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ABSTRACT

Imitation learning (IL) from demonstrations serves as one data-efficient and prac-
tical framework for achieving human-level performance and behavior alignment
with human experts in sequential decision making. However, existing IL ap-
proaches mostly presume that the expert demonstrations are homogeneous and
largely ignore the practical issue of multiple performance criteria and the result-
ing diverse preferences of the experts. To tackle this, we propose to learn simulta-
neously from multiple experts of different preferences through the lens of multi-
objective inverse reinforcement learning (MOIRL). Specifically, MOIRL achieves
unified learning from diverse experts by inferring the vector-valued reward func-
tion of each expert and reconcile these via reward consensus. Built on this, we
propose Multi-Objective Inverse Soft-Q Learning (MOIQ), which penalizes dif-
ferences in the rewards for encouraging reward consensus. This approach enjoys
transferability to unseen preferences due to the reward consensus among demon-
strators. To further annotate the unknown preferences of demonstrations, we in-
troduce a posterior network that can predict preferences of the given trajectories.
Extensive experiments demonstrate that MOIQ is competitive in challenging sce-
narios with low and noisy annotations and can outperform stronger benchmark
methods and approaches expert-level performance in the fully annotated regime.

1 INTRODUCTION

Imitation learning (IL) from expert demonstrations serves as a data-efficient and practical framework
for achieving behavior alignment with the experts as well as human-level performance in sequential
decision making, especially for those real-world applications where domain expertise is available for
warm start or reward signal is sparse or difficult to design. For example, in robot control (Finn et al.,
2016), by leveraging demonstrations from humans, the reward signal becomes implicitly embedded
in the observed expert behaviors, enabling the robot to learn complex tasks without explicitly de-
fined reward functions. As a result, this alleviates the challenges associated with manually crafting
reward structures, which can be intricate and often elusive in capturing nuanced task requirements.
In addition to robot control, for similar reasons, various other real-world applications also benefit
significantly from demonstrations for behavior alignment, such as autonomous driving (Le Mero
et al., 2022; Codevilla et al., 2018), financial trading (Liu et al., 2020), recommender systems (Chen
et al., 2021; 2023c), and medical treatments (Wang et al., 2020; 2022).

Existing IL approaches mostly presume that the expert demonstrations are homogeneous in the sense
that they all reflect the same or similar expert behavior. However, this presumption typically does
not hold in practice, at least for the following two reasons. First, for ease of deployment, the expert
demonstrations are usually collected from multiple demonstrators. Second, a plethora of real-world
sequential decision-making problems inherently involve the joint optimization of multiple perfor-
mance criteria, some of which could even be conflicting. As a result, the preference over multiple
performance criteria is naturally and implicitly encoded into the expert behavior, and therefore the

1*Equal contribution.
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(a) DST (b) Expert (c) InfoGAIL (d) Ess-InfoGAIL (e) MOIQ

Figure 1: (a) DST environment. The expert with a higher preference for valuable treasures will
seek out more distant treasures, whereas the one with a higher preference for minimizing step costs
will tend to stay closer. (b) The demonstrations of experts are imbalanced in total steps, where
green trajectory took 2 steps to reach its treasure, red trajectory took 5, and blue trajectory took 13.
(c)(d) InfoGAIL and Ess-InfoGAIL struggle to distinguish 3 experts and tend to overlook the shorter
(green) demonstrations. They both fail to recognize that the furthest (blue) trajectory requires a turn
at the end. (e) MOIQ perfectly mimics experts with three different targets. Notably, the furthest
trajectory accurately making a turn demonstrates the advantage of IRL in recovering a reward, indi-
cating that our approach can retrieve an accurate reward from multi-expert demonstrations.

preferred behavior can be rather diverse and shall vary with the preference. For example, robot lo-
comotion tasks involve trade-offs between speed and energy use. The desired behavior vary with
the user’s preference (e.g., prioritizing speed or battery life). The performance of navigation tasks
includes reaching goals, time efficiency, and energy usage. Therefore, the desired route naturally
depends on the preference over these objectives of interest.

