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Abstract
When symmetry is present in the loss function, the model is likely to be trapped in a low-capacity
state that is sometimes known as a “collapse.” Being trapped in these low-capacity states can be a
major obstacle to training across many scenarios where deep learning technology is applied. We
first prove two concrete mechanisms through which symmetries lead to reduced capacities and
ignored features during training. We then propose a simple and theoretically justified algorithm,
syre, to remove almost all symmetry-induced low-capacity states in neural networks. The proposed
method is shown to improve the training of neural networks in scenarios when this type of entrap-
ment is especially a concern. A remarkable merit of the proposed method is that it is model-agnostic
and does not require any knowledge of the symmetry.

1. Introduction
Recent literature has shown that symmetries in the loss function of neural networks often lead to the
formation of low-capacity saddle points within the loss landscape [14, 23]. These saddle points are
located at the symmetric solutions and often possess a lower capacity than the minimizers of the loss.
When a model encounters these saddle points during training, the model parameters are not only
slow to escape them but also attracted to these solutions because these the gradient noise also vanish
close to these saddles [5]. Essentially, the model’s learning process stagnates, and it fails to achieve
optimal performance due to reduced capacity. However, while many works have characterized the
dynamical properties of training algorithms close to symmetric solutions, no methods are known to
enable full escape from them.

Because these low-capacity saddles are created by symmetries, we propose a method to explic-
itly remove these symmetries from the loss functions of neural networks. The method we propose is
theoretically justified and only takes one line of code to implement. By removing these symmetries,
our method allows neural networks to explore a more diverse set of parameter spaces and access
more expressive solutions. The main contributions of this work are:
1. We show how discrete symmetries in the model can severely limit the expressivity of neural

networks in the form commonly known as “collapses” (Section 3);
2. We propose a simple method that provably removes almost all symmetries in neural networks,

without having any knowledge of the symmetry (Section 4);

*Equal contribution.
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We introduce the notations and problem setting for our work in the next section. Closely related
works are discussed in Appendix A. All proofs and experimental details are deferred to the appendix.

2. Discrete Symmetries in Neural Networks
Notation. For a matrix A, we use A+ to denote the pseudo-inverse of A. For groups U and G,
U ⊲ G denotes that U is a subgroup of G. For a vector w and matrix D, ∥θ∥2D ∶= w

TDw is the norm
of w with respect to D. ⊙ denotes the element-wise product between vectors.

Let f(θ, x) be a function of the model parameters θ and input data point x. For example, f
could either be a sample-wise loss function ℓ or the model itself. Whenever f satisfies the following
condition, we say that f has the P -reflection symmetry (general symmetry groups are dealt with in
Theorem 6 in Section 4).

Definition 1 Let P be a projection matrix and θ′ be a point. f is said to have the (θ′, P )-reflection
symmetry if for all x and θ, (1) f(θ + θ′, x) = f((I − 2P )θ + θ′, x), and (2) Pθ′ = θ′.

The second condition is due to the fact that there is a redundancy in the choice of θ′ when θ′ ≠ 0.
Requiring Pθ′ = θ′ removes this redundancy and makes the choice of θ′ unique. Since every
projection matrix can be written as a product of a (full-rank or low-rank) matrix O with orthonormal
columns, one can write P = OOT and refer to this symmetry as an O symmetry. In common deep
learning scenarios, it is almost always the case that θ′ = 0 (for example, this holds for the common
cases of rescaling symmetries, (double) rotation symmetries, and permutation symmetries,1 see
Theorem 2-4 of Ref. [35]). A consequence of θ′ = 0 is that the symmetric projection Pθ of any θ
always has a smaller norm than θ: thus, a symmetric solution is coupled to the solutions of weight
decay, which also favors small-norm solutions. As an example of reflection symmetry, consider a
simple tanh network f(θ, x) = θ1 tanh(θ2x). The model output is invariant to a simultaneous sign
flip of θ1 and θ2. This corresponds to a reflection symmetry whose projection matrix is the identity
P = ((1,0), (0,1)). The symmetric solutions correspond to the trivial state where θ1 = θ2 = 0.

3. Symmetry Impairs Model Capacity and Optimization
We first show that reflection symmetry directly affects the model capacity. For simplicity, we let
θ′ = 0 for all symmetries. Let f(x, θ) ∈ R be a Taylor-expandable model that contains a P -reflection
symmetry. Let ∆ = θ − θ0. Then, close to any symmetric point θ0 (any θ0 for which Pθ0 = 0), for
all x, Ref. [35] showed that

f(x, θ) − f(x, θ0) =∇θf(x, θ0)(I − P )∆ +O(∥P∆∥)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Symmetry subspace

+
1

2
∆TPH(x)P∆ +O(∥∆∥3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Symmetry-broken subspace

, (1)

where H(x) is the Hessian matrix of f . An important feature is that the symmetry subspace is
a generic expansion where both odd and even terms are present, and the first order term does not
vanish in general. In contrast, in the symmetry-broken subspace, all odd-order terms in the expan-
sion vanish, and the leading order term is the second order. This implies that close to a symmetric
solution, escaping from it will be slow, and if at the symmetric solution, it is impossible for gradient
descent to leave it. The effect of this entrapment can be quantified by the following two propositions.

