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ABSTRACT

Recent works have established second-order regret bounds for nonlinear contex-
tual bandits. However, these results exhibit a suboptimal dependence on the com-
plexity of the function class. To close this gap, we propose a novel algorithm fea-
turing a multi-level regression structure. This method partitions data by their un-
certainty and variance, then performs separate regressions on each level, enabling
adaptive, instance-dependent learning. Our method achieves a tight second-order

regret bound of O (\/d]-' log Nr Ztem o2 + Rdrlog N;), which matches the

theoretical lower bound. Here, d» and log N = represent the Eluder dimension and
log-covering number of the reward function class F, o2 is the unknown variance
of the reward at round ¢, and R is the range of rewards. The proposed algorithm
is computationally efficient assuming access to a regression oracle. We further
extend our framework to model-based reinforcement learning, achieving a regret
bound that is both second-order and horizon-free. The underlying multi-level re-
gression technique is of independent interest and applicable to a broad range of
online decision-making problems.

1 INTRODUCTION

In the realm of online decision-making problems, contextual bandits serve as a foundational model,
where an agent interacts with the environment to learn and act optimally in the face of uncertainty.
This paradigm is central to numerous real-world applications, including personalized recommen-
dation systems (L1 et al.l 2010} |(Covington et al.| [2016), dynamic pricing (Kleinberg & Leighton,
2003} |[Ferreira et al., 2018)), and online advertising (Agarwal et al., 2014; (Chapelle et al., [2014).
A central goal in this field is to design algorithms with strong performance guarantees measured
by regret—the difference in rewards between the algorithm’s choices and those of an optimal pol-
icy. Although worst-case regret bounds have been well studied (Auer et al.l |2002; |/Abbasi- Yadkori
et al.| |2011), the field has increasingly focused on developing more nuanced, instance-dependent
guarantees (Zhou & Gul [2022; |Li & Sun, 2024} Huang et al., [2023). Second-order regret bounds,
which incorporate the unknown variance of the rewards, are particularly valuable as they adapt to
the problem’s intrinsic statistical difficulty rather than relying on pessimistic worst-case guarantees.

Despite significant progress in linear contextual bandits (Zhao et al) 2023), a fundamental chal-
lenge has persisted in the setting of general function approximation, which is critical for capturing
the complex relationships present in real-world scenarios. Current algorithms often suffer from a
suboptimal dependence on the complexity of the reward function class, such as the Eluder dimen-
sion d . For instance, the best-known algorithms from [Pacchiano| (2025)); Jia et al.| (2024) achieve

regret bounds of the form 9) (d F \/ log N7, el o?+Rdzlog N ]:) , which falls short of the theo-
retical lower bound by Jia et al.|(2024) that suggests a v/d r dependency. While [Wang et al.| (2024b)

achieve a O(y/dp) regret bound, their algorithm requires a stronger realizability assumption: access
to the full reward distribution. This discrepancy raises a crucial open question:

Can we design an algorithm for nonlinear contextual bandits that achieves a minimax-optimal,
second-order regret with the standard realizability assumption?
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Table 1: Regret bounds of algorithms for contextual bandits with unknown reward variances. Here,
d denotes the dimension for linear function approximation, P represents the reward distribution
class, F is the the reward function class, d =, dp are the Eluder dimension, Nz, Np are the covering
number, 7" is the number of rounds, o; is the variance of the reward at round ¢, and R is the range of

rewards. O omits logarithmic terms.

. Function Computational
Algorithm Type Regret Bound Efficiency
SAVE (Zhao et al.||2023) Linear 9] (d1 /Ztem o? + Rd) Yes
DistUCB (Wang et al.|[2024b)  Nonlinear 9} <\/d73 log Nx ZtE[T] o? + Rdp log Np) Yes
Unknown-Variance SOOLS
(Pacchiano}[2025) Nonlinear (dp [log Nz, (7] o? + RdFlog N;) Yes

VarUCB (Jia et al.|[2024)

9)
VACB (Ye et al.|[2025) Nonlinear O (d;, /log Nx Zte[T] o? + dz(log Nf)3/4> No
UCB-MLR (Theorem Nonlinear O (\/ drlog Nr X c(r) 07 + Rdrlog N ]—') Yes

We give an affirmative answer to this question by delving into the problem of nonlinear contextual
bandits. Specifically, we consider the setting with heteroscedastic noise—where the variance of
rewards changes over time—and, critically, we assume this variance is unknown to the agent, a
common scenario in real-world applications. Our contributions are summarized as follows:

* We propose a novel Multi-Level Regression (MLR) structure, which significantly advances
prior multi-layer algorithms inspired from Zhao et al.|(2023)). A key innovation lies in
our data partitioning method, ADALEVEL, which leverages both uncertainty and variance
rather than just uncertainty. By running separate regressions on each level, our algorithm
learns in an adaptive and instance-dependent way, leading to a more accurate function
estimate. The principles of this multi-level regression technique are broadly applicable and
may be of independent interest for other online decision-making problems.

* Leveraging our new technique, we propose UCB-MLR, a novel algorithm for nonlinear
contextual bandits. Through the use of a tighter Bernstein-style bound for nonlinear re-
gression and a detailed analysis of estimation error at different levels, we theoretically

establish a regret bound of 9] (\/d}' log N» ZtE[T] o2 + Rdrlog N;:) . This result is sig-

nificant because it is the first to match the second-order lower bound from |Jia et al.| (2024},
effectively resolving a suboptimal dependency on d z. Our algorithm also achieves compu-
tational efficiency with access to a regression oracle.

* We further demonstrate the effectiveness and generality of our algorithmic framework by
applying it to model-based Reinforcement Learning (RL), where an agent learns to act
optimally by building a model of the environment. Our proposed algorithm, ML-VTR,
is the first to achieve a regret bound of O(\/d]: log Nx Varj; + dxlog N}-) for Markov
Decision Processes (MDPs) with general function approximation. This result is notable
because it is simultaneously second-order, horizon-free, and computationally efficient. As
a special case, it reduces to O(d\/Var} + d2) for linear mixture MDPs. This bound
matches the state-of-the-art from |Zhao et al.| (2023)), suggesting that our novel algorithm
and fine-grained analysis are effective for a wide range of general RL problems.

For a comprehensive comparison with state-of-the-art results, we summarize the regrets in Table ]
for contextual bandits and Table [2| for RL.

Notations Let [n] := {1,2,...,n}, [n] := {0,1,...,n}, and X7 := {X,;}iez. Denote
mingex{c, f(z)} := min{c, minger f(z)} for short. Denote the e-covering number of F w.r.t.
lso-norm as Nx(e). O(-) omits logarithmic terms in O(-).
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Table 2: Regret bounds of algorithms for model-based RL that achieve instance-dependent and
horizon-free. Here, d denotes the dimension for linear function approximation, P represents the
transition model class, F is the the function class induced by P, dr, dp are the Eluder dimension,
Ny, Np are the covering number, quantity Varj; defined in is the total variance of the optimal

value functions, and Q* is a higher-order moments quantity defined in Huang et al.[(2024). O omits
logarithmic terms.

Algorithm Fl{ll‘;,c;ion Regret Bound Coll;}glclit;tlic(;nal
UCRL-AVE (Zhao et al.| 2023) Linear O(dy/Vary + d?) Yes
UCRL-WVTR (Huang et al.|2024) Nonlinear ~ O(\/drlog NQ* + dlog Nx) Yes
O-MBRL (Wang et al.|[2025) Nonlinear 6(\/W + dplog Np) No

ML-VTR (Theorem Nonlinear O ( v/ drlog N Vary + drlog N. ]:) Yes

2 RELATED WORK

Second-Order Regret in Nonlinear Contextual Bandits Designing algorithms with second-
order regret has become a central theme in contextual bandits literature. While the linear setting
is well-understood (Zhao et al., |2023)), the nonlinear setting with unknown variances presents sub-
stantially greater challenges, revealing a distinct gap to statistical optimality.

Several attempts, such as Unknown-Variance SOOLS (Pacchiano} 2025) and VarUCB (Jia et al.,
2024), have been made to generalize the multi-layer technique developed in (Zhao et al., 2023) to
nonlinear settings. Furthermore, VACB (Ye et al.l [2025) utilizes Catoni estimator to handle the
heavy-tailedness of noise, removing the R dependence on the lower order. However, due to the
intrinsic difficulty caused by nonlinear structure, they only obtain a regret that is suboptimal on the
function complexity, thereby leaving a gap to optimality. A different line of work (Foster et al.,2018;
Wang et al.,|2024bza), exemplified by DistUCB (Wang et al.l2024b), pursue variance-adaptivity us-
ing MLE for the full reward distribution. However, this distributional approach requires the stronger
and often impractical modeling assumption that the entire reward distribution—not just the expected
reward—is realizable by the model class. Our multi-level regression framework, by contrast, oper-
ates under the standard, less restrictive realizability assumption.

