
Published as a conference paper at ICLR 2023

CIRCNET: MESHING 3D POINT CLOUDS WITH
CIRCUMCENTER DETECTION

Huan Lei, Ruitao Leng, Liang Zheng, Hongdong Li
School of Computing, The Australian National University

ABSTRACT

Reconstructing 3D point clouds into triangle meshes is a key problem in com-
putational geometry and surface reconstruction. Point cloud triangulation solves
this problem by providing edge information to the input points. Since no ver-
tex interpolation is involved, it is beneficial to preserve sharp details on the sur-
face. Taking advantage of learning-based techniques in triangulation, existing
methods enumerate the complete combinations of candidate triangles, which is
both complex and inefficient. In this paper, we leverage the duality between a
triangle and its circumcenter, and introduce a deep neural network that detects
the circumcenters to achieve point cloud triangulation. Specifically, we intro-
duce multiple anchor priors to divide the neighborhood space of each point. The
neural network then learns to predict the presences and locations of circumcen-
ters under the guidance of those anchors. We extract the triangles dual to the
detected circumcenters to form a primitive mesh, from which an edge-manifold
mesh is produced via simple post-processing. Unlike existing learning-based tri-
angulation methods, the proposed method bypasses an exhaustive enumeration
of triangle combinations and local surface parameterization. We validate the ef-
ficiency, generalization, and robustness of our method on prominent datasets of
both watertight and open surfaces. The code and trained models are provided at
https://github.com/Ruitao-L/CircNet.

1 INTRODUCTION

Point cloud triangulation (Cazals & Giesen 2004) aims at reconstructing triangle meshes of object
surfaces by adding edge information to their point cloud representations. The input point clouds
are usually produced by either scanning sensors (e.g., LiDAR) or surface sampling methods. Com-
pared to implicit surface reconstruction (e.g., Kazhdan et al. 2006), explicit triangulation has the
advantages of preserving the original input points and fine-grained details of the surface. Moreover,
it does not require oriented normals which are difficult to obtain in practice. Recent advances in
geometric deep learning have seen widespread applications of neural functions for surface represen-
tations (e.g., Park et al. 2019; Sitzmann et al. 2020b;a; Erler et al. 2020; Gropp et al. 2020; Atzmon
& Lipman 2020a;b; Ben-Shabat et al. 2022; Ma et al. 2021; 2022). In comparison, only a few meth-
ods have been proposed to directly learn triangulation of point clouds by using neural networks.
This is probably attributed to the combinatorial nature of the triangulation task, hindering the up-
take of learning-based methods. The existing works have to enumerate combinations of candidate
triangles around each input point, and use neural networks to predict their existence in the triangle
mesh (Sharp & Ovsjanikov 2020; Liu et al. 2020). Figure 1(a) illustrates the local complexity of
those combinatorial methods using a point with four neighboring points. Typically, for a point with
K neighbors, the combinatorial methods propose

(
K
2

)
or O(K2) candidate triangles.

Different from these methods, we propose to exploit the duality relationship between a triangle
and its circumcenter to implement point cloud triangulation. That is, each vertex of a triangle is
equally distant to its circumcenter. We use this characteristic to find triangle triplets from their cir-
cumcenters. Figure. 1(b) shows the duality based on the same example of Fig. 1(a). Our method
recovers the vertex triplets of triangle (p,q1,q3) based on its circumcenter c and the equidistant
characteristic, i.e. ∥p− c∥ = ∥q1 − c∥ = ∥q3 − c∥. To obtain circumcenters for point cloud trian-
gulation, we introduce a neural network that is able to detect the circumcenters of all triangles in a
mesh. To the best of our knowledge, this is the first single-shot detection architecture for point cloud
triangulation. We are inspired by the one-stage methods in object detection (e.g., Liu et al. 2016).

1

https://github.com/Ruitao-L/CircNet

Published as a conference paper at ICLR 2023

 :

(a) Combinatorial methods (b) The proposed method

: radius of circumcircle
: known triangle vertex : triangle circumcenter
: neighboring points

=

=

=

Candidate triangles at :

Figure 1: An example of a point p with four
neighboring points q1,q2,q3,q4. (a) The com-
binatorial methods propose all of the six triangles
incident to p as candidate triangles. They are
(p,q1,q2), (p,q1,q3), (p,q1,q4), (p,q2,q3),
(p,q2,q4), (p,q3,q4). The neural network has
to classify the targeted triangle (p,q1,q3) out of
the six candidates. (b) The proposed method elim-
inates the candidate proposals by detecting a cir-
cumcenter c and exploiting its duality with the tri-
angle (p,q1,q3) to identify the targeted triangle.

Unlike previous combinatorial methods, the
proposed method removes the requirement for
candidate triangles. Specifically, we detect
circumcenters in the neighborhood space of
each point, under the guidance of a group of
anchor priors. The neural network predicts
whether a circumcenter exists in the recon-
structed mesh, and where it is. We extract
triangles induced by the detected circumcen-
ters to obtain a primitive mesh. The final
surface mesh is produced by enforcing edge-
manifoldness and filling small holes on the
primitive mesh.

