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Abstract

Large language models (LLMs) have shown001
remarkable success in various tasks, yet their002
internal mechanisms remain inadequately un-003
derstood. This paper investigates these mech-004
anisms by analyzing how input query infor-005
mation propagates within task-specific spaces.006
Specifically, we propose a prompt-pair de-007
tection method that constructs a task-specific008
label space and projects hidden representa-009
tions onto it to examine information propaga-010
tion during the understanding, generation, and011
decision-making stages. Our findings reveal012
that LLMs compress and decompress query013
information into hidden representations near014
the task-specific label space during the under-015
standing and generation stages. In the decision-016
making stage, labels with distributions similar017
to the query are predicted, but these labels do018
not always match the true labels, leading to019
errors. To address this, we analyze the query020
distribution and find that queries tend to cluster021
around semantically similar queries, regardless022
of proximity to the true label. Based on this,023
we propose a similarity-based voting method024
(SiV) that aggregates votes from semantically025
similar queries to improve prediction accuracy,026
mitigating errors caused by relying solely on027
label similarity. Extensive experiments show028
that SiV enhances both accuracy and speed,029
while also enabling incremental updates with-030
out training.031

1 Introduction032

Large language models (LLMs) have been widely033

applied to tasks such as text generation (Liu et al.,034

2024; Long et al., 2024), logical reasoning (Fu035

et al., 2022; Wang et al., 2022; Yao et al., 2023)036

and emotion recognition (Yang et al., 2024; Qian037

et al., 2023), achieving significant results. Exist-038

ing research mainly focuses on their surface per-039

formance (Radford et al., 2019; Luo et al., 2023;040

Agrawal et al., 2022), neglecting a deeper explo-041

ration of task execution, particularly how informa-042
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Figure 1: Task completion in LLMs and internal mech-
anisms under our information propagation hypothesis
(IPH). Our IPH: LLMs compress information to the tar-
get label space during understanding, decompress and
approach the label during generation, and predict results
based on similarity during decision-making.

tion flows within the model during the understand- 043

ing, generation, and decision-making processes and 044

how it impacts final predictions, a question that re- 045

mains unanswered. 046

In this paper, we reveal the internal mechanisms 047

of LLMs by observing and analyzing the flow of 048

internal hidden representations in a task-specific 049

space. Inspired by neuroscience research on hidden 050

representations in LLMs (Olah, 2023; Park et al., 051

2023; Liu et al., 2024), we propose a prompt-pair 052

detection method that constructs the task-specific 053

label space and projects the LLMs’ hidden repre- 054

sentations into it. By analyzing the mutual infor- 055

mation and similarity of the projection during the 056

understanding, generation, and decision-making 057

processes, we identify the following patterns of 058

information transfer: (i) Understanding Stage: 059
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LLMs progressively compress the input query in-060