Instance-dependent and Horizon-free Regret in Model-based RL  The principles of instance-
dependent learning are also paramount in the more complex domain of RL, where the additional
challenges of long-planning horizons must be addressed. A key goal in modern RL theory is to de-
velop algorithms that are not only second-order but also horizon-free, meaning their regret bounds
scale at most polylogarithmicly with the planning horizon H (Jiang & Agarwal, [2018). For MDPs
with linear function approximation, also known as linear mixture MDPs, |Zhao et al.| (2023) pro-
vide an efficient, second-order and horizon-free algorithm. However, extending these successes to
general function approximation presents significant challenges.

To name a few, Huang et al.| (2024) made the first attempt to propose an algorithm, UCRL-
WVTR, using weighted value-targeted regression for estimating the model and achieves an instance-
dependent and horizon-free regret. Despite worst-case optimal when specialized to linear mixture
MDPs, their regret bound has a suboptimal dependence on the higher-order moments of the optimal
value functions. Conversely, O-MBRL (Wang et al., [2025) extends DistUCB to RL and achieves a
tight, second-order and horizon-free statistical guarantee. However, it is generally computationally
intractable and requires the stronger assumption of access to the full distribution.

3 PRELIMINARIES

Nonlinear Contextual Bandits We consider a T'-round contextual bandit problem. At each round
t € [T, the environment provides a candidate decision set Xy C X. This framework includes the
classic contextual bandit setting given context z; and action set A, by setting X; = {z:} x A. The
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agent selects an action x; € X; and receives a reward y; = f.(z¢) + ;. We assume y; € [0, R],
Eles|z:] =0, Var[es|z] = Varfy|z,] = 02 < 0.

To enable the utilization of a priori unknown variance information, we make Assumption[3.2] which

is also adopted by Ye et al.| (2025).

Assumption 3.1 (Realizability). We are given access to a function class F such that f, € F.

Assumption 3.2. We are given access to a function class G and constant ¢, > 0 such that g, € G,

and for all rounds ¢ € [T,

Ely; o] = gu(xe),  Varlyf|a] < cR? - Varly|a] = ;R0

We use the standard Eluder dimension and covering number to measure the complexity of . Recall
the definition of Eluder dimension (Russo & Van Roy, |[2013)):

Definition 3.3 (Eluder Dimension). Let F be a function class defined on X and € > 0. The Eluder
dimension dimz(€) of F is the length of the longest sequence x[,,; € A" such that for some €’ > ¢,
forall t < n, 2 is ¢’-independent of ;) given F. That is, there exists f, f* € F such that

D [f(we) = f@))? < € while | f (1) — f/ ()] > €.

set—1]

We also use the notation dx := dimz(¢) and Nx := Nz(e) for short when € is clear from the
context. Let A > 0. We quantify uncertainty of = given dataset x[;_;; and wights wp;_1; w.r.t. F as:

Tx w = su (fl(x) _ f2(x)>2
D]:(I, =1l [t_l]) o flyf;;]: Zse[tfl] wg(fl(xs) - f2(m8))2 +A

3.D

MDPs with General Function Approximation We consider episodic MDPs defined by a tuple
(S, A, H,P, {rn}neim). Here, S and A are the state space and action spaces, H is the planning
horizon, P : § x A — A(S) is the transition dynamics, ry, : S X A — R is the h-th step reward
function known to the agenty’| We assume a bounded reward setting where Zthl ru(sp,ap) <1
for any trajectory. We use a deterministic policy throughout this paper, which is a collection of H
mappings from the state space to the action space, denoted as 7 = {7y, : S — A},e[pg]. For any

state-action pair (s,a) € S x A, the action value function Q} (s, a) and the (state) value function
Vi7(s) are defined as:

H

Q7 (s,a) == E{ Z r(spr,an)

h'=h

sn=s,an=a, Vi(s) = Qf(s,mi(s)),

where the expectation is taken w.r.t. the transition kernel IP and the agent’s policy . We denote the
optimal value functions as V;*(s) := sup, V7 (s) and Qj (s, a) := sup, QF (s, a). For simplicity,
we introduce the following shorthands. Let V be the set of all value functions V' : S — [0, 1]. For
any V € V, we denote the conditional expectation and variance of V" as

[PV](s,a) = Egp((s,0)[V()], [VV](s,a) := [PV?](s,a) — [PV]*(s,q)
Our objective is to design efficient algorithms that minimize the K-episode regret, defined as

K
Regret(K) := (Vl*(s’f) — ka (s’f))
k=1

To solve problems of large state spaces, we consider MDPs with general function approximation.
We adopt the following assumptions to accurately estimate the variance of value functions, which is
reasonable since a small variance of a next-state value function often indicates more deterministic
transitions, thus suggesting a small variance for the squared next-state value function.

Assumption 3.4 (Realizability). Let P be a general function class consisting of transition kernels
that map state-action pairs to measures over S. We assume the MDP’s transition model P € P.

"We consider deterministic rewards since our result can be easily generalized to the unknown-reward cases.
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Algorithm 1 UCB-MLR
ReqUire: a, 62, v W: L= ’—logQ g—‘v E = |—10g2 %"’ {Bt,l}tzl,lE[LL {gt,@}t217ge[z]

1. Uy < @ forl em, \AIVJM +— @ forl e [f]

2: fiy 4+ 0forl e [L], g1 4 Oforl e [L]
3: fort=1,...,Tdo
: Observe X R
Choose z; ¢ argmax, ¢ y, min;e[z; (ft,l(as) + min{ R, ,BtJDt,l(x)}), receive y;

Update &, according to .
Set l;, w; < ADALEVEL ({Dy(x¢)}ie(r), 01, @, Y)

Set gtv ’(Dt — ADALEVEL({E&[(ZL})}ZG[Z], Cva't, &, ﬁ)

Update Wy g1, < U, U{t}, Uiy < U, forl € [L],1 # I
10: Update Eji‘l’l,ét — E/t,gt @] {t}, E/t+1’[ — {Iv/t’g for £ € [Z],é 7é ft

11:  Update fi41, forl € [L], Gi41,0 for £ € [L] according to @), (4.2)
12: end for

R R A

Algorithm 2 ADALEVEL

Require: {D;;}c(z), 0t @,y

Ensure: Level [;, weight w,
I: Setly «+— max{l € [L] : yDy; > 2'a}
2: if [; = —oco then
3: Updatel; + 0

4: else

50 ifg, < 2kq thlen

6: Set W < 'Ythtfll/t

7:  else

8: Update I; + min{l € [L],1 > I; : 5, < 2'a}
9: Set w; + 1

10:  end if

11: end if

Assumption 3.5. There exists a constant ¢, > 0 such that for all steps (k,h) € [K] x [H] and all
Vit1 € V, the following holds:

[VVi2al(shy ah) < €3[VViial(sh, ap)-

We use the covering number and Eluder dimension to measure the complexity of the function class
F, which is induced from the model class P. F is generally smaller than P, since we only require
the expectation instead of the distribution information.

F={f:SxAXVR|IPeP,f(s a Vi) =[PVip](st,ab)},

4 MULTI-LEVEL REGRESSION FOR CONTEXTUAL BANDITS

In this section, we propose a new algorithm for nonlinear contextual bandits, UCB-MLR, which is
formally presented in Algorithm We introduce the notation Dy ;(z) := Dr(z; 2y, ,, wy,,) and

BM(Q:) = Dg(z;2, ,,wg, ) for conciseness. We first outline the high-level idea, then analyze
the computational comwplexityy and regret bound.

4.1 ALGORITHM DESCRIPTION

UCB-MLR improves upon the multi-layer structure proposed by|Zhao et al.[(2023)). Their approach
partitions data into L+ 1 layers based on uncertainty, performs regressions within each layer ! € [L],
and combine L results to form a more accurate estimate of the reward function. In contrast, our



Under review as a conference paper at ICLR 2026

leveling algorithm, ADALEVEL, partitions date using both uncertainty and variance. We highlight
the primary enhancements of UCB-MLR in as follows:

Adaptive Leveling In Line[7]of Algorithm[I] ADALEVEL adaptively chooses the level [, for each
data point x; at round ¢, as detailed in Algorlthml ThlS selection, based on its uncertainty within
each level { Dy ;(x¢)}1e[z) and the estimated variance 72, leverages the concentration inequality in
Lemma[4.3]to reduce the estimation error of reward function f..

We use W, 1, to denote the index set of all date partitioned into level [ € [L] up to time ¢. The
detailed properties of ADALEVEL are listed in Property l In general, for all ¢ € [T] such that
t € Upyq withl € [L], we set weight

. { 1 2Ly }
wy =mini 1, ———— ¢.
vDy (4)
This is done to avoid a sharp change in uncertainty between adjacent levels. Consequently, we have:
wDyy < 2a)y, wioy < 2,

where « and +y are prespecified parameters. This ensures that the data at level [ have roughly the
same uncertainty and variance, both on the order of 2!«v. We use ADALEVEL similarly to construct

{ \TJT, g}eem for estimating the squared-reward function g,.