To validate the proposed method, we train the
detection neural network on the ABC dataset
(Koch et al. 2019). The trained model is eval-
uated on the ABC and other datasets, includ-
ing FAUST (Bogo et al. 2014), MGN (Bhat-
nagar et al. 2019), and Matterport3D (Chang
et al. 2017). The method not only recon-
structs meshes in high quality, but also outper-
forms the previous learning-based approaches
largely in efficiency. It generalizes well to un-
seen, noisy and non-uniform point clouds. Our
main contributions are summarized below:

• We introduce the first neural architecture that triangulates point clouds by detecting circumcenters.
The duality between a triangle and its circumcenter is exploited afterwards to extract the vertex
triplets of each triangle in the mesh.

• The proposed neural network is able to reconstruct primitive meshes in milliseconds, due to its
single-shot detection pipeline and its removal of candidate proposals. Normals are not required.

• The proposed method casts no restriction on the surface topology, e.g., being watertight. Instead,
it allows the surfaces to be open and have genus (‘hole’) larger than one.

• The method generalizes well to unseen point clouds including those of large-scale scenes. It is
robust to non-uniform and noisy data. These indicate its promise for real-world applications.

2 RELATED WORK

Point cloud triangulation and implicit surface functions are two important research directions surface
reconstruction. Their major difference is that the former preserves input points, while the latter does
not. Alpha shapes (Edelsbrunner & Mücke 1994) and the ball pivoting algorithm (Bernardini et al.
1999) are representatives among the traditional methods in point cloud triangulation. The Poisson
surface reconstruction (Kazhdan et al. 2006; Kazhdan & Hoppe 2013) is a classical approach in im-
plicit surface functions, but it depends on oriented normals of the input points for good performance.
Marching Cubes (Lorensen & Cline 1987) and Dual Contouring (Ju et al. 2002) are restricted to ex-
tract the triangle meshes of isosurfaces from their signed distance fields. We refer interested readers
to surveys Berger et al. 2017; Cheng et al. 2013; Newman & Yi 2006 for more in depth discussions
of the traditional surface reconstruction methods.

2.1 IMPLICIT NEURAL FUNCTIONS

Implicit neural functions are techniques in geometric deep learning. They exploit the approximation
power of neural networks to represent shapes and scenes as level-sets of continuous functions (Atz-
mon et al. 2019). Existing literature trains networks to learn either occupancy functions (Mescheder
et al. 2019; Peng et al. 2020) or distance functions (Park et al. 2019; Sitzmann et al. 2020b; Atzmon
& Lipman 2020a). Since the introduction of DeepSDF (Park et al. 2019), major advances in this
research field include simplifying requirements on the ground-truth (e.g., signs of distances) (Atz-
mon & Lipman 2020a;b), exploring the high-frequency features (Sitzmann et al. 2020b; Tancik et al.
2020), and improving loss functions for better surface representation (Gropp et al. 2020; Ben-Shabat

2

Published as a conference paper at ICLR 2023

et al. 2022). Implicit functions generate volumetric occupancy or distance fields of isosurfaces, and
are followed by Marching Cubes for mesh extraction. Methods in this research direction usually
require oriented normals of points, and tend to oversmooth sharp details on the surface. In addition,
their neural networks have to be trained with careful initialisation, and are slow at inference stage
due to the dense point queries.

There are also methods extending the traditional Marching Cubes, Poisson surface reconstruction,
and Dual Contouring using neural networks (Liao et al. 2018; Chen & Zhang 2021; Peng et al.
2021; Chen et al. 2022). Altogether, they demand interpolations of triangle vertices to reconstruct
the mesh, and are unlikely to preserve the fine-grained details carried by the input points.

2.2 LEARNING-BASED POINT CLOUD TRIANGULATION

Compared to their popularity in implicit surface functions, neural networks are much less stud-
ied in point cloud triangulation. Existing methods typically reconstruct the triangle mesh by pre-
establishing the complete combinations of candidate triangles or parameterizing the local surface
patches into the 2D space. Sharp & Ovsjanikov (2020) propose a two-component architecture,
PointTriNet. It utilizes a proposal network to recommend candidate triangles, and determines their
existence in the triangle mesh with a classification network. By comparing the geodesic and Eu-
clidean distances, Liu et al. (2020) introduce a metric IER to indicate the triangle presence in the
reconstructed mesh. They train a neural network to predict the IER values of O(K2N) candidate
triangles. Those candidates are established offline via K-nearest neighbor (KNN) search (Preparata
& Shamos 2012). Here N represents the total number of points in the point cloud. As a classi-
cal method in computation geometry, Delaunay triangulation (Mark et al. 2008) guarantees point
clouds to be triangulated into manifold meshes in the 2D scenario. To exploit this method, Rako-
tosaona et al. (2021b) extract KNN patches from the 3D point cloud, and parameterize them into
2D space using neural networks. However, dividing point cloud triangulation into learning-based
parameterization and computational triangulation makes their method computationally expensive.
Later, Rakotosaona et al. (2021a) also study to differentiate the Delaunay triangulation by introduc-
ing weighting strategies. Yet, this method is limited to triangular remeshing of manifold surfaces,
and not applicable to triangulation of 3D point clouds.

Due to the local computational nature, learning-based triangulation methods generalize well to un-
seen point clouds of arbitrary shapes and scenes. On the other hand, the implicit neural functions
are restricted to shape/surface representations in an instance or category level. It is non-trivial to
apply them to cross-category data, e.g. mugs to elephants, cars to indoor rooms. We note that even
the local implicit functions often generalize poorly (Tretschk et al. 2020; Chabra et al. 2020).

