
Reasoning with Language Model is
Planning with World Model

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) have shown remarkable reasoning capabilities,1

particularly with chain-of-thought (CoT) prompting. However, LLMs can still2

struggle with problems that are easy for humans, such as generating action plans3

for executing tasks in a given environment, or performing complex math or logical4

reasoning. The deficiency stems from the key fact that LLMs lack an internal world5

model to predict the world state (e.g., environment status, intermediate variable6

values) and simulate long-term outcomes of actions. This prevents LLMs from7

performing deliberate planning akin to human brains, which involves exploring8

alternative reasoning paths, anticipating future states and rewards, and iteratively9

refining existing reasoning steps. To overcome the limitations, we propose a new10

LLM reasoning framework, Reasoning via Planning (RAP). RAP repurposes the11

LLM as both a world model and a reasoning agent, and incorporates a principled12

planning algorithm (based on Monte Carlo Tree Search) for strategic exploration13

in the vast reasoning space. During reasoning, the LLM (as agent) incrementally14

builds a reasoning tree under the guidance of the LLM (as world model) and re-15

wards, and efficiently obtains a high-reward reasoning path with a proper balance16

between exploration vs. exploitation. We apply RAP to a variety of challenging rea-17

soning problems including plan generation, math reasoning, and logical inference.18

Empirical results on these tasks demonstrate the superiority of RAP over various19

strong baselines, including CoT and least-to-most prompting with self-consistency.20

RAP on LLaMA-33B surpasses CoT on GPT-4 with 33% relative improvement in21

a plan generation setting.22

1 Introduction23

Large language models (LLMs) have exhibited emergent reasoning abilities in a wide range of24

tasks [5, 10, 44, 2]. Recent approaches further boost their ability by prompting LLMs to generate25

intermediate reasoning steps (e.g., chain-of-thought, CoT [59]) or answer a series of subquestions26

(e.g., least-to-most prompting [66]). However, LLMs still face difficulties with tasks that humans find27

easy. For excample, in creating action plans to move blocks to a target state, GPT-3 [5] achieves a28

success rate of only 1%, compared to 78% for humans [57]; these models also struggle when solving29

complex tasks that require multiple steps of math, logical, or commonsense reasoning [65, 22, 41, 6].30

Humans possess an internal world model, a mental representation of the environment [28, 27, 15],31

which enables humans to simulate actions and their effects on the world’s state for deliberate planning32

during complex tasks of motor control, imagery, inference, and decision making [54, 55, 4, 49, 17, 33].33

For example, to make an action plan towards a goal, planning with the world model involves exploring34

various alternative courses of actions, assessing the likely outcomes by rolling out possible future35

scenarios, and iteratively refining the plan based on the assessment [25, 14, 52, 19, 48, 21]. This is36

in stark contrast to the current LLM reasoning, which instinctively generates a reasoning trace in37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

World
Model

Language Model
Reasoning via Planning (RAP)

Chain-of-Thought

Language Model

Figure 1: An overview of Reasoning via Planning (RAP). Compared with previous LLM reasoning
methods like Chain-of-Thought [59], we explicitly model the world state from a world model
(repurposed from the language model), enabling us to leverage advanced planning algorithms to solve
the reasoning problems.

Pickup orange
(r = 0.6) (r = 0.4)

Pickup blue

Stack it on blueStack it on
orange

…

{ }

Initial State: The orange block is on the table…
Goal: The orange block is on the blue block, and
the yellow block is on the orange block.

Julie is reading… She wants to read half of the remaining
pages tomorrow. How many pages should she read?

(r = 0.7)

Q1: How many pages
has she read?

(r = 0.5)

Q1: How many pages did
Julie read today?

Q1: How … read?
A1: 30

Q1: How …Today?
A1: 24

Q2: How many pages has
Julie read till now?

(r = 0.8)
(r = 0.3)

Q2: How many pages
should she read

tomorrow?

Q1: …
Q2: How …now?
A2: 36

Q1: How… today?
A1: 24
…
QT: How ... tomorrow?
AT: 42

(r = 0.3) (r = 0.9)

…

(Answer: 42)

(1) Carnivores are carnivorous
(2) Animals are not unicellular …
Fact: Fae is a feline
Hypothesis: Fae is unicellular?

(1) Carnivores are
carnivorous

(4) Every cat is
a feline

(r = 0.8) (r = 0.1)

(3) Carnivores are
mammals
(r = 0.8)(r = 0.8)

… Fae is a mammal

Fae is a not unicellular

(The hypothesis is false)

Fae is a feline

Fae is a cat

(5) Each feline is a
carnivores

Fae is a carnivore

(Goal achieved)

…

Figure 2: Examples of RAP for plan generation (left), math reasoning (middle), and logical reasoning
(right).

an autoregressive manner. In particular, we identify several key limitations of the current reasoning38

with LLMs, including (1) the lack of an internal world model to simulate the state of the world (e.g.,39

the configuration of blocks, the values of intermediate variables), which is the foundation of human40

planning; (2) the absence of a reward mechanism to assess and guide the reasoning towards the41

desired state; and due to both of these limitations, (3) the incapability of balancing exploration vs.42

exploitation to efficiently explore the vast reasoning space.43

To address these limitations, this paper proposes a new framework, Reasoning via Planning (RAP),44

that enables LLMs to reason in a manner close to humans’ conscious planning. RAP augments45

the LLM with a world model, and reasons with principled planning (specifically Monte Carlo Tree46

Search, MCTS) to produce high-reward reasoning traces after efficient exploration (Figure 1). Notably,47

we acquire the world model by repurposing the LLM itself with appropriate prompts. During the48

reasoning, the LLM strategically builds a reasoning tree by iteratively considering the most promising49

reasoning steps (actions) and using the world model (the same, repurposed LLM) to look ahead for50

future outcomes. The estimated future rewards are then backpropagated to update the LLM’s beliefs51

about the current reasoning steps, guiding it to refine the reasoning by exploring better alternatives.52

Our MCTS-based planning effectively maintains a proper balance between exploration (of unvisited53

reasoning traces) and exploitation (of the best reasoning steps identified so far).54

2

We show RAP is a general framework applicable to a diverse range of challenging problems and55

achieves substantial improvements over recent popular LLM reasoning methods. In Blocksworld56

[57] for 2/4/6-step plan generation, RAP achieves an average success rate of 64% while CoT fails57

almost completely. Moreover, LLaMA-33B with RAP surpasses GPT-4 with CoT by 33% relative58

improvement. In math reasoning (GSM8K [11]) and logical inference (PrOntoQA [47]), RAP also59

consistently improves over CoT, least-to-most prompting, and their self-consistency variants.60

2 Related Work61

Reasoning with LLMs. In the realm of LLMs [22, 41, 6], reasoning typically entails decomposing62

complex questions into sequential intermediate steps (a.k.a. chains) before producing the final63

answer, exemplified by chain-of-thought (CoT) prompting and its variants [43, 59, 32]. The basic64

CoT approaches, which generate chains all at once, can induce additional errors as the step count65

increases. One line of improvement methods involves sampling multiple chains and choosing the66

best answer via majority voting, such as self-consistency (SC) [58]. Another line of work focuses on67

decomposition, aiming to tackle the problem by solving multiple simple subproblems. For instance,68

least-to-most prompting [66] reduces the question into subquestions and answers them sequentially.69

More relevantly, similar to our reward formulation, some recent works have explored self-evaluation70

approaches, which leverage LLMs themselves to provide feedback for intermediate steps and then71

continue the reasoning [60, 51, 45]. For example, Paul et al. [45] fine-tune a critic model to provide72

structured feedback iteratively in each step, and Madaan et al. [38] directly reuse the same LLM to73

generate multi-aspect feedback and refine the previously generated output. Besides, aligned with74

our state formulation, Li et al. [34] incorporates latent “situations” into LLMs, referring to the state75

of entities from the context. Nevertheless, none of the above methods formally introduce the world76

model and instantiates the reward and state into a unified framework.77

Search-guided Reasoning with LLMs. Most of CoT approaches discussed above are based on78

a linear reasoning structure. Self-consistency built onto CoT decodes multiple chains parallelly,79

but it remains hard to explore the reasoning space sufficiently. Recent efforts have been made to80

investigate non-linear reasoning structures by sampling more reasoning steps efficiently guided by81

some search algorithms [30, 67, 63, 64]. For example, Jung et al. [30] generate a tree of explanations82

to enforce logical consistency, and Xie et al. [63] adopt beam search to decode a better CoT reasoning83

chain. More recently, CoRe [67] proposes to fine-tune both the reasoning step generator and verifier84

for solving math word problems, also using MCTS for reasoning decoding. Concurrently to our85

work, Yao et al. [64] apply heuristic-based approach, like depth-/breadth-first search, to search for86

better reasoning paths. Compared with these search-guided methods, RAP is a more principled87

framework that combines world model and reward with MCTS planning. The RAP formulation of88