Multi-Level Regression and Upper Confidence Bound (UCB) At round ¢, after updating
{Wi1}, <D and {U;41,¢} P we utilize weighted least squares regression to estimate f, for

level [ € [L] and g, for level £ € [L]:

ft+1 | = argmin Z Ts) — )%, 4.1)
fer s€Wii1,
Jt+1,0 = argmin Z We(g(xs) — yz)2 4.2)
geEF
GE‘I’g+1,(

As shown in Line |5} for any x € X, we can construct L high-probability UCBs for f,(z) and take
their minimum to choose the action optimistically:

J+(@) < min (ferra(x) + min{R, Brs11Dir1(2)}).

Similarly, we can set 57 as the upper bound of o?:

G2 = [n]ﬁenr {02, Gu,e(x0) — F21(x0) + Rmin{R, 28, Dy ()} + min{ R, B¢ Dy e(2:)} . (43)
le[L],te[L

According to Lemma B0 = O(2lan/Tog N7) and B, = O(2'a/log Ng).

Computational Complexity We analyze the computational complexity of UCB-MLR, relying on
a regression oracle defined in Assumption for solving the weighted nonlinear least squares re-
gression. By adopting the techniques from|L1 et al.[(2023); Huang et al.|(2024), we can leverage this
oracle to compute the uncertainty D defined in (3.1 through a binary search procedure, requiring

only O(1) calls to the oracle.

Assumption 4.1 (Regression Oracle). We assume access to a weighted least squares regression
oracle, which takes a function class F and ¢ weighted examples {(X, ws, Ys)}sepyp € & X RT xR

as input. It then outputs the solution to the wei ghted least squares problem, f, within R time, where

= argmanwS Xs) — 5)2.
fer 4
We now consider the computation cost for a single round ¢. First, computing the UCB of f, () in

Line [5| requires O(LR) time, as it involves calculating Dy ; for [ € [L]. To select the best action
over the set X}, the algorithm must compute the UCB for at most |X'| actions. Next, the estimated

variance 57 in (#.3)) can be computed within O((L + L)R) time. And ADALEVEL takes O(L + L)
time. Finally, it takes (L 4+ L)R time to calculate the regression estimates ft+1 in @) for I € [L]
and g(t + 1,¢) in (&.2)). Therefore, the total computational cost of UCB-MLR is O(T|X|R).
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4.2 REGRET BOUND

Theorem 4.2. For contextual bandit with general function approximation as defined in Section[3] if
the parameters in Algorithmare set according to Section then with probability at least 1 — (L +

L), UCB-MLR achieves

Regret(T) = 6<\/d]: log N Zte[T] o? + max{1, C}Rdx log N;.—),

dg lOg Ng

where C' = max{1, ¢, } drlog Nz *

Proof. The proof uses a tighter Bernstein-style bound for the estimated function and a detailed
analysis of the summation of bonuses within each level. See Section for a proof sketch and
Section B|for a detailed proof. O

Our result matches the second-order lower bound established by [Jia et al.| (2024), therefore success-
fully eliminating the gap related to d=. We leave the removal of C' in the lower order term as an
open problem for future work.

As a special case, for a d-dimensional linear contextual bandit, where dz,log N = O(d) (Jiaet al.}
2024), our algorithm achieves a regret of O (d A /Zt e af + Rd2). This matches the state-of-the-

art result of |Zhao et al.|(2023)) for the main term.

4.3 PROOF SKETCH

Concentration of the Estimated Function Our primary effort is to establish a tight UCB for the
true reward function f,. This relies on the concentration inequality presented in Lemma[4.3]

Lemma 4.3. Let {X;};>1 C X and {Y;};>1 C [0, R] be sequences of random elements, and let

{w;}+>1 be a sequence of weights. Let f, € F with function class F : X — [0, R]. Suppose for all
s € [t], E[Y:s|Xs] = fu(Xy), Jws| < W, and w? Var[Y;| X;] < o2. Let the estimated function be

t
fi1 = argminwa(f(XS) - Y,)2 4.4
fer

s=1

Then for any 6, e > 0, with probability at least 1 — §, we have forall ¢ > 1,

t
S W (Frea(Xs) — fu(X))? < B2, with
s=1

Bea = 3/ + 2uRmin {1, max w? Dr(X; Xjoyj, wison)} + VA+ VW2 Ree,
se€

where ¢; = 16 log 2N]:(e)t2(log(02W2R;t)+2)(log(W2R2)+2) _ 5(log N7).

Proof. See Section[A]for a detailed proof. O

Remark 4.4. Lemma [{.3] improves upon the Bernstein-style bound for nonlinear regression
from Huang et al| (2024) by tightening the term concerning uncertainty. Here, we denote
Dy = max,ep) Dr(Xs; Xjs—1], wis—1)) for short. This implies the confidence radius 3;,1 =

O(o\/Tog N7 4+ RD, log N7). Compared to the bound 5(D,g1 /2 se 02log Nr + RD;log Nr)
used in previous multi-layer algorithms (Pacchiano, 2025; Jia et al., [2024)), our result improves the

first term by a factor of /dr when the reward variances are roughly equal, since D, is of order

\/dF/t under certain conditions according to Lemma This is a key step in removing the v/d
gap in regret bound.

Recall that ADALEVEL ensures w; D;; < 2'a/y and w;6; < 2'aif t € Wpyq . This implies the

confidence radius 3;; = O(2'av/log NF).
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Algorithm 3 ML-VTR
Require: «, v, L = [log, é], confidence radius {3k 1 }r>1,1¢[L]
I: f1; - Oforl e [L]
22U, oforl e [L], Uy, W10 O for ¢ € [L]
3: fork=1,..., K do
Vg1 <0
forh=H,...,1do
Qi (5 +)  mingepr) {1,700, ) + i (oo Vieng1) + min{1, Be Dy (-, Vins1)}
Vi,h ¢ maxXeea Qr,n (-5 a)
7r’,§ — argmax,c 4 Qrn(:, a)
9: end for
10:  Receive s¥
11: forh=1,...,Hdo

AN A

12: Take action a}, < 7 (s}), receive sf, |

13: Update Zi,h (Sﬁ, CLZ, Vk,h+1)a Zk,h — (SZ, CLZ, VkQ,h+1)’ Yk,h < Vk7h+1(82+1)

14: Update 57 , according to (5.2)

15: Update Iy, j,, Wy, p ADALEVEL({D}C’}LJ(Zk7h)}l€[L], Ok,hy Q) ’y)

16: Update Ek,ha ’sz’h — ADALEVEL({D}CJL’[(g]f’h)}le[”, c,ﬁk’h, «, ’y) o

17: Update \Ijkﬁ-‘rl,lk,h — Wk7hvlk,h @] {(k}, h)}, qjk,h-‘,—l,l — \Ilk,h,l forl € [L],l 7é lk,h
18: Update \Ijk,h—&-l,ék,h — \I/k,h,ﬂk,h U {(k‘, h)}, Wi nt1,e < Yine for ¢ € [ },f #* gk,h
19:  end for

20: Update \Ek+1,la \IJ}C+1’1J — \Ijk;’HJrl’l forl € [L}, EJ}C+1’¢, E/k+1$1’[ — @k’HJ’»l’e for £ € [L]

21:  Update fj11, according to (3.1)) for I € [L]
22: end for

Summation of Bonuses in Each Level The regret can be related to the summation of bonuses
across each level, as follows:

Regret(T) <2 > Y min{R, B Dp(x)}.
lem teVrii tel)
Thanks to ADALEVEL, the properties in Property |1/ hold. Specifically, for any [ € [L — 1], if
t € Wriq,, the maximum over uncertainty D, ;(x;) and estimated variance &, is of the order 2L,
For high-uncertainty data, 8; 41Dy j41(z:) =~ 22! while Lemmaimplies [Wria,] ~ 272ld r,
which leads to a lower order term in the final regret. For high-variance data, (D ;(z;) =~

1Dy (), and Lemmaimplies Dy i(xy) ~ \/dx/|¥ri1,], resulting a second-order term in the
final regret. We provide a more fine-grained analysis in Lemmato prove that forany [ € [L—1],

: _ N ~2
S min{R AuDia(a) = O(\/df log Nz Y, o7+ RdrlogNy).

teWrii,

The complete proof requires an in-depth analysis of the summation over different levels, and a
careful treatment of estimated variance to eliminate lower-order terms.

5 MULTI-LEVEL REGRESSION FOR REINFORCEMENT LEARNING

In this section, we extend our multi-level regression framework to MDPs with general function
approximation. This yields a new algorithm, ML-VTR, as detailed in Algorithm [3] We denote
Dii() == Dr(; 2w, U ’zv\i/k,lvw‘l’k,z U a\f/,w)’ Dini() == Dr(;2w,,, Y z\flk,h,ﬂwq’k,h,l J w\if,ﬁyhvl)'
We first outline the high-level idea, then analyze the computational complexity and regret bound.

