we project
it onto the target label space,called projection, and
represent it as:

k

LI hts

=2 e
|hts hts|

where hé € R% is the projection of the hidden
representation.

®)

To further observe the internal information
changes within the task, we compute the Mutual
Information (MI) at each stage of the task execu-
tion. Mutual Information measures the dependency
between two random variables X and Y. It quan-
tifies the reduction in uncertainty of one variable
given the other. In practice, exact computation of
mutual information is infeasible as the true prob-
ability distributions are unknown. Therefore, we
employ K-Nearest Neighbors (KNN)-based meth-
ods to approximate the densities. Using these ap-
proximations, the MI can be expressed as:

I( ZIO Aﬁ ZEzyyz)
=1 ( )

©)
p\r

where p(x;, yi), p(z;), and p(y;) are the estimated
joint and marginal probabilities for the samples z;
and y;. M represents the number of samples.

3.1 Definition of Task Completion Stages

In the following sections, we divide the task exe-
cution process of LLMs into three stages: under-
standing, generation, and decision-making. Taking
the emotion recognition task as an example, LLMs
are required to understand the query and generate
a response in the form of “Emotion: [emotion].”

Understanding Stage. At the time step 0, LLMs
learn the query as a hidden representation, encod-
ing its information; we call this the understand-
ing stage. Note that we use decoder-based LLMs,
which, although lacking a distinct encoder, still
encode information at step 0 through self-attention.

Generation Stage. From time step O to t;, LLMs
generate the prompt-specified content, “Emotion:”
We refer to this as the generation stage.

Decision-making Stage. At the k-th key time step,
LLMs generate the token “:”. Based on previous
research (Wang et al., 2023), this step consolidates



the most important information for prediction. We
denote this time step as ¢, called the decision point,
and refer to the process of converting the hidden
representation into the result at this step as the
decision process.

3.2 Understanding Stage: Information
Compression

Hypothesis. The first step in completing the task is
to interpret the query as task-relevant information.
In this process, we hypothesize that LLMs continu-
ously compress the query information towards the
target label space.

Experiment. According to information bottleneck
theory (Saxe et al., 2019; Slonim, 2002; Tishby
et al., 2000; Tishby and Zaslavsky, 2015), for the
hidden representations z; from shallow to deep lay-
ers, if the mutual information /(x, z;) between the
input representation z and the hidden representa-
tion z; decreases, while the mutual information
I(z;,y) between the hidden representation and the
target representation y increases, it indicates that
the model is compressing information towards the
target. To verify this, we calculate the mutual in-
formation between the input representation at O-th
layer, z=h0, the intermediate hidden representation

;
zj=hy , and the target representation y= h

L. = IS, b )i Ly = I(hg, hL,)  (10)
where ho Kt 5, and hl, represent the query’s in-
put pr0]ect10n the intermediate projection, and the
target representation at the /;-th layer. The target
representation is the label space representation of
the query’s correct category (see Eq. 7).
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Figure 4: Variation of mutual information in LLMs
during the understanding stage.

Results and Analysis. Figure 4 shows the results
of Phi-3.5-mini, Llama3.1g;, and Mistral-Nemo
on multiple datasets. The results indicate that as
the depth of layers increases, the mutual informa-
tion between the intermediate projection and the

input projection gradually decreases until it stabi-
lizes, while the mutual information between the
intermediate projection and the target representa-
tion steadily increases. Notably, due to differences
in training data and methods, the degree and ef-
ficiency of compression vary. Nevertheless, the
results still demonstrate that LLMs compress infor-
mation towards the target label space, confirming
our hypothesis.

3.3 Generation Stage: Information
Decompression

The second step in task completion is to generate
the corresponding tokens based on the understand-
ing. To track the information changes in this pro-
cess, we calculate the mutual information between
the projection at step ¢; of the generation stage
and the projection at the understanding stage (t;
= 0) or the target label. Since the key time step
t;. consolidates the most crucial information for
prediction (Wang et al., 2023), we also observe the
mutual information changes at each layer of LLMs
at this time step.