2.3 LEARNING TRIANGULATION VIA CIRCUMCENTER DETECTION

Departing significantly from the learning-based triangulation approaches described above, we ex-
ploit the duality between a triangle and its circumcenter, and reformulate the combinatorial trian-
gulation as a detection problem of triangle circumcenters. This would facilitate the geomtric deep
learning techniques to be applied. Superior to PointTriNet (Sharp & Ovsjanikov 2020) which ne-
cessitates a two-stage design, our method enables the usage of a one-stage detection pipeline which
largely contributes to its efficiency. It has a time complexity of only O(tN) where t indicates the
number of anchors. This is significantly less than the O(K2N) of IER (Liu et al. 2020). Similar to
existing learning-based methods, we triangulate point clouds based on local KNN patches.

3 METHOD

Given a point cloud representation of a surface P = {pn ∈ R3}Nn=1, we focus on triangulat-
ing the point cloud into a mesh that reconstructs the underlying surface. Unlike implicit surface
functions which generate new points for mesh reconstruction (Kazhdan et al., 2006), point cloud
triangulation preserves the input points by only adding edge information to the existing points. Let
T =

{
(pn1 ,pn2 ,pn3)|n1, n2, n3 ∈ {1, 2, . . . , N}, n1 ̸= n2 ̸= n3

}
be an optimal triangulation of

P . Typically, it reconstructs the surface as an edge-manifold mesh. This indicates that each edge
in the triangulation such as (pn1

,pn2
) is adjacent to two triangle faces at most. In particular, edges

adjacent to one face are the boundary edges.

Overview. Based on the local geometrics in §3.1, we detect circumcenters to predict the 1st-order
adjacent triangles of each point. In §3.2, we introduce the default anchor priors which help to

3

Published as a conference paper at ICLR 2023

Po
in

t C
lo

ud

 NN Patch at Predicted

Circumcenters

Predicted
Triangles

Pr
im

iti
ve

 M
es

h

Su
rf

ac
e

M
es

h

post
process

NN Patch at

patch
extraction

neural
network

Predicted
Circumcenters

Predicted
Triangles

neural
network

union

triangle
identification

triangle
identification

Duality

Figure 2: The triangulation process of our method for point cloud P . We extract KNN patches
to obtain the local geometrics of each point pv . The neural network detects circumcenters and
identifies the adjacent triangles of each pv based on their patch inputs. The union of all identified
triangles forms the primitive mesh, which is post-processed into an edge-manifold surface mesh.

guide the detection of circumcenters. Details of the detection architecture are presented in §3.3. We
train the neural network with multi-task loss function discussed in §3.4. During inference (§3.5), it
triangulates the input point cloud efficiently into a primitive mesh. We post-process the primitive
mesh to be an edge-manifold surface mesh. Figure 2 summarizes our triangulation process.

3.1 LOCAL GEOMETRICS

KNN patch. The local geometrics of a point contain rich information for predicting its adjacent
triangles. We exploit them as the inputs to our detection network. Specifically, we extract the
local geometrics of each point based on their neighborhoods. Let K(p) = {qk|qk ̸= p}Kk=1 be
a KNN patch composed of the K-nearest neighbor1 (KNN) points of p ∈ P , and d0(p) > 0 be
the distance from p to its nearest neighbor in K(p). To make the neural network robust to density
variations in the data, we normalize the KNN patch K(p) using a scalar η(p) = η0

d0(p)
. Here η0

is a hyperparameter controlling the spatial resolution of each KNN patch. The normalized patch is
represented as K(p) = {qk|qk = η(p) ·(qk−p)}Ki=1. We design graph convolution in §3.3 to learn
global representations of each patch from the input geometrics K(p) for circumcenter detection.

Duality. Taking T as the optimal triangulation of P , we denote the adjacent triangles of point p
as T (p) = {Ti(p)|p ∈ Ti(p)}, and the circumcenters of those triangles as C(p) = {Xi(p)}.
Our network learns to detect the circumcenters and then extract the adjacent triangles. Let Ĉ(p) =
{X̂m(p)}Mm=1, T̂ (p) = {T̂m(p)|p ∈ T̂m(p)}Mm=1 be their respective predictions. To extract
the triangle triplets T̂m(p) based on X̂m(p), we follow the characteristic that the three vertices of
a triangle are equidistant to its circumcenter. In practice, the equidistant characteristic has to be
applied with approximations due to the imperfections of the predicted X̂m(p). We compute the
distance from p and each of its neighbor point qk ∈ K(p) to a detected circumcenter X̂m(p) as

dm(p) = ∥p− X̂m(p)∥2, dm(qk) = ∥qk − X̂m(p)∥2. (1)

The triangle vertices are determined by the difference between distances dm(qk) and dm(p). Let

δm(qk,p) =
∣∣dm(qk)− dm(p)

∣∣, (2)

∆m(p) =
{
δm(qk,p)|qk ∈ K(p)

}
. (3)

We recover the triangle triplets by selecting the two points qu,qv which induce the two smallest
δm(·,p) in ∆m(p). Finally, the triangle associated to X̂m(p) is identified as T̂m(p) = (p,qu,qv).