5.1 ALGORITHM DESCRIPTION

ML-VTR features a novel combination of the Multi-Level regression framework in Section f]
and Value-Targeted Regression (VTR) developed in |Ayoub et al.| (2020). Specifically, similar to
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UCB-MLR, in Line [15| we leverage ADALEVEL to partition data into sets {Wx 1, }i¢c[z) based
on their uncertainty { Dy, 5, ; (zk,h)}le[ 1) and estimated variance G, , for data points z ». A similar
process is applied to create the sets {¥ x 1} 1e(r) Similarly for data points Zg,h- Here, z; , and Z; p,
is defined in Line [I3] Then we adopt Multi-Level VTR to estimate the model. Since all data share
the same transition model f,, we can estimate it in a combined manner to reduce error:

J?k+1,l = argmin Z w?,h(f(zi,h> - yz‘,h)z + Z @?,h(f(zi,h) - y?,h)Q- (5.1

eF . =
! (4,h)EP 41,1 (i,R)EV 41,1

Once the estimate {fk,l}ze[ 1] are obtained, we construct the action value functions { Qg n }rem) as
in Line[6] And the upper bound of Var[yy s |zk,1] = [VVi,n41](sf, af) is then set as

Gion = o min {1, Fre(Zin) = J2.1(200) +min{1, 285 1 Dyt (zi,n) } +min{ 1L, B e Dy o(Zk,n) } - (5.2)

Computational Complexity We analyze the computational complexity of ML-VTR under the as-
sumption that for any (s,a,V) € S x A x V, the function fp(s,a,V) = >, sP(s'|s,a)V (s')
can be evaluated in O time. Recall R represents the computational cost of the regression oracle. We
consider the computation cost for a single step (k, h). First, computing the action value function
Q. in Line@for a given state-action pair (s, a) requires O(L(O + R)) time, since it involves eval-
uating the estimated function fk.,l and computing the uncertainty Dy, ; for I € [L]. To take an action
based on 7, the algorithm needs to compute Q 5, for |.A| actions. Next, the estimated variance ai’ h

in (5.2) can be computed within O(L(O + R)) time. And ADALEVEL takes O(L) time. Finally,
it takes LR time to calculate fi41,; in (5.I) for [ € [L]. Therefore, the total computational cost of
ML-VTR is O(K H|A|(O + R)).

5.2 REGRET BOUND

Theorem 5.1. For MDP with general function approximation defined in Section[3] if the parameters
in Algorithm are set according to Section then with probability at least 1 — (L + 2)d, ML-VTR

achieves ~
Regret(K) = O(y/dr log N Varj, + max{1, ¢, }drlog Nr),

where Varj is the total variance of the optimal value functions {V}* }c(a:

K H
Varge = > [VVi sk, af). (5.3)
k=1 h=1

Proof. The proof combines the technique used in proving contextual bandits with a fine-grained
analysis of the higher-order moments of value functions, which eliminates polynomial dependence
on the horizon H. See Section [C]for a detailed proof. O

Our second-order result from Theorem@ is also horizon-free, as its dependence on the horizon H
is up to logarithmic factors. As a special case, for a d-dimensional linear mixture MDP, we have
dr,log Ny = O(d) (Huang et al., 2024). Our bound therefore simplifies to O(d\/Var} + d2),
which matches the state-of-the-art result by [Zhao et al.| (2023). This demonstrates that our novel
algorithm design and fine-grained analysis effectively and sharply handle general RL problems.

6 CONCLUSION

This paper presents a novel multi-level regression framework, ADALEVEL, that resolves a key chal-
lenge in online learning by partitioning data based on both uncertainty and variance. Our UCB-MLR
algorithm for nonlinear contextual bandits, is the first to achieve an optimal second-order regret
bound with computational efficiency. We extend this framework to reinforcement learning with gen-
eral function approximation, where our ML-VTR algorithm provides the first horizon-free, second-
order, and efficient regret bound. This multi-level regression technique is of independent interest
and applicable to a broad range of online decision-making problems.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used as a general-purpose writing assistant for tasks like grammar and spelling correction,
and to refine sentence structure. All authors take full responsibility for the final content.

A PROOF OF LEMMA

Proof of LemmaM.3] We define filtration {G, };>1 such that X; € G;_1,Y; € G;. Recall the defini-
tion of f;y; in (4.4), which implies

Yo wi(fer(Xe) = fo(X0))? <2 wi(fran (Xo) = fo( X)) (Ys = fo(X,))-

For any fixed f € F, denote Es(f) = w2(f(Xs) — f«(Xs))(Ys — f«(Xs)), which is a martingale
difference sequence adapted to the filtration {gs}se[t] Note lws| < W and f(Xs), fe(Xs), Yy are

bounded in [0, R], thereby the expectation and summation of variances are upper bounded by
|Ey(f)| < W2R?, ZE [E2(f)|Gs—1] < c?W2Rt.

We denote D, = Dr(X,; X4, ws) for short. Furthermore, we have

(@)
max |E,(f)| < Rmaxw D, ZwQ Fo(Xs))2 4+ A,

sEt]

ZEE2 )Gt <cf?Zw Fe(X0))?,

where (a) holds due to the definition of Dz in (3.I)). Lete > 0 and V be a e- covering net of F.
2 2

Applying Lemmaw1th m=v=021; = 16log 2N7 ()¢ (log(o” W™ R D)+2)(0s(W2R")+2) 344 5

union bound over f € V, forany t > 1, w1th probability at least 1 — §/ (2t2) we have for all f ev,

< Vi |02 Do w(f(X) = f(X))2 4o

t
4+ Lmawa w? * 24 A+ o2
I

t
\/Ecr—FLthaxwas) wa(f( s) — fo(X5))? +\FLthE[l)](wD + 2u0°
elt

s€et]

INE
Y

s=1
t 2 2
® 1 , , 1 ) 1
< =Y WA(f(XS) = fo( X))+ = | Vo + L maxw?D, | + = ( 1L maxw? D,
2 pt 2 s€(t] 2 s€[t]
1
+ 5)\ + 2,02
@ 1 2
< waz(f(Xs)ff*(Xs)) Vo + 2 Lmaxw?D, ) + =X+ 2407,
2 pt selt] 2

where (a) holds due to va +b < y/a + Vb for any a,b > 0 and ¢; > 1, (b) holds due to Vab <
a/2 4 b/2 for any a,b > 0, and (c) holds due to a® + b < (a + b)* forany a,b > 0. Let g € V

12
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such that ||g — fi41lee < €, then

ng(ftJrl(XS) - f*(XS))2
<23 W (oa(X,) = L (X)) (Ys — £2(X,))

<23 wR(g(X,) — £ (X))(Ys — f-(X.)) + 2W2Rte

t 2
1 1 1
< = Zwi(g(Xs) — f(X)) 4+ = Vio + 2LtRmaxw§Ds + A+ 202 + 2W2 Rte
2 2 s€(t] 2
1 < ~ 1 S
< = Zw?(le(Xs) — f*(Xs))2 + = | Voo + 2LtRmaxw§Ds + =\ + 2002 + 3W?2Rte.
2 — 2 s€(t] 2

That is for any fixed t > 0, we have

t 2
g wf(ﬁ+1(XS) - f*(XS))2 < (\/Ltd +2u:R m%}}( w§D5> + A+ 4u,0% + 6W?Rte
se|t

2
< (3\/50 +2uR mz[u]( w?D, + VA +V 6W2Rte)
se|t

where the second inequality is due to 2v/ab < a+band a+b < (y/a+ v/b)? for any a, b > 0. Note
wat = thD]:(Xt; X[t],w[t])
o WA = AP
f1.f2€F Zse[t] w3 (f1(Xs) = f2(Xs))2 + A
< min{1, wi Dr(Xe; Xj—1), wp—1)) }-

Finally, the result holds through a union bound over all ¢ > 1 and >, 57 < 1. O

1
2t2
B PROOF OF THEOREM [4.2]

Parameters in Algorithm Foranyt € [T],1 € [L], ¢ € [L], let Bt i, B;yg denote the confidence
region as follows:

By = { eF: Z ftl zs) — f(zs)? < 5152,1}7

seWy
gt,l = {9 €g: Z gt o(zs) 9(955)2 < gﬁz}-
sE‘Pt,e
Here
1 LtR
Bii =2 a(3¢a+ 2—) + VA + V6Rte, (B.1)
Bre=2 a(3f+ o ) + VA + VR, (B.2)
where
2 2 p2 2 ~
o = 1610 2Nx(e)t?*(log(c?*R ? +2)(log(R*) +2) _ O(log Ny)
2 2 2p4 4 ~
7 = 161og 2Ng(6)t*(log(cio R5t) + 2)(log(R*) 4+ 2) — O(log No).

13



Under review as a conference paper at ICLR 2026

Furthermore, setting

v = R\/logNr, 7= R*/logNg, (B.3)

A\ = a?log Nr, A =a? log Ng, (B.4)
a’logNr _  a?logNg
— = _° 7 B.5

we have

Bri=0(2'a\/log NF), = O0(2"a\/log Ng).