3.3.1 Mutual Information in Time Steps

Hypothesis. Since the goal of LLMs in the gen-
eration stage is to output the target category, we
hypothesize that during this stage, they continue
to accumulate information towards the target label
space until the key time step reaches its peak.

Experiment. To verify this hypothesis, we calcu-
late the mutual information between the projection
at the time step ¢; and the projection at the time
step ¢;=0 or the target label space, as follows:

ti Lt I,t;
I, = LZIh o, hlst) (11)

y Z hl t; hts

(12)

where hé’to is the projection at the [-th layer in the
understanding stage (¢;=0), hi;ti is the projection at

[-th layer in the generation stage.

Results and Analysis. As shown in Figure 5, the
mutual information between the projection in the
generation process and the projection in the under-
standing stage remains stable, indicating that LLMs
retain some query information during generation.
Meanwhile, the mutual information between the
projection in the generation process and the target



label space increases before the key time step and
decreases afterward. This suggests that LLMs ex-
tract information towards the target space until the
key time step. In summary, these results show that
LLMs continuously extract and decompress infor-
mation into the target space during the generation
process, until the key time step. Additional experi-
ments in Appendix B confirm the same conclusion.
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Figure 5: Mutual Information at Generation Time Steps.

3.3.2 Mutual Information at Key Time Step

Hypothesis. Previous studies show that at the key
time step, deep layers in LLMs aggregate informa-
tion essential for prediction (Wang et al., 2023).
Therefore, we hypothesize that at this point, the
deep-layer projection is more closely aligned with
the target space.

Experiment. To validate this hypothesis, we com-
pute the mutual information at the key time step
ti between the projection in the generation stage
and the projection in the understanding stage or the
target label space, as follows:

Iy, = I(hLfo Rbty 1, = I(RL' bl (13)

where hfgtk’ represents the projection at the [-th
layer at time step tj.

Results and Analysis. As shown in Figure 6, the
results reveal that at the key time step, the mutual
information between the projection in the genera-
tion stage and projection in the understanding stage
fluctuates while maintaining a high level of infor-
mation. This suggests that LLMs adjust and re-
tain connections with the understood information.
Additionally, the mutual information between the
projection in the generation stage and the target
label space fluctuates from shallow to mid-layers,
reaching or approaching its maximum in deeper
layers. This indicates that LLMs aggregate target-
related information in the deeper layers. Overall,
LLMs retain understood information while extract-
ing and decompressing target-related information

in the deeper layers, making it crucial for predic-
tion. Additional experiments in Appendix C sup-
port this conclusion.
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Figure 6: Mutual information at key time step ty.

3.4 Decision Stage: Similarity-Based
Prediction

The final step in task completion is to decide the
output category based on the understanding and
generation content.

Hypothesis. Since the hidden representation at the
key time step heavily influences the output (Wang
et al., 2023), we focus on how the projection at this
moment affects the decision. We hypothesize that
the stronger the correlation between the projection
and a specific category, the more likely LLMs are
to predict that category.

Experiment. To validate this, we compute the
dot product between the hidden representation and
label space representations at the key time step, as
shown below:

(14)
(15)

he; = Mean(hlcj);ﬁtk = Mean(hék)

04,5 = hcj <y,

where A, hy, € R?, are the category representa-
tions in the label space and the hidden represen-
tation at time step ?x, respectively. o; ; is the dot
product score.
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Results and Analysis. Figure 7 shows the results.
The x-axis represents the accuracy of categories
sorted by descending dot product scores, and the
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PQA datasets.

y-axis shows the predicted probability for each cat-
egory. The results indicate that categories with
higher dot product scores are more likely to be pre-
dicted as the target. This suggests that LLMs make
decisions based on similarity during the decision-
making process. Further experiments in Appendix
D further confirms this conclusion.

4 Validation of Hypotheses on Tasks

In this section, we propose the information prop-
agation hypothesis based on our experiments and
analysis, and validate it across multiple datasets.