formation from shallow to deep layers, ultimately061

mapping it to a target label space. As shown in062

Figure 1, for the query “my grandpa is coming to063

visit!” with the emotion “joyful,” LLMs compress064

the information through the layers at time step 0,065

mapping it to spaces near labels like “joyful” and066

“excited.” (ii) Generation Stage: LLMs gradually067

decompress the compressed information, forming068

hidden representations closest to the target category069

at specific time steps. As shown in Figure 1, LLMs070

gradually decompress the query information to gen-071

erate tokens, with the hidden representation closest072

to the target “joyful” emotion formed at the 1st073

time step. (iii) Decision Stage: LLMs compare the074

decompressed hidden representations to the labels075

in the label space, with higher similarity increas-076

ing the likelihood of the corresponding label being077

predicted. As shown in Figure 1, at the 2nd time078

step, the hidden representation is closer to “joyful”079

than “excited,” making the former more likely to080

be predicted as the result. Based on these observa-081

tions, we propose the Information Propagation082

Hypothesis (IPH): LLMs compress query infor-083

mation in the understanding stage, progressively084

decompress it in the generation stage, and make085

predictions based on label distribution similarity.086

To validate the hypothesis, we manipulate LLMs’087

hidden representations to block or enhance informa-088

tion transfer in emotion classification (Chatterjee089

et al., 2019; Rashkin et al., 2019), topic classifica-090

tion (Li and Roth, 2002; Hovy et al., 2001), and091

question answering (Mallen et al., 2023). The re-092

sults show that blocking information significantly093

reduces performance, while enhancing it signif-094

icantly improves performance. Further analysis095

reveals the underlying reason: blocking informa-096

tion causes the hidden representations to deviate097

from the true label distribution, making it harder098

for LLMs to select the correct label with lower099

similarity, resulting in poorer performance. Con-100

versely, performance improves when information is101

enhanced. These findings validate the information102

propagation hypothesis: LLMs compress and de-103

compress query information and make predictions104

based on similarity to label distributions.105

However, in practice, query information does106

not always align with the true label distribution,107

resulting in lower similarity and inaccurate predic-108

tions. Thus, relying on labels to predict results is109

not always effective. To optimize this process, we110

analyze query distributions and find that semanti- 111

cally similar queries tend to have similar distribu- 112

tions, regardless of their alignment with the true 113

label distribution. Therefore, using semantically 114

similar queries is reliable in predictions. Based on 115

this insight, we propose a Similarity-based Voting 116

method (SiV), which retrieves semantically simi- 117

lar queries and uses their corresponding labels to 118

determine the final prediction. 119

To validate the effectiveness, we conduct experi- 120

ments using Phi3.5-mini, Llama3.18b, and Mistral- 121

Nemo on question answering (Mallen et al., 2023), 122

emotion classification (Chatterjee et al., 2019), 123

topic classification (Li and Roth, 2002; Hovy 124

et al., 2001), and fine-grained emotion recogni- 125

tion tasks (Rashkin et al., 2019). The results show 126

that SiV improves average accuracy and macro 127

F1 scores by 19% and over 10%, respectively, 128

while achieving a 2.0× speedup. Furthermore, the 129

method’s ability to flexibly expand and modify ref- 130

erence queries without retraining allows for incre- 131

mental iteration and adjustment, offering high flex- 132

ibility and adaptability. 133

Overall, our contributions are as follows: 134

(i) We introduce a prompt-pair detection method 135

that enables the construction of a label space, fa- 136

cilitating the exploration of LLMs’ internal mecha- 137

nisms. (ii) Building on the label space, we present 138

the Information Propagation Hypothesis, which 139

posits that LLMs compress information during the 140

understanding stage, progressively decompress it in 141

the generation stage, and make predictions based 142

on distributional similarity in the decision stage. 143

(iii) We propose a simple yet effective similari- 144

ty-based voting method to enhance the information 145

propagation process in LLMs. (iv) Extensive exper- 146

iments demonstrate that our approach significantly 147

boosts performance and speed, while enabling in- 148

cremental updates and iterative improvements with- 149

out retraining 150

2 Label Space Construction 151

To investigate how Large language models (LLMs) 152

perform tasks, we propose a prompt-pair detection 153

method that constructs a task-specific label space, 154

enabling us to analyze changes in internal represen- 155

tations. 156

2.1 Prompt-Pair Detection Method 157

Our prompt-pair detection method is based on the 158

linear representation and superposition hypothe- 159

2



Infer the dialogue from the perspective of the
emotion “joyful”.
Dialogue Context: <sample si>.
Response Format: “Emotion: <emotion ci>”.

Table 1: Positive prompt for the emotion recognition.

ses (Olah, 2023; Park et al., 2023), extracting160

shared label representations of labels across sam-161

ples to form category-specific representations.162

For clarity, we use the label ci (e.g., “joyful”) as163

an example. Given this label, we collect N samples164

S = [s1, ..., si, ...sN ] belonging to the same cate-165

gory and construct positive and negative prompt166

pairs. The positive prompt is shown in Table 1. The167

key difference between these prompts is that the168

positive prompt is labeled with ci, while the nega-169

tive prompt uses a random label from the task label170

set C. Both positive and negative prompts are then171

input into the LLM, and token generation is per-172

formed using a teacher-forcing approach, defined173

as follows:174

y+t,si = LLM(P+
si , y

+
<t) (1)175

y−t,si = LLM(P−
si , y

−
<t) (2)176

where P+
si , P−

si are the positive and negative177

prompts, respectively. yt,si and y<t refer to the178

token at time step t and the tokens before time step179

t, respectively.180

For the generated token at time step t, the hidden181

representations at l-th layer for the positive and182

negative representations are denoted as hl,+t,si and183

hl,−t,si , respectively. By subtracting these representa-184

tions, we maximize the acquisition of label-specific185

information (Liu et al., 2024; Turner et al., 2023),186

yielding the representation hlt,si :187

hlt,si = hl,+t,si − hl,−t,si (3)188

where hlt,si , h
l,+
t,si

, hl,−t,si ∈ Rd, and d is the hidden189

representation dimension of LLMs. To obtain sta-190

ble label representations across different contexts,191

we collect the representations from N samples and192

apply Principal Component Analysis (PCA) to ex-193

tract common features. The representation for label194

ci is hlci ∈ Rd, as follows:195

H l
ci = [hl1,s1 , ..., h

l
t,si , ..., h

l
t,sN

] (4)196

hlci = PCA(H l
ci) (5)197
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Figure 2: Heatmap for Phi-3.5-mini on PQA dataset.