1All appear in deep learning [9, 12, 15, 27, 31, 32].
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Proposition 2 (Symmetry removes feature.) Let f have the P -symmetry, and θ be intialized at θ0
such that Pθ0 = 0. Then, the kernalized model, g(x, θ) = limλ→0(λ

−1f(x,λθ + θ0) − f(x, θ0)),
converges to θ∗ = A+∑x∇θf(x, θ0)

T y(x) under GD for a sufficiently small learning rate. Here
A ∶= (I −P )∑x∇θf(x, θ0)

T∇θf(x, θ0)(I −P ) and A+ denotes the Moore–Penrose inverse of A.

Figure 1: Training loss ℓ as a func-
tion of the iteration t for a fully con-
nected network on MNIST. Starting from
a low-capacity state, vanilla neural net-
works are trapped under SGD or Adam
training (left). Blacker lines correspond to
higher-capacity initializations, where more
neurons are away from the permutation-
symmetric state. When the symmetries are
removed, the capacity of the initialization
no longer affects the solution found at the
end of the training (right).

This means that in the kernel regime2, being at a sym-
metric solution implies that the feature kernel features
are being masked by the projection matrix ∇θf(x, θ0) →
(I − P )∇θf(x, θ0), and learning can only happen given
these masks. This implies that the model is not using the
full feature space that is available to it.

Proposition 3 (Symmetry reduces parameter dimen-
sion.) Let f have the P -symmetry, and θ ∈ Rd be in-
tialized at θ0 such that Pθ0 = 0. Then, for all time steps
t under GD or SGD, there exists a model f ′(x, θ′) and
sequence of parameters θ′t such that for all x, f ′(x, θ′t) =
f(x, θt), where dim(θ′) = d − rank(P ).

The existence of this type of dimension reduction when
symmetry is present has also been noticed by previous
works in case of permutation symmetry [31]. See Fig-
ure 1 for an illustration. We initialize a two-layer ReLU
neural network on a low-capacity state where a fraction
of the hidden neurons are identical (corresponding to the
symmetric states of the permutation symmetry) and train
with and without removing the symmetries. We see that
when the symmetries are removed (with the method proposed in the next section), the model is no
longer stuck at these neuron-collapsed solutions.

4. Removing Symmetry with Static Bias
Next, we prove that a simple algorithm that involves almost no modification to any deep learning
training pipeline can remove almost all such symmetries from the loss without creating new ones.
From this section onward, we will consider the case where the function under consideration is the
loss function (a per-batch loss or its expectation): f = ℓ.

Countable Symmetries. We seek an algorithm that eliminates the reflection symmetries from the
loss function ℓ. We show that when the number of reflection symmetries in the loss function is
finite, one can completely remove them using a simple technique. The symmetries are required to
have the following property and the loss function is assumed to obey assumption 1.

Property 1 (Enumeratability) There exists a countable set of pairs of projection matrices and
biases S = {(θ†

i , Pi)}
N
i such that ℓ(θ, x) has the θ†

i -centric Pi-reflection symmetry for all i. In
addition, ℓ does not have any (θ†, P ) symmetry for (θ,P ) ∉ S.

Assumption 1 There only exists countably many pairs (c0, θ̃) such that g(x) = ℓ(θ, x) − c0θ con-
tains a θ̃-centric P symmetry, where we require Pc0 = c0 and P θ̃ = θ̃.

2Technically, this is the lazy training limit [7].
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This assumption is satisfied by common neural networks with standard activations. The main pur-
pose of this assumption is to rule out the pathological of a linear or quadratic deterministic objective,
which never appears in practice or for which symmetry is not a concern.3

For symmetry removal, we propose to utilize the following alternative loss function. Let θ0 be
drawn from a Gaussian distribution with variance σ0 and ℓ be the original loss function:

ℓr(θ, x) = ℓ(θ + θ0) + γ∥θ∥
2. (2)

γ is nothing but the standard weight decay. We will see that using a static bias along with weight
decay is essential for the method to work. We find that with unit probability, the loss function ℓr
contains no reflection symmetry:

Theorem 4 Let ℓ satisfy Property 1 and Assumption 1. Then, with probability 1 (over the sampling
of θ0), there exists no projection matrix P and reflection point θ′ such that ℓr has the (θ′, P )-
symmetry.

This hints at the possibility of using a small and random θ0, which removes all symmetries in
principle and also does not essentially affect the solutions of the original objective. In this work, we
will refer to the method in Eq. (2) as syre, an abbreviation for “symmetry removal.”

Uncountably Many Symmetries. In neural networks, it is possible for the model to simultane-
ously contain infinitely many reflection symmetries. This happens, for example, when the model
parameters have the rotation symmetry or the double rotation symmetry (common in self-supervised
learning problems or transformers). It turns out that simply adding a static bias and weight decay is
not sufficient to remove all symmetries.

We propose to train on the following alternative loss, where ar stands for “advanced removal”:

ℓar(θ) = ℓ(θ + θ0) + γ∥θ∥
2
D, (3)

where D is a positive diagonal matrix in which all diagonal elements of D are different. The
simplest way to achieve such a D is to set Dii ∼ Uniform(1− ϵ,1+ ϵ), where ϵ is a small quantity.

Theorem 5 Any (θ′, P )-symmetry that ℓar satisfies obeys: (1) Pθ0 = θ
′ (2) and PD =DP .

