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ABSTRACT

Recent works have established second-order regret bounds for nonlinear contex-
tual bandits. However, these results exhibit a suboptimal dependence on the com-
plexity of the function class. To close this gap, we propose a novel algorithm fea-
turing a multi-level regression structure. This method partitions data by their un-
certainty and variance, then performs separate regressions on each level, enabling
adaptive, instance-dependent learning. Our method achieves a tight second-order
regret bound of Õ

(√
dF logNF

∑
t∈[T ] σ

2
t + RdF logNF

)
, which matches the

theoretical lower bound. Here, dF and logNF represent the Eluder dimension and
log-covering number of the reward function class F , σ2

t is the unknown variance
of the reward at round t, and R is the range of rewards. The proposed algorithm
is computationally efficient assuming access to a regression oracle. We further
extend our framework to model-based reinforcement learning, achieving a regret
bound that is both second-order and horizon-free. The underlying multi-level re-
gression technique is of independent interest and applicable to a broad range of
online decision-making problems.

1 INTRODUCTION

In the realm of online decision-making problems, contextual bandits serve as a foundational model,
where an agent interacts with the environment to learn and act optimally in the face of uncertainty.
This paradigm is central to numerous real-world applications, including personalized recommen-
dation systems (Li et al., 2010; Covington et al., 2016), dynamic pricing (Kleinberg & Leighton,
2003; Ferreira et al., 2018), and online advertising (Agarwal et al., 2014; Chapelle et al., 2014).
A central goal in this field is to design algorithms with strong performance guarantees measured
by regret—the difference in rewards between the algorithm’s choices and those of an optimal pol-
icy. Although worst-case regret bounds have been well studied (Auer et al., 2002; Abbasi-Yadkori
et al., 2011), the field has increasingly focused on developing more nuanced, instance-dependent
guarantees (Zhou & Gu, 2022; Li & Sun, 2024; Huang et al., 2023). Second-order regret bounds,
which incorporate the unknown variance of the rewards, are particularly valuable as they adapt to
the problem’s intrinsic statistical difficulty rather than relying on pessimistic worst-case guarantees.

Despite significant progress in linear contextual bandits (Zhao et al., 2023), a fundamental chal-
lenge has persisted in the setting of general function approximation, which is critical for capturing
the complex relationships present in real-world scenarios. Current algorithms often suffer from a
suboptimal dependence on the complexity of the reward function class, such as the Eluder dimen-
sion dF . For instance, the best-known algorithms from Pacchiano (2025); Jia et al. (2024) achieve
regret bounds of the form Õ

(
dF
√

logNF
∑

t∈[T ] σ
2
t +RdF logNF

)
, which falls short of the theo-

retical lower bound by Jia et al. (2024) that suggests a
√
dF dependency. While Wang et al. (2024b)

achieve a O(
√
dP) regret bound, their algorithm requires a stronger realizability assumption: access

to the full reward distribution. This discrepancy raises a crucial open question:

Can we design an algorithm for nonlinear contextual bandits that achieves a minimax-optimal,
second-order regret with the standard realizability assumption?
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Table 1: Regret bounds of algorithms for contextual bandits with unknown reward variances. Here,
d denotes the dimension for linear function approximation, P represents the reward distribution
class, F is the the reward function class, dF , dP are the Eluder dimension, NF , NP are the covering
number, T is the number of rounds, σt is the variance of the reward at round t, and R is the range of
rewards. Õ omits logarithmic terms.

Algorithm Function
Type Regret Bound Computational

Efficiency

SAVE (Zhao et al., 2023) Linear Õ
(
d
√∑

t∈[T ] σ
2
t +Rd

)
Yes

DistUCB (Wang et al., 2024b) Nonlinear Õ
(√

dP logNF
∑

t∈[T ] σ
2
t +RdP logNP

)
Yes

Unknown-Variance SOOLS
(Pacchiano, 2025)

VarUCB (Jia et al., 2024)
Nonlinear Õ

(
dF
√
logNF

∑
t∈[T ] σ

2
t +RdF logNF

)
Yes

VACB (Ye et al., 2025) Nonlinear Õ
(
dF
√

logNF
∑

t∈[T ] σ
2
t + dF (logNF )

3/4
)

No

UCB-MLR (Theorem 4.2) Nonlinear Õ
(√

dF logNF
∑

t∈[T ] σ
2
t +RdF logNF

)
Yes

We give an affirmative answer to this question by delving into the problem of nonlinear contextual
bandits. Specifically, we consider the setting with heteroscedastic noise—where the variance of
rewards changes over time—and, critically, we assume this variance is unknown to the agent, a
common scenario in real-world applications. Our contributions are summarized as follows:

• We propose a novel Multi-Level Regression (MLR) structure, which significantly advances
prior multi-layer algorithms inspired from Zhao et al. (2023). A key innovation lies in
our data partitioning method, ADALEVEL, which leverages both uncertainty and variance
rather than just uncertainty. By running separate regressions on each level, our algorithm
learns in an adaptive and instance-dependent way, leading to a more accurate function
estimate. The principles of this multi-level regression technique are broadly applicable and
may be of independent interest for other online decision-making problems.

• Leveraging our new technique, we propose UCB-MLR, a novel algorithm for nonlinear
contextual bandits. Through the use of a tighter Bernstein-style bound for nonlinear re-
gression and a detailed analysis of estimation error at different levels, we theoretically
establish a regret bound of Õ

(√
dF logNF

∑
t∈[T ] σ

2
t +RdF logNF

)
. This result is sig-

nificant because it is the first to match the second-order lower bound from Jia et al. (2024),
effectively resolving a suboptimal dependency on dF . Our algorithm also achieves compu-
tational efficiency with access to a regression oracle.

• We further demonstrate the effectiveness and generality of our algorithmic framework by
applying it to model-based Reinforcement Learning (RL), where an agent learns to act
optimally by building a model of the environment. Our proposed algorithm, ML-VTR,
is the first to achieve a regret bound of Õ

(√
dF logNF Var∗K + dF logNF

)
for Markov

Decision Processes (MDPs) with general function approximation. This result is notable
because it is simultaneously second-order, horizon-free, and computationally efficient. As
a special case, it reduces to Õ

(
d
√
Var∗K + d2

)
for linear mixture MDPs. This bound

matches the state-of-the-art from Zhao et al. (2023), suggesting that our novel algorithm
and fine-grained analysis are effective for a wide range of general RL problems.

For a comprehensive comparison with state-of-the-art results, we summarize the regrets in Table 1
for contextual bandits and Table 2 for RL.

Notations Let [n] := {1, 2, . . . , n}, [n] := {0, 1, . . . , n}, and XI := {Xi}i∈I . Denote
minx∈X {c, f(x)} := min{c,minx∈X f(x)} for short. Denote the ϵ-covering number of F w.r.t.
ℓ∞-norm as NF (ϵ). Õ(·) omits logarithmic terms in O(·).
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Table 2: Regret bounds of algorithms for model-based RL that achieve instance-dependent and
horizon-free. Here, d denotes the dimension for linear function approximation, P represents the
transition model class, F is the the function class induced by P , dF , dP are the Eluder dimension,
NF , NP are the covering number, quantity Var∗K defined in (5.3) is the total variance of the optimal
value functions, andQ∗ is a higher-order moments quantity defined in Huang et al. (2024). Õ omits
logarithmic terms.

Algorithm Function
Type Regret Bound Computational

Efficiency

UCRL-AVE (Zhao et al., 2023) Linear Õ
(
d
√

Var∗K + d2
)

Yes

UCRL-WVTR (Huang et al., 2024) Nonlinear Õ
(√

dF logNFQ∗ + dF logNF
)

Yes

O-MBRL (Wang et al., 2025) Nonlinear Õ
(√

dP logNP Var∗K + dP logNP
)

No

ML-VTR (Theorem 5.1) Nonlinear Õ
(√

dF logNF Var∗K + dF logNF
)

Yes

2 RELATED WORK

Second-Order Regret in Nonlinear Contextual Bandits Designing algorithms with second-
order regret has become a central theme in contextual bandits literature. While the linear setting
is well-understood (Zhao et al., 2023), the nonlinear setting with unknown variances presents sub-
stantially greater challenges, revealing a distinct gap to statistical optimality.

Several attempts, such as Unknown-Variance SOOLS (Pacchiano, 2025) and VarUCB (Jia et al.,
2024), have been made to generalize the multi-layer technique developed in (Zhao et al., 2023) to
nonlinear settings. Furthermore, VACB (Ye et al., 2025) utilizes Catoni estimator to handle the
heavy-tailedness of noise, removing the R dependence on the lower order. However, due to the
intrinsic difficulty caused by nonlinear structure, they only obtain a regret that is suboptimal on the
function complexity, thereby leaving a gap to optimality. A different line of work (Foster et al., 2018;
Wang et al., 2024b;a), exemplified by DistUCB (Wang et al., 2024b), pursue variance-adaptivity us-
ing MLE for the full reward distribution. However, this distributional approach requires the stronger
and often impractical modeling assumption that the entire reward distribution—not just the expected
reward—is realizable by the model class. Our multi-level regression framework, by contrast, oper-
ates under the standard, less restrictive realizability assumption.

Instance-dependent and Horizon-free Regret in Model-based RL The principles of instance-
dependent learning are also paramount in the more complex domain of RL, where the additional
challenges of long-planning horizons must be addressed. A key goal in modern RL theory is to de-
velop algorithms that are not only second-order but also horizon-free, meaning their regret bounds
scale at most polylogarithmicly with the planning horizon H (Jiang & Agarwal, 2018). For MDPs
with linear function approximation, also known as linear mixture MDPs, Zhao et al. (2023) pro-
vide an efficient, second-order and horizon-free algorithm. However, extending these successes to
general function approximation presents significant challenges.

To name a few, Huang et al. (2024) made the first attempt to propose an algorithm, UCRL-
WVTR, using weighted value-targeted regression for estimating the model and achieves an instance-
dependent and horizon-free regret. Despite worst-case optimal when specialized to linear mixture
MDPs, their regret bound has a suboptimal dependence on the higher-order moments of the optimal
value functions. Conversely, O-MBRL (Wang et al., 2025) extends DistUCB to RL and achieves a
tight, second-order and horizon-free statistical guarantee. However, it is generally computationally
intractable and requires the stronger assumption of access to the full distribution.

3 PRELIMINARIES

Nonlinear Contextual Bandits We consider a T -round contextual bandit problem. At each round
t ∈ [T ], the environment provides a candidate decision set Xt ⊆ X . This framework includes the
classic contextual bandit setting given context zt and action set A, by setting Xt = {zt} × A. The

3
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agent selects an action xt ∈ Xt and receives a reward yt = f∗(xt) + εt. We assume yt ∈ [0, R],

E[εt|xt] = 0, Var[εt|xt] = Var[yt|xt] = σ2
t ≤ σ2.

To enable the utilization of a priori unknown variance information, we make Assumption 3.2, which
is also adopted by Ye et al. (2025).
Assumption 3.1 (Realizability). We are given access to a function class F such that f∗ ∈ F .
Assumption 3.2. We are given access to a function class G and constant cv > 0 such that g∗ ∈ G,
and for all rounds t ∈ [T ],

E[y2t |xt] = g∗(xt), Var[y2t |xt] ≤ c2vR
2 ·Var[yt|xt] = c2vR

2σ2
t .