2.2 Label Space Analysis 198

After constructing the label representations, we 199

treat the collection of these vectors as the la- 200

bel space. To clearly present the label space, 201

we visualize the label distributions for the mod- 202

els Phi3.5-mini, Llama3.18b, and Mistral-Nemo 203

across emotion recognition (EC) (Chatterjee et al., 204

2019), topic classification (TREC) (Li and Roth, 205

2002; Hovy et al., 2001), question answering 206

(PQA) (Mallen et al., 2023), and empathy dialogue 207

datasets (ED) (Rashkin et al., 2019). 208

Figure 3 shows the label distribution visualiza- 209

tion. The results reveal that labels with emotional 210

and semantic meanings are more dispersed. For in- 211

stance, label distributions in the empathy dialogue 212

dataset (ED) and question answering dataset (PQA) 213

are more scattered, while those in emotion-related 214

datasets (ED and EC) are more concentrated. This 215

suggests that the label representations are generally 216

well-distributed. Figure 2 illustrates label visual- 217

izations on the PQA dataset. According to the 218

results, semantically similar categories, like "Iran" 219

and "France," exhibit higher similarity, whereas cat- 220

egories with larger semantic differences, like "Iran" 221

and "J-pop," show lower similarity. Further experi- 222

ments and analysis in the Appendix A confirm the 223

reasonableness of the label distributions. 224

3 Information Propagation Hypothesis 225

LLMs complete specific tasks by understanding 226

the input query and progressively converting the 227

information into the target label. For example, in 228

the emotion recognition task, given the query “my 229

grandpa is coming to visit!”, the LLM understands 230

the emotion and outputs the corresponding target 231
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Figure 3: Visualization of label distribution.

emotion “joyful.” This process raises an impor-232

tant question: how does the LLM internalize and233

transfer the information from the input to the target234

label? From the perspective of the label space, we235

define this problem as: how do LLMs propagate236

and convert information during the understanding,237

generation, and decision-making processes to map238

it to the target label space?239

To address this question, we examine the target240

labels predicted by LLMs. We find that LLMs241

often struggle to accurately predict the emotion of a242

query, such as “my grandpa is coming to visit!”—it243

may not predict the correct emotion, “joyful,” but244

usually predicts a similar emotion, such as “happy”245

or “excited.” That is, expanding the target label246

space is necessary. Therefore, we define the correct247

label ci and its k1 most similar neighbors as the248

target label space hts, as formulated below:249

hci = Mean(hlci);hcj = Mean(hlcj ) (6)250

hts = Topk1(hci , hcj ) (7)251

where hci ∈ Rd, hlts ∈ Rk1×d, ci, cj ∈ C. ci and cj252

are label categories, while C is the set of labels for253

the task. Mean refers to the mean pooling function.254

Topk1 is the selection function, which selects the255

top k1 labels with the highest similarity scores. hts256

represents the representation of the most similar257

neighbor labels, including the label itself, while258

hlts refers to the corresponding representation of259

the l-th layer.260

For the query’s hidden representation, we project261

it onto the target label space,called projection, and262

represent it as:263

hlp =

k1∑
k=1

hl · hlts
|hlts · hlts|

hlts (8)264

where hlp ∈ Rd is the projection of the hidden265

representation.266

To further observe the internal information 267

changes within the task, we compute the Mutual 268

Information (MI) at each stage of the task execu- 269

tion. Mutual Information measures the dependency 270

between two random variables X and Y . It quan- 271

tifies the reduction in uncertainty of one variable 272

given the other. In practice, exact computation of 273

mutual information is infeasible as the true prob- 274

ability distributions are unknown. Therefore, we 275

employ K-Nearest Neighbors (KNN)-based meth- 276

ods to approximate the densities. Using these ap- 277

proximations, the MI can be expressed as: 278

I(X;Y ) ≈ 1

M

M∑
i=1

log
p̂(xi, yi)

p̂(xi)p̂(yi)
(9) 279

where p̂(xi, yi), p̂(xi), and p̂(yi) are the estimated 280

joint and marginal probabilities for the samples xi 281

and yi. M represents the number of samples. 282

3.1 Definition of Task Completion Stages 283

In the following sections, we divide the task exe- 284

cution process of LLMs into three stages: under- 285

standing, generation, and decision-making. Taking 286

the emotion recognition task as an example, LLMs 287

are required to understand the query and generate 288

a response in the form of “Emotion: [emotion].” 289

Understanding Stage. At the time step 0, LLMs 290

learn the query as a hidden representation, encod- 291

ing its information; we call this the understand- 292

ing stage. Note that we use decoder-based LLMs, 293

which, although lacking a distinct encoder, still 294

encode information at step 0 through self-attention. 295

Generation Stage. From time step 0 to tk, LLMs 296

generate the prompt-specified content, “Emotion:” 297

We refer to this as the generation stage. 298

Decision-making Stage. At the k-th key time step, 299

LLMs generate the token “:”. Based on previous 300

research (Wang et al., 2023), this step consolidates 301
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the most important information for prediction. We302