LLM reasoning with state, action, and reward also presents a more general approach applicable to a89

wide range of reasoning problems.90

Planning with LLMs. Planning, a central ability in intelligent agents, involves generating a series91

of actions to achieve a specific goal [40, 7]. Classical planning methods have been widely adopted92

in robots and embodied environments [9, 42, 8, 61, 26]. Recently, prompting LLMs to do planning93

direcly has gained attention and shown potential [24, 23, 53, 13, 35]. SayCan [1], for instance,94

combines LLMs with affordance functions to generate feasible plans. Moreover, based on LLMs’95

powerful programming ability [37, 29, 36], some recent works first translate natural language96

instructions into the executable programming languages, such as Planning Domain Description97

Language (PDDL), and runs classical planning algorithms, such as LLM+P [36]. However, code-98

based planning is constrained by its narrow domains and the predefined environment, while RAP can99

handle open domain problems, including numerical and logical reasoning (see Section 4.2 and 4.3).100

More related works on planning and world model are discussed in Appendix A.101

3 Reasoning via Planning (RAP)102

In this section, we present the Reasoning via Planning (RAP) framework that enables LLMs to103

strategically plan a coherent reasoning trace for solving a wide range of reasoning tasks. We first104

build the world model by repurposing the LLM with prompting (Section 3.1). The world model105

serves as the foundation for deliberate planning, by allowing the LLM to plan ahead and seek out106

the expected outcomes in the future. We then introduce the rewards for assessing each state during107

reasoning in Section 3.2. Guided by the world model and rewards, the planning with Monte Carlo108

Tree Search (MCTS) efficiently explores the vast reasoning space and finds optimal reasoning traces109

3

(Section 3.3). Finally, when multiple promising reasoning traces are acquired during planning, we110

further introduce an aggregation method in Section 3.4 that yields an integrated result and further111

boosts the reasoning performance.112

3.1 Language Model as World Model113

In general, a world model predicts the next state of the reasoning after applying an action to the114

current state [17, 39]. RAP enables us to instantiate the general concepts of state and action in115

different ways depending on the specific reasoning problems at hand. For example, in Blocksworld116

(Figure 2 left), it is natural to set a state to describe a configuration of blocks (with natural language),117

and an action to be a behavior of moving a block (e.g., “pickup the orange block”). In a math118

reasoning problem (Figure 2 middle), we use the state to represent the values of intermediate variables,119

and set an action to be a subquestion that drives the reasoning to derive new values (i.e., new state).120

After the definition of state and action, the reasoning process can thus be described as a Markov121

decision process (MDP): given the current state st,t=0,1,...,T , e.g., the initial state s0, the LLM (as a122

reasoning agent) samples several actions as the action space, following its generative distribution123

at ∼ p(a|st, c), where c is a proper prompt (e.g., in-context demonstrations) to steer the LLM for124

action generation. The world model then predicts the next state st+1 of the reasoning. Specifically,125

we repurpose the same LLM to obtain a state transition distribution p(st+1|st, at, c′), where c′ is126

another prompt to guide the LLM to generate a state. For instance, in Blocksworld, the LLM (as the127

world model) generates text st+1 to describe the new configuration of blocks, given the previous state128

description st and the action at.129

Continuing the process results in a reasoning trace, which consists of a sequence of interleaved states130

and actions (s0, a0, s1, . . . , aT−1, sT). This differs from the previous reasoning methods, such as131

Chain-of-Thought [59], where the intermediate reasoning steps consist of only a sequence of actions,132

e.g., (a0 = “pickup red block”, a1 = “stack on yellow block”, . . .) (see comparisons133

in Figure 1). Augmenting the reasoning with the (predicted) world states helps the LLM with a134

more grounded and coherent inference. Note that the full reasoning trace is simulated by the LLM135

itself (as a reasoning agent with an internal world model) without interacting with the external real136

environment. This resembles humans contemplating a possible plan in their minds. The capability of137

simulating future states, due to the introduction of the world model, allows us to incorporate principled138

planning algorithms to efficiently explore the vast reasoning space as described in Section 3.3.139

3.2 Reward Design140

During reasoning, we want to assess the feasibility and desirability of each reasoning step, and141

guide the reasoning based on the assessment (Section 3.3). The assessment of each reasoning step142

(i.e., applying an action at to the state st) is performed by a reward function rt = r(st, at) ∈ R.143

Similar to the state and action, the reward function can be specified in different ways to accommodate144

any knowledge or preferences about the reasoning problem of interest. Here we introduce several145

common rewards applicable to different tasks and shown to be effective in our experiments.146

Likelihood of the action. When an action is generated by the LLM conditioning on the in-context147

demonstration and the current state, the probability of the specific action reflects the LLM’s preference.148

We thus can incorporate the log probability of the action as a reward. This reward reflects the “instinct”149

of LLMs as an agent, and can be also used as a prior for which action to explore.150

Confidence of the state transition. State prediction is nontrivial in some problems, e.g., in math151

reasoning (Figure 2, middle), given an action (i.e., a subquestion), the world model updates the set of152

known variables by answering the subquestion. Since LLMs may make mistakes when answering153

these questions, We incorporate the confidence of the state transition (i.e., the answer to a subquestion154

in this case) as a reward. Specifically, we sample multiple answers from the language model, and use155

the proportion of the most frequent answer as the confidence. A high confidence indicates a reliable156

reasoning step, which is worth more exploration in the future.157

Self-evaluation by the LLM. It’s sometimes easier to recognize the errors in reasoning than avoid158

generating them in advance. Thus, it’s beneficial to allow the LLM to criticize itself with the question159

“Is this reasoning step correct?”, and use the next-word probability of the token “Yes” as160

a reward. The reward evaluates LLM’s own estimation of the correctness of reasoning. Note that the161

specific problems for self-evaluation can be different depending on the tasks.162

4

Pickup
orange

Pickup
blue

Stack it
on blue

Stack it
on orange

…

Pickup
orange

Pickup
blue

Stack it
on blue

Stack it
on orange

…

Pickup
orange

Pickup
red

Pickup
orange

Pickup
blue

Stack it
on blue

Stack it
on orange

…

Pickup
orange

Pickup
red

Q

…

Q

Q

Q

Q

Q

reward

(a) Selection (b) Expansion (c) Simulation (d) Back-propagation

Q

𝑠!

𝑎!

𝑠"

𝑎"

𝑠#

𝑎#

𝑠$

𝑠%

…

Figure 3: An illustration of the four phases in an iteration in MCTS planning (Section 3.3).