Conditions (1) and (2) implies that there are at most finitely many (θ′, P )-symmetry ℓar can have.
When there does not exist any symmetry that satisfies this condition, we have removed all the
symmetries. In the worst case where ℓ is a constant function, there are 2N symmetries where N
is the number of reflection symmetries. If we further assume that every P is associated with at
most finitely many θ′, then we, again, remove all symmetries with probability 1. The easiest way to
determine this D matrix is through sampling from a uniform distribution with a variance σD ≪ 1.

Symmetry Removal for General Groups. Lastly, one can generalize the theory to prove that the
proposed method removes symmetries from a generic group. Let G be the linear representation of
a generic finite group, possibly with many nontrivial subgroups. If the loss function ℓ is invariant
under transformation by the group G, then ∀g, ℓ(θ) = ℓ(gθ). Because G is finite, it follows that the
representations g must be full-rank and unipotent. Letting U be a subgroup of G, we denote with the
overbar the following matrix: U = 1

∣U ∣ ∑u∈U u. Note that U is a projection matrix: U U = U . This

3An example that violates this assumption is when ℓ(θ, x) = cT0 θ. ℓ(θ, x) − cT0 θ has infinitely many reflection
symmetries everywhere and for every data point because it is a constant function.
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Figure 2: The degree of symmetry versus the objective value for two choices of B and various training
methods with different hyperparameters. The proposed method is the only method to smoothly interpolate
between optimized solutions and solutions with low symmetry. syre performs well in both cases. Left:
objective with unstructured symmetry Right: structured symmetry.

means that I − U is also a projection matrix. Importantly, U projects a vector into the symmetric
subspace. For any u ∈ U , uU = U . Likewise, I − U projects any vector into the symmetry-broken
subspace, a well-known result in the theory of finite groups [17]. We denote, by ∆V = ∥(I−V )∇θℓ∥,
the strength of the symmetry removal for the subgroup V .

Theorem 6 Let Γ(G) denote the smallest minimal generating set for the group G. Z denotes the
number of minimal subgroups of G. Let ℓ be invariant under the group transformation G and let θ
be in the invariant subspace of a subgroup U ⊲ G. Then, for every subgroup V ⊲ U ⊲ G,
1. ∆V = Ω(γσ0rank(I − V ));
2. minV ⊲U ∆V = Ω(γσ0rank(I − V )Z

−1);
3. if G is abelian, minV ⊲U ∆V = Ω(γσ0rank(I − V )∣Γ(U)∣

−1);4

4. additionally, for any ϵ > 0 and δ < 1, Pr(minV ⊲U ∆V > ϵ) > δ, if γσ0 = Ω (
2ϵ∣Γ(U)∣

1−δ ).

Item (2) is due to the fact that removing symmetries from a larger group can be reduced to
removing them from one of its subgroups. In general, 1 ≤ Z ≤ ∣G∣ (and sometimes ≪ ∣G∣), and so
this scaling is not bad. For the part (3) of the theorem, the term ∣Γ(U)∣ is especially meaningful. It
is well-known that ∣Γ(U)∣ ≤ log ∣U ∣, and so the worst-case symmetry-breaking strength is only of
order 1/ log ∣U ∣, which is far slower than what one would expect. In fact, for a finite group with size
N , the number of subgroups can grow as fast as N logN [3], and thus, one might naively think that
the minimal breaking strength decreases as N− logN . This theorem shows that the proposed method
is highly effective at breaking the symmetries in the loss function or the model.

5. Benchmarking Symmetry Removal
In this section, we benchmark the effect of symmetry control of the proposed method for two
controlled experiments. To compare the influence of syre and other training methods on the de-
gree of symmetry, we consider minimizing the following objective function: (wTw)2 − wTBw ∶=
(wTw)2 −∑d

i=1 λi(v
T
i w)

2,. where w ∈ Rd is the optimization parameter and B ∈ Rd×d is a given
symmetric matrix with eigenvalues λi and eigenvectors vi (vTi vi = 1). The objective function
has n reflection symmetries Piw ∶= w − 2(vTi w)vi. Hence, we define the degree of symmetry
as ∑d

i=1 1{v
T
i w < cth}, where cth is a given threshold. Depending on the spectrum of B, the nature

4This result can be generalized to the case where all projectors V̄ commute with each other, even if G is nonabelian.
Namely, this is a consequence of the properties of the representations of G and of G itself.
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of the task is different. We thus consider two types of spectra: (1) an unstructured spectrum where
B = G+GT for a Gaussian matrix G, and (2) a structured spectrum where B = diag(v) where v is a
random Gaussian vector. Conceptually, the first type is more similar to rotation and double rotation
symmetries in neural networks where the basis can be arbitrary, while the second is a good model
for common discrete symmetries where the basis is often diagonal or sparse. For the first case we
choose cth = 10

−3 and for the second case we choose cth = 10
−1.

In Figure 2, we compare syre, W-fix, drop out, weight decay, and the standard training methods
in this setting for d = 1000 and two choices of B. In both cases, we use Gaussian initialization and
gradient descent with a learning rate of 10−4. For syre and weight decay, we choose weight decay
from 0.1 to 10. For W-fix, we choose ϕ from 0.001 to 0.1. For dropout, we choose a dropout rate
from 0.01 to 0.6. Figure 2 shows that for both cases, syre is the only method that effectively and
smoothly interpolates between solutions with low symmetry and best optimization. This is a strong
piece of evidence that the proposed method can control the degree of symmetries in the model.

Also, see Appendix C for the application of syre on various realistic problems of deep non-linear
networks, where we apply syre to alleviate and remove feature and neural collapse, low-capacity trap
in self-supervised learning and loss of plasticity in supervised and reinforcement learning.