We use the standard Eluder dimension and covering number to measure the complexity of F . Recall
the definition of Eluder dimension (Russo & Van Roy, 2013):
Definition 3.3 (Eluder Dimension). Let F be a function class defined on X and ϵ > 0. The Eluder
dimension dimF (ϵ) of F is the length of the longest sequence x[n] ⊆ X such that for some ϵ′ ≥ ϵ,
for all t ≤ n, xt is ϵ′-independent of x[t−1] given F . That is, there exists f, f ′ ∈ F such that∑

s∈[t−1]

[f(xs)− f ′(xs)]
2 ≤ ϵ′2 while |f(xt)− f ′(xt)| > ϵ′.

We also use the notation dF := dimF (ϵ) and NF := NF (ϵ) for short when ϵ is clear from the
context. Let λ > 0. We quantify uncertainty of x given dataset x[t−1] and wights w[t−1] w.r.t. F as:

DF (x;x[t−1], w[t−1]) := sup
f1,f2∈F

(f1(x)− f2(x))
2∑

s∈[t−1] w
2
s(f1(xs)− f2(xs))2 + λ

. (3.1)

MDPs with General Function Approximation We consider episodic MDPs defined by a tuple
(S,A, H,P, {rh}h∈[H]). Here, S and A are the state space and action spaces, H is the planning
horizon, P : S × A → ∆(S) is the transition dynamics, rh : S × A → R is the h-th step reward
function known to the agents1. We assume a bounded reward setting where

∑H
h=1 rh(sh, ah) ≤ 1

for any trajectory. We use a deterministic policy throughout this paper, which is a collection of H
mappings from the state space to the action space, denoted as π = {πh : S → A}h∈[H]. For any
state-action pair (s, a) ∈ S × A, the action value function Qπ

h(s, a) and the (state) value function
V π
h (s) are defined as:

Qπ
h(s, a) := E

[ H∑
h′=h

r(sh′ , ah′)
∣∣∣sh = s, ah = a

]
, V π

h (s) := Qπ
h(s, πh(s)),

where the expectation is taken w.r.t. the transition kernel P and the agent’s policy π. We denote the
optimal value functions as V ∗

h (s) := supπ V
π
h (s) and Q∗

h(s, a) := supπ Q
π
h(s, a). For simplicity,

we introduce the following shorthands. Let V be the set of all value functions V : S → [0, 1]. For
any V ∈ V , we denote the conditional expectation and variance of V as

[PV ](s, a) := Es′∼P(·|s,a)[V (s′)], [VV ](s, a) := [PV 2](s, a)− [PV ]2(s, a)

Our objective is to design efficient algorithms that minimize the K-episode regret, defined as

Regret(K) :=

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)
.

To solve problems of large state spaces, we consider MDPs with general function approximation.
We adopt the following assumptions to accurately estimate the variance of value functions, which is
reasonable since a small variance of a next-state value function often indicates more deterministic
transitions, thus suggesting a small variance for the squared next-state value function.
Assumption 3.4 (Realizability). Let P be a general function class consisting of transition kernels
that map state-action pairs to measures over S. We assume the MDP’s transition model P ∈ P .

1We consider deterministic rewards since our result can be easily generalized to the unknown-reward cases.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 UCB-MLR

Require: α, α̃, γ, γ̃, L = ⌈log2 R
α ⌉, L̃ = ⌈log2 R2

α̃ ⌉, {βt,l}t≥1,l∈[L], {β̃t,ℓ}t≥1,ℓ∈[L̃]

1: Ψ1,l ← ∅ for l ∈ [L], Ψ̃1,ℓ ← ∅ for ℓ ∈ [L̃]

2: f̂1,l ← 0 for l ∈ [L], ĝ1,ℓ ← 0 for ℓ ∈ [L̃]
3: for t = 1, . . . , T do
4: Observe Xt

5: Choose xt ← argmaxx∈Xt
minl∈[L]

(
f̂t,l(x) + min{R, βt,lDt,l(x)}

)
, receive yt

6: Update σ̄t according to (4.3).
7: Set lt, wt ← ADALEVEL

(
{Dt,l(xt)}l∈[L], σ̄t, α, γ

)
8: Set ℓt, w̃t ← ADALEVEL

(
{D̃t,ℓ(xt)}ℓ∈[L̃], cvσ̄t, α̃, γ̃

)
9: Update Ψt+1,lt ← Ψt,lt ∪ {t}, Ψt+1,l ← Ψt,l for l ∈ [L], l ̸= lt

10: Update Ψ̃t+1,ℓt ← Ψ̃t,ℓt ∪ {t}, Ψ̃t+1,ℓ ← Ψ̃t,ℓ for ℓ ∈ [L̃], ℓ ̸= ℓt
11: Update f̂t+1,l for l ∈ [L], ĝt+1,ℓ for ℓ ∈ [L̃] according to (4.1), (4.2)
12: end for

Algorithm 2 ADALEVEL

Require: {Dt,l}l∈[L], σ̄t, α, γ
Ensure: Level lt, weight wt

1: Set lt ← max{l ∈ [L] : γDt,l > 2lα}
2: if lt = −∞ then
3: Update lt ← 0
4: else
5: if σ̄t ≤ 2ltα then
6: Set wt ← 2ltα

γDt,lt

7: else
8: Update lt ← min{l ∈ [L], l > lt : σ̄t ≤ 2lα}
9: Set wt ← 1

10: end if
11: end if

Assumption 3.5. There exists a constant cv > 0 such that for all steps (k, h) ∈ [K] × [H] and all
Vh+1 ∈ V , the following holds:

[VV 2
h+1](s

k
h, a

k
h) ≤ c2v[VVh+1](s

k
h, a

k
h).

We use the covering number and Eluder dimension to measure the complexity of the function class
F , which is induced from the model class P . F is generally smaller than P , since we only require
the expectation instead of the distribution information.

F := {f : S ×A× V → R | ∃P ∈ P, f(skh, akh, Vh+1) = [PVh+1](s
k
h, a

k
h)},

4 MULTI-LEVEL REGRESSION FOR CONTEXTUAL BANDITS

In this section, we propose a new algorithm for nonlinear contextual bandits, UCB-MLR, which is
formally presented in Algorithm 1. We introduce the notation Dt,l(x) := DF (x;xΨt,l

, wΨt,l
) and

D̃t,ℓ(x) := DG(x;xΨ̃t,ℓ
, wΨ̃t,ℓ

) for conciseness. We first outline the high-level idea, then analyze
the computational complexity and regret bound.

4.1 ALGORITHM DESCRIPTION

UCB-MLR improves upon the multi-layer structure proposed by Zhao et al. (2023). Their approach
partitions data into L+1 layers based on uncertainty, performs regressions within each layer l ∈ [L],
and combine L results to form a more accurate estimate of the reward function. In contrast, our

5
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leveling algorithm, ADALEVEL, partitions date using both uncertainty and variance. We highlight
the primary enhancements of UCB-MLR in as follows:

Adaptive Leveling In Line 7 of Algorithm 1, ADALEVEL adaptively chooses the level lt for each
data point xt at round t, as detailed in Algorithm 2. This selection, based on its uncertainty within
each level {Dt,l(xt)}l∈[L] and the estimated variance σ̄2

t , leverages the concentration inequality in
Lemma 4.3 to reduce the estimation error of reward function f∗.

We use Ψt+1,l to denote the index set of all date partitioned into level l ∈ [L] up to time t. The
detailed properties of ADALEVEL are listed in Property 1. In general, for all t ∈ [T ] such that
t ∈ ΨT+1,l with l ∈ [L], we set weight

wt = min
{
1,

2lα

γDt,l(xt)

}
.

This is done to avoid a sharp change in uncertainty between adjacent levels. Consequently, we have:
wtDt,l ≤ 2lα/γ, wtσ̄t ≤ 2lα,

where α and γ are prespecified parameters. This ensures that the data at level l have roughly the
same uncertainty and variance, both on the order of 2lα. We use ADALEVEL similarly to construct
{Ψ̃T,ℓ}

ℓ∈[L̃]
for estimating the squared-reward function g∗.

Multi-Level Regression and Upper Confidence Bound (UCB) At round t, after updating
{Ψt+1,l}l∈[L]

and {Ψt+1,ℓ}
ℓ∈[L̃]

, we utilize weighted least squares regression to estimate f∗ for

level l ∈ [L] and g∗ for level ℓ ∈ [L̃]:

f̂t+1,l = argmin
f∈F

∑
s∈Ψt+1,l

w2
s(f(xs)− ys)

2, (4.1)

ĝt+1,ℓ = argmin
g∈F

∑
s∈Ψ̃t+1,ℓ

w̃s(g(xs)− y2s)
2. (4.2)

As shown in Line 5, for any x ∈ X , we can construct L high-probability UCBs for f∗(x) and take
their minimum to choose the action optimistically:

f∗(x) ≤ min
l∈[L]

(
f̂t+1,l(x) + min{R, βt+1,lDt+1,l(x)}

)
,

Similarly, we can set σ̄2
t as the upper bound of σ2

t :
σ̄2
t = min

l∈[L],ℓ∈[L̃]

{
σ2, ĝt,ℓ(xt)− f̂2

t,l(xt) +Rmin{R, 2βt,lDt,l(xt)}+min{R2, β̃t,ℓD̃t,ℓ(xt)}
}
. (4.3)

According to Lemma 4.3, βt,l = Õ(2lα
√
logNF ) and β̃t,ℓ = Õ(2ℓα̃

√
logNG).

Computational Complexity We analyze the computational complexity of UCB-MLR, relying on
a regression oracle defined in Assumption 4.1 for solving the weighted nonlinear least squares re-
gression. By adopting the techniques from Li et al. (2023); Huang et al. (2024), we can leverage this
oracle to compute the uncertainty DF defined in (3.1) through a binary search procedure, requiring
only Õ(1) calls to the oracle.
Assumption 4.1 (Regression Oracle). We assume access to a weighted least squares regression
oracle, which takes a function class F and t weighted examples {(Xs, ws, Ys)}s∈[t] ⊆ X ×R+×R
as input. It then outputs the solution to the weighted least squares problem, f̂ , withinR time, where

f̂ = argmin
f∈F

t∑
s=1

ws(f(Xs)− Ys)
2.

We now consider the computation cost for a single round t. First, computing the UCB of f∗(xt) in
Line 5 requires Õ(LR) time, as it involves calculating Dt,l for l ∈ [L]. To select the best action
over the set Xt, the algorithm must compute the UCB for at most |X | actions. Next, the estimated
variance σ̄2

t in (4.3) can be computed within Õ((L+ L̃)R) time. And ADALEVEL takes Õ(L+ L̃)

time. Finally, it takes (L+ L̃)R time to calculate the regression estimates f̂t+1,l in (4.1) for l ∈ [L]

and ĝ(t+ 1, ℓ) in (4.2). Therefore, the total computational cost of UCB-MLR is Õ(T |X |R).
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4.2 REGRET BOUND

Theorem 4.2. For contextual bandit with general function approximation as defined in Section 3, if
the parameters in Algorithm 1 are set according to Section B, then with probability at least 1− (L+

L̃)δ, UCB-MLR achieves

Regret(T ) = Õ
(√

dF logNF
∑

t∈[T ]
σ2
t +max{1, C}RdF logNF

)
,

where C = max{1, cv}
√

dG logNG
dF logNF

.

Proof. The proof uses a tighter Bernstein-style bound for the estimated function and a detailed
analysis of the summation of bonuses within each level. See Section 4.3 for a proof sketch and
Section B for a detailed proof.