Task-specific heuristics. We can also flexibly plug-in other diverse task-specific heuristics into the163

reward function. For example, in plan generation for Blocksworld, we compare the predicted current164

state of blocks with the goal to calculate a reward (Section 4.1). The reward encourages the plan of165

movements to actively pace towards the target.166

3.3 Planning with Monte Carlo Tree Search167

The world model (Section 3.1) and rewards (Section 3.2) enable LLMs to reason with advanced168

planning algorithms, where we adopt Monte Carlo Tree Search (MCTS) [31, 12], a powerful planning169

algorithm that strategically explores the space of reasoning trees, and strikes a proper balance between170

exploration and exploitation to find a good reasoning trace efficiently.171

MCTS builds a reasoning tree iteratively, where each node represents a state, and each edge represents172

an action and the transition from the current state to the next state after applying the action (Figure 1).173

To guide the LLM agent to expand and explore the most promising nodes of the tree, the algorithm174

maintains a state-action value function Q : S × A 7→ R, where Q(s, a) estimates the expected175

future reward of taking action a in state s. That is, we assess the potential of a node (or a reasoning176

step) by looking ahead and anticipating the reward in future trajectories starting from this node.177

This fundamentally differs from the current reasoning methods that generate a reasoning trace178

autoregressively from left to right without accounting for the future.179

Specifically, as illustrated in Figure 3, the MCTS planning performs four operations in each iteration180

to expand the tree and update Q values, i.e., selection, expansion, simulation, and back-propagation.181

The process continues until a specified computational budget (e.g., the number of iterations) is182

reached, and the resulting reasoning traces are acquired from the tree, as we articulated later. The183

psuedo-code and more implementation details are presented in Algorithm 1 and Appendix B.184

Selection. The first phase selects a portion of the existing tree that is most promising for further185

expansion in the next phase. Specifically, starting from the root node (i.e., initial state s0), at each186

level of the tree, the algorithm selects a child node as the next node. The phase finishes when a187

leaf node of the current tree is reached. Figure 3(a) highlights the selected path in red. To balance188

between exploration (of less-visited nodes) and exploitation (of high-value nodes), we use the well-189

known Upper Confidence bounds applied to Trees (UCT) algorithm [31] to select each child node.190

Specifically, at node s, we select the action (which leads to a transition to a child node) in the tree by191

considering both the Q value (for exploitation) and uncertainty (for exploration):192

a∗ = arg max
a∈A(s)

[
Q(s, a) + w

√
lnN(s)

N(c(s, a))

]
, (1)

where N(s) is the number of times node s has been visited in previous iterations, and c(s, a) is the193

child node of applying a in state s. Therefore, the less a child node was visited before (i.e., the more194

uncertain about this child node), the higher the second term in the equation. The weight w controls195

the balance between exploration and exploitation.196

5

Expansion. This phase expands the tree by adding new child nodes to the leaf node selected above.197

Specifically, given the state of the leaf node, we use the LLM (as agent) to sample d possible198

actions (e.g., subquestions in math reasoning), and then use the LLM (as world model) to predict the199

respective next state, resulting in d child nodes. Note that if the leaf node selected above is a terminal200

node (the end of a reasoning chain) already, we will skip expansion and jump to back-propagation.201

Simulation. This phase simulates the reasoning chain to the end in order to estimate the expected202

future rewards (Q values). Specifically, starting from the current node s, we iteratively select an203

action following a roll-out policy and use the world model to predict the next state. The roll-out204

process continues until a terminal state is reached. While the design of the roll-out policy is flexible,205

in our experiments, we generate d candidate actions and pick the one with the largest local reward206

a′ = maxa′ r(s, a). In practice, as the roll-out process will evaluate the reward function for multiple207

nodes, for efficiency, we discard the computationally expensive components in r (for example, the208

reward of the state transition confidence requires sampling the answer multiple times), and use the209

resulting light-weight reward function for selecting actions during simulation.210

Back-propagation. Once we reach a terminal state in the above phases, we obtain a reasoning path211

from the root node to the terminal node. We now back-propagate the rewards on the path to update212

the Q value of each state-action pair along the path. That is, Q(s, a) is updated by aggregating the213

rewards in all future steps of node s. We may adopt the aggregation method according to the nature214

of different tasks and reward design, as discussed in Section 4.215

As mentioned earlier, once a predetermined number of MCTS iterations is reached, we terminate216

the algorithm and select final reasoning trace from the constructed tree. There could be various217

ways for the selection. One approach is to start from the root node and iteratively choose the action218

with the highest Q value until reaching a terminal. Alternatively, one can directly select the path219

from the iterations that yielded the highest reward, or opt to choose the leaf node (and the respective220

root-to-leaf path) that has been visited the most. In practice, we observed that the second strategy221

often yields the best results.222

3.4 RAP-Aggregation: Aggregating Multiple Reasoning Outputs223

Ensemble-based methods, such as self-consistency CoT [58], can effectively improve performance224

by aggregating multiple valid reasoning traces. Therefore, for problems, such as math reasoning225

(Section 4.2) where only the final answer is required, RAP could produce multiple traces and answers226

from different MCTS iterations, which will be aggregated to produce the final answer. We refer to227

such a mechanism as RAP-Aggregation. Note that problems like plan generation or logical inference228

require a complete reasoning trace as output; thus, RAP-Aggregation will not be applied.229

More importantly, there is a concern that some incorrect reasoning steps may appear in the early stage230

of multiple iterations, thus polluting the aggregation. As a result, we further devise a new weighting231

strategy for aggregating candidate answers. Specifically, for each candidate answer, we accumulate232

the reward of each reasoning step in the answer’s reasoning traces. We choose the answer with the233

highest accumulative reward as the final aggregated answer.234

4 Experiments235

In this section, we demonstrate the flexibility and effectiveness of our RAP framework by applying it to236

a wide range of problems, including plan generation in an embodied environment (4.1), mathematical237

reasoning for solving math word problems (4.2), and logical reasoning for verifying hypotheses (4.3).238

The subsequent sections demonstrate how the world model formulation in RAP enables a versatile239

design of the state and action, catering to various reasoning contexts. We also discuss the choice of240

reward in Appendix C.241

We primarily compare RAP with chain-of-thought (CoT) [59], and its variants like least-to-most242

prompting [66] as baselines. We also consider ensembling multiple reasoning paths if applicable (also243

known as self-consistency [58]). Moreover, we compare RAP with GPT-4 [44] when computation244

resources allow. By default, we use the LLaMA-33B model [56] as the base LLM for both our245

methods and baselines, with a sampling temperature of 0.8. All prompts are shown in Appendix D.246

4.1 Plan Generation247

The plan generation task aims to produce a sequence of actions to achieve a given goal, possibly with248

additional constraints. The ability to generate plans is important for intelligent embodied agents,249

6

Table 1: Results on Blocksworld. RAP(10) and RAP(20) refer to our method where the iteration
number is set to 10 and 20, respectively. “pass@10” is a relaxed metric, where 10 plans are sampled
for each test case, and the test case regarded as solved if at least one plan is successful. For all other
settings including RAP, only a single plan is evaluated.

Method 2-step 4-step 6-step
CoT 0.17 0.02 0.00

CoT - pass@10 0.23 0.07 0.00
CoT (GPT-4) 0.50 0.63 0.40

RAP(10) 1.00 0.86 0.26
RAP(20) 1.00 0.88 0.42

e.g. household robots [46]. This task has also been widely used to evaluate the reasoning ability of250

LLMs given their challenging requirements of long-horizon reasoning, e.g., Blocksworld is a classic251

problem, where an agent is asked to rearrange the blocks into stacks in a particular order.252

Task setup. To explore the viability of the RAP framework for plan generation tasks, we adapt and253

evaluate RAP on the Blocksworld benchmark [50]. We define a state as the current orientation of the254

blocks and an action as an instruction that moves blocks. Specifically, an action is composed of one255

of the 4 verbs (i.e., STACK, UNSTACK, PUT, and PICKUP) and manipulated objects. For the action256

space, we generate the currently valid actions given the domain restrictions on actions and the current257

orientation of the blocks. To transit between states, we take the current action and query the LLM to258

predict the state changes to the relevant blocks. We then update the current state by adding the new259

block conditions and removing the conditions that are no longer true. Once a state has met all of the260

conditions listed in the goal or the depth limit of the tree is reached, we terminate the associated node.261

To assess the quality of actions within this domain, we use two separate rewards. First, we prompt the262

LLM with some example test cases along with their solutions, and then calculate the log probability263

of the action given the current state (“Likelihood of action” reward in Section 3.2), denoted as r1.264

This reward reflects the intuition of the LLM as the reasoning agent. It’s typically indicative when265

there are few steps left to the goal, while not as reliable for a distant goal. Additionally, we compare266

the new state after performing an action with the goal and provide a reward, r2, scaling with the267

number of conditions met (“Task-specific heuristics” reward). Specifically, when all the conditions268

are met, we assign a super large reward to make sure this plan will be selected as the solution.269