Information Propagation Hypothesis. LLMs
compress information towards the target label
space in the understanding stage, decompress and
extract information in the generation stage, and
make decisions based on similarity in the decision
stage.

Blocking and Enhancement Experiments. To
validate the hypothesis on real tasks, we manipu-
late the information propagation in LL.Ms by en-
hancing or disrupting it at different stages. For a
query, enhancing information involves adding the
ground truth label representation (in Eq. 5) at the
corresponding stage, while disrupting information
involves subtracting or replacing it, as below:

l,s 1 U lr 1
hy” = hy, — ahg s hy = ah,

l
hi® = hi, + ahl,

(16)
A7)

where hi’ia, hl’is, hif € R? and « is a hyperparam-
eter.

The enhancement experiment brings the hidden
representation closer to the correct category’s la-
bel space. In contrast, subtraction moves the hid-
den representation further away. This experiment
helps verify the impact of similarity-based decision-
making. The replacement experiment retains only
category-related information. If performance im-
proves, it suggests that LLMs can make accurate
predictions relying solely on label information; oth-
erwise, it indicates that other semantic information
in the hidden representation is also crucial. We con-
duct experiments during the understanding stage,
early generation steps (e.g., generating “Emotion”),
and the key time step (e.g., generating ““:”’). For sim-
plicity, we refer to these stages as the understanding
stage, generation stage, and decision point.

Results and Analysis. The results are shown in
Figure 8. From the results, we find that: (i) Enhanc-
ing at the decision point greatly improves accuracy,
while enhancing during the understanding stage
provides a moderate boost. Little change occurs
during the generation process. This suggests that
the decision point is the most critical, followed
by the understanding stage. This also suggests
that bringing the hidden representation closer to
the correct label space improves decision accuracy.
(i1) Disrupting the understanding stage and deci-
sion point significantly reduces performance, while
the effect during the generation process varies by
model. This emphasizes the importance of informa-
tion at the understanding stage and decision point,
with varying results in the generation stage due
to model characteristics. This also suggests that
disrupting representations reduces accuracy by dis-
tancing them from the correct label space. (iii) Re-
placing information at the understanding stage and
decision point significantly lowers performance,
with varying effects during the generation process.
This suggests that LLMs’ decisions depend not
only on label information but also on other seman-
tic factors. (iv) The above experiments show that
the similarity between the query’s hidden represen-
tation at the decision point and the correct label
space significantly impacts the prediction result.
From this perspective, we find that LLMs’ inability
to consistently propagate the query’s hidden rep-
resentation to the correct label space leads to poor
performance.



5 Methodology

The above experiments show that the distributional
mismatch between the query’s hidden representa-
tion and the correct label space leads to inaccu-
rate predictions. To address this, we analyze the
query’s distribution at the decision point and pro-
pose a similarity-based voting method based on the
characteristics of the query representation.

Sample Distribution Observation. Experiment
and analysis details are in Appendix D. The results
show that, regardless of whether the query matches
the correct label distribution, it is often close to
semantically similar queries.

Results on the EC dataset
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Figure 9: Main results on the datasets.

Similarity-Based Voting. We propose a Similarity-
based Voting (SiV) method to address the issue of
LLMs relying on a similar label space. Given a
query, we retrieve the top ko most similar queries
from the training set, then use their labels to vote,
selecting the most frequent label as the result. The
process is formalized as follows:
i l
hii = Mean(hy, ,,
Cq = Vote(Toka(hg; . hgi))

);hi? = Mean(hi, ) (18)
(19)

where h{’, hy" € Re. Topy, selects the top ko
queries with the highest scores, and V ote assigns
the label with the most votes as the prediction.

To validate SiV, we conduct experiments with
multiple LLMs across EC (Chatterjee et al., 2019),
TREC (Li and Roth, 2002; Hovy et al., 2001),
ED (Rashkin et al., 2019), PQA (Mallen et al.,
2023) datasets. Experimental setup details are in
Appendix E.