3.2 ANCHOR PRIORS

We use multiple anchor points to partition the neighborhood space of each point into different cells.
The predefined anchor points and cells guide the neural network in its detection of circumcenters.
We specify the anchor points in the spherical coordinate system (ρ, θ, ϕ) as it has fixed ranges along
the azimuth (θ) and inclination (ϕ) directions, i.e. θ ∈ (−π, π], ϕ ∈ [−π

2 ,
π
2]. Regarding the

radius (ρ) direction, we determine its range according to the distributions of circumcenters in the
training data, denoted as (0, R]. With known ranges, we split the ρ, θ, ϕ each uniformly using fixed
steps ∆ρ,∆θ,∆ϕ, respectively. This results in the number of splits for ρ, θ, ϕ to be tρ = ⌈ R

∆ρ⌉,

1We assume that K is large enough to cover the 1-ring neighborhood of p in the triangle mesh.

4

Published as a conference paper at ICLR 2023

tθ = ⌈ 2π
∆θ ⌉, tϕ = ⌈ π

∆ϕ⌉, and a total number of t = tρ × tθ × tϕ anchor points. We represent them as

A =
{
aj =

(
aρj1 , a

θ
j2
, aϕj3

)}t

j=1
, where aρj1 , a

θ
j2
, aϕj3 each are explicitly defined as

aρj1 = ∆ρ
2 + (j1 − 1)∆ρ, j1 ∈ {1, · · · , tρ},

aθj2 = ∆θ
2 + (j2 − 1)∆θ, j2 ∈ {1, · · · , tθ},

aϕj3 = ∆ϕ
2 + (j3 − 1)∆ϕ, j3 ∈ {1, · · · , tϕ}.

(4)

origin

Figure 3: An example of
the anchor priors in 2D.
∆θ = π

6 is used. The an-
chor points are plotted in
red cross, and the anchor
cell is colorized as green.

For each anchor point aj = (aρj1 , a
θ
j2
, aϕj3), we associate it with an anchor

cell defined by the partitioned space Iaj = Iρj1 × Iθj2 × Iϕj3 . The anchor
cells play an important role in the matching of circumcenters and anchor
points (§3.4). We specify the intervals Iρj1 , I

θ
j2
, Iϕj3 as

Iρj1 =
[
aρj1 −

∆ρ
2 , aρj1 +

∆ρ
2

]
,

Iθj2 =
[
aθj2 −

∆θ
2 , aθj2 +

∆θ
2

]
,

Iϕj3 =
[
aϕj3 −

∆ϕ
2 , aϕj3 +

∆ϕ
2

]
.

(5)

See Fig. 3 for an example of the anchor points and cells in 2D (i.e. no el-
evation direction). With the usage of anchor points and cells, we reduce
the combinatorial triangulation of complexity O(K2N) to a dual prob-
lem of complexity O(tN). Empirically, t ≪ K2. Alternative methods
for defining the anchor points can be in the Cartesian coordinate system
or using the data clustering techniques (Bishop & Nasrabadi 2006). Yet, they either lead to larger t
and hence higher complexity, or make the anchor definition and network training complicated.

3.3 NETWORK DESIGN

Based on the normalized KNN patch K(p) of a point p, we design a neural network that is able to
predict the circumcenters for adjacent triangle identification. The input to our network is a star graph
which has point p as its internal node and the neighborhoods {qk} as its leaf nodes. We present
the graph convolution below to encode local geometrics of p into a global feature representation.
The depthwise separable convolution (Chollet 2017) is explored here. Let β be the depth multiplier,
hl−1(qk) be the input features of point qk at layer l, Cin be the dimension of hl−1(qk), and Cout

be the expected dimension of output features. We compute the output features hl(p) of p as

hl(p) =

K∑
k=1

β∑
i=1

Wi2

((
Wi1h

l−1(qk)
)
⊙ hl−1(qk)

)
+ b. (6)

Here Wi1,Wi2,b are learnable parameters in the graph convolution. The sizes of Wi1,Wi2 are
Cin × Cin, Cout × Cin respectively, and the length of b is Cout. We use the graph convolution
only once to calculate global feature representations of each patch. The positional encoding in
(Mildenhall et al., 2020) is also employed to transform the (x, y, z) coordinates into high-frequency
input signals. Figure 4(b) shows the configurations of our neural detection architecture. The ultimate
output of our network is a tensor of size t × s × 4, where s indicates the number of circumcenters
we predict in each anchor cell, and 4 contains confidence (z) about the existence of circumcenter
in a cell and its predicted coordinates in 3D. Because the usage of one-stage pipeline, the proposed
network can detect circumcenters and adjacent triangles efficiently.

3.4 TRAINING

We train the neural network based on multi-task loss functions, similar to those exploited in object
detection (Liu et al. 2016). The binary cross-entropy is used for classifying the anchor cells, and the
smooth L1 loss (Girshick 2015) is applied for localizing the circumcenters.