Results. We use test cases from the Blocksworld dataset [57] and group them by solvable steps,270

resulting in 30 cases solvable with 2 steps, 57 cases with 4 steps, and 114 cases with 6 steps. There271

are at most 5 blocks in each test case. As the baseline method, we prompt the LLM with 4 test cases272

with corresponding solutions, and ask it to generate a plan for a new question. This setting is the273

same as one described in Valmeekam et al. [57], and we denote it as Chain-of-Thought (CoT) for274

briefness. For RAP, the same prompt is shown to help LLMs calculate r1.275

As shown in Table 1, CoT with LLaMA-33B can only generate successful plans for a few 2-step276

cases, and completely fails on harder problems. RAP substantially improves over CoT by nearly277

solving all problems within 4 steps, and a part of 6-step problems, achieving an average success rate278

of 64%. It’s worth noting that the searching space of 6-step problems can be as large as 56, while our279

algorithm can find a successful plan 42% of the time within 20 iterations. Even more, our framework280

allows LLaMA-33B to outperform GPT-4 by 33% relative improvement [44], which is known to281

have much stronger reasoning ability [6].282

We further present a case study of comparing the reasoning paths from Cot and RAP. As illustrated283

in Figure 4, we find the improvement can be mainly attributed to the following reasons: (1) By284

maintaining the world state during reasoning, RAP can recognize valid actions for the current state,285

avoiding generating illegal plans. (2) RAP is capable of backtracking and trying out other solutions286

when the first intuition from the LLM doesn’t work. Specifically, CoT attempts to achieve the second287

goal, i.e. “orange on red”, and achieve that with the first two steps. However, accomplishing the288

second goal first would prevent the first goal from being satisfied. On the contrary, even though289

RAP makes the same mistakes in the first iterations, our framework drives the agent to explore290

other possible paths (as described in Section 3.3) and finally generate a successful plan. (3) When291

calculating rt, we can feed only the current state to the LLM and hide the history. E.g., in the case292

7

CoT

unstack the orange
block from on top of the
yellow block

stack the orange block
on top of the red block

pick up the yellow block

stack the yellow block
on top of the blue block

(Goal: The red block is on blue block; the orange block is on the red block)RAP
I have that, the red block is clear, the blue block is clear, the orange block is clear,
the hand is empty, the orange block is on top of the yellow block, the red block is
on the table, the blue block is on the table and the yellow block is on the table.

Pick up the red block.

I have that, the blue block is clear, the orange block is clear, the red block is in the
hand, the hand is holding the red block, the orange block is on top of the yellow
block, the blue block is on the table, and the yellow block is on the table.

Stack the red block on top of the blue block.

I have that, the orange block is clear, the red block is clear, the hand is empty, the
orange block is on top of the yellow block, the red block is on top of the blue block,
the blue block is on the table, and the yellow block is on the table.

Unstack the orange block from on top of the yellow block.

I have that, the orange block is in the hand, the red block is clear, the yellow block
is clear, the hand is holding the orange block, the red block is on top of the blue
block, the blue block is on the table, and the yellow block is on the table.

Stack the orange block on top of the red block.

I have that, the orange block is clear, the yellow block is clear, the hand is empty,
the orange block is on top of the red block, the red block is on top of the blue
block, the blue block is on the table, and the yellow block is on the table.

Figure 4: Comparing reasoning traces in Blocksworld from CoT (left) and RAP (right).

of Figure 4, to calculate the reward for a2, the LLM is provided with a “new” test case, in which293

s2 is the initial state. This significantly lowers the difficulties of the last few steps, and saves more294

iterations for harder decisions of the first few steps.295

4.2 Math Reasoning296

Task setup. Numerical reasoning tasks, such as GSM8k [11], often include a description and a297

final question. To arrive at the answer to the final question, it is necessary to undertake multi-step298

mathematical calculations based on the problem’s context. It is thus natural to decompose the final299

question into a sequence of smaller sub-questions (Figure 2, right). To adapt RAP, we define a state300

as the values of intermediate variables, while an action is to propose an incremental sub-question301

about a new intermediate variable. The world model then responds to the sub-question using the302

intermediate variables and the problem description, adding the new intermediate variable value into303

the next state. We combine the self-evaluation by LLM rt,1 and the confidence of state transition rt,2304

using weighted geometric mean rt = rαt,1 ∗ r1−α
t,2 as the reward function. This reward encourages305

more relevant and useful sub-questions. To account for the impact of the reasoning path’s length on306

the reward, we compute the Q value by using the maximum of average rewards in future steps.307

Q∗(st, at) = max
st,at,rt,...,sl,al,rl,sl+1

avg(rt, . . . , rl). (2)

As a related work, Least-to-Most prompting [66] shares a similar idea to us in sub-question decompo-308

sition, but they generate sub-questions all at once. On the contrary, RAP considers each action at309

based on the current state st, which enables more informed decisions.310

Results. We evaluate our framework on GSM8k, a dataset of grade high school math problems. We311

also evaluate the base model with CoT prompting [59], Least-to-Most prompting [66], and their312

self-consistency [58] variants, as the baselines. We use the same 4-shot examples demonstrations for313

both our framework and the baselines.314

As shown in Table 2, our RAP framework answers 48.8% of the problems correctly, outperforming315

both the Chain-of-Thought and the Least-to-Most prompting with self-consistency. All methods use316

the same set of examples as the in-context demonstration. Notably, this result is achieved when RAP317

selects only one reasoning trace based on the reward. The introduction of RAP-Aggregate further318

improves the accuracy by ∼ 3%. We also calculate the accuracy with different numbers of iterations319

in MCTS and self-consistency samples in baselines, as illustrated in Figure 2. We find that across all320

numbers of iterations/samples, RAP-Aggregation outperforms baselines consistently, which indicates321

that when only a few iterations/samples are allowed, our framework is significantly better at finding322

reliable reasoning paths with the guide of reward.323

4.3 Logical Reasoning324

Task setup. A logical reasoning task (e.g. PrOntoQA [47]) typically provides a set of facts and325

logical rules, and a model is required to verify if a hypothesis fact is true or false by applying the326

logical rules to the given facts, as illustrated in Figure 2. These tasks not only require the correct327

final answer (true/false), but also a detailed proof demonstrating the result. To apply our framework,328

8

Table 2: Results on GSM8k. The super-
scripts indicate the number of samples
or iterations.

Method Accuracy (%)
Chain-of-Thought 29.4

+ SC(10) 46.8
Least-to-Most 25.5

+ SC(10) 42.5

RAP(1) 40.0
RAP(10) 48.6

+ aggr 51.6

1 2 3 4 5 6 7 8 9 10
Number of samples (iterations)

25

30

35

40

45

50

Ac
cu

ra
cy

Method
Least-to-most
Chain-of-thoughts
RAP
RAP (aggr)

Figure 5: The performance of RAP and baselines
on GSM-8K, with different numbers of sampled
paths or iterations.

we define the state as a fact we are focusing on, analogous to the human’s working memory [3] for329

inference. An action is defined as selecting a rule from the fact set. The world model performs a one-330

hop reasoning step to get a new fact as the next state. The reward is calculated with Self-evaluation331

(Section 3.2. Specifically, we prompt the LLM with a few examples with their labels to help it better332

understand the quality of reasoning steps. We use the average reward of future steps to update the Q333

function, the same as Equation (2) for GSM8k.334

Table 3: Results on ProntoQA.