Our result matches the second-order lower bound established by Jia et al. (2024), therefore success-
fully eliminating the gap related to dF . We leave the removal of C in the lower order term as an
open problem for future work.

As a special case, for a d-dimensional linear contextual bandit, where dF , logNF = O(d) (Jia et al.,
2024), our algorithm achieves a regret of Õ

(
d
√∑

t∈[T ] σ
2
t +Rd2

)
. This matches the state-of-the-

art result of Zhao et al. (2023) for the main term.

4.3 PROOF SKETCH

Concentration of the Estimated Function Our primary effort is to establish a tight UCB for the
true reward function f∗. This relies on the concentration inequality presented in Lemma 4.3.
Lemma 4.3. Let {Xt}t≥1 ⊆ X and {Yt}t≥1 ⊆ [0, R] be sequences of random elements, and let
{wt}t≥1 be a sequence of weights. Let f∗ ∈ F with function class F : X → [0, R]. Suppose for all
s ∈ [t], E[Ys|Xs] = f∗(Xt), |ws| ≤W , and w2

s Var[Ys|Xs] ≤ σ2. Let the estimated function be

f̂t+1 = argmin
f∈F

t∑
s=1

w2
s(f(Xs)− Ys)

2. (4.4)

Then for any δ, ϵ > 0, with probability at least 1− δ, we have for all t ≥ 1,

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))

2 ≤ β2
t+1 with

βt+1 = 3
√
ιtσ + 2ιtRmin

{
1,max

s∈[t]
w2

sDF (Xs;X[s−1], w[s−1])
}
+
√
λ+
√
6W 2Rtϵ,

where ιt = 16 log 2NF (ϵ)t2(log(σ2W 2R2t)+2)(log(W 2R2)+2)
δ = Õ(logNF ).

Proof. See Section A for a detailed proof.

Remark 4.4. Lemma 4.3 improves upon the Bernstein-style bound for nonlinear regression
from Huang et al. (2024) by tightening the term concerning uncertainty. Here, we denote
Dt := maxs∈[t] DF (Xs;X[s−1], w[s−1]) for short. This implies the confidence radius βt+1 =

Õ(σ
√
logNF +RDt logNF ). Compared to the bound Õ

(
Dt

√∑
s∈[t] σ

2
s logNF +RDt logNF

)
used in previous multi-layer algorithms (Pacchiano, 2025; Jia et al., 2024), our result improves the
first term by a factor of

√
dF when the reward variances are roughly equal, since Dt is of order√

dF/t under certain conditions according to Lemma E.4. This is a key step in removing the
√
dF

gap in regret bound.

Recall that ADALEVEL ensures wtDt,l ≤ 2lα/γ and wtσ̄t ≤ 2lα if t ∈ ΨT+1,l. This implies the
confidence radius βt,l = Õ

(
2lα
√
logNF

)
.
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Algorithm 3 ML-VTR
Require: α, γ, L = ⌈log2 1

α⌉, confidence radius {βk,l}k≥1,l∈[L]

1: f̂1,l ← 0 for l ∈ [L]

2: Ψ1,l,Ψ1,1,l ← ∅ for l ∈ [L], Ψ̃1,ℓ, Ψ̃1,1,ℓ ← ∅ for ℓ ∈ [L]
3: for k = 1, . . . ,K do
4: Vk,H+1 ← 0
5: for h = H, . . . , 1 do
6: Qk,h(·, ·)← minl∈[L]

{
1, rh(·, ·) + f̂k,l(·, ·, Vk,h+1) + min{1, βk,lDk,l(·, ·, Vk,h+1)}

}
7: Vk,h ← maxa∈A Qk,h(·, a)
8: πk

h ← argmaxa∈A Qk,h(·, a)
9: end for

10: Receive sk1
11: for h = 1, . . . ,H do
12: Take action akh ← πk

h(s
k
h), receive skh+1

13: Update zk,h ← (skh, a
k
h, Vk,h+1), z̃k,h ← (skh, a

k
h, V

2
k,h+1), yk,h ← Vk,h+1(s

k
h+1)

14: Update σ̄2
k,h according to (5.2)

15: Update lk,h, wk,h ← ADALEVEL
(
{Dk,h,l(zk,h)}l∈[L], σ̄k,h, α, γ

)
16: Update ℓk,h, w̃k,h ← ADALEVEL

(
{Dk,h,l(z̃k,h)}l∈[L], cvσ̄k,h, α, γ

)
17: Update Ψk,h+1,lk,h

← Ψk,h,lk,h
∪ {(k, h)}, Ψk,h+1,l ← Ψk,h,l for l ∈ [L], l ̸= lk,h

18: Update Ψ̃k,h+1,ℓk,h
← Ψ̃k,h,ℓk,h

∪ {(k, h)}, Ψ̃k,h+1,ℓ ← Ψ̃k,h,ℓ for ℓ ∈ [L], ℓ ̸= ℓk,h
19: end for
20: Update Ψk+1,l,Ψk+1,1,l ← Ψk,H+1,l for l ∈ [L], Ψ̃k+1,ℓ, Ψ̃k+1,1,ℓ ← Ψ̃k,H+1,ℓ for ℓ ∈ [L]

21: Update f̂k+1,l according to (5.1) for l ∈ [L]
22: end for

Summation of Bonuses in Each Level The regret can be related to the summation of bonuses
across each level, as follows:

Regret(T ) ≤ 2
∑
l∈[L]

∑
t∈ΨT+1,l

min
l∈[L]
{R, βt,lDt,l(xt)}.

Thanks to ADALEVEL, the properties in Property 1 hold. Specifically, for any l ∈ [L − 1], if
t ∈ ΨT+1,l, the maximum over uncertainty Dt,l(xt) and estimated variance σ̄t is of the order 2l.
For high-uncertainty data, βt,l+1Dt,l+1(xt) ≈ 22l, while Lemma E.4 implies |ΨT+1,l| ≈ 2−2ldF ,
which leads to a lower order term in the final regret. For high-variance data, βt,lDt,l(xt) ≈
σ̄tDt,l(xt), and Lemma E.4 implies Dt,l(xt) ≈

√
dF/|ΨT+1,l|, resulting a second-order term in the

final regret. We provide a more fine-grained analysis in Lemma E.3 to prove that for any l ∈ [L−1],∑
t∈ΨT+1,l

min
l∈[L]
{R, βt,lDt,l(xt)} = Õ

(√
dF logNF

∑
t∈ΨT+1,l

σ̄2
t +RdF logNF

)
.

The complete proof requires an in-depth analysis of the summation over different levels, and a
careful treatment of estimated variance to eliminate lower-order terms.

5 MULTI-LEVEL REGRESSION FOR REINFORCEMENT LEARNING

In this section, we extend our multi-level regression framework to MDPs with general function
approximation. This yields a new algorithm, ML-VTR, as detailed in Algorithm 3. We denote
Dk,l(·) := DF (·; zΨk,l ∪ z̃Ψ̃k,l

, wΨk,l ∪ w̃Ψ̃k,l
), Dk,h,l(·) := DF (·; zΨk,h,l ∪ z̃Ψ̃k,h,l

, wΨk,h,l ∪ w̃Ψ̃k,h,l
).

We first outline the high-level idea, then analyze the computational complexity and regret bound.

5.1 ALGORITHM DESCRIPTION

ML-VTR features a novel combination of the Multi-Level regression framework in Section 4
and Value-Targeted Regression (VTR) developed in Ayoub et al. (2020). Specifically, similar to

8
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UCB-MLR, in Line 15, we leverage ADALEVEL to partition data into sets {ΨK+1,l}l∈[L] based
on their uncertainty {Dk,h,l(zk,h)}l∈[L] and estimated variance σ̄k,h for data points zk,h. A similar
process is applied to create the sets {Ψ̃K+1,l}l∈[L] similarly for data points z̃k,h. Here, zi,h and z̃i,h
is defined in Line 13. Then we adopt Multi-Level VTR to estimate the model. Since all data share
the same transition model f∗, we can estimate it in a combined manner to reduce error:

f̂k+1,l = argmin
f∈F

∑
(i,h)∈Ψk+1,l

w2
i,h(f(zi,h)− yi,h)

2 +
∑

(i,h)∈Ψ̃k+1,l

w̃2
i,h(f(z̃i,h)− y2i,h)

2. (5.1)

Once the estimate {f̂k,l}l∈[L] are obtained, we construct the action value functions {Qk,h}h∈[H] as
in Line 6. And the upper bound of Var[yk,h|zk,h] = [VVk,h+1](s

k
h, a

k
h) is then set as

σ̄2
k,h = min

l∈[L],ℓ∈[L]

{
1, f̂k,ℓ(z̃k,h)− f̂2

k,l(zk,h)+min{1, 2βk,lDk,l(zk,h)}+min{1, βk,ℓDk,ℓ(z̃k,h)}
}
. (5.2)

Computational Complexity We analyze the computational complexity of ML-VTR under the as-
sumption that for any (s, a, V ) ∈ S × A × V , the function fP(s, a, V ) =

∑
s′∈S P(s′|s, a)V (s′)

can be evaluated inO time. RecallR represents the computational cost of the regression oracle. We
consider the computation cost for a single step (k, h). First, computing the action value function
Qk,h in Line 6 for a given state-action pair (s, a) requires Õ(L(O+R)) time, since it involves eval-
uating the estimated function f̂k,l and computing the uncertainty Dk,l for l ∈ [L]. To take an action
based on πk

h, the algorithm needs to compute Qk,h for |A| actions. Next, the estimated variance σ2
k,h

in (5.2) can be computed within Õ(L(O + R)) time. And ADALEVEL takes Õ(L) time. Finally,
it takes LR time to calculate f̂k+1,l in (5.1) for l ∈ [L]. Therefore, the total computational cost of
ML-VTR is Õ(KH|A|(O +R)).

5.2 REGRET BOUND

Theorem 5.1. For MDP with general function approximation defined in Section 3, if the parameters
in Algorithm 3 are set according to Section C, then with probability at least 1− (L+2)δ, ML-VTR
achieves

Regret(K) = Õ
(√

dF logNF Var∗K +max{1, cv}dF logNF
)
,

where Var∗K is the total variance of the optimal value functions {V ∗
h }h∈[H]:

Var∗K =

K∑
k=1

H∑
h=1

[VV ∗
h+1](s

k
h, a

k
h). (5.3)

Proof. The proof combines the technique used in proving contextual bandits with a fine-grained
analysis of the higher-order moments of value functions, which eliminates polynomial dependence
on the horizon H . See Section C for a detailed proof.

Our second-order result from Theorem 5.1 is also horizon-free, as its dependence on the horizon H
is up to logarithmic factors. As a special case, for a d-dimensional linear mixture MDP, we have
dF , logNF = O(d) (Huang et al., 2024). Our bound therefore simplifies to Õ

(
d
√
Var∗K + d2

)
,

which matches the state-of-the-art result by Zhao et al. (2023). This demonstrates that our novel
algorithm design and fine-grained analysis effectively and sharply handle general RL problems.