Matching strategy. To train the network accordingly, we have to match the ground-truth circum-
centers to the anchor points. Thus, we transform the ground-truth circumcenters C(p) = {Xi(p)}
into a spherical coordinate system centered at p, denoted as S(p) = {(ρi, θi, ϕi)} where (ρi, θi, ϕi)
are the spherical coordinates of Xi(p) − p. For each Xi(p), we match it to the anchor point
a∗ = (aρ∗1 , a

θ
∗2
, aϕ∗3) if (ρi, θi, ϕi) ∈ Ia∗. In this way, it is possible that an anchor point is matched

5

Published as a conference paper at ICLR 2023

detected cicumcenters

and trianglespredictions

gr
ap

h
co

nv
(1

02
4)

m
lp

 (1
02

4)

patch features

gl
ob

al

fe
at

ur
e

m
lp

 (3
2,

32
,3

2)

offsets

confidences

Figure 4: The neural network for circumcenter detection. It learns a global feature representation
for each patch using multi-layer perceptrons and the proposed graph convolution. The global feature
h(p) is used to make predictions of the circumcenters. We show in the right a toy triangulation of
the input patch at p. The detected circumcenters are in red cross and the triangle edges are in blue.

to multiple circumcenters. That is why we allow multiple circumcenters (s) to be detected in a sin-
gle anchor cell. The proposed network detects each ground-truth circumcenter Xi(p) ∈ C(p) by
predicting its parameterized offsets gi(p) = (gρi , g

θ
i , g

ϕ
i), defined as

gρi =
ρi − aρ∗
∆ρ

, gθi =
θi − aθ∗
∆θ

, gϕi =
ϕi − aϕ∗
∆ϕ

. (7)

The predicted offsets are (ĝρm, ĝθm, ĝϕm). We recover its associated circumcenter prediction X̂m(p) ∈
Ĉ(p) with proper coordinate transformation. Furthermore, by analyzing the distributions of circum-
centers in the training set, we find that two predictions per anchor cell (i.e. s = 2) reaches a good
balance between performance and efficiency.

Binary cross-entropy loss. For each anchor cell, whether it contains any ground-truth circumcen-
ters or not is a binary classification task. We predict a confidence z for each of them to indicate
the existence of circumcenters. It can be seen from §3.2 that we define the anchor points compactly
in the neighborhood space of a point. In reality, the circumcenters of adjacent triangles for each
individual point distribute closely around the surface manifold. Such facts result in the majority of
anchor cells to be unoccupied. They comprise the negative samples Nneg in our classification, while
the occupied cells comprise the positive samples Npos. Assume |Npos| = Np, |Nneg| = Nn, and p
is the probability correlated to the confidence z, we compute the binary cross-entropy as

L1 = − 1

Np

Np∑
i=1

log(pi)−
1

Nn

Nn∑
i=1

log(1− pi), where pi =
1

1 + exp(−zi)
. (8)

We employ hard negative mining for better training (Liu et al. 2016).

Smooth L1 loss. As mentioned above, we predict s = 2 circumcenters inside each cell. Let
Gi = {gi1, · · · ,giτ} be the ground-truth offset coordinates of all circumcenters in the ith cell, and
{ĝi1, ĝi2} be the predicted offsets in the same cell produced by the network. Their computations are
consistent with Eq. (7). If a positive cell contains only one circumcenter (i.e. τ = 1), we consider it
as having two identical circumcenters inside. If it contains τ ≥ 2 circumcenters, we match the two
predictions to the ground-truth circumcenters that contribute to the minimum loss. The localization
error is defined as an average of the smooth L1 loss between all pairs of matched g, ĝ, i.e.

L2 =
1

Np

Np∑
i=1

min
(a,b)∈P (τ,2)

(
smoothL1(gia, ĝi1) + smoothL1(gib, ĝi2)

)
. (9)

P (τ, 2) represents the permutation of all 2 selections from τ elements, e.g., P (2, 2) =
{(1, 2), (2, 1)}. For the special case of τ = 1, we define P (1, 2) = {(1, 1)}. The smoothL1(gi, ĝi)
is calculated by summing the scalar losses from each dimension of gi.

Eventually, the multi-task loss function of our neural network is formulated as L = L1+λL2, where
λ is a hyperparameter for balancing the different loss terms.

3.5 INFERENCE

We train the network on local patches, but performing the inference on the complete point cloud.
After predicting the adjacent triangles of each point, we take their union to form the primitive trian-

6

Published as a conference paper at ICLR 2023

gulation (mesh). Since the primitive mesh is produced regardless of topological constraint, we apply
post-processing to make it edge-manifold and fill the small holes. For convenience, we provide C
implementations with Python interface for the post-processing.

4 EXPERIMENT

ABC dataset. The ABC dataset (Koch et al. 2019) is a collection of one million CAD models for
deep geometry research. It provides clean synthetic meshes with high-quality triangulations. We use
the first five chunks in this dataset to create the training and test sets. Each raw mesh is normalized
into a unit sphere and decimated with a voxel grid of 0.01. This results in a total of 9, 026 meshes,
and we apply a train/test split of 25%/75% to validate effectiveness of the proposed model. The
model is trained on the ABC training set. We assess it on the ABC test set as well as other unseen
datasets. The implementation details are discussed in the supplementary.

Evaluation criteria. We evaluate the overall surface quality of each reconstructed mesh using
Chamfer distances (CD1, CD2), F-Score (F1), normal consistancy (NC), and normal reconstruction
error (NR) in degrees. We also evaluate their preservation of sharp details on the surface using Edge
Chamfer Distance (ECD1) and Edge F-score (EF1), similar to (Chen et al., 2022). See the supple-
mentary for computational details about those surface quality metrics. To compare the triangulation
efficiency of learning-based methods, we report their inference time on the same machine. The
number of points in the point cloud is provided for reference.