Method Pred Acc Proof Acc
CoT 87.8 64.8
CoT + SC 89.8 -

RAP (Ours) 94.2 78.8

Results. We assess the performance of our RAP335

framework on PrOntoQA [47]. We adopt their settings336

of “true” ontology (using real-world knowledge), “ran-337

dom” ordering of rules. We mix the examples requiring338

3, 4, and 5 reasoning hops in a correct proof to prevent339

LLM from memorizing when to finish the reasoning.340

We sample 500 examples from the generation script341

released by Saparov and He [47]. We compare both the342

prediction accuracy of the final answer and the accuracy343

of the entire proof. We do 20 iterations for MCTS and 20 samples for self-consistency in baselines.344

As the results presented in Table 3, our framework achieves an output accuracy of 94.2% and a proof345

accuracy of 78.8%, surpassing the CoT baseline by 14% proof accuracy and the self-consistency346

CoT baseline by 4.4% prediction accuracy. Such substantial improvements clearly demonstrate347

the effectiveness of RAP in solving logical reasoning problems in the PrOntoQA dataset. That is348

because RAP can effectively recognize the error when a reasoning chain comes to a dead end, and349

propagate the signal back to earlier reasoning steps, with the planning algorithm allowing it to explore350

alternatives to the previous steps (Figure 2). The self-evaluation reward performs as a prior, which351

prioritizes the most promising actions for exploration.352

5 Conclusion353

In this paper, we present Reasoning via Planning (RAP), a novel LLM reasoning framework that354

equips LLMs with an ability to reason akin to human-like strategic planning. By coupling the LLMs’355

reasoning capabilities with a world model and principled planning via Monte Carlo Tree Search, RAP356

bridges the gap between LLMs and human planning capabilities. Our framework, which repurposes357

the LLM to act as both a world model and a reasoning agent, enables the LLM to simulate states of the358

world and anticipate action outcomes, while achieving an effective balance between exploration and359

exploitation in the vast reasoning space. Extensive experiments on a variety of challenging reasoning360

problems demonstrate RAP’s superiority over several contemporary CoT-based reasoning approaches,361

and even the advanced GPT-4 in certain settings. RAP’s flexibility in formulating rewards, states, and362

actions further proves its potential as a general framework for solving diverse reasoning tasks. We363

posit that RAP, with its innovative melding of planning and reasoning, has the potential to redefine the364

way we approach LLM reasoning - essentially forging a new pathway toward achieving human-level365

strategic thinking and planning in artificial intelligence.366

9

References367

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,368

Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not369

as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.370

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,371

Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.372

arXiv preprint arXiv:2305.10403, 2023.373

[3] Alan Baddeley. Working memory. Science, 255(5044):556–559, 1992.374

[4] Robert Eamon Briscoe. Mental imagery and the varieties of amodal perception. Pacific375

Philosophical Quarterly, 92(2):153–173, 2011.376

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,377

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are378

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.379

[6] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece380

Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general381

intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.382

[7] Tom Bylander. The computational complexity of propositional strips planning. Artificial383

Intelligence, 69(1-2):165–204, 1994.384

[8] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science &385

business media, 2013.386

[9] Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig Knoblock, Steve Minton, and387

Manuela Veloso. Prodigy: An integrated architecture for planning and learning. ACM SIGART388

Bulletin, 2(4):51–55, 1991.389

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam390

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:391

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.392

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,393

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to394

solve math word problems. arXiv preprint arXiv:2110.14168, 2021.395

[12] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In396

Computers and Games: 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006.397

Revised Papers 5, pages 72–83. Springer, 2007.398

[13] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion planning with399

large language models for object rearrangement. arXiv preprint arXiv:2303.06247, 2023.400

[14] Wojciech W Gasparski and Tufan Orel. Designology: Studies on Planning for Action, volume 1.401

Transaction Publishers, 2014.402

[15] Dedre Gentner and Albert L Stevens. Mental models. Psychology Press, 2014.403

[16] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Ad-404

vances in neural information processing systems, 31, 2018.405

[17] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.406

[18] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:407

Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.408

[19] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and409

James Davidson. Learning latent dynamics for planning from pixels. In International conference410

on machine learning, pages 2555–2565. PMLR, 2019.411

10

[20] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with412

discrete world models. arXiv preprint arXiv:2010.02193, 2020.413

[21] Mark K Ho, David Abel, Carlos G Correa, Michael L Littman, Jonathan D Cohen, and Thomas L414

Griffiths. Control of mental representations in human planning. arXiv e-prints, pages arXiv–415

2105, 2021.416

[22] Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A417

survey. arXiv preprint arXiv:2212.10403, 2022.418

[23] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as419

zero-shot planners: Extracting actionable knowledge for embodied agents. In International420

Conference on Machine Learning, pages 9118–9147. PMLR, 2022.421

[24] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,422

Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied423

reasoning through planning with language models. arXiv preprint arXiv:2207.05608, 2022.424

[25] Quentin JM Huys, Neir Eshel, Elizabeth O’Nions, Luke Sheridan, Peter Dayan, and Jonathan P425

Roiser. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by426

pruning decision trees. PLoS computational biology, 8(3):e1002410, 2012.427

[26] Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and Peter Stone. Task planning in robotics:428

an empirical comparison of pddl-and asp-based systems. Frontiers of Information Technology429

& Electronic Engineering, 20:363–373, 2019.430

[27] Philip N Johnson-Laird. Mental models and human reasoning. Proceedings of the National431

Academy of Sciences, 107(43):18243–18250, 2010.432

[28] Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of language,433

inference, and consciousness. Number 6. Harvard University Press, 1983.434

[29] Ana Jojic, Zhen Wang, and Nebojsa Jojic. Gpt is becoming a turing machine: Here are some435

ways to program it. arXiv preprint arXiv:2303.14310, 2023.436

[30] Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le437

Bras, and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive438

explanations. arXiv preprint arXiv:2205.11822, 2022.439

[31] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Machine Learning:440

ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September441

18-22, 2006 Proceedings 17, pages 282–293. Springer, 2006.442

[32] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large443

language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.444

[33] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.445

Open Review, 62, 2022.446

[34] Belinda Z Li, Maxwell Nye, and Jacob Andreas. Language modeling with latent situations.447

arXiv preprint arXiv:2212.10012, 2022.448

[35] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:449

From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.450

[36] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter451

Stone. Llm+ p: Empowering large language models with optimal planning proficiency. arXiv452

preprint arXiv:2304.11477, 2023.453

[37] Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apid-454

ianaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint455

arXiv:2301.13379, 2023.456

11

[38] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri457

Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement458

with self-feedback. arXiv preprint arXiv:2303.17651, 2023.459

[39] Yutaka Matsuo, Yann LeCun, Maneesh Sahani, Doina Precup, David Silver, Masashi Sugiyama,460

Eiji Uchibe, and Jun Morimoto. Deep learning, reinforcement learning, and world models.461

Neural Networks, 2022.462

[40] John McCarthy. Situations, actions, and causal laws. Technical report, STANFORD UNIV CA463

DEPT OF COMPUTER SCIENCE, 1963.464

[41] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru,465

Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al.466

Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.467

[42] Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Murdock, Dan Wu, and468

Fusun Yaman. Shop2: An htn planning system. Journal of artificial intelligence research, 20:469

379–404, 2003.470

[43] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,471

David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show472

your work: Scratchpads for intermediate computation with language models. arXiv preprint473

arXiv:2112.00114, 2021.474

[44] OpenAI. Gpt-4 technical report, 2023.475

[45] Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert476

West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv477

preprint arXiv:2304.01904, 2023.478

[46] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio479

Torralba. Virtualhome: Simulating household activities via programs, 2018.480

[47] Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal481

analysis of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.482

[48] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-483

mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering484

atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.485

[49] Jay Schulkin. Action, perception and the brain: Adaptation and cephalic expression. Springer,486

2012.487

[50] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak488

Pathak. Planning to explore via self-supervised world models. In International Conference on489

Machine Learning, pages 8583–8592. PMLR, 2020.490

[51] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with491

dynamic memory and self-reflection. ArXiv, abs/2303.11366, 2023.492

[52] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur493

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering494

chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint495

arXiv:1712.01815, 2017.496

[53] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,497

Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task498

plans using large language models. arXiv preprint arXiv:2209.11302, 2022.499

[54] Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.500

[55] Marc Toussaint. Learning a world model and planning with a self-organizing, dynamic neural501

system. Advances in neural information processing systems, 16, 2003.502

12

[56] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-503

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open504

and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.505

[57] Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao506

Kambhampati. On the planning abilities of large language models (a critical investigation with507

a proposed benchmark). arXiv preprint arXiv:2302.06706, 2023.508

[58] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-509

consistency improves chain of thought reasoning in language models. arXiv preprint510

arXiv:2203.11171, 2022.511

[59] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny512

Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint513

arXiv:2201.11903, 2022.514

[60] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and515

Yejin Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053,516

2022.517

[61] Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou.518

Information-theoretic model predictive control: Theory and applications to autonomous driving.519