6 CONCLUSION

This paper presents a novel multi-level regression framework, ADALEVEL, that resolves a key chal-
lenge in online learning by partitioning data based on both uncertainty and variance. Our UCB-MLR
algorithm for nonlinear contextual bandits, is the first to achieve an optimal second-order regret
bound with computational efficiency. We extend this framework to reinforcement learning with gen-
eral function approximation, where our ML-VTR algorithm provides the first horizon-free, second-
order, and efficient regret bound. This multi-level regression technique is of independent interest
and applicable to a broad range of online decision-making problems.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used as a general-purpose writing assistant for tasks like grammar and spelling correction,
and to refine sentence structure. All authors take full responsibility for the final content.

A PROOF OF LEMMA 4.3

Proof of Lemma 4.3. We define filtration {Gt}t≥1 such that Xt ∈ Gt−1, Yt ∈ Gt. Recall the defini-
tion of f̂t+1 in (4.4), which implies

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))

2 ≤ 2

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))(Ys − f∗(Xs)).

For any fixed f ∈ F , denote Es(f) = w2
s(f(Xs) − f∗(Xs))(Ys − f∗(Xs)), which is a martingale

difference sequence adapted to the filtration {Gs}s∈[t]. Note |ws| ≤ W and f(Xs), f∗(Xs), Ys are
bounded in [0, R], thereby the expectation and summation of variances are upper bounded by

|Es(f)| ≤W 2R2,

t∑
s=1

E[E2
s (f)|Gs−1] ≤ σ2W 2R2t.

We denote Ds = DF (Xs;X[s], w[s]) for short. Furthermore, we have

max
s∈[t]
|Es(f)|

(a)

≤ Rmax
s∈[t]

w2
sDs

√√√√ t∑
s=1

w2
s(f(Xs)− f∗(Xs))2 + λ,

t∑
s=1

E[E2
s (f)|Gs−1] ≤ σ2

t∑
s=1

w2
s(f(Xs)− f∗(Xs))

2,

where (a) holds due to the definition of DF in (3.1). Let ϵ > 0 and V be a ϵ-covering net of F .
Applying Lemma E.1 with m = v = σ2, ιt = 16 log 2NF (ϵ)t2(log(σ2W 2R2t)+2)(log(W 2R2)+2)

δ , and a
union bound over f ∈ V , for any t ≥ 1, with probability at least 1− δ/(2t2), we have for all f ∈ V ,

2

t∑
s=1

Es(f)

≤
√
ιt ·

√√√√σ2

t∑
s=1

w2
s(f(Xs)− f∗(Xs))2 + σ4

+ ιt

Lmax
s∈[t]

w2
sDs ·

√√√√ t∑
s=1

w2
s(f(Xs)− f∗(Xs))2 + λ+ σ2


(a)

≤
(
√
ιtσ + ιtLmax

s∈[t]
w2

sDs

)√√√√ t∑
s=1

w2
s(f(Xs)− f∗(Xs))2 +

√
λιtLmax

s∈[t]
w2

sDs + 2ιtσ
2

(b)

≤ 1

2

t∑
s=1

w2
s(f(Xs)− f∗(Xs))

2 +
1

2

(
√
ιtσ + ιtLmax

s∈[t]
w2

sDs

)2

+
1

2

(
ιtLmax

s∈[t]
w2

sDs

)2

+
1

2
λ+ 2ιtσ

2

(c)

≤ 1

2

t∑
s=1

w2
s(f(Xs)− f∗(Xs))

2 +
1

2

(
√
ιtσ + 2ιtLmax

s∈[t]
w2

sDs

)2

+
1

2
λ+ 2ιtσ

2,

where (a) holds due to
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0 and ιt ≥ 1, (b) holds due to

√
ab ≤

a/2 + b/2 for any a, b ≥ 0, and (c) holds due to a2 + b2 ≤ (a+ b)
2 for any a, b ≥ 0. Let g ∈ V

12
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such that ∥g − f̂t+1∥∞ ≤ ϵ, then

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))

2

≤ 2

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))(Ys − f∗(Xs))

≤ 2

t∑
s=1

w2
s(g(Xs)− f∗(Xs))(Ys − f∗(Xs)) + 2W 2Rtϵ

≤ 1

2

t∑
s=1

w2
s(g(Xs)− f∗(Xs))

2 +
1

2

(
√
ιtσ + 2ιtRmax

s∈[t]
w2

sDs

)2

+
1

2
λ+ 2ιtσ

2 + 2W 2Rtϵ

≤ 1

2

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))

2 +
1

2

(
√
ιtσ + 2ιtRmax

s∈[t]
w2

sDs

)2

+
1

2
λ+ 2ιtσ

2 + 3W 2Rtϵ.

That is for any fixed t > 0, we have

t∑
s=1

w2
s(f̂t+1(Xs)− f∗(Xs))

2 ≤
(
√
ιtσ + 2ιtRmax

s∈[t]
w2

sDs

)2

+ λ+ 4ιtσ
2 + 6W 2Rtϵ

≤
(
3
√
ιtσ + 2ιtRmax

s∈[t]
w2

sDs +
√
λ+
√
6W 2Rtϵ

)2

,

where the second inequality is due to 2
√
ab ≤ a+ b and a+ b ≤ (

√
a+
√
b)2 for any a, b ≥ 0. Note

w2
tDt = w2

tDF (Xt;X[t], w[t])

= sup
f1,f2∈F

w2
t (f1(Xt)− f2(Xt))

2∑
s∈[t] w

2
s(f1(Xs)− f2(Xs))2 + λ

≤ min{1, w2
tDF (Xt;X[t−1], w[t−1])}.

Finally, the result holds through a union bound over all t ≥ 1 and
∑∞

t=1
1
2t2 ≤ 1.

B PROOF OF THEOREM 4.2

Parameters in Algorithm 1 For any t ∈ [T ], l ∈ [L], ℓ ∈ [L̃], let Bt,l, B̃t,ℓ denote the confidence
region as follows:

Bt,l :=
{
f ∈ F :

∑
s∈Ψt,l

w2
s(f̂t,l(xs)− f(xs)

2 ≤ β2
t,l

}
,

B̃t,ℓ :=
{
g ∈ G :

∑
s∈Ψ̃t,ℓ

w̃2
s(ĝt,ℓ(xs)− g(xs)

2 ≤ β̃2
t,ℓ

}
.

Here

βt,l = 2lα
(
3
√
ιt + 2

ιtR

γ

)
+
√
λ+
√
6Rtϵ, (B.1)

β̃t,ℓ = 2ℓα̃
(
3
√

ι̃t + 2
ι̃tR

2

γ̃

)
+
√

λ̃+
√
6R2tϵ, (B.2)

where

ιt = 16 log
2NF (ϵ)t

2(log(σ2R2t) + 2)(log(R2) + 2)

δ
= Õ(logNF )

ι̃t = 16 log
2NG(ϵ̃)t

2(log(c2vσ
2R4t) + 2)(log(R4) + 2)

δ
= Õ(logNG).
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Furthermore, setting

γ = R
√
logNF , γ̃ = R2

√
logNG , (B.3)

λ = α2 logNF , λ̃ = α̃2 logNG , (B.4)

ϵ =
α2 logNF

RT
, ϵ̃ =

α̃2 logNG

R2T
, (B.5)

we have

βt,l = Õ(2lα
√
logNF ), β̃t,ℓ = Õ(2ℓα̃

√
logNG).

Property 1 (Properties of ADALEVEL). For any t ∈ [T ], suppose lt = l, then

1. If l = 0:
Dt,1(Xt) ≤ 2α/γ.

2. If l ∈ [L− 1]:
wt =

2lα
γDt,l(Xt)

,

Dt,l+1(Xt) ≤ 2l+1α/γ,

σ̄t ≤ 2lα;

or


wt = 1,

Dt,l(Xt) ≤ 2lα/γ,

2l−1α < σ̄t ≤ 2lα.

3. If l = L: {
wt =

2Lα
γDt,L(Xt)

,

σ̄t ≤ 2Lα;
or


wt = 1,

Dt,L(Xt) ≤ 2Lα/γ,

2L−1α < σ̄t ≤ 2Lα.

Proof of Theorem 4.2. For t ∈ [T ], we define events Et, E as

Et = {∀l ∈ [L], f∗ ∈ Bt,l and ∀ℓ ∈ [L̃], g∗ ∈ B̃t,ℓ}, E =
⋂

k∈[K]

Et.

The following lemmas hold.

Lemma B.1. On event Et, we have for all l ∈ [L], ℓ ∈ [L̃],

|f̂t,l(x)− f∗(x)| ≤ βt,lDt,l(x),

|ĝt,ℓ(x)− g∗(x)| ≤ β̃t,ℓD̃t,ℓ(x).

Furthermore,

f∗(x) ≤ min
l∈[L]

(
f̂t,l(x) + min{R, βt,lDt,l(x)}

)
,

and

σ2
t ≤ σ̄2

t .

Proof. On event Et, for any l ∈ [L], we have

|f̂t,l(x)− f∗(x)| ≤ Dt,l(x)

√ ∑
s∈Ψt,l

w2
s(f̂t,l(xs)− f∗(x))2 + λ

≤ Dt,l(x)
√

β2
t,l + λ

≈ βt,lDt,l(x),

since
√
λ = O(βt,l) according to (B.4). Similarly, for any ℓ ∈ [L],

|ĝt,ℓ(x)− g∗(x)| ≤ β̃t,lD̃t,l(x).
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Furthermore, since this holds for all l ∈ [L], we can choose the upper confidence bound of f∗(x) as

min
l∈[L]

(
f̂t,l(x) + min{R, βt,lDt,l(x)}

)
≥ f∗(x).

Recall the definition of σ̄t in (4.3), we have for all l ∈ [L], ℓ ∈ [L̃],

|(ĝt,ℓ(xt)− f̂2
t,l(xt))− (g∗(xt)− f2

∗ (xt))|

≤ |ĝt,ℓ(xt)− g∗(xt)|+ |f̂t,l(xt) + f∗(xt))| · |f̂t,l(xt)− f∗(xt))|

≤ min{R2, β̃t,ℓD̃t,ℓ(xt)}+min{R2, 2Rβt,lDt,l(xt)}.

Therefore, σ2
t is bounded by σ̄2

t :

σ2
t = Var[y2t |xt] = E[y2t |xt]− E2[yt|xt] = g∗(xt)− f2

∗ (xt)

≤ min
l∈[L],ℓ∈[L̃]

{
σ2, ĝt,ℓ(xt)− f̂2

t,l(xt) +Rmin{R, 2βt,lDt,l(xt)}+min{R2, β̃t,ℓD̃t,ℓ(xt)}
}

= σ̄2
t .

Lemma B.2. Event E holds with probability at least 1− (L+ L̃)δ.

Proof. By a union bound, with probability at least 1 − (L + L̃)δ, the result follows from
Lemma 4.3 using {Xt, Yt, wt}t = {xt, yt, wt}t∈ΨT+1,l

, F for l ∈ [L], and using {Xt, Yt, wt}t =
{xt, y

2
t , w̃t}t∈Ψ̃T+1,ℓ

, F = G for ℓ ∈ [L̃]. We will check the conditions of Lemma 4.3 for all t ∈ [T ]

by induction.

First, for t = 1, the result holds trivially.

Next, for t > 1, suppose event
⋂

s∈[t] Es holds, by Lemma B.1, we have for all s ∈ [t],

σ2
s ≤ σ̄2

s .