4.1 PERFORMANCE

ABC test. Table 1 compares the performance of the proposed method, abbreviated as ‘CircNet’,
with those of the traditional triangulation methods, i.e., α-shapes (Edelsbrunner & Mücke 1994) and
ball-pivot (Bernardini et al. 1999), the implicit surface method PSR (Kazhdan & Hoppe 2013) and
the learning-based triangulation methods (i.e. PointTriNet (Sharp & Ovsjanikov 2020), IER (Liu
et al. 2020), DSE (Rakotosaona et al. 2021b). We use the pre-trained weights of other learning-
based methods to report their results. It is observed that training those methods from scratch on
our ABC training set leads to slightly worse performance. We report the performance of α-shapes
using α = 3% and α = 5%. We note that ball-pivot requires normals to be estimated first. The
performance of PSR is reported by using normals n estimated from the point cloud, and normals
ngt computed from the ground-truth mesh. In the efficiency report, we also provide the network
inference time of CircNet in brackets [.]. It can be seen that the proposed CircNet is much faster
than the other learning methods. Besides, its reconstructed meshes are in high quality.

Generalization. We validate generalization of the proposed CircNet using unseen datasets. Those
include FAUST (Bogo et al. 2014), a dataset of watertight meshes of human bodies; MGN (Bhat-
nagar et al. 2019), a dataset of open meshes of clothes; and several rooms of Matterport3D (Chang
et al. 2017), a dataset of large-scale scenes reconstructed from RGB-D sequences. In all circum-
stances, the learning-based methods are evaluated without any fine-tuning. We report the results on
FAUST and MGN in Table 2 and Table 3, respectively. It can be noticed that CircNet outperforms
the other approaches most of time, especially in the reconstruction of the open surfaces from MGN.
We observe that IER prefers uniform point clouds as inputs. Due to the non-uniformity of point
clouds in FAUST and MGN, its performance drops significantly. As a reference, we provide its re-
sults on the uniformly resampled point clouds generated by Poisson-disk sampling (Bridson 2007).

Table 1: Surface quality of different triangulation methods on the ABC test set. For each metric,
we report the average results across all meshes. The total triangulation time of each learning-based
method is reported on the largest point cloud whose size is provided for reference. We also report
the network inference time of CircNet in brackets [.].

Method
Surface Quality Efficiency

overall sharp max
#points

total
runtime/secondsCD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.448 2.670 0.836 0.943 7.203 2.628 0.616

19669

6.555
α-shapes-5% 0.601 6.972 0.802 0.929 8.625 3.767 0.572 6.544
ball-pivot (+n) 0.297 0.684 0.939 0.981 2.244 0.782 0.873 0.347
PSR (+n) 0.403 6.700 0.894 0.971 6.493 32.402 0.095 12.571
PSR (+ngt) 0.400 6.081 0.901 0.972 6.020 26.160 0.108 12.529
DSE 0.285 0.548 0.949 0.985 1.793 0.538 0.929 59.605
IER 0.289 0.580 0.945 0.983 1.949 0.890 0.914 37.683
PointTriNet 0.288 0.790 0.948 0.984 1.931 0.688 0.926 38.063
CircNet (Prop.) 0.284 0.544 0.950 0.985 1.758 0.708 0.924 3.316 [0.996]

7

Published as a conference paper at ICLR 2023

Table 2: Method comparison on the watertight meshes of FAUST dataset. The 100 point clouds in
this dataset each have 6890 points. We report the average runtime of each method per sample.

Method
Surface Quality Efficiency

overall sharp #points total
runtime/secondsCD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.551 3.689 0.757 0.894 18.197 7.222 0.087

6890

0.684
α-shapes-5% 1.225 19.779 0.531 0.807 27.286 7.879 0.056 0.681
ball-pivot (+n) 0.323 1.002 0.923 0.970 6.037 2.887 0.184 0.138
PSR (+n) 1.119 39.229 0.564 0.863 21.721 4.161 0.438 10.674
PSR (+ngt) 0.427 4.108 0.915 0.969 10.269 1.069 0.810 10.643
DSE 0.218 0.307 0.995 0.984 3.910 0.883 0.801 23.792
IER 4.649 339.565 0.160 0.786 31.195 2.081 0.376 13.949
IER (Poisson) 0.257 0.406 0.989 0.973 8.692 2.170 0.456 10.628
PointTriNet 0.219 0.308 0.995 0.983 4.393 1.233 0.807 13.344
CircNet (Prop.) 0.221 0.316 0.993 0.980 4.557 0.939 0.820 3.471 [0.382]

Table 3: Method comparison on the open surfaces of MGN dataset.

Method
Surface Quality Efficiency

overall sharp max
#points

total
runtime/secondsCD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.517 2.687 0.757 0.927 14.797 11.976 0.046

10116

1.399
α-shapes-5% 0.899 10.322 0.578 0.883 20.233 14.227 0.023 1.390
ball-pivot (+n) 0.462 4.917 0.844 0.974 5.803 11.847 0.083 0.279
PSR (+n) 1.319 18.542 0.356 0.892 18.329 12.286 0.071 10.389
PSR (+ngt) 1.077 10.481 0.402 0.948 12.224 7.912 0.137 10.623
DSE 0.270 0.530 0.968 0.983 3.970 4.508 0.440 32.433
IER 0.827 23.464 0.796 0.972 6.220 4.932 0.447 12.143
IER (Poisson) 0.310 0.635 0.948 0.980 7.073 6.777 0.317 13.279
PointTriNet 0.272 0.562 0.967 0.981 4.398 5.936 0.399 19.906
CircNet (Prop.) 0.269 0.512 0.968 0.981 4.230 3.231 0.486 4.536 [0.535]

Table 4: Our results on Matterport3D, as well as the uniform, non-uniform and noisy data.