Main Results. As shown in Figure 9 (See Table
4 in Appendix F for details), the results show that,

compared to zero-shot learning, in-context learn-
ing (ICL) performs better. This is mainly because
ICL incorporates task-relevant information through
samples, leading to more accurate decisions. Our
proposed SiV, however, significantly outperforms
ICL, demonstrating that our method enhances the
decision-making process of LLMs.

Time Consumption. We evaluate SiV’s experi-
mental efficiency on the Empathetic Dialogue (ED)
dataset. As shown in Table 5 (see Appendix F), our
method doubles the inference speed compared to
ICL. This is because it generates fewer tokens to
make predictions, reducing time consumption. Ad-
ditionally, generating fewer tokens reduces cache
usage during generation, lowering computational
resource demands. Moreover, since the training set
queries can be adjusted and expanded anytime, our
method offers high scalability and flexibility.

6 Related Work

Recent studies have explored information flow and
reasoning in LLMs, including multimodal inter-
actions (Zhang et al., 2025), zero-shot Chain-of-
Thought mechanisms (Yuan et al., 2024), and
knowledge conflicts (Jin et al., 2024), while others
focus on interpretability through gradient projec-
tion (Katz et al., 2024) and methods for controlling
information flow and ensuring security (Men et al.,
2024; Tiwari et al., 2024; Siddiqui et al., 2024).
These methods overlook how information flows
and impacts outcomes in LLM task execution. To
address this gap, this paper explores the informa-
tion propagation process.

7 Conclusion

This paper investigated the internal mechanisms
of large language models (LLMs) by analyzing
how query information propagates within task-
specific spaces. We proposed the information prop-
agation hypothesis, explaining how LLMs com-
press and decompress query information during the
understanding, generation, and decision-making
stages through compression-decompression and
similarity-based decision propagation. Based on
this, we introduced the similarity-based voting
method (SiV) to optimize internal information flow
and enhance LLM performance. Extensive exper-
iments show that SiV improved accuracy, speed,
and flexibility. In the future, we will explore deeper
mechanisms within LLMs.



Limitations

Our paper has the following limitations: (i) The la-
bel space representation constructed by the promp-
t-based detection method contains some noise,
which affects certain experimental results. We plan
to address this issue in the future. (ii) The proposed
method has been tested only on classification and
question-answering tasks, both of which specify
the response format. We have not validated it on
natural text generation tasks, but we aim to explore
this further in the future.

Ethical Considerations

Regarding the potential ethical impacts of our work:
(i) The data we use is open-source and does not
pose any ethical risks. (ii) The baseline models
and methods we use are also open-source and do
not involve ethical concerns. (iii) Moreover, the
components employed in our approach are either
open-source or innovative, and do not present po-
tential ethical risks.
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Appendix
A Label Space Analysis

To clearly present the label space, we visualize
the label space of Phi-3.5-mini, Llama3.1g;, and
Mistral-Nemo across different datasets.

Figure 12a shows the results for Phi-3.5-mini on
the TREC dataset. The results indicate a strong
similarity between the categories HB (human be-
ings) and ENT (entities). We hypothesize that this
similarity arises because “human beings” and “en-
tities” often appear in similar contexts, resulting in
higher similarity in their vector representations.

Figure 12b presents the results for Phi-3.5-mini
on the EC dataset. The results show a certain de-
gree of similarity between emotional categories,
while their similarity with the non-emotional cat-
egory “others” is lower. Negative emotions like
“sad” and “angry” are highly similar, while other
emotions have weaker associations.

Figure 10 shows the visualization of labels on
the ED dataset. As shown in Figure 10, in the empa-
thy dialogue dataset (ED), categories with similar
emotions, such as “annoyed” and “furious,” have
higher similarity, while those with larger emotional
differences, such as “annoyed” and “hopeful,” have
lower similarity.

Additionally, Figures 11 and 13 display the
heatmaps for Mistral-Nemo and Llama3.1g,, re-
spectively, showing similar patterns. These results
suggest that the constructed label space is reason-
able.