Property 1 (Properties of ADALEVEL). For any ¢ € [T'], suppose [; = [, then

1. If L =0:
D1 (Xy) < 2a/y.
2. Ifle[L—-1]:
_ 2! _
Wi = 50,5 w =1,
Dy (Xy) <2Mlafy,  or § Dui(Xy) < 2'a/r,
g < 2oy 2-1a < 5y < 2la.
3. Ifl = L:
wy = #704 Wy = 1)
{_t< ’YLDt,L(Xt)7 or Dt,L(Xt) < QLQ/,Y’
Oy S 2 a; 2L71a < 62& § 2La.

Proof of Theorem[-2] Fort € [T, we define events &, & as

& ={VI€ (L], fr € Byand Ve € [L],g. € Bre}, €= (] &
ke[K]

The following lemmas hold.

Lemma B.1. On event &, we have forall | € [L], ¢ € [L],

\foa(@) = fu(@)] < BeuDya(),
1Gt.0(2) — g2 (2)| < BreDeo(2).

Furthermore,
f+(@) < min (fua(@) + min{ R, i Dea(@)}),

and

Proof. On event &, for any [ € [L], we have

fra(@) = fo(@)] < Deala) | D w?(fralas) = fol(@)? + A

seW,

< Dt,l(x) \/ ﬁt2,l +A

~ BraDii(x),
since VA = O(f; ;) according to (B-4). Similarly, for any ¢ € [L],

t.0(z) — gu(2)| < gt,lf)t,l(af)-

14
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Furthermore, since this holds for all [ € [L], we can choose the upper confidence bound of f,(x) as

min (Fuu(@) + min{R. 6, D1(x)}) > f.(x).

Recall the definition of ¢ in @3), we have for all | € [L],/ € [L],

|@eewe) = FRa(w)) = (gu(we) = F2(2))|
< [Ge(@e) = gul@)| + 1 Frea(me) + Ful@))] - | Fea(me) = Fulae)]
< min{R?, By ¢ Dy o(x4)} + min{R2,2RB; 1 Dy (1)}
Therefore, o7 is bounded by 77:
op = Varly; |z, = E[yi o] — E*[ye|ae] = ga(x0) — f2(x2)

< [i?ien - {02, Guo(@e) — [2y(x) + Rmin{R, 28,1 Dy ()} + min{R%, B, ¢ Dy o(w:)} }
€ RAS

Lemma B.2. Event & holds with probability at least 1 — (L + L)d.

Proof. By a union bound, with probability at least 1 — (L + E)é, the result follows from
Lemmausing {Xe, Yo, wie ke = {2, 98, Wi peewy,, ,» F for I € [L], and using { Xy, Yy, wi}y =

{@e, 97, ﬁt}te@”l ,F=Gforle [L]. We will check the conditions of Lemmafor allt € [T
by induction. '

First, for ¢ = 1, the result holds trivially.
Next, for ¢ > 1, suppose event (¢, €s holds, by Lemma we have for all s € [t],
a? < 6?.

Thus from Property([l] for all { € [L], ¢ € [L],

Varlys|zs] = o? < 65 < 2, wsDs (zs) < , Vse WUy,

Var[y?|z,] < o2 < 262 <2'a, WDy (zs) < Ea Vs € Wypqy.

Applying Lemmawith o =2, max e[y w?Dr(Xs; X[s—1), Wis—1]) = QITQ we have
Z W3 (frrna(zs) = fuls))? < BLays

s€Wiy1,

that is f. € Byy1y for all | € [L]. Applying Lemma again with ¢ = 2q,
0~
max e[ wi Dr(Xs; X[s 1), wis—1) = %%, we have

Z wi(/g\t+1,f($8) — G« (xS)Q < 6152-&-1,27
SE‘I’t+1,Z

that is g, € Et+1,é forall £ € [E], so event ;11 holds.

Then the proof is completed by induction over ¢ € [T]. 0
We define
U= min{R, B1Dyi(w2)}, (B.6)
te[T] €lL]
U= Z min {R?, B¢ Dy o(z4)}. (B.7)
te[T) Le(L]

15
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On event &, which holds with probability at least 1 — (L + Z)d by Lemma by the optimism of
x; implied by Lemma [B.T] regret is bounded as

Regret(T) = Y (fu(z}) — f(w1))

te[T]

< Z Lrg[m Foalwe) +min{R, B, Dy (20)}) — f*(xt)}

<2 112[1{1]{1% s BeaDe(e)}

B3 oy (B.8)
Setting

- d]:lOgN]: ~ 2 dglOgNg
= Ry/ T , a=R%/ T (B.9)

applying Lemmato U and U, we have

U=0 (\/df log Ny Ztem 52 + Rd log N;), (B.10)

U= 6(CUR\/df log Nr Ztem 52 + R%dg logNg). (B.11)

Furthermore,

Z < Z O't + 2R mln{R 281Dy (z)} + 2 mln{R ,Bt th g(l‘t)}>

te[T] te[T]
< Y o} +4RU +2U. (B.12)
te[T]
So we have

~
U S CUR\/dg log Ng Zte[T] 52 + R%*dg log Ng

@ cvR\/dg log Ng ( >

< CUR\/dg log Ng ( ZtE[T] o? + RU) + max{1, 2} R?dg log Ng, (B.13)

2 r7 2
gy O+ RU £ U) + R2dg log Ng

where the last inequality holds since < a+/x + b implies x < a? + 2b for any = > 0.
And

EB10)
U < \/dflogN_the[T] 52 + Rdrlog Ny

(1A w) -
< \/d; log N;( Ztem o? + RU + U) + Rdrlog Nr

< \/dflOng<Zt€[T] o} +RU) + Rdrlog Nr + \/d].-logN]:ﬁ,

16



Under review as a conference paper at ICLR 2026

where the last inequality holds due to va + b < /a + Vb for any a,b > 0. Here

\/drlog NxU

/drlog Ny
dglOgNg -~
= 1,¢c,}R\/drlog Nrdglog Ng - ———=U
max{1, c,} Ry/dr log Nrdglog Ng max{1,c,} R

A

\/d; log N;(Ztem o? + RU) + max{1, ¢, } R\/dr log Nxdg log Ng

~ \/dg:logN;<Zt€m o + RU) + CRdrlog Nr,

where the inequality holds due to Cauchy-Schwartz inequality and (B.13)), and the last equality holds
dg log Ng

since C' := max{1,¢,} drlog Nr

. Plugin back, we have

U< \/df log N;(Ztem o2 + RU) + max{1, C}Rdrlog N>

< \/dflongZtE[T] o? + max{1, C}Rdrlog Nr. (B.14)

Finally, combining (B.8) and (B.14), we have

Regret(T) = 6(\/d}‘ log Nx Ztem o? + max{1, C}Rdr log N;).

C PROOFS FOR REINFORCEMENT LEARNING

Parameters in Algorithm[3| For k € (K], € [L], let By, denote the confidence region as follows:

By == {f eF: Y wia(fea(zin) = f)’+ D @a(FreaGin) — FE)? < ﬁﬁ,z}-

(i,h) €Wy, (i,R) €Ty ;
Here ,
B = 21a<3@+ 2—’“) VX + V12kHe (C.1)
Y
where L2E2(] L
16N, H 2kH) + 2 ~
e = 1610g L5NZ() gog( )+2) _ O(log N7).
Furthermore, setting
v = Viog N7, C2)
A =a?log Nz, (C.3)
a?log Nx
= — C4
KO (C4

we have

Bri = O(2'av/log N).

C.1 OPTIMISM
For k € [K], we define events &, and £ as

g ={vielll.f €Bu}, €= () &
ke[K]

The following lemmas hold.

17
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Lemma C.1. On event &, we have for all [ € [L],

| froa(2) = fo(2)] < BraDra(2).
Furthermore, for all h € [H],
sy, ar) + [PVinga] (s, ar) < Vien(sh),
Vien(si) = sy, ap) — PVinga](sy, ap) < 2 mln{l B, Dr,i(zi,n)}

and
[VVk,hH](Sk ) < 5k hs
T — [(VVient1)(sf,af) <2 m[lfl]{l’ 284, Dri(2i,n) } + 2212&1]{1, Br,eDr.e(Zr,n)}-
Proof. See Appendix [D.T]for a detailed proof. O

Lemma C.2. Event £ holds with probability at least 1 — Ld.

Proof. See Appendix for a detailed proof. O
Lemma C.3. Onevent £, we have forall (k, h) € [K]|x[H], Q. n(-,-) = Q5 () Van(-) = Vi (-).

Proof. See Appendix [D.3|for a detailed proof. O

C.2 HIGHER-ORDER QUANTITIES IN MDPS

Inspired by [Zhao et al.|(2023)); Huang et al.| (2024), we define the following higher-order quantities
of MDPs. Let M = [log,(3KH)].

We define K to be a set of episodes when the sum of uncertainty within each level grows smoothly:

K:={ke[K]:Vle[L], Z wl%,hDI%,h,l(zk:,h) + Z ZB%,th,h,z(gkr,h) <1}
heWri1, 1\ Vi, heVyy1 \ Vg,
(C.5)
Let K := [K]\K. We can prove the number of episodes when uncertainty grows sharply is at most
K| = O(Ldz).