denote this time step as tk, called the decision point,303

and refer to the process of converting the hidden304

representation into the result at this step as the305

decision process.306

3.2 Understanding Stage: Information307

Compression308

Hypothesis. The first step in completing the task is309

to interpret the query as task-relevant information.310

In this process, we hypothesize that LLMs continu-311

ously compress the query information towards the312

target label space.313

Experiment. According to information bottleneck314

theory (Saxe et al., 2019; Slonim, 2002; Tishby315

et al., 2000; Tishby and Zaslavsky, 2015), for the316

hidden representations zj from shallow to deep lay-317

ers, if the mutual information I(x, zj) between the318

input representation x and the hidden representa-319

tion zj decreases, while the mutual information320

I(zj , y) between the hidden representation and the321

target representation y increases, it indicates that322

the model is compressing information towards the323

target. To verify this, we calculate the mutual in-324

formation between the input representation at 0-th325

layer, x=h0p, the intermediate hidden representation326

zj=h
lj
p , and the target representation y=hlts.327

Ix,z = I(h0p, h
lj
p ); Iz,y = I(h

lj
p , h

l
ts) (10)328

where h0p, hljp , and hlts represent the query’s in-329

put projection, the intermediate projection, and the330

target representation at the lj-th layer. The target331

representation is the label space representation of332

the query’s correct category (see Eq. 7).
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Figure 4: Variation of mutual information in LLMs
during the understanding stage.

333

Results and Analysis. Figure 4 shows the results334

of Phi-3.5-mini, Llama3.18b, and Mistral-Nemo335

on multiple datasets. The results indicate that as336

the depth of layers increases, the mutual informa-337

tion between the intermediate projection and the338

input projection gradually decreases until it stabi- 339

lizes, while the mutual information between the 340

intermediate projection and the target representa- 341

tion steadily increases. Notably, due to differences 342

in training data and methods, the degree and ef- 343

ficiency of compression vary. Nevertheless, the 344

results still demonstrate that LLMs compress infor- 345

mation towards the target label space, confirming 346

our hypothesis. 347

3.3 Generation Stage: Information 348

Decompression 349

The second step in task completion is to generate 350

the corresponding tokens based on the understand- 351

ing. To track the information changes in this pro- 352

cess, we calculate the mutual information between 353

the projection at step ti of the generation stage 354

and the projection at the understanding stage (ti 355

= 0) or the target label. Since the key time step 356

tk consolidates the most crucial information for 357

prediction (Wang et al., 2023), we also observe the 358

mutual information changes at each layer of LLMs 359

at this time step. 360

3.3.1 Mutual Information in Time Steps 361

Hypothesis. Since the goal of LLMs in the gen- 362

eration stage is to output the target category, we 363

hypothesize that during this stage, they continue 364

to accumulate information towards the target label 365

space until the key time step reaches its peak. 366

Experiment. To verify this hypothesis, we calcu- 367

late the mutual information between the projection 368

at the time step ti and the projection at the time 369

step ti=0 or the target label space, as follows: 370

I
ti
x,z =

1

L

L∑
l=1

I(hl,t0p , hl,tip ) (11) 371

I
ti
z,y =

1

L

L∑
l=1

I(hl,tip , hlts) (12) 372

where hl,t0p is the projection at the l-th layer in the 373

understanding stage (ti=0), hl,tip is the projection at 374

l-th layer in the generation stage. 375

Results and Analysis. As shown in Figure 5, the 376

mutual information between the projection in the 377

generation process and the projection in the under- 378

standing stage remains stable, indicating that LLMs 379

retain some query information during generation. 380

Meanwhile, the mutual information between the 381

projection in the generation process and the target 382
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label space increases before the key time step and383

decreases afterward. This suggests that LLMs ex-384

tract information towards the target space until the385

key time step. In summary, these results show that386

LLMs continuously extract and decompress infor-387

mation into the target space during the generation388

process, until the key time step. Additional experi-389

ments in Appendix B confirm the same conclusion.390
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Figure 5: Mutual Information at Generation Time Steps.

3.3.2 Mutual Information at Key Time Step391

Hypothesis. Previous studies show that at the key392

time step, deep layers in LLMs aggregate informa-393

tion essential for prediction (Wang et al., 2023).394

Therefore, we hypothesize that at this point, the395

deep-layer projection is more closely aligned with396

the target space.397

Experiment. To validate this hypothesis, we com-398

pute the mutual information at the key time step399

tk between the projection in the generation stage400

and the projection in the understanding stage or the401

target label space, as follows:402

Ix,z = I(hl,t0p , hl,tkp ); Iz,y = I(hl,tkp , hlts) (13)403

where hl,tkp represents the projection at the l-th404

layer at time step tk.405

Results and Analysis. As shown in Figure 6, the406

results reveal that at the key time step, the mutual407

information between the projection in the genera-408

tion stage and projection in the understanding stage409

fluctuates while maintaining a high level of infor-410

mation. This suggests that LLMs adjust and re-411

tain connections with the understood information.412

Additionally, the mutual information between the413

projection in the generation stage and the target414

label space fluctuates from shallow to mid-layers,415

reaching or approaching its maximum in deeper416

layers. This indicates that LLMs aggregate target-417

related information in the deeper layers. Overall,418

LLMs retain understood information while extract-419

ing and decompressing target-related information420

in the deeper layers, making it crucial for predic- 421

tion. Additional experiments in Appendix C sup- 422

port this conclusion. 423
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Figure 6: Mutual information at key time step tk.