B Mutual Information in Time Steps

To verify the information changes during the gener-
ation process, we calculate the mutual information
between the projection in the generation process
and the projection in the understanding stage or the
target label space using Mistral-Nemo. As shown
in Figure 15, the results show that the mutual in-
formation between the projection in the generation
and understanding stages remains stable, while the
mutual information with the target label space in-
creases to a peak and then decreases. This further
indicates that LLMs continuously extract and de-
compress information until the critical time step.

C Mutual Information at Key Time Step

Figure 15 shows the mutual information between
the projection at the key time step and the under-
standing stage or the target label space for LLMs.
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Figure 10: Heatmap for Phi-3.5-mini on the ED
datasets.

The results indicate that the mutual information
between the projection at the key time step and the
understanding stage fluctuates. The mutual infor-
mation between the projection at the key time step
and the target label space fluctuates from shallow to
mid-layers, reaching or approaching its maximum
at the final layer. Moreover, the change in mutual
information with the target label space is much
greater than with the understanding stage. This
suggests that at this time step, LLMs adjust and
extract information from the understanding stage
and decompress it towards the target label space in
deeper layers.

D Similarity-Based Decision

Figure 16 shows the results on the TREC dataset.
The results indicate that on Phi-3.5-mini and
Llama3.1gp, the category with the highest similar-
ity is more likely to be predicted as the result. In
Mistral-Nemo, the second most similar category is
also predicted as the result. Overall, these models
tend to predict the most or second most similar cate-
gory, supporting the hypothesis of similarity-based
decision making.

We select samples from the ED dataset for exper-
imentation. Given a query ¢;, we use Roberta;4¢
to generate its representation and label, then select
three groups of queries g; with varying similar-
ity: (i) High similarity group: Queries with the
same label and cosine similarity greater than 1 — 3.
(ii) Middle similarity group: Queries with cosine

11

LLMs High Middle Low
Phi3.5-mini 9840 9597 95.50
Llma3.1g, 91.52 82.62 75.02

Mistral-Nemo 9991 99.81 99.74

Table 2: Sample distribution on ED datasets.

similarity between 1 — 25 and 1 — (3. (iii) Low
similarity group: Queries with cosine similarity
between 1 — 38 and 1 — 2. Note that LLMs’
emotion recognition accuracy for these samples is
below 60%, meaning some query representations
are close to the correct label space at the decision
point, while others are not.

We calculate the similarity between the hidden
representations of query ¢; and g; at the decision
point. As shown in Table 2 and Figure 17, results
reveal that the high similarity group scores high-
est, followed by the middle group, with the low
similarity group scoring lowest. This suggests that
LLMs often map semantically similar queries to
similar hidden representations, regardless of their
proximity to the correct label space.

To illustrate the distribution of queries, we pro-
vide a visualization. As shown in Figure 17, simi-
lar queries tend to cluster together, suggesting that
LLMs process semantically similar queries with
similar hidden representations at the decision point.

E Implementation

Large Language Models. We conduct experi-
ments using three advanced large language models:
Phi-3.5-mini, Llama3.1g;, and Mistral-Nemo on
the NVIDIA L40. (i) Phi-3.5-mini: A lightweight
model with approximately 3.8 billion parameters,
designed for efficient performance on various tasks.
(i) Llama3.1g;,: A large-scale model with 8 bil-
lion parameters, known for its high accuracy in a
range of NLP tasks. (iii) Mistral-Nemo: A pow-
erful model with 12 billion parameters, offering
fine-tuned performance and scalability for complex
tasks.