Thus from Property 1, for all l ∈ [L], ℓ ∈ [L],

Var[ys|xs] = σ2
s ≤ σ̄2

s ≤ 2lα, wsDs,l(xs) ≤
2lα

γ
, ∀s ∈ Ψt+1,l,

Var[y2s |xs] ≤ c2vσ
2
s ≤ c2vσ̄

2
s ≤ 2ℓα̃, w̃sD̃s,ℓ(xs) ≤

2ℓα̃

γ̃
, ∀s ∈ Ψ̃t+1,ℓ.

Applying Lemma 4.3 with σ = 2lα, maxs∈[t] w
2
sDF (Xs;X[s−1], w[s−1]) =

2lα
γ , we have∑

s∈Ψt+1,l

w2
s(f̂t+1,l(xs)− f∗(xs))

2 ≤ β2
t+1,l,

that is f∗ ∈ Bt+1,l for all l ∈ [L]. Applying Lemma 4.3 again with σ = 2ℓα̃,
maxs∈[t] w

2
sDF (Xs;X[s−1], w[s−1]) =

2ℓα̃
γ̃ , we have∑

s∈Ψ̃t+1,ℓ

w̃2
s(ĝt+1,ℓ(xs)− g∗(xs)

2 ≤ β̃2
t+1,ℓ,

that is g∗ ∈ B̃t+1,ℓ for all ℓ ∈ [L̃], so event Et+1 holds.

Then the proof is completed by induction over t ∈ [T ].

We define

U :=
∑
t∈[T ]

min
l∈[L]
{R, βt,lDt,l(xt)}, (B.6)

Ũ :=
∑
t∈[T ]

min
ℓ∈[L̃]
{R2, β̃t,ℓD̃t,ℓ(xt)}. (B.7)
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On event E , which holds with probability at least 1− (L+ L̃)δ by Lemma B.2, by the optimism of
xt implied by Lemma B.1, regret is bounded as

Regret(T ) =
∑
t∈[T ]

(f∗(x
∗
t )− f∗(xt))

≤
∑
t∈[T ]

[
min
l∈[L]

(
f̂t,l(xt) + min{R, βt,lDt,l(xt)}

)
− f∗(xt)

]
≤ 2

∑
t∈[T ]

min
l∈[L]
{R, βt,lDt,l(xt)}

(B.6)
= 2U. (B.8)

Setting

α = R

√
dF logNF

T
, α̃ = R2

√
dG logNG

T
, (B.9)

applying Lemma E.3 to U and Ũ , we have

U = Õ
(√

dF logNF
∑

t∈[T ]
σ̄2
t +RdF logNF

)
, (B.10)

Ũ = Õ
(
cvR

√
dF logNF

∑
t∈[T ]

σ̄2
t +R2dG logNG

)
. (B.11)

Furthermore,∑
t∈[T ]

σ̄2
t ≤

∑
t∈[T ]

(
σ2
t + 2Rmin

l∈[L]
{R, 2βt,lDt,l(xt)}+ 2 min

ℓ∈[L̃]
{R2, β̃t,ℓD̃t,ℓ(xt)}

)
≤
∑
t∈[T ]

σ2
t + 4RU + 2Ũ . (B.12)

So we have

Ũ
(B.11)
≲ cvR

√
dG logNG

∑
t∈[T ]

σ̄2
t +R2dG logNG

(B.12)
≲ cvR

√
dG logNG

(∑
t∈[T ]

σ2
t +RU + Ũ

)
+R2dG logNG

≲ cvR

√
dG logNG

(∑
t∈[T ]

σ2
t +RU

)
+max{1, c2v}R2dG logNG , (B.13)

where the last inequality holds since x ≤ a
√
x+ b implies x ≤ a2 + 2b for any x ≥ 0.

And

U
(B.10)
≲

√
dF logNF

∑
t∈[T ]

σ̄2
t +RdF logNF

(B.12)
≲

√
dF logNF

(∑
t∈[T ]

σ2
t +RU + Ũ

)
+RdF logNF

≲

√
dF logNF

(∑
t∈[T ]

σ2
t +RU

)
+RdF logNF +

√
dF logNF Ũ ,
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where the last inequality holds due to
√
a+ b ≤

√
a+
√
b for any a, b ≥ 0. Here√

dF logNF Ũ

=

√√√√
max{1, cv}R

√
dF logNFdG logNG ·

√
dF logNF
dG logNG

max{1, cv}R
Ũ

≲

√
dF logNF

(∑
t∈[T ]

σ2
t +RU

)
+max{1, cv}R

√
dF logNFdG logNG

≈
√

dF logNF

(∑
t∈[T ]

σ2
t +RU

)
+ CRdF logNF ,

where the inequality holds due to Cauchy-Schwartz inequality and (B.13), and the last equality holds

since C := max{1, cv}
√

dG logNG
dF logNF

. Plugin back, we have

U ≲

√
dF logNF

(∑
t∈[T ]

σ2
t +RU

)
+max{1, C}RdF logNF

≲

√
dF logNF

∑
t∈[T ]

σ2
t +max{1, C}RdF logNF . (B.14)

Finally, combining (B.8) and (B.14), we have

Regret(T ) = Õ
(√

dF logNF
∑

t∈[T ]
σ2
t +max{1, C}RdF logNF

)
.

C PROOFS FOR REINFORCEMENT LEARNING

Parameters in Algorithm 3 For k ∈ [K], l ∈ [L], let Bk,l denote the confidence region as follows:

Bk,l :=
{
f ∈ F :

∑
(i,h)∈Ψk,l

w2
i,h(f̂k,l(zi,h)− f(zi,h))

2 +
∑

(i,h)∈Ψ̃k,l

w̃2
i,h(f̂k,l(z̃i,h)− f(z̃i,h))

2 ≤ β2
k,l

}
.

Here
βk,l = 2lα

(
3
√
ιk + 2

ιk
γ

)
+
√
λ+
√
12kHϵ (C.1)

where

ιk = 16 log
16NF (ϵ)k

2H2(log(2kH) + 2)

δ
= Õ(logNF ).

Furthermore, setting

γ =
√
logNF , (C.2)

λ = α2 logNF , (C.3)

ϵ =
α2 logNF

KH
, (C.4)

we have
βk,l = Õ(2lα

√
logNF ).

C.1 OPTIMISM

For k ∈ [K], we define events Ek, and E as

Ek = {∀l ∈ [L], f∗ ∈ Bk,l}, E =
⋂

k∈[K]

Ek.

The following lemmas hold.
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Lemma C.1. On event Ek, we have for all l ∈ [L],

|f̂k,l(z)− f∗(z)| ≤ βk,lDk,l(z).

Furthermore, for all h ∈ [H],

rh(s
k
h, a

k
h) + [PVk,h+1](s

k
h, a

k
h) ≤ Vk,h(s

k
h),

Vk,h(s
k
h)− rh(s

k
h, a

k
h)− [PVk,h+1](s

k
h, a

k
h) ≤ 2 min

l∈[L]
{1, βk,lDk,l(zk,h)},

and
[VVk,h+1](s

k
h, a

k
h) ≤ σ̄2

k,h,

σ̄2
k,h − [VVk,h+1](s

k
h, a

k
h) ≤ 2 min

l∈[L]
{1, 2βk,lDk,l(zk,h)}+ 2 min

ℓ∈[L]
{1, βk,ℓDk,ℓ(z̃k,h)}.

Proof. See Appendix D.1 for a detailed proof.

Lemma C.2. Event E holds with probability at least 1− Lδ.

Proof. See Appendix D.2 for a detailed proof.

Lemma C.3. On event E , we have for all (k, h) ∈ [K]×[H], Qk,h(·, ·) ≥ Q∗
h(·, ·), Vk,h(·) ≥ V ∗

h (·).

Proof. See Appendix D.3 for a detailed proof.

C.2 HIGHER-ORDER QUANTITIES IN MDPS

Inspired by Zhao et al. (2023); Huang et al. (2024), we define the following higher-order quantities
of MDPs. Let M = ⌈log2(3KH)⌉.
We define K to be a set of episodes when the sum of uncertainty within each level grows smoothly:

K := {k ∈ [K] : ∀l ∈ [L],
∑

h∈Ψk+1,l\Ψk,l

w2
k,hD

2
k,h,l(zk,h) +

∑
h∈Ψ̃k+1,l\Ψ̃k,l

w̃2
k,hD

2
k,h,l(z̃k,h) ≤ 1}.

(C.5)
Let K̃ := [K]\K. We can prove the number of episodes when uncertainty grows sharply is at most
|K̃| = Õ(LdF ).

We use V̌k,h(s) to denote the estimation error between the estimated value function and the optimal
value function, and use Ṽk,h(s) to denote the sub-optimality gap of policy πk at stage h:

V̌k,h(s) = Vk,h(s)− V ∗
h (s), ∀s ∈ S, (k, h) ∈ [K]× [H], (C.6)

Ṽk,h(s) = V ∗
h (s)− V πk

h (s), ∀s ∈ S, (k, h) ∈ [K]× [H]. (C.7)

In addition, we use Šm, S̃m to represent the total variance of 2m-th order value functions V̌ 2m

k,h+1,
Ṽ 2m

k,h+1:

Šm =
∑
k∈K

∑
h

[VV̌ 2m

k,h+1](s
k
h, a

k
h), (C.8)

S̃m =
∑
k∈K

∑
h

[VṼ 2m

k,h+1](s
k
h, a

k
h). (C.9)

Then, for 2m-th order value functions V̌ 2m

k,h+1, Ṽ
2m

k,h+1, we use Ǎm, Ãm to denote the summation of
stochastic transition noise as follows:

Ǎm =

∣∣∣∣∣∑
k∈K

∑
h

[
[PV̌ 2m

k,h+1](s
k
h, a

k
h)− V̌ 2m

k,h+1(s
k
h+1)

]∣∣∣∣∣ , (C.10)

Ãm =

∣∣∣∣∣∑
k∈K

∑
h

[
[PṼ 2m

k,h+1](s
k
h, a

k
h)− Ṽ 2m

k,h+1(s
k
h+1)

]∣∣∣∣∣ . (C.11)
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Finally, we use the R, R̃ to denote the summation of bonuses:

R =
∑
k∈K

∑
h

min
l∈[L]
{1, βk,lDk,l(zk,h)}, (C.12)

R̃ =
∑
k∈K

∑
h

min
ℓ∈[L]
{1, βk,ℓDk,ℓ(z̃k,h)} (C.13)

Now, we introduce the following lemmas to build the connection between these quantities.

Lemma C.4. We have
|K̃| ≤ 2LdF . (C.14)

Proof. See Appendix D.4 for a detailed proof.

Lemma C.5. On event E , we have for all m ∈ [M ],

Šm ≤ Ǎm+1 + 2m+1 · (2R), (C.15)

S̃m ≤ Ãm+1 + 2m+1 · (2R+ Ǎ0). (C.16)

Proof. See Appendix D.5 for a detailed proof.

Lemma C.6. With probability at least 1− 2δ, we have for all m ∈ [M ],

Ǎm ≤
√
ζŠm + ζ, (C.17)

Ãm ≤
√
ζŠm + ζ, (C.18)

where ζ = 8 log(2(M + 1)(log(KH) + 2)/δ). We denote the corresponding event by A.

Proof. See Appendix D.6 for a detailed proof.

Lemma C.7. On event E ∩ A, we have

Ǎ0 ≤ 2
√

2ζR+ 7ζ, (C.19)

Ǎ1 ≤ 4
√

ζR+ 7ζ. (C.20)

Proof. See Appendix D.7 for a detailed proof.