3.4 Decision Stage: Similarity-Based 424

Prediction 425

The final step in task completion is to decide the 426

output category based on the understanding and 427

generation content. 428

Hypothesis. Since the hidden representation at the 429

key time step heavily influences the output (Wang 430

et al., 2023), we focus on how the projection at this 431

moment affects the decision. We hypothesize that 432

the stronger the correlation between the projection 433

and a specific category, the more likely LLMs are 434

to predict that category. 435

Experiment. To validate this, we compute the 436

dot product between the hidden representation and 437

label space representations at the key time step, as 438

shown below: 439

hcj = Mean(hlcj );htk = Mean(hltk) (14) 440

oi,j = hcj · htk (15) 441

where hcj , htk ∈ Rd, are the category representa- 442

tions in the label space and the hidden represen- 443

tation at time step tk, respectively. oi,j is the dot 444

product score.
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Figure 7: Category probabilities based on descending
similarity.

445

Results and Analysis. Figure 7 shows the results. 446

The x-axis represents the accuracy of categories 447

sorted by descending dot product scores, and the 448
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Figure 8: Validation results of LLMs on the ED and
PQA datasets.

y-axis shows the predicted probability for each cat-449

egory. The results indicate that categories with450

higher dot product scores are more likely to be pre-451

dicted as the target. This suggests that LLMs make452

decisions based on similarity during the decision-453

making process. Further experiments in Appendix454

D further confirms this conclusion.455

4 Validation of Hypotheses on Tasks456

In this section, we propose the information prop-457

agation hypothesis based on our experiments and458

analysis, and validate it across multiple datasets.459

Information Propagation Hypothesis. LLMs460

compress information towards the target label461

space in the understanding stage, decompress and462

extract information in the generation stage, and463

make decisions based on similarity in the decision464

stage.465

Blocking and Enhancement Experiments. To466

validate the hypothesis on real tasks, we manipu-467

late the information propagation in LLMs by en-468

hancing or disrupting it at different stages. For a469

query, enhancing information involves adding the470

ground truth label representation (in Eq. 5) at the471

corresponding stage, while disrupting information472

involves subtracting or replacing it, as below:473

hl,sti = hlti − αhlci ;h
l,r
ti

= αhlci (16)474

hl,ati = hlti + αhlci (17)475

where hl,ati , hl,sti , hl,rti ∈ Rd, and α is a hyperparam- 476

eter. 477

The enhancement experiment brings the hidden 478

representation closer to the correct category’s la- 479

bel space. In contrast, subtraction moves the hid- 480

den representation further away. This experiment 481

helps verify the impact of similarity-based decision- 482

making. The replacement experiment retains only 483

category-related information. If performance im- 484

proves, it suggests that LLMs can make accurate 485

predictions relying solely on label information; oth- 486

erwise, it indicates that other semantic information 487

in the hidden representation is also crucial. We con- 488

duct experiments during the understanding stage, 489

early generation steps (e.g., generating “Emotion”), 490

and the key time step (e.g., generating “:”). For sim- 491

plicity, we refer to these stages as the understanding 492

stage, generation stage, and decision point. 493

Results and Analysis. The results are shown in 494

Figure 8. From the results, we find that: (i) Enhanc- 495

ing at the decision point greatly improves accuracy, 496

while enhancing during the understanding stage 497

provides a moderate boost. Little change occurs 498

during the generation process. This suggests that 499

the decision point is the most critical, followed 500

by the understanding stage. This also suggests 501

that bringing the hidden representation closer to 502

the correct label space improves decision accuracy. 503

(ii) Disrupting the understanding stage and deci- 504

sion point significantly reduces performance, while 505

the effect during the generation process varies by 506

model. This emphasizes the importance of informa- 507

tion at the understanding stage and decision point, 508

with varying results in the generation stage due 509

to model characteristics. This also suggests that 510

disrupting representations reduces accuracy by dis- 511

tancing them from the correct label space. (iii) Re- 512

placing information at the understanding stage and 513

decision point significantly lowers performance, 514

with varying effects during the generation process. 515

This suggests that LLMs’ decisions depend not 516

only on label information but also on other seman- 517

tic factors. (iv) The above experiments show that 518

the similarity between the query’s hidden represen- 519

tation at the decision point and the correct label 520

space significantly impacts the prediction result. 521

From this perspective, we find that LLMs’ inability 522

to consistently propagate the query’s hidden rep- 523

resentation to the correct label space leads to poor 524

performance. 525
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5 Methodology526