IEEE Transactions on Robotics, 34(6):1603–1622, 2018.520

[62] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Day-521

dreamer: World models for physical robot learning. In Conference on Robot Learning, pages522

2226–2240. PMLR, 2023.523

[63] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe524

Xie. Decomposition enhances reasoning via self-evaluation guided decoding. arXiv preprint525

arXiv:2305.00633, 2023.526

[64] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik527

Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. 2023.528

[65] Ping Yu, Tianlu Wang, Olga Golovneva, Badr Alkhamissy, Gargi Ghosh, Mona Diab, and529

Asli Celikyilmaz. Alert: Adapting language models to reasoning tasks. arXiv preprint530

arXiv:2212.08286, 2022.531

[66] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale532

Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables533

complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.534

[67] Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Ruyi Gan, Jiaxing Zhang, and Yujiu Yang.535

Solving math word problem via cooperative reasoning induced language models. arXiv preprint536

arXiv:2210.16257, 2022.537

13

Algorithm 1 RAP-MCTS
Require: Initial state s0, state transition probability function pθ , reward function rθ , action generator

pϕ, number of generated actions d, depth limit L, number of roll-outs N , and exploration weight
w

1: Initialize memory of actions A : S 7→ A, children c : S ×A 7→ S and rewards r : S ×A 7→ R
2: Initialize the state-action value function Q : S ×A 7→ R and visit counter N : S 7→ N
3: for n← 0, . . . , N − 1 do
4: t← 0
5: while N(st) > 0 do ▷ Selection
6: N(st)← N(st) + 1

7: at ← argmaxa∈A(st)

[
Q(st, a) + w

√
lnN(st)

N(c(st,a))

]
8: rt = r(st, at), st+1 ← c(st, at)
9: t← t+ 1

10: end while
11: while st is not a terminal state ∧ t ≤ L do
12: for i← 1, . . . , d do ▷ Expansion
13: Sample a

(i)
t ∼ pϕ(a | st), s(i)t+1 ∼ pθ(st, a

(i)
t), and r

(i)
t ∼ rθ(st, a

(i)
t)

14: Update A(st)← {a(i)
t }di=1, c(st, a

(i)
t)← s

(i)
t+1, and r(st, at)← r

(i)
t

15: end for
16: at+1 ← argmaxa∈A(st) r(st, at) ▷ Simulation
17: rt ← r(st, at), st+1 ← c(st, at)
18: t← t+ 1
19: end while
20: for t′ ← t, . . . , 0 do ▷ Back propagation
21: Update Q(st′ , at′) with {rt′ , rt′+1, . . . , rt}
22: end for
23: end for

A Related work: Planning and World Model538

Recent years have witnessed successful applications of planning algorithms [50], such as Alp-539

haZero [52], and MuZero [48]. These algorithms are typically based on tree-structured search and are540

designed to effectively maintain the balance of exploration and exploitation. Knowledge of transition541

dynamics is the prerequisite for planning, and recent research on model-based reinforcement learning542

proposed to learn a world model (or dynamics model) to plan or assist policy learning. To improve543

sample efficiency, previous research attempts to learn a world model from offline trajectories, and544

directly learn a policy within the world model [16, 17]. With latent imagination in a world model, RL545

agents can be trained to solve long-horizon tasks [18, 20]. Besides, the world model is also shown to546

be helpful to physical robot learning [62]. In this paper, we use LLMs as world models and apply a547

planning algorithm to search for a reasoning path. This is similar in spirit to model predictive control548

[8]. Compared with previous works, our framework uses general LLMs as the world model and can549

be adapted to a wide range of open-domain reasoning tasks.550

B MCTS Planning551

We adapt MCTS to search for the optimal reasoning path (Algorithm 1). Compared with traditional552

applications of MCTS, we are faced with a large reasoning space, and the heavy computational cost of553

LLMs. Thus, we made several modifications to the classic MCTS in our implementation: (1) For open554

domain problems, e.g., math problems, it’s impossible to enumerate all actions (subquestions), so we555

reduce the action space by sampling a fixed number of potential actions from LLMs, conditioned on556

a prompt of the current state and in-context demonstration. (2) In the selection phase, if there are557

actions that haven’t been visited before, we estimate the Q value with lightweight local rewards, e.g.,558

self-evaluation reward, and then select the action with UCT. This provides prior knowledge for the559

exploration, which is crucial given the limited iteration budgets.560

14

Table 4: Ablation study on
Blocksworld. R1 is action likeli-
hood reward, R2 is task-specific re-
ward, and R3 is self-evaluation re-
ward.

R1 R2 R3 Success

✓ ✓ ✗ 0.88
✓ ✓ ✓ 0.91
✓ ✗ ✗ 0.46
✗ ✓ ✗ 0.21
✗ ✗ ✓ 0.14
✗ ✗ ✗ 0.02

Table 5: Ablation study on GSM8k (first 300 examples). R1

is state transition confidence reward, R2 is action likelihood
reward, and R3 is self-evaluation reward.

R1 R2 R3 RAP(1) RAP(10) +aggr

✓ ✗ ✓ 0.410 0.450 0.503
✓ ✗ ✗ 0.350 0.447 0.490
✓ ✓ ✗ 0.373 0.423 0.443

C Reward Choice561

Similar to the reward design in RL research, the rewards in LLM reasoning also require some562

curation and design. In our main experiments, we choose the combination of rewards in our current563

experiments based on specific task heuristics and our exploratory experiments. To understand the564

effects of the reward choice for LLM reasoning, we supplement comprehensive experiments on565

rewards for plan generation (Table 4) and math reasoning (Table 5). Note that, in both tables, the first566

row indicates the setting we use in the main experiments.567

Experiment results. As shown in Table 4, the combination of action likelihood and task-specific568

reward (row 1) can significantly outperform the single reward baselines (row 3, 4, 5). Interestingly,569

adding the self-evaluation reward can further improve the performance slightly (row 2). Furthermore,570

as the results on the first 300 samples of GSM8k shown in Table 5, we can see adding either action571

likelihood (row 3) or self-evaluation (row 1) on top of confidence reward (row 2) can boost the572

RAP performance of only using confidence reward (row 1) with one iteration, but action likelihood573

reward downgrades the accuracy with more iterations. The self-evaluation reward leads to the best574

performance overall. This indicates the importance of self-evaluation reward in guiding reasoning as575

an effective and computationally efficient prior to exploration.576

On self-evaluation and action likelihood reward. The rewards of self-evaluation and action likeli-577

hood are of particular interest, as they can be applied to a wide range of reasoning tasks. Generally,578

the best usage and combination with other rewards require empirical design and understanding of the579

task nature, and their effectiveness can vary significantly across different tasks. Here, we provide580

some intuitions behind the reward choices:581

(a) For the problems in which one reasoning step is short and structured, the action likelihood can582

be very indicative. Otherwise, it may be disturbed by unimportant tokens and become unreliable.583

For instance, a single step within the Blocksworld domain typically adheres to specific patterns584