Lemma C.8. On event E ∩ A, we have

Ã0 ≤ 4
√

2ζR+ 15ζ. (C.21)

Proof. See Appendix D.8 for a detailed proof.

Lemma C.9. Setting

α =
dF logNF

KH
, (C.22)

on event E ∩ A, we have

R = Õ
(√

dF logNF Var∗K +max{1, cv}dF logNF

)
. (C.23)

Proof. See Appendix D.9 for a detailed proof.
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C.3 REGRET ANALYSIS

Proof of Theorem 5.1. On event E ∩ A, which holds with probability at least 1 − (L + 2)δ by
Lemma C.2, C.6 and a union bound, we have all lemmas in this section hold. By the optimism
implied by Lemma C.3, we have

Regret(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)
≤

K∑
k=1

(
Vk,1(s

k
1)− V πk

1 (sk1)
)
. (C.24)

We further use Lemma C.10 to bound the regret with the quantities defined in Section C.2.

Lemma C.10. On event E , we have

K∑
k=1

(
Vk,1(s

k
1)− V πk

(sk1)
)
≤ 2R+ Ǎ0 + Ã0 + |K̃|. (C.25)

Proof. First, we decompose Vk,1(s
k
1) and V πk

1 (sk1) as follows

Vk,1(s
k
1) =

H∑
h=1

[Vk,h(s
k
h)− Vk,h+1(s

k
h+1)]

=

H∑
h=1

r(skh, a
k
h) +

H∑
h=1

[
Vk,h(s

k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]

+

H∑
h=1

[
[PVk,h+1](s

k
h, a

k
h)− Vk,h+1(s

k
h+1)

]
,

V πk

1 (sk1) =

H∑
h=1

[V πk

h (skh)− V πk

h+1(s
k
h+1)]

=

H∑
h=1

r(skh, a
k
h) +

H∑
h=1

[
V πk

h (skh)− r(skh, a
k
h)− [PV πk

h+1](s
k
h, a

k
h)
]

+

H∑
h=1

[
[PV πk

h+1](s
k
h, a

k
h)− V πk

h+1(s
k
h+1)

]
=

H∑
h=1

r(skh, a
k
h) +

H∑
h=1

[
[PV πk

h+1](s
k
h, a

k
h)− V πk

h+1(s
k
h+1)

]
,

Thus it follows that

Vk,1(s
k
1)− V πk

1 (sk1)

=

H∑
h=1

[
Vk,h(s

k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]

+

H∑
h=1

[
[PVk,h+1](s

k
h, a

k
h)− Vk,h+1(s

k
h+1)

]
−

H∑
h=1

[
[PV πk

h+1](s
k
h, a

k
h)− V πk

h+1(s
k
h+1)

]
=

H∑
h=1

[
Vk,h(s

k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]

+

H∑
h=1

[
[PV̌k,h+1](s

k
h, a

k
h)− V̌k,h+1(s

k
h+1)

]
+

H∑
h=1

[
[PṼk,h+1](s

k
h, a

k
h)− Ṽk,h+1(s

k
h+1)

]
.
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Then we have

K∑
k=1

[
Vk,1(s

k
1)− V πk

(sk1)
]

(a)

≤ |K̃|+ 2
∑
k∈K

∑
h

min
l∈[L]
{1, βk,lDk,l(zk,h)}+

∑
k∈K

∑
h

[
[PV̌k,h+1](s

k
h, a

k
h)− V̌k,h+1(s

k
h+1)

]
+
∑
k∈K

∑
h

[
[PṼk,h+1](s

k
h, a

k
h)− Ṽk,h+1(s

k
h+1)

]
= 2R+ Ǎ0 + Ã0 + |K̃|,

where (a) is due to Lemma C.1.

Then we have

2R+ Ǎ0 + Ã0 + |K̃|
(a)

≲ R+
√
R+ dF

(b)

≲
√
dF logNF Var∗K +max{1, cv}dF logNF , (C.26)

where (a) holds due to (C.19), (C.21), (C.14), and (b) holds due to (C.23).

Finally, Combining (C.24), (C.25) and (C.26), the high-probability regret bound is given by

Regret(K) = Õ
(√

dF logNF Var∗K +max{1, cv}dF logNF

)
.

D MISSING PROOFS IN SECTION C

D.1 PROOF OF LEMMA C.1

Proof of Lemma C.1. On event Ek, for any l ∈ [L], f∗ ∈ Bk,l, it follows that

|f̂k,l(z)− f∗(z)|
(a)

≤ Dk,l(z)
√ ∑

(i,h)∈Ψk,l

w2
i,h(f̂k,l(zi,h)− f∗(zi,h))2 +

∑
(i,h)∈Ψ̃k,l

w̃2
i,h(f̂k,l(z̃i,h)− f∗(z̃i,h))2 + λ

(b)

≤ Dk,l(z)
√
β2
k,l + λ

(c)
≈ βk,lDk,l(z),

where (a) holds due to the definition of DF in (3.1), (b) holds due to
√
a+ b ≤

√
a +
√
b for any

a, b ≥ 0, (c) holds due to
√
λ = O(βk,l) by (C.3).

Furthermore, since this holds for all l ∈ [L], we have

rh(s
k
h, a

k
h) + [PVk,h+1](s

k
h, a

k
h)

= rh(s
k
h, a

k
h) + f∗(zk,h)

≤ min
l∈[L]
{1, rh(skh, akh) + f̂k,l(zk,h) + βk,lDk,l(zk,h)}

= Vk,h(s
k
h).
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Thus,
Vk,h(s

k
h)− rh(s

k
h, a

k
h) + [PVk,h+1](s

k
h, a

k
h)

= min
l∈[L]
{1, rh(skh, akh) + f̂k,l(zk,h) + βk,lDk,l(zk,h)} − rh(s

k
h, a

k
h)− f∗(zk,h)

≤ 2 min
l∈[L]
{1, βk,lDk,l(zk,h)}.

Recall the definition of σ̄k,h in (5.2), we have for all l ∈ [L], ℓ ∈ [L],

|[f̂k,ℓ(z̃k,h)− f̂2
k,l(zk,h)]− [f∗(z̃k,h)− f2

∗ (zk,h)]|

≤ |f̂k,ℓ(z̃k,h)− f∗(z̃k,h)|+ |f̂2
k,l(zk,h)− f2

∗ (zk,h)|

= |f̂k,ℓ(z̃k,h)− f∗(z̃k,h)|+ |f̂k,l(zk,h) + f∗(zk,h)| · |f̂k,l(zk,h)− f∗(zk,h)|
≤ min{1, βk,lDk,ℓ(z̃k,h)}+min{1, 2βk,lDk,l(zk,h)},

where the last inequality holds due to f̂k,l, f∗ ∈ [0, 1]. Therefore, [VVk,h+1](s
k
h, a

k
h) is bounded by

σ̄2
k,h:

[VVk,h+1](s
k
h, a

k
h)

= [PV 2
k,h+1](s

k
h, a

k
h)− [PVk,h+1]

2(skh, a
k
h) = f∗(z̃k,h)− f2

∗ (zk,h)

≤ min
l∈[L],ℓ∈[L]

{
1, f̂k,ℓ(z̃k,h)− f̂2

k,l(zk,h) + min{1, 2βk,lDk,l(zk,h)}+min{1, βk,ℓDk,ℓ(z̃k,h)}
}

= σ̄2
k,h.

Thus
σ̄2
k,h − [VVk,h+1](s

k
h, a

k
h)

= min
l∈[L],ℓ∈[L]

{
1, f̂k,ℓ(z̃k,h)− f̂2

k,l(zk,h) + min{1, 2βk,lDk,l(zk,h)}+min{1, βk,ℓDk,ℓ(z̃k,h)}
}

− f∗(z̃k,h) + f2
∗ (zk,h)

≤ 2 min
l∈[L]
{1, 2βk,lDk,l(zk,h)}+ 2 min

ℓ∈[L]
{1, βk,ℓDk,ℓ(z̃k,h)}.

D.2 PROOF OF LEMMA C.2

Proof of Lemma C.2. By a union bound, with probability at least 1 − Lδ, the result follows from
Lemma 4.3 using {X2t−1, Y2t−1, w2t−1}t ∪ {X2t, Y2t, w2t}t = {zk,h, yk,h, wk,h}(k,h)∈ΨK+1,l

∪
{z̃k,h, y2k,h, w̃k,h}(k,h)∈Ψ̃K+1,l

, F for l ∈ [L]. We will check the conditions of Lemma 4.3 for all
k ∈ [K] by induction.

First, for k = 1, the result holds trivially.

Next, for k > 1, suppose event
⋂

i∈[k] Ei holds, by Lemma C.1, we have for all (i, h) ∈ [k]× [H],

[VVi,h+1](s
i
h, a

i
h) ≤ σ̄2

i,h.

Thus from Property 1, for all l ∈ [L],

Var[yi,h|zi,h] = [VVi,h+1](s
i
h, a

i
h) ≤ σ̄2

i,h ≤ 2lα, wi,hDk,h,l(zi,h) ≤
2lα

γ
∀(i, h) ∈ Ψk+1,l,

Var[y2i,h|z̃i,h] = [VV 2
i,h+1](s

i
h, a

k
h) ≤ c2vσ̄

2
i,h ≤ 2lα, w̃i,hDk,h,l(z̃i,h) ≤

2lα

γ
∀(i, h) ∈ Ψ̃k+1,l.

Applying Lemma 4.3 with σ = 2lα, maxs∈[t] w
2
sDF (Xs;X[s−1], w[s−1]) =

2lα
γ , we have∑

(i,h)∈Ψk+1,l

w2
i,h(f̂k+1,l(zi,h)− f∗(zi,h))

2 +
∑

(i,h)∈Ψ̃k+1,l

w̃2
i,h(f̂k+1,l(z̃i,h)− f∗(z̃i,h))

2 ≤ β2
k+1,l,

that is f∗ ∈ Bk+1,l for all l ∈ [L], so event Ek+1 holds.

Then the proof is completed by induction over k ∈ [K].
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D.3 PROOF OF LEMMA C.3

Proof of Lemma C.3. We prove the optimism by induction. When h = H+1, we have Vk,H+1(·) =
V ∗
H+1(·) = 0, and the result holds trivially. We assume the statement is true for all h+ 1, and prove

the case of h. For any (s, a), if Qk,h(s, a) = 1, then Qk,h(s, a) = 1 ≥ Q∗
h(s, a). Otherwise, we

have
Qk,h(s, a)−Q∗

h(s, a)

= min
l∈[L]

{
1, rh(s, a) + f̂k,l(s, a, Vk,h+1) + min{1, βk,lDk,l(s, a, Vk,h+1)}

}
− rh(s, a)− f∗(s, a, V

∗
h+1)

≥ min
l∈[L]

(
f̂k,l(s, a, Vk,h+1) + min{1, βk,lDk,l(s, a, Vk,h+1)}

)
− f∗(s, a, Vk,h+1)

≥ 0,

where the first inequality holds due to Vk,h+1(·) ≥ V ∗
h+1(·) and the second holds due to Lemma C.1.

That is, we have Qk,h(·, ·) ≥ Q∗
h(·, ·) and therefore Vk,h(·) ≥ V ∗

h (·). Then the proof is completed
by induction.