6. Conclusion
We have shown that the existence of symmetries in the model or loss function may severely limit
the expressivity of the trained model. We then developed a theory that leverages the power of repre-
sentation theory to show that adding random static biases to the model, along with weight decay, is
sufficient to remove almost all symmetries, explicit or hidden. We have demonstrated the relevance
of the method to a broad range of applications in deep learning, and a possible future direction is to
deploy the method in large language models, which naturally contain many symmetries.
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Appendix A. Related Works

One closely related work is that of Ref. [35], which shows that every reflection symmetry in the
model leads to a low-capacity solution that is favored when weight decay is used. This is because the
minimizer of the weight decay is coupled with stationary points of the reflection symmetries – the
projection of any parameter to a symmetric subspace always decreases the norm of the parameter,
and is thus energetically preferred by weight decay. Our work develops a method to decouple
symmetries and weight decay, thus avoiding collapsing into low-capacity states during training.
Besides weight decay, an alternative mechanism for this type of capacity loss is gradient-noise
induced collapse, which happens when the learning rate - batchsize ratio is high [5].

Contemporarily, Ref. [24] empirically explores how removing symmetries can benefit neural
network training and suggests a heuristic for removing symmetries by hold a fraction of the weights
unchanged during training. However, the proposed method is only proved to work for explicit
permutation symmetries in fully connected layers. This is particularly a problem because most of
the symmetries in nonlinear systems are unknown and hidden [4, 13]. In sharp contrast, the tech-
nique proposed in our work is both architecture-independent and symmetry-agnostic and provably
removes all known and unknown P -reflection symmetries in the loss.

Appendix B. Theoretical Concerns

B.1. Proof of Proposition 2

Proof By (1), g(x, θ) simplifies to a kernel model

g(x, θ) = ∇θ0f(x, θ0)(I − P )θ. (4)

Let us consider the squared loss ℓ(θ) = ∑x ∣∣y(x) − g(x, θ)∣∣
2 and denote

A ∶=∑
x

(I − P )∇θ0f(x, θ0)
T
∇θ0f(x, θ0)(I − P ), b ∶= (I − P )∑

x

∇θ0f(x, θ0)
T y(x).

Assuming the learning rate to be η, the GD reads

θt+1 = θt − 2η(Aθt − b), (5)

where θ0 = 0. If
η <

1

2λmax(A)
, (6)

GD converges to

θ∗ = lim
t→∞

t

∑
k=0

(I − 2ηA)k ∗ 2ηb

= A+b,

(7)

which is the well-known least square solution.

10
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B.2. Proof of Proposition 3

Proof According to [35, Theorem 4], we have

P∇θℓ(x, θ0) = 0. (8)

Therefore, after one step of GD or SGD, we still have Pθ1 = 0. By induction, we have Pθt = 0.
Finally, suppose that {ai}

d−rank(P )
i=1 forms a basis of kerP , and define f ′(x, θ′) ∶= f(x,∑d−rank(P )

i=1 θ′iai)
for dim(θ′) = d − rank(P ). By choosing θ′i = θ

Tai, we have f ′(x, θ′t) = f(x, θt).

B.3. Lemmas

Lemma 7 Let x ∈ Rd and P be a projection matrix. Let f(x) be a scalar function that satisfies

f(x + x′) = f((I − 2P )x + x′) + cTPx, (9)

where c is a constant vector. Then, there exists a unique function g(x) such that

1. g(x) has the x′-centric P -symmetry,

2. and f(x) = g(x) + 1
2c

T
0 Px.

Proof (a) Existence. f(x) = g(x) + 1
2c

T
0 x. Let us suppose g(x) is not x′-centric P -symmetry.

Then, there exists x such that

g(x + x′) − g((I − 2P )x + x′) =∆ ≠ 0. (10)

Then, by definition, we have that

cT0 Px = f(x + x′) + f((I − 2P )x + x′) (11)

= g(x + x′) −
1

2
cT0 P (x + x

′
) − g((I − 2P )x + x′) − cT0 P (x + x

′
) (12)

=∆ +
1

2
cT0 P (x + x

′
) −

1

2
cT0 P ((I − 2P )x + x

′
) (13)

=∆ + cT0 Px. (14)

This is a contradiction. Therefore, there must exist g(x) that satisfies the lemma statement.
(b) Uniqueness. Simply note that the expression of g is uniquely given by5

g(x) = f(x + x′) − f((I − 2P )x + x′). (15)

5Alternatively, note that cTx is odd and that g(x) can be shifted by a constant to be an even function. The uniqueness
follows directly from the fact that every function can be uniquely factorized into an odd function and an even function.