(e.g., PICK/PUT/STACK a block. . .), rendering the action likelihood indicative. However, in the math585

domain, a reasoning step is expressed in natural language sentences, allowing for greater freedom586

and potentially introducing noise.587

(b) For the problems where it’s easier to recognize some errors afterward than avoid them during588

generation, self-evaluation emerges as a helpful mechanism for enhancing reasoning accuracy. In589

mathematical reasoning, LLMs may struggle to generate a correct reasoning step in the first place,590

but the detection of calculation or logic errors is more feasible. In Blocksworlds, however, assessing591

the quality of a candidate action is not straightforward and still requires multi-step reasoning. This592

characteristic diminishes the accuracy of the self-evaluation reward, making it less helpful especially593

given that likelihood already provides a good intuition for search.594

15

D Prompt595

D.1 Plan Generation596

We show the prompt to calculate the action likelihood for RAP below. The same prompt is also597

applied in CoT baseline. <init_state> and <goals> would be instantiated by the problem to598

solve.599

I am playing with a set of blocks where I need to arrange the blocks into600

stacks. Here are the actions I can do601

602

Pick up a block603

Unstack a block from on top of another block604

Put down a block605

Stack a block on top of another block606

607

I have the following restrictions on my actions:608

I can only pick up or unstack one block at a time.609

I can only pick up or unstack a block if my hand is empty.610

I can only pick up a block if the block is on the table and the block is611

clear. A block is clear if the block has no other blocks on top of it612

and if the block is not picked up.613

I can only unstack a block from on top of another block if the block I am614

unstacking was really on top of the other block.615

I can only unstack a block from on top of another block if the block I am616

unstacking is clear.617

Once I pick up or unstack a block, I am holding the block.618

I can only put down a block that I am holding.619

I can only stack a block on top of another block if I am holding the block620

being stacked.621

I can only stack a block on top of another block if the block onto which I622

am stacking the block is clear.623

Once I put down or stack a block, my hand becomes empty.624

625

[STATEMENT]626

As initial conditions I have that, the red block is clear, the yellow627

block is clear, the hand is empty, the red block is on top of the blue628

block, the yellow block is on top of the orange block, the blue block629

is on the table and the orange block is on the table.630

My goal is to have that the orange block is on top of the red block.631

632

My plan is as follows:633

634

[PLAN]635

unstack the yellow block from on top of the orange block636

put down the yellow block637

pick up the orange block638

stack the orange block on top of the red block639

[PLAN END]640

641

[STATEMENT]642

As initial conditions I have that, the orange block is clear, the yellow643

block is clear, the hand is empty, the blue block is on top of the red644

block, the orange block is on top of the blue block, the red block is645

on the table and the yellow block is on the table.646

My goal is to have that the blue block is on top of the red block and the647

yellow block is on top of the orange block.648

649

My plan is as follows:650

651

16

[PLAN]652

pick up the yellow block653

stack the yellow block on top of the orange block654

[PLAN END]655

656

[STATEMENT]657

As initial conditions I have that, the red block is clear, the blue block658

is clear, the orange block is clear, the hand is empty, the blue block659

is on top of the yellow block, the red block is on the table, the660

orange block is on the table and the yellow block is on the table.661

My goal is to have that the blue block is on top of the orange block and662

the yellow block is on top of the red block.663

664

My plan is as follows:665

666

[PLAN]667

unstack the blue block from on top of the yellow block668

stack the blue block on top of the orange block669

pick up the yellow block670

stack the yellow block on top of the red block671

[PLAN END]672

673

[STATEMENT]674

As initial conditions I have that, the red block is clear, the blue block675

is clear, the yellow block is clear, the hand is empty, the yellow676

block is on top of the orange block, the red block is on the table,677

the blue block is on the table and the orange block is on the table.678

My goal is to have that the orange block is on top of the blue block and679

the yellow block is on top of the red block.680

681

My plan is as follows:682

683

[PLAN]684

unstack the yellow block from on top of the orange block685

stack the yellow block on top of the red block686

pick up the orange block687

stack the orange block on top of the blue block688

[PLAN END]689

690

[STATEMENT]691

As initial conditions I have that, <initial_state>692

My goal is to have that <goals>.693

694

My plan is as follows:695

696

[PLAN]697

For the next state prediction with the world model, we apply the prompts conditioned on the last698

action. Here we show the prompt to update the state after a “pick up” action as an example. Again,699

<state> and <action> would be instantiated with the current state and action.700

I am playing with a set of blocks where I need to arrange the blocks into701

stacks. Here are the actions I can do702

703

Pick up a block704

Unstack a block from on top of another block705

Put down a block706

Stack a block on top of another block707

708

I have the following restrictions on my actions:709

17

I can only pick up or unstack one block at a time.710

I can only pick up or unstack a block if my hand is empty.711

I can only pick up a block if the block is on the table and the block is712

clear. A block is clear if the block has no other blocks on top of it713

and if the block is not picked up.714

I can only unstack a block from on top of another block if the block I am715

unstacking was really on top of the other block.716

I can only unstack a block from on top of another block if the block I am717

unstacking is clear. Once I pick up or unstack a block, I am holding718

the block.719

I can only put down a block that I am holding.720

I can only stack a block on top of another block if I am holding the block721

being stacked.722

I can only stack a block on top of another block if the block onto which I723

am stacking the block is clear. Once I put down or stack a block, my724

hand becomes empty.725

726

After being given an initial state and an action, give the new state after727

performing the action.728

729

[SCENARIO 1]730

[STATE 0] I have that, the white block is clear, the cyan block is clear,731

the brown block is clear, the hand is empty, the white block is on top732

of the purple block, the purple block is on the table, the cyan block733

is on the table and the brown block is on the table.734

[ACTION] Pick up the brown block.735

[CHANGE] The hand was empty and is now holding the brown block, the brown736

block was on the table and is now in the hand, and the brown block is737

no longer clear.738

[STATE 1] I have that, the white block is clear, the cyan block is clear,739

the brown block is in the hand, the hand is holding the brown block,740

the white block is on top of the purple block, the purple block is on741

the table and the cyan block is on the table.742

743

[SCENARIO 2]744

[STATE 0] I have that, the purple block is clear, the cyan block is clear,745

the white block is clear, the hand is empty, the white block is on top746

of the brown block, the purple block is on the table, the cyan block747

is on the table and the brown block is on the table.748

[ACTION] Pick up the cyan block.749

[CHANGE] The hand was empty and is now holding the cyan block, the cyan750

block was on the table and is now in the hand, and the cyan block is751

no longer clear.752

[STATE 1] I have that, the cyan block is in the hand, the white block is753

clear, the purple block is clear, the hand is holding the cyan block,754

the white block is on top of the brown block, the purple block is on755

the table and the brown block is on the table.756

757

[SCENARIO 3]758

[STATE 0] <state>759

[ACTION] <action>760

[CHANGE]761

D.2 Math Reasoning762

We show the prompt of RAP for math reasoning as below. The prompt is used for both action proposal763

and next state prediction. After instantiate <question>, we append a prefix Question 5.1 to the764

prompt, so that we can sample the first action with the LLM. The future actions are sampled similarly,765

except that all previous sub-questions and sub-answers need to be appended to the prompt, following766

18

the formats of in-context demonstration. The next state prediction, i.e., answering the sub-question,767