The above experiments show that the distributional527

mismatch between the query’s hidden representa-528

tion and the correct label space leads to inaccu-529

rate predictions. To address this, we analyze the530

query’s distribution at the decision point and pro-531

pose a similarity-based voting method based on the532

characteristics of the query representation.533

Sample Distribution Observation. Experiment534

and analysis details are in Appendix D. The results535

show that, regardless of whether the query matches536

the correct label distribution, it is often close to537

semantically similar queries.538
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Figure 9: Main results on the datasets.

Similarity-Based Voting. We propose a Similarity-539

based Voting (SiV) method to address the issue of540

LLMs relying on a similar label space. Given a541

query, we retrieve the top k2 most similar queries542

from the training set, then use their labels to vote,543

selecting the most frequent label as the result. The544

process is formalized as follows:545

hqitk = Mean(hltk,qi);h
qj
tk

= Mean(hltk,qj ) (18)546

cqi = V ote(Topk2(h
qi
tk
· hqjtk)) (19)547

where hqit , hqjt ∈ Rd. Topk2 selects the top k2548

queries with the highest scores, and V ote assigns549

the label with the most votes as the prediction.550

To validate SiV, we conduct experiments with551

multiple LLMs across EC (Chatterjee et al., 2019),552

TREC (Li and Roth, 2002; Hovy et al., 2001),553

ED (Rashkin et al., 2019), PQA (Mallen et al.,554

2023) datasets. Experimental setup details are in555

Appendix E.556

Main Results. As shown in Figure 9 (See Table557

4 in Appendix F for details), the results show that,558

compared to zero-shot learning, in-context learn- 559

ing (ICL) performs better. This is mainly because 560

ICL incorporates task-relevant information through 561

samples, leading to more accurate decisions. Our 562

proposed SiV, however, significantly outperforms 563

ICL, demonstrating that our method enhances the 564

decision-making process of LLMs. 565

Time Consumption. We evaluate SiV’s experi- 566

mental efficiency on the Empathetic Dialogue (ED) 567

dataset. As shown in Table 5 (see Appendix F), our 568

method doubles the inference speed compared to 569

ICL. This is because it generates fewer tokens to 570

make predictions, reducing time consumption. Ad- 571

ditionally, generating fewer tokens reduces cache 572

usage during generation, lowering computational 573

resource demands. Moreover, since the training set 574

queries can be adjusted and expanded anytime, our 575

method offers high scalability and flexibility. 576

6 Related Work 577

Recent studies have explored information flow and 578

reasoning in LLMs, including multimodal inter- 579

actions (Zhang et al., 2025), zero-shot Chain-of- 580

Thought mechanisms (Yuan et al., 2024), and 581

knowledge conflicts (Jin et al., 2024), while others 582

focus on interpretability through gradient projec- 583

tion (Katz et al., 2024) and methods for controlling 584

information flow and ensuring security (Men et al., 585

2024; Tiwari et al., 2024; Siddiqui et al., 2024). 586

These methods overlook how information flows 587

and impacts outcomes in LLM task execution. To 588

address this gap, this paper explores the informa- 589

tion propagation process. 590

7 Conclusion 591

This paper investigated the internal mechanisms 592

of large language models (LLMs) by analyzing 593

how query information propagates within task- 594

specific spaces. We proposed the information prop- 595

agation hypothesis, explaining how LLMs com- 596

press and decompress query information during the 597

understanding, generation, and decision-making 598

stages through compression-decompression and 599

similarity-based decision propagation. Based on 600

this, we introduced the similarity-based voting 601

method (SiV) to optimize internal information flow 602

and enhance LLM performance. Extensive exper- 603

iments show that SiV improved accuracy, speed, 604

and flexibility. In the future, we will explore deeper 605

mechanisms within LLMs. 606
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Limitations607

Our paper has the following limitations: (i) The la-608

bel space representation constructed by the promp-609

t-based detection method contains some noise,610

which affects certain experimental results. We plan611

to address this issue in the future. (ii) The proposed612

method has been tested only on classification and613

question-answering tasks, both of which specify614

the response format. We have not validated it on615

natural text generation tasks, but we aim to explore616

this further in the future.617

Ethical Considerations618

Regarding the potential ethical impacts of our work:619

(i) The data we use is open-source and does not620

pose any ethical risks. (ii) The baseline models621

and methods we use are also open-source and do622

not involve ethical concerns. (iii) Moreover, the623

components employed in our approach are either624

open-source or innovative, and do not present po-625

tential ethical risks.626
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Appendix 767