11
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B.4. Proof of Theorem 4

Proof We prove by contradiction. Let us suppose there exists such pair, (θ′, P ). By definition, we
have that

ℓr(θ + θ
′
) = ℓ(θ + θ′ + θ0) + γ∥θ + θ

′
∥
2. (16)

By assumption, we have that

ℓ((I − 2P )θ + θ′ + θ0) + γ∥(I − 2P )θ + θ
′
∥
2
= ℓ(θ + θ′ + θ0) + γ∥θ + θ

′
∥
2, (17)

and, so, for all θ,
ℓ((I − 2P )θ + θ′ + θ0) = ℓ(θ + θ

′
+ θ0) + 4γθ

TPθ′. (18)

There are two cases: (1) Pθ′ = 0 and (2) Pθ′ ≠ 0.
For case (1), we have that ℓ((I − 2P )θ + θ′ + θ0) = ℓ(θ + θ′ + θ0), but this can only happen if

the original loss ℓ has the (θ′ + θ0)-centric P -symmetry. By Property 1, this implies that

θ′ + θ0 = θ
†
i (19)

for some i. Applying P on both sides, we obtain that

Pθ0 = Pθ†
i . (20)

But, θ0 is a random variable with a full-rank covariance while the set {Pθ†
i } has measure zero in

the real space, and so this equality holds with probability zero.
For case (2), it follows from Lemma 7 that for a fixed x and θ0, ℓ(θ) can be uniquely decom-

posed in the following form
ℓ(θ) = g(θ) − 2γθTPθ′, (21)

where g(θ) has the θ′ + θ0-centric P -symmetry.
Let c0 = 2γPθ′ and θ̃ = P (θ′ + θ0). Then ℓ(θ) + c0θ has the θ̃-centric P symmetry. We

also have θ̃ − c0
2γ = Pθ0. According to Assumption 1, there are only countable many such {c0, θ̃}

pairs. However, Pθ0 is a standard Gaussian random variable, which leads to a contradiction with
probability 1.

Remark 8 It is easy to see that Assumption 1 could be slightly relaxed. We only require {θ̃ − c0
2γ }

to have a zero measure, which is also a necessary and sufficient condition.

B.5. Proof of Theorem 5

Proof We prove by contradiction. Let us suppose there exists such pair, (θ′, P ). By definition, we
have that

ℓar(θ + θ
′
) = ℓ(θ + θ′ + θ0) + γ∥θ + θ

′
∥
2
D. (22)

By assumption, we have that

ℓ((I − 2P )θ + θ′ + θ0) + γ∥(I − 2P )θ + θ
′
∥
2
D = ℓ(θ + θ

′
+ θ0) + γ∥θ + θ

′
∥
2
D, (23)

and, so, for all θ,

ℓ((I − 2P )θ + θ′ + θ0) = ℓ(θ + θ
′
+ θ0) + 4θ

TPD((I − P )θ + θ′). (24)

12



SYMMETRY REMOVAL

There are two cases: (1) PD((I − P )θ + θ′) = 0 and (2) PD((I − P )θ + θ′) ≠ 0.
Like before, there are two cases. For case (2), the proof is identical, and so we omit it. For case

(1), it must be the case that for some P , and θ′

ℓ((I − 2P )θ + θ′ + θ0) = ℓ(θ + θ
′
+ θ0). (25)

This is possible if and only if P (θ′+θ0) = θ†
i for some i and P = Pi for the corresponding projection

matrix. However, because Pθ′ = 0, this requires that

P (θ′ + θ0) = θ
†
i . (26)

By the definition of the reflection symmetry, we have that

Pθ′ = θ′. (27)

This means that
θ′ = θ†

i − Pθ0. (28)

At the same time, we have
PD((I − P )θ + θ′) = 0, (29)

which implies that
PD(I − P )θ = −PDθ′. (30)

Because the right hand side is a constant that only depends on θ. This can only happen if both sides
are zero, which is achieved if:

PD(I − P ) = 0, (31)

and
θ†
i = Pθ0. (32)

The first condition implies that

PD = PDP =DTP T
=DP, (33)

which implies that P and D must share the eigenvectors because they commute. Noting that

Pθ†
i = θ

†
i , (34)

we obtain that θ†
i is an eigenvector of P and so θ†

i is an eigenvector of D, but D is diagonal and
with nonidentical diagonal entries, θ†

i much then be a one-hot vector, and P must also be diagonal
and consists of values of 1 and 0 in the diagonal entries.

13
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B.6. Proof of Theorem 6

Before we start proving Theorem 6, we introduce a definition that facilitates the proof.

Definition 9 (Symmetry reduction.) We say that removing a symmetry from group G1 reduces to
removing the symmetry due to group G2 if for any vector n,

∥(I −G2)n∥ ≤ ∥(I −G1)n∥. (35)

Now, we are ready to prove the main theorem.
Proof We first show (I − V )T∇θℓ(θ) = 0. For any g ∈ V and z ∈ R, we have

ℓ(θ + zn) = ℓ(g(θ + zn)), (36)

where n is an arbitrary unit vector. Taking the derivative with respect to z, and recalling that gθ = θ,
we have

(gn)T∇θℓ(θ) = n
T
∇θℓ(θ). (37)

Accordingly, we have

(V n)T∇θℓ(θ) ∶=
1

∣V ∣
∑
g∈V

(gn)T∇θℓ(θ) = n
T
∇θℓ(θ). (38)

Due to the arbitrary choice of n, we have (I − V )T∇θℓ(θ) = 0.
Therefore,

(I − V )T∇θℓar(θ) = γ(I − V )
T
∇θ∥θ − θ0∥

2
D (39)

= 2γ(I − V )TD(θ − θ0) (40)

= 2γ(I − V )T θ0 + o(γσ0(1 + σD)). (41)

As θ0 is a Gaussian vector with mean 0 and variance σ2
0 , ∣∣(I − V )T θ0∣∣ is a Gaussian variable with

mean 0 and variance ∣∣I−V ∣∣2σ2
0 = Ω(rank(I−V )σ

2
0), which gives ∥(I−V )∇θℓ∥ = Ω(γσ0

√

rank(I − V )).