We use Vj, 1, (s) to denote the estimation error between the estimated value function and the optimal
value function, and use Vj, 5, (s) to denote the sub-optimality gap of policy ¥ at stage h:

Vk,h(s) = Vk,h(s) - V}:(S)7 Vs € 87 (kv h‘) S [K] X [H]’ (C6)
Ven(s) = Vii(s) = V™ (s), VseS,(k h)e[K]x [H] (C.7)
In addition, we use S,,, §m to represent the total variance of 2™ -th order value functions V,i’,: 1
VkQ,’h”H:
Sm = Y V2 (sh af), (C.8)
kek h
Z Z \4% 1l (s, af). (C.9)
kek h

Then, for 2™-th order value functions V;2 115 V2, 41> Weuse Ay, Ay, to denote the summation of
stochastic transition noise as follows:

_ >, ~_o5m k
- + ’ s ) .
>0 37 [PV alsheab) — Vs (o) (C10)
kEK h
k
+
ZZ{Pth J(skaf) — Vi h+1(5h+1):|‘ (C.11)
kEK h

18
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Finally, we use the R, R to denote the summation of bonuses:

R=Y" Z{Q}{ﬁ{l’ Brea D (zr,n) by

ke h

R=Y" Zzﬂel[iil}{l, Bre,eDre,e(Zh,n) b

ke h

Now, we introduce the following lemmas to build the connection between these quantities.

Lemma C.4. We have
K| < 2Ldx.

Proof. See Appendix [D.4]for a detailed proof.

Lemma C.5. On event £, we have for all m € [M],

S < Apy1 +2™1(2R),
S < A1 + 271 (2R + Ap).

Proof. See Appendix [D.5|for a detailed proof.

Lemma C.6. With probability at least 1 — 24, we have for all m € [M],

A <A/CSm + ¢,

where ¢ = 8log(2(M + 1)(log(K H) + 2)/§). We denote the corresponding event by A.

Proof. See Appendix for a detailed proof.

Lemma C.7. Onevent £ N A, we have

Ay < 2v/2C(R+T¢,

Ay <4\/CR+TC.
Proof. See Appendix for a detailed proof.
Lemma C.8. Onevent £ N A, we have

Ao < 44/2CR + 15¢.
Proof. See Appendix for a detailed proof.
Lemma C.9. Setting

o d]: log N]:

KH
on event £ N A, we have

R = 5<\/ drlog Nz Vary, + max{1, ¢, }drlog N]—') .
Proof. See Appendix for a detailed proof.
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C.3 REGRET ANALYSIS

Proof of Theorem[5.1] On event £ N A, which holds with probability at least 1 — (L + 2)d by
Lemma [C.2} [C.6] and a union bound, we have all lemmas in this section hold. By the optimism
implied by Lemma[C.3] we have

K

K
Regret(K) =Y  (Vy*(sh) — <> (Vealsh) Vi (sh)). (C.24)
k=1 k=1

We further use Lemma [C.10]to bound the regret with the quantities defined in Section[C.2]
Lemma C.10. On event £, we have

K
(Via(s) = V™ (s5)) < 2R+ Ao + Ao + |K]. (C.25)

=~
Il
_

Proof. First, we decompose Vj, 1(s%) and V/* ( ¥) as follows
H
Via(st) = D [Vin(sh) = Vi (shin)]
h=1
H H
= " r(sh,af) Z [Vin(sh) = r(sh,af) = [PV ata] (sh, ap)]
h=1 h=1

H
+ Z [PVinta](shs ) = Vienta (shia)] 5
h=1

H
v (sh) = SOV (k) = Vit (k)]
h=1
H H . .
=S rlshoah) + 0 [Virt (sh) = r(sh, o) — PV (s} o)
h=1 h=1
A k k
+ 3 [PV Ishs ah) = Vit (k)|
h=1
H H
=Y r(shial) + 3 [PV (shsaf) = Vi (sh )]
h=1 h=1

Thus it follows that

Vk1(51) Vi ( )

Z Vin(sk) = r(sk,af) = [PViaia] (sf;, af)]
h=1

M=

[PV (sh ah) = Virpa (k)|

M=

+ [[PVen1](sE, ak) = Vient1(si1)] —

>
Il

—
i
—

I
NE

[Vien(sy) = r(sk,af) — PVinta](sh, ap)]

>
Il
—

M=

[PV, nt1](sisar) = Viensa(sigq)] +

n
M=

[PVicsa)(shsah) = Vi (shr)]

=
Il
—
>
I
—_
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Then we have

K k
[Via(sh) = v (sh)]
k=1
< Kl+2)° Z mln{l BraDia(zen)} + Y > [PVinial(shyaf) = Vionra(shy1)]
ke h ke h
+ 303 [PVnl(shyab) = Vs (sh)|
ke h

= 2R+ Ag + Ao +|K],
where (a) is due to Lemma O

Then we have
2R+ Ao+ Ay + K|
(2 R+vVR+ dr
(b) < Vdrlog Nz Varj 4+ max{1, ¢, }drlog Nr, (C.26)

where (a) holds due to (C:19), (C.21)), (C.T4), and (b) holds due to (C.23).
Finally, Combining (C.24), (C.25) and (C.26)), the high-probability regret bound is given by

Regret(K) = 6(\/d_rlongVar} + max{l,cv}d_rlong).

D MISSING PROOFS IN SECTION[C

D.l1 PROOF OF LEMMA
Proof of Lemma[C_1] On event &y, forany [ € [L], f. € By, it follows that
|Fra(2) = £u(2)]
o) [ @it — )+ S i) — fG))? + A

(i,h) €Ty (i) €Ty

(b)
< Dya(2)4/Bry + X

(C)
R BriDri(2),

where (a) holds due to the definition of D in (3.I)), (b) holds due to v/a + b < \/a + /b for any
a,b >0, (c) holds due to VA = O(B,;) by (CI).

Furthermore, since this holds for all | € [L], we have

rr(sy, ap) + PVinia](sy. ar)
=ru(si,ap) + fe(zmn)

< {Q[m{l (s, af) + Fea(zin) + BraDra(zen)}

= Vk,h(Sh)~
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Thus,
Vien(s) = sy, ag) + PVinsa](sy, ar)

= lfél[i]_fl]{lyTh(Sl;§7 ay) + fk,l(zk,h) + BreaDra(zin)} — rn(sy,af) — fulzin)

< 2min{1, B Dri(2x,n)}-
le[L]

Recall the definition of Gy 5, in (3.2)), we have for all [ € [L], ¢ € [L],
|FieGion) = FRa(enn)] = [fe(Fn) = £2 ()]
< FreGien) = FeGen) |+ | i(zrn) = £2(z00)]
= e Gn) = FeGn)| + Fea(zen) + folen)] - 1 frazin) = (2l
< min{1, By Dy,e(Zr,n)} +min{l, 28% 1 Dri(2k,n) },
where the last inequality holds due to fy.;, f. € [0, 1]. Therefore, [VVis41](sF, ak) is bounded by
Tipt
[VVieht1](sh» af)
= [PV a)(sr ar) — [PVins1]* (si, ai) = fu(Zrn) — f2(zkn)

le[g]lifré[L] {17 FreGin) — f;?,z(Zk,h) +min{1, 28y 1 Dy 1 (2x,n) } + min{1, ﬁk,eDk,e(Ek,h)}}

_ =2
= Ok.h-

Thus
Gin — [VVinsa](si. ap)

= min {17 FeeGion) — f21(z) + min{1, 28k Dy (2,4)} + min{1, Bk,sz,z(Ek,h)}}
le[L],Le(L)]

— feGron) + [2(zkn)
< 2min{1, 28k, Dy 1(2k,n)} + 2 min{1, By ¢ Dy ¢(Zk,n) }-
le[L] Le[L]

N

IN

D.2 PROOF OF LEMMA [C.Z]

Proof of Lemma|[C.2] By a union bound, with probability at least 1 — L4, the result follows from

Lemma [4.3| using {Xo¢—1, Yar—1, w2t —1}¢ U { Xot, Yor, war bt = {280 Ykhr Whon } (kyh) €W ir, U

{Zk,hs Yo s @kvh}(k hyeFs, o forl e [L]. We will check the conditions of Lemmafor all

k € [K] by induction.

First, for k = 1, the result holds trivially.