A Label Space Analysis 768

To clearly present the label space, we visualize 769

the label space of Phi-3.5-mini, Llama3.18b, and 770

Mistral-Nemo across different datasets. 771

Figure 12a shows the results for Phi-3.5-mini on 772

the TREC dataset. The results indicate a strong 773

similarity between the categories HB (human be- 774

ings) and ENT (entities). We hypothesize that this 775

similarity arises because “human beings” and “en- 776

tities” often appear in similar contexts, resulting in 777

higher similarity in their vector representations. 778

Figure 12b presents the results for Phi-3.5-mini 779

on the EC dataset. The results show a certain de- 780

gree of similarity between emotional categories, 781

while their similarity with the non-emotional cat- 782

egory “others” is lower. Negative emotions like 783

“sad” and “angry” are highly similar, while other 784

emotions have weaker associations. 785

Figure 10 shows the visualization of labels on 786

the ED dataset. As shown in Figure 10, in the empa- 787

thy dialogue dataset (ED), categories with similar 788

emotions, such as “annoyed” and “furious,” have 789

higher similarity, while those with larger emotional 790

differences, such as “annoyed” and “hopeful,” have 791

lower similarity. 792

Additionally, Figures 11 and 13 display the 793

heatmaps for Mistral-Nemo and Llama3.18b, re- 794

spectively, showing similar patterns. These results 795

suggest that the constructed label space is reason- 796

able. 797

B Mutual Information in Time Steps 798

To verify the information changes during the gener- 799

ation process, we calculate the mutual information 800

between the projection in the generation process 801

and the projection in the understanding stage or the 802

target label space using Mistral-Nemo. As shown 803

in Figure 15, the results show that the mutual in- 804

formation between the projection in the generation 805

and understanding stages remains stable, while the 806

mutual information with the target label space in- 807

creases to a peak and then decreases. This further 808

indicates that LLMs continuously extract and de- 809

compress information until the critical time step. 810

C Mutual Information at Key Time Step 811

Figure 15 shows the mutual information between 812

the projection at the key time step and the under- 813

standing stage or the target label space for LLMs. 814
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Figure 10: Heatmap for Phi-3.5-mini on the ED
datasets.

The results indicate that the mutual information815

between the projection at the key time step and the816

understanding stage fluctuates. The mutual infor-817

mation between the projection at the key time step818

and the target label space fluctuates from shallow to819

mid-layers, reaching or approaching its maximum820

at the final layer. Moreover, the change in mutual821

information with the target label space is much822

greater than with the understanding stage. This823

suggests that at this time step, LLMs adjust and824

extract information from the understanding stage825

and decompress it towards the target label space in826

deeper layers.827

D Similarity-Based Decision828

Figure 16 shows the results on the TREC dataset.829

The results indicate that on Phi-3.5-mini and830

Llama3.18b, the category with the highest similar-831

ity is more likely to be predicted as the result. In832

Mistral-Nemo, the second most similar category is833

also predicted as the result. Overall, these models834

tend to predict the most or second most similar cate-835

gory, supporting the hypothesis of similarity-based836

decision making.837

We select samples from the ED dataset for exper-838

imentation. Given a query qi, we use Robertalarge839

to generate its representation and label, then select840

three groups of queries qj with varying similar-841

ity: (i) High similarity group: Queries with the842

same label and cosine similarity greater than 1− β.843

(ii) Middle similarity group: Queries with cosine844

LLMs High Middle Low
Phi3.5-mini 98.40 95.97 95.50
Llma3.18b 91.52 82.62 75.02

Mistral-Nemo 99.91 99.81 99.74

Table 2: Sample distribution on ED datasets.