Now, we prove part (2) of the theorem. Note that if V ⊲ U and if θ0 ∈ kerV , then θ0 ∈ kerU .
This means that for any group U such that V ⊲ U and any vector θ0

∥(I − V )θ0∥ < ∥(I −U)θ0∥. (42)

This means that to remove the symmetry from a large group U , it suffices to remove the symmetry
from one of its minimal subgroups. Thus, let MG denote the set of minimal subgroups of the group
G, we have

min
V ⊲G
∥(I − V )θ0∥ ≥ min

V ⊲MG

∥(I − V )θ0∥. (43)

The number of minimal subgroups is strictly upper bounded by the number of elements of the group
because all minimal subgroups are only trivially intersect each other. This follows from the fact that
the intersection of groups must be a subgroup, which can only be the identity for two different
minimal subgroups. Therefore, the number of minimal subgroups cannot exceed the number of
elements of the group. This finishes the second part of the theorem.
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For the third part, we show that the symmetry broken subspace of any subgroup contains the
symmetry broken subspace of a group generated by one of the generators and so it suffices to only
remove the symmetries due to the subgroups generated by each generator. Let us introduce the
following notation for a matrix representation z of a group element:

z =
1

ord(z)

ord(z)

∑
i=1

zi, (44)

where ord(z) denotes the order of z. This is equivalent to the symmetry projection matrix of the
subgroup generated by z.

Now, let G be abelian. Then, both U and V are abelian. Let us denote by Γ(U) = {zi} the
mininal generating set of U . Suppose that for all n ≠ 0 such that n ∈ im(I − V ), we must have
n ∉ im(I − zj) for all j. This means that

n ∉⋃
j

im(I − zj). (45)

Or, equivalently,
n ∈⋂

j

im(zj). (46)

However, the space ⋂j im(zj) ⊆ im(V ) because V is a subgroup of U , which is generated by
z1,⋯, zm. To see this, let n ∈ im(zj) for all j, then,

zjn = n (47)

for all j. Now, let v =∏i z
di(v)
i ∈ V , we have

(I − V )n = (I −∑
v
∏
i

z
di(v)
i )n = 0 (48)

This means that n is in both im(V ) and im(I−V ), which is possible only if n = 0 – a contradiction.
Therefore, as long as I−V̄ is not rank 0, it must share a common subspace with one of the I−zj , and
so removing the symmetry from any subgroup V of U can be reduced to removing the symmetry
from the cyclic group generated by one of its generators from the minimal generating set.6

Therefore, we have proved that removing symmetries due to any subgroup of U can be reduced
to removing the symmetry from a (proper or trivial) subgroup of each of the cyclic decompositions
of the group U , each of which is generated by a minimal generator of U . By the fundamental
theorem of finite abelian groups, each of these groups is of order pk for some prime number p.
Because each of these groups is cyclic, it contains exactly k nontrivial subgroups. Taken together,
this means that if ∣U ∣ = pk11 ...pkmm , we only have to remove symmetries from at most

m

∑
i

ki = log ∣U ∣ (49)

many subgroups. This completes part (3).

6This holds true even if V is a subset of ⟨zj⟩.
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For part (4), we denote ∆i ∶= (I − Vi)
T∇θℓar(θ) for i = 1,⋯, ∣Γ(U)∣. According to (41), ∆i is

approximately a Gaussian variable with zero mean and variance γ2rank(I − V )σ2
0 . Therefore,

∣Γ(U)∣

∑
i

Pr(∣∆i∣ > ϵ) ≥ ∣Γ(U)∣ −
2ϵ∣Γ(U)∣

mini

√

2πγ2rank(I − V )σ2
0

. (50)

For Pr(mini ∣∆i∣ > ϵ) to be larger than 1 − δ, we must have

γσ0 ≥
2ϵ∣Γ(U)∣

√

2π rank(I − V )(1 − δ)
. (51)
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Appendix C. Experiment

First, we show that the proposed method is compatible with standard training methods. We then
apply the method to a few settings where symmetry is known to be a major problem in training. We
see that the algorithm leads to improved model performance on these problems.

C.1. Hyperparameter and Implementation Remark

As discussed, there are two ways to implement the method (Eq. (2) or Eq. (3)). In our experiments,
we stick to the definition of Eq. (2), where the model parameters are biased, and weight decay is
the same as the standard implementation. For the choice of hyperparameters, we always set σD = 0
as we find only introducing σ0 to be sufficient for most tasks. Experiments with standard training
settings (see the next section for the Resnet18 experiment on CIFAR-10) show that choosing σ0
to be at least an order of magnitude smaller than the standard initialization scale (usually of order
1/
√
d for a width of d) works the best. We thus recommend a default value of σ0 to be 0.01/

√
d,

where 1/d is the common initialization variance. For the rest of the paper, we state σ0 in relative
units of

√
d
−1

for this reason. That being said, we stress that σ0 is a hyperparameter worth tuning,
as it directly controls the tradeoff between optimization and symmetry removal.