D.4 PROOF OF LEMMA C.4

Proof of Lemma C.4. Recall the definition of K̃, we have

k ∈ K̃ ⇐⇒ ∃l ∈ [L],
∑

h∈Ψk+1,l\Ψk,l

w2
k,hD

2
k,h,l(zk,h) +

∑
h∈Ψ̃k+1,l\Ψ̃k,l

w̃2
k,hD

2
k,h,l(z̃k,h) > 1.

Let K̃l denote the indices k such that

K̃l,1 :=
{
k ∈ [K] :

∑
h∈Ψk+1,l\Ψk,l

w2
k,hD

2
k,h,l(zk,h) +

∑
h∈Ψ̃k+1,l\Ψ̃k,l

w̃2
k,hD

2
k,h,l(z̃k,h) > 1

}
.

Then we have |K̃| ≤ |
⋃

l∈[L] K̃l| ≤
∑

l∈[L] |K̃l|. For any l ∈ [L], we have

|K̃l| ≤
K∑

k=1

min
{
1,

∑
h∈Ψk+1,l\Ψk,l

w2
k,hD

2
k,h,l(zk,h) +

∑
h∈Ψ̃k+1,l\Ψ̃k,l

w̃2
k,hD

2
k,h,l(z̃k,h)

}
≤

∑
(k,h)∈ΨK+1,l

min
{
1, w2

k,hD
2
k,h,l(zk,h)

}
+

∑
(k,h)∈Ψ̃K+1,l

min
{
1, w̃2

k,hD
2
k,h,l(z̃k,h)

}
≤ 2dF .

Taking the summation over l ∈ [L] gives the upper bound of |K̃|.

D.5 PROOF OF LEMMA C.5

Proof of Lemma C.5. We are to bound Šm and S̃m with similar arguments.

Recall the definition of Šm in (C.8), we have

Šm =
∑
k∈K

∑
h

[VV̌ 2m

k,h+1](s
k
h, a

k
h)

=
∑
k∈K

∑
h

[
[PV̌ 2m+1

k,h+1](s
k
h, a

k
h)− [PV̌ 2m

k,h+1]
2(skh, a

k
h)

2
]

=
∑
k∈K

∑
h

[
[PV̌ 2m+1

k,h+1](s
k
h, a

k
h)− V̌ 2m+1

k,h+1(s
k
h+1)

]
+
∑
k∈K

∑
h

[
V̌ 2m+1

k,h (skh)− [PV̌ 2m

k,h+1]
2(skh, a

k
h)
]

+
∑
k∈K

∑
h

(
V̌ 2m+1

k,h+1(s
k
h+1)− V̌ 2m+1

k,h (skh)
)

≤ Ǎm+1 +
∑
k∈K

∑
h

[
V̌ 2m+1

k,h (skh)− [PV̌ 2m

k,h+1]
2(skh, a

k
h)
]
. (D.1)
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For the second term in (D.1), we have

∑
k∈K

∑
h

[
V̌ 2m+1

k,h (skh)− [PV̌ 2m

k,h+1]
2(skh, a

k
h)
]

(a)

≤
∑
k∈K

∑
h

[
V̌ 2m+1

k,h (skh)− [PV̌k,h+1]
2m+1

(skh, a
k
h)
]

=
∑
k∈K

∑
h

[
V̌k,h(s

k
h)− [PV̌k,h+1](s

k
h, a

k
h)
] m∏
i=0

[
V̌ 2i

k,h(s
k
h) + [PV̌k,h+1]

2i(skh, a
k
h)
]

≤ 2m+1
∑
k∈K

∑
h

max
{
V̌k,h(s

k
h)− [PV̌k,h+1](s

k
h, a

k
h), 0

}
(b)

≤ 2m+1
∑
k∈K

∑
h

max
{
Vk,h(s

k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h), 0

}
(c)

≤ 2m+1
∑
k∈K

∑
h

2 min
l∈[L]
{1, βk,lDk,l(zk,h)}

= 2m+1 · (2R), (D.2)

where (a) holds due to E[X2] ≥ (E[X])2, (b) holds due to the definition of V̌k,h and V ∗
h (s

k
h) ≥

r(skh, a
k
h)+ [PV ∗

h+1](s
k
h, a

k
h), while (c) is due to Lemma C.1. Substituting (D.2) into (D.1), we have

Šm ≤ Ǎm+1 + 2m+1 · (2R).

Next, we proceed to bound S̃m. Recall the definition of S̃m in (C.9), we have

S̃m =
∑
k∈K

∑
h

[VṼ 2m

k,h+1](s
k
h, a

k
h)

=
∑
k∈K

∑
h

[
[PṼ 2m+1

k,h+1](s
k
h, a

k
h)− [PṼ 2m

k,h+1]
2(skh, a

k
h)

2
]

=
∑
k∈K

∑
h

[
[PṼ 2m+1

k,h+1](s
k
h, a

k
h)− Ṽ 2m+1

k,h+1(s
k
h+1)

]
+
∑
k∈K

∑
h

[
Ṽ 2m+1

k,h (skh)− [PṼ 2m

k,h+1]
2(skh, a

k
h)
]

+
∑
k∈K

∑
h

(
Ṽ 2m+1

k,h+1(s
k
h+1)− Ṽ 2m+1

k,h (skh)
)

≤ Ãm+1 +
∑
k∈K

∑
h

[
Ṽ 2m+1

k,h (skh)− [PṼ 2m

k,h+1]
2(skh, a

k
h)
]
. (D.3)
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For the second term in (D.3), we have∑
k∈K

∑
h

[
Ṽ 2m+1

k,h (skh)− [PṼ 2m

k,h+1]
2(skh, a

k
h)
]

(a)

≤
∑
k∈K

∑
h

[
Ṽ 2m+1

k,h (skh)− [PṼk,h+1]
2m+1

(skh, a
k
h)
]

=
∑
k∈K

∑
h

[
Ṽk,h(s

k
h)− [PṼk,h+1](s

k
h, a

k
h)
] m∏
i=0

[
Ṽ 2i

k,h(s
k
h) + [PṼk,h+1]

2i(skh, a
k
h)
]

≤ 2m+1
∑
k∈K

∑
h

max
{
Ṽk,h(s

k
h)− [PṼk,h+1](s

k
h, a

k
h), 0

}
(b)
= 2m+1

∑
k∈K

∑
h

max
{
V ∗
h (s

k
h)− r(skh, a

k
h)− [PV ∗

h+1](s
k
h, a

k
h), 0

}
(c)

≤ 2m+1
∑
k∈K

∑
h

[
max

{
Vk,h(s

k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h), 0

}
+ |[PV̌k,h+1](s

k
h, a

k
h)− V̌k,h+1(s

k
h+1)|

]
(d)

≤ 2m+1
∑
k∈K

∑
h

[
2 min
l∈[L]
{1, βk,lDk,l(zk,h)}+ |[PV̌k,h+1](s

k
h, a

k
h)− V̌k,h+1(s

k
h+1)|

]
≤ 2m+1 · (2R+ Ǎ0), (D.4)

where (a) holds due to E[X2] ≥ (E[X])2, (b) holds due to the definition of Ṽk,h and V πk

h (skh) =

r(skh, a
k
h) + [PV πk

h+1](s
k
h, a

k
h), (c) holds due to V ∗

h (s
k
h) ≥ r(skh, a

k
h) + [PV ∗

h+1](s
k
h, a

k
h) and the defi-

nition of V̌k,h, while (d) is due to Lemma C.1. Substituting (D.4) into (D.3), we have

S̃m ≤ Ãm+1 + 2m+1 · (2R+ Ǎ0).

D.6 PROOF OF LEMMA C.6

Proof of Lemma C.6. Let Xk,h = [PV̌ 2m

k,h+1](s
k
h, a

k
h)− V̌ 2m

k,h+1(s
k
h+1), then we have E[Xk,h|Gk,h] =

0, |Xk,h| ≤ 2 and E[X2
k,h|Gk,h] = [VV̌ 2m

k,h+1](s
k
h, a

k
h). Therefore, for any m ∈ [M ], applying

variance-aware Freedman’s inequality in Lemma E.2, with probability at least 1− 1
M+1δ, we have

Ǎm ≤
√

ζŠm + ζ.

Thus, taking a union bound over m ∈ [M ], with probability at least 1− δ, (C.17) holds. The proofs
for (C.18) follow the same arguments as (C.17).

D.7 PROOF OF LEMMA C.7

Proof of Lemma C.7. On event E ∩ A, we have (C.15) and (C.17) hold by Lemma C.5 and C.6.
Substituting the bound of Šm in (C.15) into (C.17), we have for all m ∈ [M ],

Ǎm ≤
√
ζ ·
√

Ǎm+1 + 2m+1 · (2R) + ζ.

And we have for all m ∈ [M ], Ǎm ≤ 2KH . Then the result follows by Lemma E.6.

D.8 PROOF OF LEMMA C.8

Proof of Lemma C.8. On event E ∩ A, we have (C.16) and (C.18) hold by Lemma C.5 and C.6.
Substituting the bound of S̃m in (C.16) into (C.18), we have for all m ∈ [M ],

Ãm ≤
√
ζ ·
√

Ãm+1 + 2m+1 · (2R+ Ǎ0) + ζ.
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And we have for all m ∈ [M ], Ãm ≤ 2KH . Applying Lemma E.6, we have

Ã0 ≤ 2

√
ζ(2R+ Ǎ0) + 7ζ

(a)

≤ 2
√
2ζR+ 2

√
ζǍ0 + 7ζ

(b)

≤ 2
√
2ζR+ ζ + Ǎ0 + 7ζ

(c)

≤ 4
√
2ζR+ 15ζ,

where (a) holds due to
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, (b) holds due to 2

√
ab ≤ a+ b for a, b ≥ 0

and (c) holds due to (C.19) in Lemma C.7.

D.9 PROOF OF LEMMA C.9

Proof of Lemma C.9. We have for all k ∈ K, l ∈ [L],∑
h∈Ψk+1,l\Ψk,l

w2
k,hD

2
k,h,l(zk,h) +

∑
h∈Ψ̃k+1,l\Ψ̃k,l

w̃2
k,hD

2
k,h,l(z̃k,h) ≤ 1.

By Lemma E.5, it follows that for all h ∈ [H],

Dk,l(zk,h)

≤ exp
{1
2

( ∑
j∈Ψk,h,l\Ψk,l

Dk,j,l(zk,j) +
∑

j∈Ψ̃k,h,l\Ψ̃k,l

Dk,j,l(z̃k,j)
)}

Dk,h,l(zk,h)

≤ exp
{1
2

( ∑
h∈Ψk+1,l\Ψk,l

w2
k,hD

2
k,h,l(zk,h) +

∑
h∈Ψ̃k+1,l\Ψ̃k,l

w̃2
k,hD

2
k,h,l(z̃k,h)

)}
Dk,h,l(zk,h)

≤ 2Dk,h,l(zk,h).

Similarly, for all k ∈ K, h ∈ [H], ℓ ∈ [L],

Dk,ℓ(z̃k,h) ≤ 2Dk,h,ℓ(z̃k,h).

Then we have

R ≤ 2
∑
k∈K

∑
h

min
l∈[L]
{1, βk,lDk,h,l(zk,h)},

R̃ ≤ 2
∑
k∈K

∑
h

min
ℓ∈[L]
{1, βk,ℓDk,h,ℓ(z̃k,h)}.