Data
Surface Quality Efficiency

overall sharp #points total
runtime/secondsCD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

Matterport3D 0.151 0.144 0.999 0.933 10.870 0.249 0.974 5× 105 ∼9.7 minutes

R
ob

us
tn

es
s

(A
B

C
)

poisson 0.278 0.533 0.949 0.976 4.033 1.281 0.660 104 3.190 [0.562]
σ = 0.1 0.328 0.720 0.908 0.965 10.053 1.500 0.630 104 3.368 [0.499]
σ = 0.2 0.419 1.245 0.793 0.931 16.735 4.396 0.467 104 5.921 [0.549]
σ = 0.3 0.523 2.076 0.689 0.880 23.287 6.790 0.294 104 9.776 [0.627]
non-uniform 0.395 1.852 0.858 0.942 8.693 3.490 0.457 5085 (mean) 1.958 [0.525]

For Matterport3D, we report the quantitative results of CircNet over 25 scenes in Table 4. The input
point clouds are generated by uniformly sampling 5×105 points from the raw meshes. We compare
the reconstructed meshes of CircNet with others on a large building in Fig. 5.

Robustness. To test the robustness of CircNet, we generate point clouds that are uniform, noisy
and non-uniform using 100 meshes of the ABC test set. Specifically, we apply the Poisson disk
sampling to generate uniform point clouds with 104 points each. We also add different levels of
Gaussian noise (i.e., σ = 0.1, 0.2, 0.3) to the data to obtain noisy point clouds. To get non-uniform
point clouds, we vary the densities of the uniform data along an axis, similar to DSE (Rakotosaona
et al. 2021b). The quantitative results of CircNet for each category are provided in Table 4. We
report the quantitative comparisons in the supplementary. Figure 5 shows the reconstructed meshes
of CircNet for point clouds of varying densities or with noise using an interesting shape from the
Thingi10K dataset (Zhou & Jacobson 2016). The point cloud data are generated in similar ways.

Limitations. We analyze detection accuracy of different triangles according to their maximum inte-
rior angles. Figure 6 plots such results for the ABC and FAUST datasets. Without loss of generality,
we randomly sample 500 meshes in ABC to plot the results. We compute the detection accuracy as
the ratio between the number of detected triangles and the ground-truth number. When the maximum
interior angle becomes large, the radii of the triangle circumcircles can be in an intractable (→+∞)
range. This makes the circumcenter detection difficult using fixed anchor priors. As expected,
the detection accuracy decreases with the increase of the maximum angle. So far, handling edge-
manifoldness takes non-trivial amount of time in all learning-based triangulation methods. This is
because the classification or detection networks are unaware of any surface topology.

8

Published as a conference paper at ICLR 2023

(a) point cloud (points)

(b) DSE:

0.088/0.051/0.944/8.323

(c) PointTriNet

0.089/0.052/0.944/8.384

(d) IER

0.088/0.049/0.946/8.064

(e) CircNet (Proposed)

0.086/0.047/0.950/7.620

Metrics: CD1/CD2/NC/NR

M
at

te
rp

or
t3

D
(a

) P
oi

ss
on

(b
)

(c
)

(d
) N

on
-u

ni
fo

rm

31.9 minutes 23.0 minutes

9.1 minutes16.4 minutes

Figure 5: Visualization of the reconstructed meshes. Quantitative results of CD1/CD2/NC/NR and
the reconstruction time are reported for different methods over a scene of Matterport3D. The pro-
posed CircNet takes the shortest time but reconstructs the scene in best quality. The bottom two
rows demonstrate the robustness of CircNet for the fact that it still reconstructs the underlying shape
well when the point cloud becomes highly noisy or the non-uniformity becomes severe.

(a) ABC (b) FAUST
Figure 6: Detection frequency and accuracy with respect to the maximum interior angles (in degree)
of ground-truth triangles. We provide results on two datasets, ABC and FAUST. For each dataset,
the left plot shows the frequencies of both ground-truth and correctly predicted triangles, while the
right plot shows the prediction accuracy. It can be noticed that triangles in ABC are distributed more
closely to equilateral triangles, compared to those in FAUST.

5 CONCLUSION
By exploiting the duality between a triangle and its circumcenter, we have introduced a neural detec-
tion architecture for point cloud triangulation. The proposed network employs a single-shot pipeline,
and takes local geometrics as inputs to detect the circumcenters of adjacent triangles of each point.
We predefine multiple anchor points to guide the detection process. Based on the detected circum-
centers, we reconstruct the 3D point cloud into a primitive triangle mesh. It can be simply post-
processed into a surface mesh. Compared to the previous learning-based triangulation methods, the
proposed method has lower complexity, single-shot architecture, and does not depend on any tradi-
tional method to triangulate the points. We demonstrate that the method, though trained on CAD
models, is able to reconstruct unseen point clouds including the large-scale scene data satisfactorily.
It is also robust to noisy and non-uniform data.

9

Published as a conference paper at ICLR 2023

6 ACKNOWLEDGEMENT

This research is funded in part by the ARC Discovery Grant DP220100800 to HL. We thank the
anonymous reviewers for their comments on improving the quality of this work.

REFERENCES

Matan Atzmon and Yaron Lipman. SAL: Sign agnostic learning of shapes from raw data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2565–
2574, 2020a.