C.2. Compatibility with Standard Training

Ridge linear regression. Let us first consider the classical problem of linear regression with d-
dimensional data, where one wants to find minw∑i(w

Txi − yi)
2. Here, the use of weight decay

has a well-known effect of preventing the divergence of generalization loss at a critical dataset size
N = d [18, 22]. This is due to the fact that the Hessian matrix of the loss becomes singular exactly
at N = d (at infinite N and d). The use of weight decay shifts all the eigenvalues of the Hessian by
γ and removes this singularity. In this case, one can show that the proposed method is essentially
identical to the simple ridge regression. The ridge solution is w∗ = E[γI + A]−1E[xy], where
A = E[xxT ], and the solution to the biased model is

w∗ = E[γI +A]−1(E[xy] + γθ0). (52)

The difference is negligible with the original solution if either γ and θ0 are small. See Figure 3-left.

Reparametrized Linear Regression. A minimal model with emergent interest in the problem of
compressing neural networks is the reparametrized version of linear regression [36], the loss func-
tion of which is ℓ(u,w) = ∥(u ⊙ w)Tx − y∥2, where we let u, w, x ∈ R200 and y ∈ R. Due to
the rescaling symmetry between every parameter ui and wi, the solutions where ui = wi = 0 is a
low-capacity state where the i-th neuron is “dead.” For this problem, we compare the training with
standard SGD and syre. We also compare with a heuristic method (W-fix), where a fraction ϕ = 0.3
of weights of every layer is held fixed with a fixed variance κ = 0.01 at initialization. This method
has been suggested in Ref. [24] as a heuristic for removing symmetries and is found to work well
when there is permutation symmetry. We see that both the vanilla training and the W-fix collapse to
low-capacity states during training, whereas the proposed method stayed away from them through-
out. The reason is that the proposed method is model-independent and symmetry-agnostic, working
effectively for any type of possibly unknown symmetry in an arbitrary architecture.
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Figure 3: Training with syre in standard settings. The result shows that biasing the models by a small static
bias does not change the performance of standard training settings. Left: Application of the method to a
linear regression problem. Here, α−1 = d/N is the degree of parameterization. A well-known use of weight
decay is to prevent double descent when α = 1. Here, we see that the proposed method works as well as
vanilla weight decay. Because there is no reflection symmetry in the problem, the proposed method should
approximate vanilla weight decay. Mid: Test accuracy of Resnet18 on the CIFAR-10 datasets. The blue line
denotes the performance of Resnet, and the shadowed area denotes its standard deviation estimated over 10
trials. For σ0 < 0.2, there is no significant difference between the performance of the vanilla Resnet and
syre Resnet. Right: linear regression with a redundant parametrization [29, 36]. The loss function takes the
form ℓ(u,w) = ∥(u ⊙ w)Tx − y∥2. Due to symmetry, the point (ui,wi) = 0 is a low-capacity state where
the i-th neuron is “dead”. Training with style, the model stayed away from any trapping low-capacity state
during training. In comparison, training with vanilla SGD or a heuristic for fixing the weights does not fix
the problem of collapsing to a low-capacity state.

ResNet. We also benchmark the performance of the proposed method for ResNet18 with different
σ0 on the CIFAR-10 datasets in Figure 3. When σ0 = 0, the syre model is equivalent to the vanilla
model. Figure 3 shows that the difference in performance between the vanilla Resnet and syre
Resnet is very small and becomes neglectable when σ0 < 0.2. We thus recommend a default value
of σ0 ≤ 0.01/

√
d.

C.3. Feature and Neuron Collapses in Supervised Learning

See Figure 4, where we train the vanilla and syre four-layer networks with various levels of weight
decay γ and various levels of input-output covariance α. The dataset is constructed by rescaling the
input by a factor of α for the MNIST dataset. The theory predicts that the syre model can remove
the permutation symmetry in the hidden layer. This is supported by subfigures in Figure 4, where
vanilla training results in a low-rank solution. Meanwhile, the accuracy of the low-rank solution is
significantly lower for a large γ or a small α, which corresponds to the so-called neural collapses.
Also, we observe that syre shifts the eigenvalues of the representation by a magnitude proportional
to σ0, thus explaining the robustness of the method against collapses in the latent representation
(See Figure 5).

Figure 5 gives the eigenvalue distribution of the networks in Figure 4, which further supports
the claim that the vanilla network leads to a low-rank solution. In all the experiments above, we use
a four-layer FCN with 300 neurons in each layer trained on the MNIST dataset with batch size 64.
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Figure 4: Performance of a 4-layer FCN for datasets with various weight decay γ and data distributions with
varyings strengths of linear correlation α. As the theory predicts, the covariance of the vanilla model has a
low-rank structure and performs significantly worse. In the main figures, solid lines denote training accuracy
and dashed lines denote test accuracy. The dashed black line corresponds to random guess. Subfigures show
the rank of the covariance matrix of the first layer output before (solid lines) and after (dashed lines) activation
with batch size 1000 scaled by α2. We set eigenvalues smaller than 10−4 to 0. Left: α = 1 and different γ.
Right: γ = 0.01 and different α.

Figure 5: The spectrum of the covariance matrix of the vanilla model (Left) and the syre model (Right) for
γ = 0.01 and α = 1. Clearly, the vanilla model learns a low-rank solution.

Figure 6: Rank and reconstruction loss for a VAE is trained on the Fashion MNIST dataset. The covariance
of the vanilla model has a low-rank structure and larger reconstruction loss. More importantly, posterior
collapse happens at β = 5 but is mitigated with weight decay. Left: the rank of the encoder output with batch
size 1000. We set eigenvalues smaller than 10−6 to 0. Right: reconstruction loss of vanilla and syre models.