Next, for k > 1, suppose event (), € holds, by Lemma|C.1| we have for all (i, ) € [k] x [H],
(VViht1l(sh, ap) < 075,

Thus from Property([1] for all € [L],

i _ 2l .
Var(yi nlzin] = [VVint1l(sh,ap,) < a7, < 2'a, winDipa(zin) < - V(i,h) € Wry1,
. ; _ - 2! , ~
Varly?,[Zin] = [VVZ, 1 ](sh,af) < 262, <2, @inDina(Fin) < — V(i h) € Tpan .
' ' ’ Y
Applying Lemmawith o =2a, maxe ) w2 Dr(Xg; X[g_1), ws—1]) = nga, we have
> win(fera(zin) = fza))?+ Y. Wa(FeraGin) = £ Gin)? < Bl

(1,h)EY k41, (i,) €V k11,
that is f. € Bj41, foralll € [L], so event 41 holds.
Then the proof is completed by induction over k € [K]. O
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D.3 PROOF oF LEMMA [C.3]

Proof of Lemma|C.3] We prove the optimism by induction. When h = H + 1, we have Vj, pr41(-) =
Vir1(-) = 0, and the result holds trivially. We assume the statement is true for all 2 + 1, and prove
the case of h. For any (s, a), if Qxn(s,a) = 1, then Q n(s,a) = 1 > Q}(s,a). Otherwise, we
have

Qr,n(s,a) — Q(s,a)

= l}'g[ln] {1 rh(s (l) +fkl(5 a, Vi h+1) +m1n{1 Blekl(S a, Vi h+1)}}

—rn(s,a) = ful(s,0, Vi)

> lrél[lil] (sz(s a, Vi nt1) + min{1, By Dy (s, a, Vi h+1)}) — fu(s,a, Vi ht1)

>0,
where the first inequality holds due to Vi 41(-) > V}*;(-) and the second holds due to Lemma

That is, we have Q1 (-, ) > Qj (-,-) and therefore Vj, 5, (-) > V}*(-). Then the proof is completed
by induction. O

D.4 PROOF OF LEMMA [C. 4]

Proof of Lemma[C4} Recall the definition of K, we have
k c IE < Ell c [L], Z wl%,th%,h,l(Zk,h) + Z @k,h‘DlQC,h,l(gkﬂ,h) > ].
heWe 1\ Ve, heWy 1\ Wy,
Let iél denote the indices k such that
]6[}1 = {k S [K] : Z wl%,hDI%,h,l(Zkyh) + Z ’[Efj,th;vhJ(gk,h) > 1}.
heWk i1\ Wk 1 heWs 1\ T,

Then we have |K| < Uiz K| < > ieln) |K;|. For any [ € [L], we have

K
Ki| < Z min {17 Z Wi 5 DR i (Zkn) + Z wi,th%,h,l(zk,h)}
=1

he€Wri1,1\ ¥k, heW) 1, \ Vs,

< Z min{l,wi7hD,%7h)l(zk7h)} + Z min{l,@z’th,hJ(Zk,h)}

(k,h)EV K 11,1 (k,h)eW 41,
< 2d7.
Taking the summation over [ € [L] gives the upper bound of |K|. O

D.5 PROOF oF LEMMA [C.3]

Proof of Lemma[C.3] We are to bound S, and S, with similar arguments.
Recall the definition of S,, in (C:8), we have

Sm=)_ D VVZil(sh,ap)

kEK h
m—+1
= Z Z [P k2h+1 Shvah) [PVk h+1] (SZ,GZ)Q}
keK h
m+1 ~ M+1 ~ om—+41 ~_om
= Z Z { Vi nil(sh,a) — Vi h+1(3h+1)} + Z Z {Vﬁh (sh) — [Pvlih-i—l]Q(Szva'lﬁ)}
keK h keK h
m41 m41
+ Z Z ( Ve (han) = Vidn (s ))
kek h
7n+l
E DT [V () = [PV sk af)| (.1)
keK h
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For the second term in (D:I)), we have

Z Z [ 2m+1 - [PV; 7h”+1] (Sz’a”z)}

keEK h
(a) 2m
< SOV ) — PV P (s o)
keEK h
Z Z Vk h Sh PVk ht1] Sh,ah H [ ka h+1] (Sﬁ’aﬁ)}
kEK h =0
2m-|-1 Z Zmax {Vk A sh PVk h+1]( Z,GZ)7O}
ke h
< gm+1 Z ZmaX{Vk n(sp) —r(sk,af) — [PVinsal(sf, af), 0}
ke h
< gm+1 Z 22 mln{l BriDri(zk.n) }
ke h
=271 (2R), B2

where (a) holds due to E[X?] > (E[X])?, (b) holds due to the definition of V} j, and V;*(s¥) >
r(sf, af) + [PV, ](sf, af), while (c) is due to Lemma Substituting (D.2) into (D)), we have

Sy < Appy1 + 2™ (2R).

Next, we proceed to bound S,,,. Recall the definition of S, in (CJ), we have

Sm= D D IVVZial(sh.ak)

&5
- ;C; [PV (sh ah) = PV 0 ]2(s5, af)?]
= 3 S0PV eh o)~ TR k)| + 30 DDV o) - PRk o)
+k§CZ(V£’;§Ii<sh+l> v k)
<4 1122[ 5 (s — PVl Gsh o) 03)
-
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For the second term in (D.3)), we have

[~om+1 ~om
SOV (sh) - PV sk ah)]
keEK h
(a) m+1 ~ m+1
< 3N VTR — PV sk ah)
ke h
= > Vin(sh) = [PVinia] Shvah} [th st) + [PV 1] (waaﬁ)}
kek h i=0
<203 S max {Vn(sh) — PVnsal(sh, ab), 0}
kEK h
b) m *
2 szmax{vh sh) — (s, ak) — [PV (sk, ap), 0}
keEK h
(¢) r
< 2NN max {Vion(sy) — r(sh, af) — [PVioaga](sf, af), 0}
kek h

+ [PVi ] (5, ak) — Wi h+1(5§+1)|}

(d)
<2mH YNy 2mm{1 Brea D (2n)} + [[PVina1] (55, ak) = Vi1 (sh41)]
ke h -

<2mHLL QR + Ay), (D.4)

where (a) holds due to E[X2] > (E[X])2, (b) holds due to the definition of Vj, , and V;* (sF) =
r(sk,ak) + [IE”VhH](s’f”a’fL) (c) holds due to V;*(s§) > r(s), af) + [PV;r,](sF, af) and the defi-
nition of V}, ,, while (d) is due to Lemmam Substituting (D-4) into (D.3)), we have

S < Apg1 + 271 (2R + Ap).

D.6 PROOF oF LEMMA [C.6

Proof of Lemma|C.6] Let X, j, = [IP’Vk haa)(sh,af)— V,~c i1 (8K 1), then we have E[ Xy |Gk ] =

0, | Xkl < 2and E[X,%)”Qk,h] [VVk h+1](s§,a,}§). Therefore, for any m € [M], applying

variance-aware Freedman’s inequality in Lemma with probability at least 1 — ——9, we have

M+1
Ay </CSm + ¢

Thus, taking a union bound over m € [M], with probability at least 1 — &, (C.17) holds. The proofs
for (C-I18) follow the same arguments as (C.17) O

D.7 PROOF oF LEMMA [C.7]

Proof of Lemma[C.7] On event £ N A, we have (C.15) and (C.17) hold by Lemma [C.5] and [C.6]
Substituting the bound of S,,, in (C.13) into (C.I7), we have for all m € [M],

b < V/C\ A 2740 @B) 4 ¢
And we have for all m € [M], A,,, < 2K H. Then the result follows by Lemma O

D.8 PROOF oF LEMMA[C.§]

Proof of Lemma[C.8} On event £ N A, we have (C.16) and (C.18) hold by Lemma [C.5] and [C.6]
Substituting the bound of S,, in (C.16) into (C.I8), we have for all m € [M],

A < \/E'\/gm+1+2m+l'(2R+A0)+C-
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And we have for all m € [M], A,, < 2K H. Applying Lemma we have

Ay <20/C(2R + Ag) +7¢

(a) -
< 2V/2CR + 24/ CAg + 7¢

(b) ,

< 2V/2(R + ¢+ Ao+ 7¢

(¢)

< 4\/2CR + 15¢,
where () holds due to v/a + b < v/a+ /b for a,b > 0, (b) holds due to 2v/ab < a+b for a,b > 0
and (c) holds due to (C:T9) in Lemmal|C.7] O

D.9 PROOF OF LEMMA[C.9]

Proof of Lemma[C.9) We have forall k € K, [ € [L],

Z wlzc,hDizc,h,l(zk,h) + Z @z,hD%,h,z(zk,h) <1l

heWri1,1\Vr, eV 1.\ Vg
By LemmalE.5] it follows that for all h € [H],
Dy i(2k,n)
1 ~
< exp {§< > Drjlay)+ Y, Dk,j,l(Zk,j)) }Dk,h,z(%,h)
JE€EYE h, 1\ Yk 1 €Tk n, i\ Ty
1 ~ ~
< exp {5 ( > winDinan) + D wl%,hDI%,h,l(ZkJL)) }Dk,h,z(%,h)
heW 11,1\ ¥k, hE‘le+1.l\\f’k,l

< 2Dg ni(Zk,n)-
Similarly, for all k € K, h € [H], ¢ € [L],
Dy o(Z,n) < 2Dk o (Zg,n)-
Then we have