Matan Atzmon and Yaron Lipman. SALD: Sign agnostic learning with derivatives. In International
Conference on Learning Representations, 2020b.

Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman. Controlling
neural level sets. Advances in Neural Information Processing Systems, 32, 2019.

Yizhak Ben-Shabat, Chamin Hewa Koneputugodage, and Stephen Gould. DiGS: Divergence guided
shape implicit neural representation for unoriented point clouds. In CVPR, 2022.

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud, Joshua A
Levine, Andrei Sharf, and Claudio T Silva. A survey of surface reconstruction from point clouds.
In Computer Graphics Forum, volume 36, pp. 301–329. Wiley Online Library, 2017.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin. The
ball-pivoting algorithm for surface reconstruction. IEEE transactions on visualization and com-
puter graphics, 5(4):349–359, 1999.

Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll. Multi-garment
net: Learning to dress 3d people from images. In proceedings of the IEEE/CVF international
conference on computer vision, pp. 5420–5430, 2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. Faust: Dataset and evaluation
for 3d mesh registration. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3794–3801, 2014.

Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. SIGGRAPH sketches, 10(1):1,
2007.

Frédéric Cazals and Joachim Giesen. Delaunay triangulation based surface reconstruction: ideas
and algorithms. PhD thesis, INRIA, 2004.

Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In European Conference on Computer Vision, pp. 608–625. Springer, 2020.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. International Conference on 3D Vision (3DV), 2017.

Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM Transactions on Graphics (TOG), 40
(6):1–15, 2021.

Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. Neural dual contouring.
arXiv preprint arXiv:2202.01999, 2022.

Siu-Wing Cheng, Tamal Krishna Dey, Jonathan Shewchuk, and Sartaj Sahni. Delaunay mesh gen-
eration. CRC Press Boca Raton, 2013.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

10

Published as a conference paper at ICLR 2023

Herbert Edelsbrunner and Ernst P Mücke. Three-dimensional alpha shapes. ACM Transactions on
Graphics (TOG), 13(1):43–72, 1994.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wimmer. Points2surf
learning implicit surfaces from point clouds. In European Conference on Computer Vision, pp.
108–124. Springer, 2020.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. In International Conference on Machine Learning, pp. 3789–3799.
PMLR, 2020.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of hermite data. In Pro-
ceedings of the 29th annual conference on Computer graphics and interactive techniques, pp.
339–346, 2002.

Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transactions
on Graphics (ToG), 32(3):1–13, 2013.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In Pro-
ceedings of the fourth Eurographics symposium on Geometry processing, volume 7, 2006.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. ABC: A big CAD model dataset for
geometric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9601–9611, 2019.

Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface
representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2916–2925, 2018.

Minghua Liu, Xiaoshuai Zhang, and Hao Su. Meshing point clouds with predicted intrinsic-extrinsic
ratio guidance. In European Conference on Computer Vision, pp. 68–84. Springer, 2020.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. SSD: Single shot multibox detector. In European conference on computer
vision, pp. 21–37. Springer, 2016.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Neural-pull: Learning signed
distance functions from point clouds by learning to pull space onto surfaces. International Con-
ference on Machine Learning, 2021.

Baorui Ma, Yu-Shen Liu, Matthias Zwicker, and Zhizhong Han. Surface reconstruction from point
clouds by learning predictive context priors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6326–6337, 2022.

de Berg Mark, Cheong Otfried, van Kreveld Marc, and Overmars Mark. Computational geometry
algorithms and applications. Spinger, 2008.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision. Springer, 2020.

Timothy S Newman and Hong Yi. A survey of the marching cubes algorithm. Computers & Graph-
ics, 30(5):854–879, 2006.

11

Published as a conference paper at ICLR 2023

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174,
2019.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolu-
tional occupancy networks. In European Conference on Computer Vision, pp. 523–540. Springer,
2020.

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger.
Shape as points: A differentiable poisson solver. Advances in Neural Information Processing
Systems, 34:13032–13044, 2021.

Franco P Preparata and Michael I Shamos. Computational geometry: an introduction. Springer
Science & Business Media, 2012.

Marie-Julie Rakotosaona, Noam Aigerman, Niloy J Mitra, Maks Ovsjanikov, and Paul Guerrero.
Differentiable surface triangulation. ACM Transactions on Graphics (TOG), 40(6):1–13, 2021a.

Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy J Mitra, and Maks Ovsjanikov.
Learning delaunay surface elements for mesh reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 22–31, 2021b.

Nicholas Sharp and Maks Ovsjanikov. Pointtrinet: Learned triangulation of 3d point sets. In Euro-
pean Conference on Computer Vision, pp. 762–778. Springer, 2020.

Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. Advances in Neural Information Processing Systems,
33:10136–10147, 2020a.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020b.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Carsten Stoll, and Chris-
tian Theobalt. Patchnets: Patch-based generalizable deep implicit 3d shape representations. In
European Conference on Computer Vision, pp. 293–309. Springer, 2020.

Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000 3d-printing models. arXiv
preprint arXiv:1605.04797, 2016.

12

	Introduction
	Related Work
	Implicit Neural Functions
	Learning-based Point Cloud Triangulation
	Learning Triangulation via Circumcenter Detection

	Method
	Local Geometrics
	Anchor Priors
	Network Design
	Training
	Inference

	Experiment
	Performance

	Conclusion
	Acknowledgement