Setting α =
√

dF logNF
T , applying Lemma E.3 to R and R̃, we have

R = Õ
(√

dF logNF
∑

k∈K

∑
h
σ̄2
k,h + dF logNF

)
, (D.5)

R̃ = Õ
(
cv

√
dF logNF

∑
k∈K

∑
h
σ̄2
k,h + dF logNF

)
. (D.6)

Furthermore, according to Lemma C.1, we have∑
k∈K

∑
h

σ̄2
k,h

≤
∑
k∈K

∑
h

(
[VVk,h+1](s

k
h, a

k
h) + 2 min

l∈[L]
{1, 2βk,lDk,l(zk,h)}+ 2 min

ℓ∈[L]
{1, βk,ℓDk,ℓ(z̃k,h)}

)
≤ S0 + 4R+ 2R̃. (D.7)
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So we have

R̃
(D.6)
≲ cv

√
dF logNF

∑
k∈K

∑
h
σ̄2
k,h + dF logNF

(D.7)
≲ cv

√
dF logNF

(
S0 +R+ R̃

)
+ dF logNF

≲ cv

√
dF logNF

(
S0 +R

)
+max{1, c2v}dF logNF ,

(D.8)

where the last inequality holds since x ≤ a
√
x+ b implies x ≤ a2 + 2b for any x ≥ 0.

And thus

R
(D.5)
≲

√
dF logNF

∑
k∈K

∑
h
σ̄2
k,h + dF logNF

(D.7)
≲

√
dF logNF

(
S0 +R+ R̃

)
+ dF logNF

≲
√
dF logNF (S0 +R) + dF logNF +

√
dF logNF R̃,

where the last inequality holds due to
√
a+ b ≤

√
a+
√
b for any a, b ≥ 0. Here√

dF logNF R̃

=

√
max{1, cv}dF logNF ·

1

max{1, cv}
R̃

≲
√
dF logNF

(
S0 +R

)
+max{1, cv}dF logNF ,

where the inequality holds due to Cauchy-Schwartz inequality and (D.8). Plugin back, we have

R ≲
√

dF logNF
(
S0 +R

)
+max{1, cv}dF logNF

(a)

≲
√

dF logNF (Var
∗
K +Š0 +R) + max{1, cv}dF logNF

(C.15)
≲
√
dF logNF (Var

∗
K +Ǎ1 +R) + max{1, cv}dF logNF

(C.20)
≲
√
dF logNF (Var

∗
K +
√
R+R) + max{1, cv}dF logNF

≲
√
dF logNF Var∗K +max{1, cv}dF logNF ,

where the (a) holds due to Var[X + Y ] ≤ 2Var[X] + 2Var[Y ].

E AUXILIARY LEMMAS

Lemma E.1 (Variance-aware and range-aware Freedman’s inequality, Corollary 2 in Agarwal et al.
(2023)). Let M ≥ m > 0, V ≥ v > 0 be fixed constants, and {Xs}s∈[t] be a stochastic process
adapted to the filtration {Gs}s∈[t], such that Xs is Gs-measurable. Suppose E[Xs|Gs−1] = 0, |Xs| ≤
M and

∑t
s=1 E[X2

s |Gs−1] ≤ V 2 almost surely. Then for any δ > 0, with probability at least
1− (log(V 2/v2) + 2)(log(M/m) + 2)δ, we have

t∑
s=1

Xs ≤

√√√√2

(
2

t∑
s=1

E[X2
s |Gs−1] + v2

)
log

1

δ
+

2

3

(
2max

s∈[t]
|Xs|+m

)
log

1

δ
.

Lemma E.2 (Variance-aware Freedman’s inequality). Let M > 0 be fixed constants, and {Xs}s∈[t]

be a stochastic process adapted to the filtration {Gs}s∈[t], such that Xs is Gs-measurable. Suppose
E[Xs|Gs−1] = 0 and |Xs| ≤ M almost surely. Then for any δ > 0, with probability at least
1− 2(log t+ 2)δ, we have

t∑
s=1

Xs ≤ 2

√√√√ t∑
s=1

E[X2
s |Gs−1] log

1

δ
+ 4M log

1

δ
.
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Proof. The result follows by applying Lemma E.1 with V 2 = M2t,m = v = M .

Lemma E.3. Let R, α, γ = R
√
logNF , L = ⌈log2 R

α ⌉, βt,l = Õ(2lα
√
logNF ). For t ∈ [T ], let

disjoint sets {Ψt+1,l}l∈[L]
be constructed according to ADALEVEL with Dt,l = Dt,l(Xt). Here,

Dt,l(Xt) := DF (Xt;XΨt,l
, wΨt,l

), where DF is defined in (3.1). Then we have∑
t∈[T ]

min
l∈[L]
{R, βt,lDt,l(Xt)} = Õ

(√
dF logNF

∑
t∈[T ]

σ̄2
t +RdF logNF +

α2T

γ

√
logNF

)
.

Furthermore, setting α = R
√

dF logNF
T yields∑

t∈[T ]

min
l∈[L]
{R, βt,lDt,l(Xt)} = Õ

(√
dF logNF

∑
t∈[T ]

σ̄2
t +RdF logNF

)
.

Proof. According to Lemma E.4, we have for all l ∈ [L],∑
t∈ΨT+1,l

min{1, w2
tD

2
t,l(Xt)} = O

(
dimF

(√
λ/T

)
log T log(T/λ)

)
= Õ(dF ). (E.1)

For all t ∈ [T ], Property 1 holds true. Next, we decompose [T ] =
⋃

l∈[L]
ΨT+1,l and carefully

bound summations within each level.

Level l = 0 For any t ∈ ΨT+1,0, Dt,1(Xt) ≤ 2α
γ , βt,1 = Õ(2α

√
logNF ), therefore∑

t∈ΨT+1,0

min
l∈[L]
{R, βt,lDt,l(Xt)} ≤

∑
t∈ΨT+1,0

βt,1Dt,1(Xt)

≲ T · 2α
√

logNF ·
2α

γ

= Õ
(α2T

R

)
.

Level l = L We decompose ΨT+1,L = JL,1 ∪ JL,2 where

JL,1 :=
{
t ∈ ΨT+1,L : wt =

2Lα

γDt,L(Xt)

}
, JL,2 := {t ∈ ΨT+1,L : wt = 1}.

Thus ∑
t∈ΨT+1,L

min
l∈[L]
{R, βt,lDt,l(Xt)} ≤ R|JL,1|+

∑
t∈JL,2

βt,LDt,L(Xt).

Summation over JL,1 For any t ∈ JL,1, wtDt,L(Xt) =
2Lα
γ ≥ R

γ . Thus 1 ≤ γ2

R2w
2
tD

2
t,L(Xt).

Then we have

R|JL,1| ≤ R
∑

t∈JL,1

γ2

R2
w2

tD
2
t,L(Xt)

=
γ2

R

∑
t∈JL,1

min{1, w2
tD

2
t,L(Xt)}

(E.1)
= Õ

(
RdF logNF

)
.

Summation over JL,2 For any t ∈ JL,2,

βt,L = Õ(2Lα
√

logNF ) ≲ Õ(2σ̄t logNF ),

Dt,L ≤
2Lα

γ
.
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Thus ∑
t∈JL,2

βt,LDt,L(Xt) ≲
∑

t∈JL,2

σ̄t

√
logNFDt,L(Xt)

≲
√
logNF ·

√ ∑
t∈JL,2

σ̄2
t ·
√ ∑

t∈JL,2

min{1, w2
tD

2
t,L(Xt)}

(E.1)
= Õ

(√
dF logNF

∑
t∈JL,2

σ̄2
t

)
.

Level l ∈ [L− 1] We decompose ΨT+1,l = Jl,1 ∪ Jl,2 where

Jl,1 :=
{
t ∈ ΨT+1,l : wt =

2lα

γDt,l(Xt)

}
, Jl,2 := {t ∈ ΨT+1,l : wt = 1}.

Thus ∑
t∈ΨT+1,l

min
l∈[L]
{R, βt,lDt,l(Xt)} ≤

∑
t∈Jl,1

βt,l+1Dt,l+1(Xt) +
∑

t∈Jl,2

βt,lDt,l(Xt).

Summation over Jl,1 For any t ∈ Jl,1,

βt,l+1 = Õ(2l+1α
√
logNF ) = Õ(4γwtDt,l(Xt)

√
logNF )

Dt,l+1(Xt) ≤
2l+1α

γ
= 2wtDt,l(Xt).

Thus ∑
t∈Jl,1

βt,l+1Dt,l+1(Xt) ≲
∑

t∈Jl,1

γwtDt,l(Xt)
√
logNF · wtDt,l(x)

≈ γ
√

logNF
∑

t∈Jl,1

min{1, w2
tD

2
t,l(Xt)}

(E.4)
= Õ(RdF logNF ).

Summation over Jl,2 For any t ∈ Jl,2,

βt,l = Õ(2lα
√
logNF ) ≲ Õ(2σ̄t logNF ),

Dt,l ≤
2lα

γ
.

Thus ∑
t∈Jl,2

βt,lDt,l(Xt) ≲
∑

t∈Jl,2

σ̄t

√
logNFDt,l(Xt)

≲
√
logNF ·

√ ∑
t∈Jl,2

σ̄2
t ·
√ ∑

t∈Jl,2

min{1, w2
tD

2
t,l(Xt)}

= Õ
(√

dF logNF
∑

t∈Jl,2

σ̄2
t

)
.

Now we put pieces together:∑
t∈[T ]

min
l∈[L]
{R, βt,lDt,l(Xt)} =

∑
l∈[L]

∑
t∈ΨT+1,l

min
l′∈[L]

{R, βt,l′Dt,l′(Xt)}

= Õ
(√

LdF logNF
∑

l∈[L]

∑
t∈Jl,2

σ̄2
t + LRdF logNF +

α2T

γ

√
logNF

)
= Õ

(√
dF logNF

∑
t∈[T ]

σ̄2
t +RdF logNF +

α2T

γ

√
logNF

)
.
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Lemma E.4 (Lemma D.6 in Jia et al. (2024)). Let DF be defined in (3.1), and wt ∈ [0, 1] for all
t ∈ [T ]. Then we have∑

t∈[T ]

min{1, w2
tDF (Xt;X[t−1], w[t−1])} = O

(
dimF

(√
λ/T

)
log T log(T/λ)

)
.

Lemma E.5 (Lemma H.4 in Huang et al. (2024)). Let DF be defined in (3.1). Then for any t >
t0 ≥ 1, we have

D2
F (Xt;X[t0], w[t0]) ≤ exp

{
t−1∑

s=t0+1

w2
sD

2
F (Xs;X[s−1], w[s−1])

}
D2

F (Xt;X[t−1], w[t−1]).

Lemma E.6 (Lemma H.6 in Huang et al. (2024)). Let λ1, λ2, λ4 > 0, λ3 ≥ 1 and i′ = ⌈log2 λ1⌉.
Let a0, a1, a2, . . . , ai′ be non-negative reals such that ai ≤ λ1 for any 0 ≤ i ≤ i′, and ai ≤
λ2

√
ai+1 + 2i+1 · λ3 + λ4 for any 0 ≤ i < i′. Then we have

a0 ≤ max

{(
λ2 +

√
λ2
2 + λ4

)2

, λ2

√
4λ3 + λ4

}
≤ λ2

√
4λ3 + 4λ2

2 + 3λ4,

a1 ≤ max

{(
λ2 +

√
λ2
2 + λ4

)2

, λ2

√
8λ3 + λ4

}
≤ λ2

√
8λ3 + 4λ2

2 + 3λ4.
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