R<2> > lfg[iil]{l, Brea Dt (2k,0)

keEK h
R<2 > min{l, B¢ Dine(Zhn)}
Le[L]
kK h
Setting @ = 4/ %, applying Lemmato R and R, we have
R= 5<\/d; ogNzY_ > o, +d;10ng), (D.5)
R= é(cv \/d; log Nx ZkeK Zh 7., +drlog N;). (D.6)

Furthermore, according to Lemma|[C.T] we have

2251%,11

kek h

< Z Z ([VVihta](sk, ar) + 2 lfg[iil]{la 281Dy (21,n) } + 2;2[12]{1, Bre,e Do (Zron)})
ke h

< Sy +4R+2R. (D.7)
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So we have

(X}
R < cv\/dflogN; Zke)c Zh o2, +drlog Nr

=
< Cy\/d]—‘lOgN]:(SO +R+R) +drlog Nr

(D.8)

< cv\/d]: logN}-(So + R) +max{1,c?}drlog Nz,
where the last inequality holds since z < a+/x + b implies x < a? + 2b for any = > 0.
And thus

G5
RS \Jiriogne Y, | Y, 0t +drlog N

(D.7) ~
< \/d;logN;(So YR+ R) +drlog Ny

< Vdrlog N7(So + R) + drlog Nr +1/drlog N£R,

where the last inequality holds due to v/a + b < \/a + /b for any a, b > 0. Here
A/ drlog N, ]:R

= \/max{l,cﬂ}d}- log Nx -

1 -
max{1,c,}

< \/d].‘ log N]:(So + R) + max{1, ¢, }drlog Nx,
where the inequality holds due to Cauchy-Schwartz inequality and (D.8). Plugin back, we have
R< \/d; log N]:(SO + R) + max{1, ¢, }drlog Nx

(a) -
< v/ drlog Nxe(Vary +So + R) + max{1, ¢, }drlog Nx

-
S \/d].- log Nx(Vary +4; + R) + max{1,¢, }drlog Nr

S \/d].- log Nx(Vary +V R + R) 4+ max{1, ¢, }dr log Nr

< +/dxlog Nx Vary, + max{1, ¢, }dr log Nx,

where the (a) holds due to Var[X + Y] < 2 Var[X] + 2 Var[Y]. O

E AUXILIARY LEMMAS

Lemma E.1 (Variance-aware and range-aware Freedman’s inequality, Corollary 2 in|Agarwal et al.
(2023)). Let M > m > 0,V > v > 0 be fixed constants, and {XS}SGM be a stochastic process
adapted to the filtration {G, } ;c[), such that X is G,-measurable. Suppose E[X[G; 1] = 0, | X,| <
M and 22:1 E[X?|Gs_1] < V? almost surely. Then for any § > 0, with probability at least
1 — (log(V?/v?) + 2)(log(M /m) + 2)§, we have

t t
1 2 1
;Xs <412 <ZZE[X§QS_1] + 1}2> logg + 3 (2 18133](|Xs| + m) log 5

s=1

Lemma E.2 (Variance-aware Freedman’s inequality). Let M > 0 be fixed constants, and { X } sy
be a stochastic process adapted to the filtration {Gs } s[4, such that X is G,-measurable. Suppose
E[X;|Gs—1] = 0 and | Xs| < M almost surely. Then for any § > 0, with probability at least
1 —2(logt + 2)d, we have

t t
1 1
X, <2,| S E[X2(G, 1]log = +4M log +.
> X: <24 Y E[X2(G,1]log < +4M log

s=1 s=1
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Proof. The result follows by applying LemmalE.1|with V2 = M?t,m = v = M. O
Lemma E.3. Let R, o, v = R\/log Nr, L = [log, &1, 8, = O(2'a/Tog N7). For t € [T, let

disjoint sets { W1, l}l <D be constructed according to ADALEVEL with D;; = Dy ;(X;). Here,
Dy (X)) := Dr(Xy; Xy, ,, wy, ), where D is defined in (3.1). Then we have

_ a®T
Z mln{R Bt lDt l(Xt)} = (\/d]: long ZtE[T] Ut2 + Rd]: long + T\/long).

o }ze

Furthermore, setting @ = R4/ m yields

Z min{R, fuDei(X,)) = 0(\/d;10ng > e Jer]:logN]:).

Proof. According to Lemma|E.4] we have for all | € [L],
Y min{l,w?D} (X)) = O(dim}- («/A/T) longog(T/)\)) =0(dz). (B
teEVTL1,

For all ¢ € [T7], Property [I| holds true. Next, we decompose [T = |, ety Y1, and carefully
bound summations within each level.

Level /=0 Foranyt e Upiq, Di1(Xy) < 2%, 51 = (Za\/logN ), therefore
Z llg[l}}]{R, 5t,lDt,l(Xt)} < Z B Dy (Xe)
tE‘I/T+1,o te\I’TJrl,O
2
<T 2« long~—a
v
T
=0(%):
R
Level l = L We decompose Y711 1 = Jr,1 U JL 2 where
J, {te\Il _ 2o } Tpo={te U 1}
= fwg = , 9= Lw =1}
L1 T+1,L Wt YD s (X)) L2 T+1,L Wt
Thus
Z lmln{R BeaDe1(Xe)} < R|Tpa| + Z B0 Dy 1.(X4).
teWri1,L 6 teJL 2

Summation over 7,1 Foranyt € Jp 1, wi Dy (X)) = 2LT"‘ > % Thus 1 < ;’z—zwaﬁL(Xt).
Then we have

2
R|JL1| <R Z %wtthz,L(Xt)

teJL,1
= —72 E min{l,wtszL(Xt)}
R ’
teJr1

ED 5 (Rd; log Nf)

Summation over J;, » Foranyt € Jr, o,

Br.r. = O(2av/log Nr) < O(25;log N7 ),
2L
Dy < —
Y
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Thus
Z Be.LDe.(Xt) S Z 7:\/log NzDy 1,(X;)
teJrL 2 teJL 2
< Viegr- [30 ot [3 min(Lupnz,(x)

teJL,2 teJL,2
ED ~( 2)
=0 \/d}-logN]: ZtejL )
Levell € [L — 1] We decompose Wy, = J;1 U J 2 where

2o } iz ={tew 1
= = Wy = .
t YDy (X1) ) 1,2 T+1,0 F Wy

:7171 = {t € \I/T+171 Tw

Thus
> mm{R BraDea(X0)} < > BrasrDeaa (X)) + > BraDea(Xe).

teWrii, teJi1 teTl 2

Summation over 7;; Foranyt € J, 1,

Bri1 = 02" a/log N5) = O(4yw, Dy 1(X;)\/log Nr)

21y
Dyi1(Xe) < = 2w Dy 1 (X3).
Thus
> BrsaDeia(Xe) S Y ywiDey(Xy)y/log N - we Dy i ()
teJia teJi1
~y\/log Nr Y min{l,w?D?,(X)}

teJ 1
ED 5(Rdr10g N7).

Summation over 7,2 Foranyt € J 2,

Bri = O0(2'ar/log Nr) < O(25¢log Nr),

2[
Dy < 70[-
~
Thus
> BuuDu(X) S Y 1/log NeDy (X))
teT: 2 teT: 2
SVIgNzg- | > 62 | D min{l,w?D? (X,)}

teJi,2 teTl,2

- 6(\/df log Nz Ztem . )

Now we put pieces together:

Z lrmn{R ﬂtlDtl Xy }— Z Z I/nlil {R ﬁt 1 Dy l’(Xt)}
te([T] el le[L] €Y T+1,0 vel

~ ~ 2T
— O(\/Ld; log N ZZE[L] Ztem 72 4+ LRdrlog Ny + T\/log N;)
2

~ T
= O(\/dy:log]\f]:ztem 2 + Rdrlog Nr + aT\/long).
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Lemma E.4 (Lemma D.6 in Jia et al.|(2024)). Let Dz be defined in (3.1, and w; € [0, 1] for all
t € [T). Then we have

Z min{1, w; Dr(X¢; Xjp—1), wi—1))} = O(dim}- (M) longog(T/)\)).

te[T]
Lemma E.5 (Lemma H.4 in [Huang et al.| (2024)). Let Dx be defined in (3.1). Then for any ¢ >
to > 1, we have

t—1

DH( Xy Xt Wity)) < eXp{ Z wiDQF(Xs§X[s—1]7w[s—l])} D%(Xg; Xp_q), wy—1))-
S:t0+1

Lemma E.6 (Lemma H.6 in Huang et al|(2024)). Let A, A3, Ay > 0, A3 > 1 and ¢’ = [logy A1].
Let ag,a1,as,...,a; be non-negative reals such that a; < A forany 0 < ¢ < ¢/, and a; <

Ao/ @itq + 201 - A3+ Ay for any 0 < ¢ < ¢’. Then we have
2
ap < max { <)\2 + /A3 + >\4> s A2V 43 + >\4} < Aov/4As +4M3 + 3y,

2
a; < max { (Ag + /A3 + )\4> ,Aay/8\s + )\4} < Ao/8A3 +4A3 + 3\,
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