Experimental Setup. During the experiments, we
set the value of ¢ based on the characteristics of
each model and dataset, as shown in Table 1. For
the disruption and enhancement experiments, we
set the hyperparameter « to 2 for the ED dataset.
For the PQA dataset, we set « to 10 for Mistral-
Nemo, 2 for Llama3.1g;, and 50 for Phi-3.5-mini.
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(c) Heatmap for Mistral-Nemo on TREC (d) Heatmap for Mistral-Nemo on EC
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Figure 11: Heatmap for Mistral-Nemo on the ED, PQA, TREC, and EC datasets, with TREC categories including
human beings (HB), abbreviations (ABBR), description and abstract concepts (DAC), locations (LOC), entities
(ENT), and numeric values (NV).
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(c) Heatmap for Phi-3.5-mini on TREC (d) Heatmap for Phi-3.5-mini on EC
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Figure 12: Heatmap for Phi-3.5-mini on the TREC and EC datasets, with TREC categories including human
beings (HB), abbreviations (ABBR), description and abstract concepts (DAC), locations (LOC), entities (ENT), and
numeric values (NV).

LLMs EC TREC ED PQA

Phi3.5-mini 1 1 5 3
Llma3.1g;, 1 2 2 5
Mistral-Nemo 1 1 3 3

Table 3: Hyperparameter k; Settings.

In the sample distribution experiment, we set the
threshold to 8 = 0.0005.

Datasets. For the datasets, we use the EmoCon-
text (EC) dataset with 6 emotion categories, the
Text Retrieval Conference Question Classification
(TREC) dataset, the Empathetic Dialogues (ED)
dataset with 32 emotion categories, and the short-
text question answering dataset PopQA (PQA).

Evaluation Metrics. we use Accuracy (Acc) and
Macro-F1 (F1) as evaluation metrics. Accuracy
measures the overall proportion of correctly clas-
sified instances, while Macro-F1 calculates the av-
erage F1 score across all classes, treating them
equally.

F Experimental Results

To validate the effectiveness of SiV, we conduct
experiments. Tables 4 and 5 present the results for
performance and speed, respectively.
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(a) Heatmap for Llama3.1_8b on ED (b) Heatmap for Llama3.1_8b on PQA
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(c) Heatmap for Llama3.1_8b on TREC

10 10
g >
* g
2 08
08 <
. i
06 >
2
© 04
~02

04
. . . B
@
o
. :
. . :

C LoC ENT NV

Figure 13: Heatmap for Llama3.1g; on the ED, PQA, TREC, and EC datasets, with TREC categories including
human beings (HB), abbreviations (ABBR), description and abstract concepts (DAC), locations (LOC), entities
(ENT), and numeric values (NV).
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EC TREC ED PQA | Average
LIM Models — 1 Acc FI  Acc Fl  Acc | Acc  FI
zshot | 1776 22.04 662 5573 3509 33.66 27.56 | 36.65 37.14

Phi3.5-mini  ICL | 4428 3549 87.4 83.15 3794 3978 469 | 54.13 52.80
SiV_ | 8449 6344 9539 949 457 4495 982 | 80.94 67.76

zshot | 1506 18.12 512 4293 341 299 30.09 | 32.83 3031

Lima3.1g, ICL | 41.89 3075 818 7689 30.82 3574 6547 | 5499 47.79
Siv_ | 7717 5113 86 85.06 40.15 39.2 97.84 | 7529 58.46

zshot | 20.02 224 61 51.8 37.08 3485 2594 | 3601 3635

Mistral-Nemo ~ ICL | 1843 205 922 91.01 3693 3745 57.32 | 5122 49.65
SiV_ | 84.88 63.89 928 9239 48.01 46.71 97.12 | 80.70 67.66

Table 4: Results for LLMs on the datasets.
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Figure 14: Mutual Information at Generation Time
Steps.
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Figure 15: Mutual Information at the Key Time Steps.

(c) TREC
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Figure 16: Category probabilities based on descending
similarity.

LLMs ICL SiVv Speed-up
Phi3.5-mini  13m 33s 6m 31s 2.07x
Llma3.1gp 12m 0s  5m 39s 2.12x
Mistral-Nemo 17m7s 8m 14s 2.07x

Table 5: Comparison of time consumption on the ED
dataset.
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5 Sample Distribution for Mistral-Nemo on TREC
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Figure 17: Query distribution for Mistral-Nemo on the
TREC dataset.