similarity between 1 − 2β and 1 − β. (iii) Low 845

similarity group: Queries with cosine similarity 846

between 1 − 3β and 1 − 2β. Note that LLMs’ 847

emotion recognition accuracy for these samples is 848

below 60%, meaning some query representations 849

are close to the correct label space at the decision 850

point, while others are not. 851

We calculate the similarity between the hidden 852

representations of query qi and qj at the decision 853

point. As shown in Table 2 and Figure 17, results 854

reveal that the high similarity group scores high- 855

est, followed by the middle group, with the low 856

similarity group scoring lowest. This suggests that 857

LLMs often map semantically similar queries to 858

similar hidden representations, regardless of their 859

proximity to the correct label space. 860

To illustrate the distribution of queries, we pro- 861

vide a visualization. As shown in Figure 17, simi- 862

lar queries tend to cluster together, suggesting that 863

LLMs process semantically similar queries with 864

similar hidden representations at the decision point. 865

866

E Implementation 867

Large Language Models. We conduct experi- 868

ments using three advanced large language models: 869

Phi-3.5-mini, Llama3.18b, and Mistral-Nemo on 870

the NVIDIA L40. (i) Phi-3.5-mini: A lightweight 871

model with approximately 3.8 billion parameters, 872

designed for efficient performance on various tasks. 873

(ii) Llama3.18b: A large-scale model with 8 bil- 874

lion parameters, known for its high accuracy in a 875

range of NLP tasks. (iii) Mistral-Nemo: A pow- 876

erful model with 12 billion parameters, offering 877

fine-tuned performance and scalability for complex 878

tasks. 879

Experimental Setup. During the experiments, we 880

set the value of t1 based on the characteristics of 881

each model and dataset, as shown in Table 1. For 882

the disruption and enhancement experiments, we 883

set the hyperparameter α to 2 for the ED dataset. 884

For the PQA dataset, we set α to 10 for Mistral- 885

Nemo, 2 for Llama3.18b, and 50 for Phi-3.5-mini. 886
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(a) Heatmap for Mistral-Nemo on ED
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(b) Heatmap for Mistral-Nemo on PQA
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(c) Heatmap for Mistral-Nemo on TREC
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(d) Heatmap for Mistral-Nemo on EC
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Figure 11: Heatmap for Mistral-Nemo on the ED, PQA, TREC, and EC datasets, with TREC categories including
human beings (HB), abbreviations (ABBR), description and abstract concepts (DAC), locations (LOC), entities
(ENT), and numeric values (NV).
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(c) Heatmap for Phi-3.5-mini on TREC
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(d) Heatmap for Phi-3.5-mini on EC
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Figure 12: Heatmap for Phi-3.5-mini on the TREC and EC datasets, with TREC categories including human
beings (HB), abbreviations (ABBR), description and abstract concepts (DAC), locations (LOC), entities (ENT), and
numeric values (NV).

LLMs EC TREC ED PQA
Phi3.5-mini 1 1 5 3
Llma3.18b 1 2 2 5

Mistral-Nemo 1 1 3 3

Table 3: Hyperparameter k1 Settings.

In the sample distribution experiment, we set the887

threshold to β = 0.0005.888

Datasets. For the datasets, we use the EmoCon-889

text (EC) dataset with 6 emotion categories, the890

Text Retrieval Conference Question Classification891

(TREC) dataset, the Empathetic Dialogues (ED)892

dataset with 32 emotion categories, and the short-893

text question answering dataset PopQA (PQA).894

Evaluation Metrics. we use Accuracy (Acc) and895

Macro-F1 (F1) as evaluation metrics. Accuracy896

measures the overall proportion of correctly clas-897

sified instances, while Macro-F1 calculates the av-898

erage F1 score across all classes, treating them899

equally.900

F Experimental Results901

To validate the effectiveness of SiV, we conduct902

experiments. Tables 4 and 5 present the results for903

performance and speed, respectively.904
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(a) Heatmap for Llama3.1_8b on ED
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(b) Heatmap for Llama3.1_8b on PQA
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(c) Heatmap for Llama3.1_8b on TREC
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(d) Heatmap for Llama3.1_8b on EC
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Figure 13: Heatmap for Llama3.18b on the ED, PQA, TREC, and EC datasets, with TREC categories including
human beings (HB), abbreviations (ABBR), description and abstract concepts (DAC), locations (LOC), entities
(ENT), and numeric values (NV).

LLM Models EC TREC ED PQA Average
Acc F1 Acc F1 Acc F1 Acc Acc F1

Phi3.5-mini
z-shot 17.76 22.04 66.2 55.73 35.09 33.66 27.56 36.65 37.14
ICL 44.28 35.49 87.4 83.15 37.94 39.78 46.9 54.13 52.80
SiV 84.49 63.44 95.39 94.9 45.7 44.95 98.2 80.94 67.76

Llma3.18b
z-shot 15.96 18.12 51.2 42.93 34.1 29.9 30.09 32.83 30.31
ICL 41.89 30.75 81.8 76.89 30.82 35.74 65.47 54.99 47.79
SiV 77.17 51.13 86 85.06 40.15 39.2 97.84 75.29 58.46

Mistral-Nemo
z-shot 20.02 22.4 61 51.8 37.08 34.85 25.94 36.01 36.35
ICL 18.43 20.5 92.2 91.01 36.93 37.45 57.32 51.22 49.65
SiV 84.88 63.89 92.8 92.39 48.01 46.71 97.12 80.70 67.66

Table 4: Results for LLMs on the datasets.
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Figure 14: Mutual Information at Generation Time
Steps.
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Figure 15: Mutual Information at the Key Time Steps.
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Figure 16: Category probabilities based on descending
similarity.

LLMs ICL SiV Speed-up
Phi3.5-mini 13m 33s 6m 31s 2.07×
Llma3.18b 12m 0s 5m 39s 2.12×

Mistral-Nemo 17m 7s 8m 14s 2.07×

Table 5: Comparison of time consumption on the ED
dataset.
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Figure 17: Query distribution for Mistral-Nemo on the
TREC dataset.
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