works in the same way.768

Given a question, please decompose it into sub-questions. For each769

sub-question, please answer it in a complete sentence, ending with770

"The answer is". When the original question is answerable, please771

start the subquestion with "Now we can answer the question: ".772

773

Question 1: Four years ago, Kody was only half as old as Mohamed. If774

Mohamed is currently twice as 30 years old, how old is Kody?775

Question 1.1: How old is Mohamed?776

Answer 1.1: He is currently 30 * 2 = 60 years old. The answer is 60.777

Question 1.2: How old was Mohamed four years ago?778

Answer 1.2: Four years ago, he must have been 60 - 4 = 56 years old. The779

answer is 56.780

Question 1.3: How old was Kody four years ago?781

Answer 1.3: Kody was half as old as Mohamed four years ago. Thus, Kody was782

56 / 2 = 28 years old. The answer is 28.783

Question 1.4: Now we can answer the question: How old is Kody?784

Answer 1.4: She is currently 28 + 4 = 32 years old. The answer is 32.785

786

Question 2: On a moonless night, three fireflies danced in the evening787

breeze. They were joined by four less than a dozen more fireflies788

before two of the fireflies flew away. How many fireflies remained?789

Question 2.1: How many fireflies joined?790

Answer 2.1: The fireflies were joined by four less than a dozen more791

fireflies, which are 12 - 4 = 8 fireflies. The answer is 8.792

Question 2.2: Now we can answer the question: How many fireflies remained?793

Answer 2.2: Three fireflies were dancing originally. They were joined by 8794

fireflies before two of them flew away. So there were 3 + 8 - 2 = 9795

remaining. The answer is 9.796

797

Question 3: Ali has four $10 bills and six $20 bills that he saved after798

working for Mr. James on his farm. Ali gives her sister half of the799

total money he has and uses 3/5 of the remaining amount of money to800

buy dinner. Calculate the amount of money he has after buying the801

dinner.802

Question 3.1: How much money does Ali have in total?803

Answer 3.1: Ali has four $10 bills and six $20 bills. So he has 4 * 10 + 6804

* 20 = 160 dollars. The answer is 160.805

Question 3.2: How much money does Ali give to his sister?806

Answer 3.2: Ali gives half of the total money he has to his sister. So he807

gives 160 / 2 = 80 dollars to his sister. The answer is 80.808

Question 3.3: How much money does Ali have after giving his sister the809

money?810

Answer 3.3: After giving his sister the money, Ali has 160 - 80 = 80811

dollars left. The answer is 80.812

Question 3.4: How much money does Ali use to buy dinner?813

Answer 3.4: Ali uses 3/5 of the remaining amount of money to buy dinner.814

So he uses 80 * 3/5 = 48 dollars to buy dinner. The answer is 48.815

Question 3.5: Now we can answer the question: How much money does Ali have816

after buying the dinner?817

Answer 3.5: After buying the dinner, Ali has 80 - 48 = 32 dollars left.818

The answer is 32.819

820

Question 4: A car is driving through a tunnel with many turns. After a821

while, the car must travel through a ring that requires a total of 4822

right-hand turns. After the 1st turn, it travels 5 meters. After the823

2nd turn, it travels 8 meters. After the 3rd turn, it travels a little824

further and at the 4th turn, it immediately exits the tunnel. If the825

19

car has driven a total of 23 meters around the ring, how far did it826

have to travel after the 3rd turn?827

Question 4.1: How far did the car travel except for the 3rd turn?828

Answer 4.1: It travels 5 meters after the 1st, 8 meters after the 2nd, and829

0 meters after the 4th turn. It’s a total of 5 + 8 + 0 = 13 meters.830

The answer is 13.831

Question 4.2: Now we can answer the question: How far did the car have to832

travel after the 3rd turn?833

Answer 4.2: The car has driven a total of 23 meters around the ring. It834

travels 13 meters except for the 3rd turn. So it has to travel 23 - 13835

= 10 meters after the 3rd turn. The answer is 10.836

837

Question 5: <question>838

D.3 Logical Reasoning839

We show the prompt for action proposal, action likelihood calculation, and next state prediction.840

<fact> and <query> would be instantiated with the problem.841

Given a list of facts, and a current claim, output one possible fact as842

the next step. Be sure to copy the exact sentences in the facts. Do843

not change any wording. Do not create your own words.844

845

Facts 1: Each lepidopteran is an insect. Each arthropod is a protostome.846

Every animal is multicellular. Protostomes are invertebrates. Each847

whale is bony. Each painted lady is a butterfly. Invertebrates are848

animals. Butterflies are lepidopterans. Each insect is six-legged.849

Every insect is an arthropod. Arthropods are not bony.850

Query 1: True or false: Sally is not bony.851

Claim 1.1: Sally is an insect.852

Next 1.1: Each insect is six-legged.853

Claim 1.2: Sally is a butterfly.854

Next 1.2: Butterflies are lepidopterans.855

Claim 1.3: Sally is a lepidopteran.856

Next 1.3: Each lepidopteran is an insect.857

Claim 1.4: Sally is not bony.858

Next 1.4: Finish.859

Claim 1.5: Sally is an arthropod.860

Next 1.5: Arthropods are not bony.861

Claim 1.6: Sally is a painted lady.862

Next 1.6: Each painted lady is a butterfly.863

864

Facts 2: Prime numbers are natural numbers. Every Mersenne prime is not865

composite. Imaginary numbers are not real. Every real number is a866

number. Natural numbers are integers. Every real number is real. Every867

Mersenne prime is a prime number. Natural numbers are positive. Prime868

numbers are not composite. Integers are real numbers.869

Query 2: True or false: 127 is not real.870

Claim 2.1: 127 is real.871

Next 2.1: Finish.872

Claim 2.1: 127 is a natural number.873

Next 2.1: Natural numbers are integers.874

Claim 2.2: 127 is a prime number.875

Next 2.2: Prime numbers are natural numbers.876

Claim 2.3: 127 is a real number.877

Next 2.3: Every real number is real.878

Claim 2.4: 127 is a Mersenne prime.879

Next 2.4: Every Mersenne prime is a prime number.880

Claim 2.5: 127 is an integer.881

20

Next 2.5: Integers are real numbers.882

883

Facts 3: Lepidopterans are insects. Every animal is multicellular. Each884

insect is an arthropod. Each invertebrate is an animal. Insects are885

six-legged. Arthropods are small. Arthropods are invertebrates. Each886

butterfly is a lepidopteran. Whales are not small.887

Query 3: True or false: Polly is not small.888

Claim 3.1: Polly is an arthropod.889

Next 3.1: Arthropods are small.890

Claim 3.2: Polly is an insect.891

Next 3.2: Each insect is an arthropod.892

Claim 3.3: Polly is small.893

Next 3.3: Finish.894

Claim 3.4: Polly is a lepidopteran.895

Next 3.4: Lepidopterans are insects.896

897

Facts 4: Every cat is a feline. Mammals are vertebrates. Bilaterians are898

animals. Vertebrates are chordates. Carnivores are mammals. Mammals899

are not cold-blooded. Each chordate is a bilaterian. Every feline is a900

carnivore. Snakes are cold-blooded. Animals are not unicellular. Every901

carnivore is not herbivorous.902

Query 4: True or false: Fae is not cold-blooded.903

Claim 4.1: Fae is a feline.904

Next 4.1: Every feline is a carnivore.905

Claim 4.2: Fae is not cold-blooded.906

Next 4.2: Finish.907

Claim 4.2: Fae is a mammal.908

Next 4.2: Mammals are not cold-blooded.909

Claim 4.3: Fae is a cat.910

Next 4.3: Every cat is a feline.911

Claim 4.4: Fae is a carnivore.912

Next 4.4: Carnivores are mammals.913

914

Facts 5: Prime numbers are prime. Real numbers are numbers. Every integer915

is a real number. Real numbers are not imaginary. Mersenne primes are916

prime numbers. Complex numbers are imaginary. Each prime number is a917

natural number. Natural numbers are positive. Each Mersenne prime is918

prime. Each natural number is an integer.919

Query 5: True or false: 7 is imaginary.920

Claim 5.1: 7 is not imaginary.921

Next 5.1: Finish.922

Claim 5.1: 7 is a natural number.923

Next 5.1: Each natural number is an integer.924

Claim 5.2: 7 is a prime number.925

Next 5.2: Each prime number is a natural number.926

Claim 5.3: 7 is a real number.927

Next 5.3: Real numbers are not imaginary.928

Claim 5.4: 7 is an integer.929

Next 5.4: Every integer is a real number.930

931

Facts 6: Spiders are not six-legged. Insects are six-legged. Insects are932

arthropods. Every animal is not unicellular. Invertebrates are933

animals. Lepidopterans are insects. Every arthropod is segmented.934

Arthropods are invertebrates. Every butterfly is a lepidopteran.935

Stella is a butterfly.936

Query 6: True or false: Stella is six-legged.937

Claim 6.1: Stella is an insect.938

Next 6.1: Insects are six-legged.939

Claim 6.2: Stella is a lepidopteran.940

21

Next 6.2: Lepidopterans are insects.941

Claim 6.3: Stella is a butterfly.942

Next 6.3: Every butterfly is a lepidopteran.943

Claim 6.4: Stella is six-legged.944

Next 6.4: Finish.945

946

Facts 7: <fact>947

Query 7: <query>948

22

	Introduction
	Related Work
	Reasoning via Planning (RAP)
	Language Model as World Model
	Reward Design
	Planning with Monte Carlo Tree Search
	RAP-Aggregation: Aggregating Multiple Reasoning Outputs

	Experiments
	Plan Generation
	Math Reasoning
	Logical Reasoning

	Conclusion
	Related work: Planning and World Model
	MCTS Planning
	Reward Choice
	Prompt
	Plan Generation
	Math Reasoning
	Logical Reasoning