C.4. Posterior Collapse in Bayesian learning

Ref. [34] points out that a type of posterior collapse in Bayesian learning [25, 33] is caused by the
low-rankness of the solutions. We show that training with syre could overcome this kind of posterior
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Figure 7: Examples of Fashion MNIST reconstruction with syre and β = 10. Left: No weight decay. Right:
γ = 1000. Clearly, the posterior collapse is mitigated by imposing syre with weight decay.

Hyperparameter Low-rankness Penult. Layer Acc. Last Layer Acc.
vanilla - 70% 46.8% 22.2%

syre σ0 = 0.1 0% 46.8% 31.7%
σ0 = 0.01 0% 46.2% 32.5%

σ0 = 0.1, all layers 0% 44.6% 30.7%
σ0 = 0.01, all layers 0% 45.4% 32.4%

Table 1: Performance of the linearly evaluated Resnet18 on CIFAR100 for the unsupervised self-constrastive
learning task. Here, the low-rankness measures the proportion of eigenvalues smaller than 10−5. Our experi-
ment indicates that symmetry-induced reduction in model capacity can explain about 50% of the performance
difference between the representation of the two layers.

collapse. In Figure 6, we train a β-VAE [19, 20] on the Fashion MNIST dataset. Following Ref. [34],
we use β to weigh the KL loss, which can be regarded as the strength of prior matching. Both the
encoder and the decoder are a two-layer network with SiLU activation. The hidden dimension and
the latent dimension are 200. Only the encoder has weight decay because the low-rank problem
is caused by the encoder rather than the decoder. We also choose the prior variance of the latent
variable to be ηenc = 0.01. Other settings are the same as Ref. [34]. Posterior collapse happens
at β = 10, signalized by a large reconstruction loss in the right side of Figure 6. However, the
reconstruction loss decreases, and the rank of the encoder output increases (according to the left
side of Figure 6) after we use weight decay and syre. This is further verified by the generated image
in Figure 7. Therefore, we successfully remove the permutation symmetry of the encoder.

C.5. Low-Capacity Trap in Self-supervised Learning

A common but bizarre practice in self-supervised learning (SSL) is to throw away the last layer of
the trained model and use the penultimate learning representation, which is found to have much
better expressiveness than the last layer representation. From the perspective of symmetry, this
problem is caused by the rotation symmetry of the last weight matrix in the SimCLR loss. We train
a Resnet-18 together with a two-layer projection head over the CIFAR-100 dataset according to the
setting for training SimCLR in Ref. [6]. Then, a linear classifier is trained using the learned repre-
sentations. Our implementation reproduces the typical accuracy of SimCLR over the CIFAR-100
dataset [28]. As in Ref. [6], the hidden layer before the projection head is found to be a better rep-
resentation than the layer after. Therefore, we apply our syre method to the projection head or to all
layers. According to Table 1, syre removes the low-rankness of the learned features and increases
the accuracy trained with the features after projection while not changing the representation before
projection. Thus, symmetry-induced reduction in model capacity can explain about 50% of the per-
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Figure 8: Loss of plasticity in continual learning in an RL setting. We use the PPO algorithm [30] to solve
the Slippery-Ant problem [11]. The rank and the performance of the vanilla PPO decrease quickly, while the
rank and the performance of PPO with syre remain the same, beyond that of PPO with weight decay. Left:
the effective rank of the policy network as defined in Ref. [11]. Right: returns. Each trajectory is averaged
over 5 different random seeds.

Figure 9: Performance and accuracy of a CNN trained on a continual learning task (permuted MNIST
[16, 21]). The main figure shows the test accuracy, and the subfigure shows the rank of the convolution layers
output with batch size 1000, where we set eigenvalues smaller than 10−4 to 0. The results suggest that the
rank of the vanilla model gradually decreases, and the model completely collapses after the sixth task, while
the syre model remains unaffected.

formance difference between the representation of the two layers. Also, an interesting observation
is that just improving the expressivity of the last layer is insufficient to close the gap between the
performance of the last layer and the penultimate layer. This helps us gain a new insight: symmetry
is not the only reason why the last layer representation is defective.

C.6. Loss of Plasticity in Continual Learning

A form of low-capacity collapse also happens during continual learning, i.e., the plasticity of the
network gradually decreases as the model is trained on more and more tasks. This problem is
common in both supervised and reinforcement learning settings and may also be relevant to the
finetuning of large language models [1, 2, 10, 26].

Supervised Learning. In Figure 9, we train a CNN with two convolution layers (10 channels
and 20 channels) and two fully connected layers (320 units and 50 units) over the MNIST datasets.
For the data, we randomly permute the pixels of the training and test sets for 9 times, forming
10 different tasks (including the original MNIST). We then train a vanilla CNN and a syre CNN
over the 10 tasks continually with SGD and weight decay 0.01. The inset of Figure 9 shows that
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the rank of the original model gradually decreases, but the syre model remains close to full rank.
Correspondingly, in the right side of Figure 9, the accuracy over the test set drops while the rank of
the original model collapses, but the accuracy of the syre model remains similar.

Reinforcement Learning. In Figure 8, we use the PPO algorithm for the Slippery-Ant problem
[11], a continual variant of the Pybullet’s Ant problem [8] with friction that changes every 5M steps.
Hyperparameters for the PPO algorithm are borrowed from Ref. [11], and we use a weight decay
of 0.002 for both PPO with weight decay and with syre. Figure 8 suggests that syre is effective
in maintaining the rank of the model during continual training and obtains better performance than
pure weight decay.
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