Throughout this paper, we refer to this problem setting as Learning from Diverse Experts (LfDE).
Among the vast IL literature, there are very few prior works on addressing LfDE-related formula-
tions, and the most relevant ones are built on the idea of imitation learning with latent contexts, e.g.,
obtained through maximizing mutual information like in InfoGAIL-like methods (Li et al., 2017;
Fu et al., 2023) or via latent skills with expertise level estimation (Beliaev et al., 2022). However,
latent contexts do not have a clear semantic interpretation and are oblivious to the multi-objective
and preference-dependent structure. As shown in Figure 1, InfoGAIL and ESS-InfoGAIL struggle
to distinguish among three experts and tend to overlook the shorter demonstrations in the Deep Sea
Treasure environment. Therefore, this motivates one important and open research question: How
to train an imitator model that learns jointly from diverse demonstrators over multiple performance
criteria and can adapt well to a wide range of preferences at deployment?

To tackle this challenge, we propose a holistic framework to solve LfDE through the lens of
Multi-Objective Inverse Reinforcement Learning (MOIRL). Unlike traditional Single-Objective IRL
where a single reward function is inferred, MOIRL infers a vector-valued reward function with one
dimension for each performance objective. A key challenge is that these inferred rewards can vary
significantly between demonstrators. To address this, we introduce the concept of reward consen-
sus, enforcing the inferred rewards to converge through a consensus constraint. For discrete envi-
ronments, we reformulate MOIRL as a global variable consensus problem and solve it using the
ADMM method (Boyd et al., 2011), suitable for tasks with small state and action spaces. For con-
tinuous environments, we propose MOIQ, which converts the consensus constraint into a penalty
term embedded in the soft Q-function (Garg et al., 2021), enabling efficient optimization using off-
the-shelf deep learning frameworks.

Contributions. We summarize our contributions as follows: (1) We propose the MOIRL frame-
work, which learns jointly from demonstrations of diverse preferences over multiple objectives
through reward consensus and achieves knowledge sharing across preferences and effective transfer
to unseen preferences during training. (2) We present MOIQ, which serves as a practical implemen-
tation of MOIRL and can learn to imitate the experts of diverse preferences from demonstrations
with very little and possibly noisy knowledge about the preference. (3) Through extensive experi-
ments, we demonstrate that the proposed MOIRL outperforms the benchmark IRL methods and can
learn efficiently in the full-annotation, low-annotation, and noisy-annotation settings, as well as in
complex environments where other baselines fail to train effectively.
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2 PRELIMINARIES

In this section, we describe the background information needed for the proposed MOIRL framework,
including multi-objective MDPs and the standard inverse RL formulation.

Multi-Objective Markov Decision Process (MOMDP): An MOMDP can be fully characterized
by the tuple (S, A, p0, P , r, γ), where S and A denote the state and action spaces, p0 ∈ ∆(S)1

is the initial state distribution, P: S × A → ∆(S) is the transition function, r: S × A → Rd is
the vector-valued reward function with d denoting the number of objectives, and γ ∈ (0, 1) is the
discount factor. Let Π := {π|π : S → ∆(A)} denote the set of all Markovian policies (possibly
randomized). LetR and Ω denote the set of possible reward functions and the set of all preferences,
respectively. For a policy π ∈ Π, the occupancy measure ρπ : S × A → R (also known as the
discounted state-action distribution) is defined as ρπ(s, a) := (1 − γ)π(a|s)

∑∞
t=0 γ

tP (st = s|π).
Notably, when d = 1, the above reduces to the standard formulation of single-objective MDPs.

In this paper, we focus on the standard linear scalarization function in the MOMDP literature (Abels
et al., 2019; Yang et al., 2019; Hung et al., 2023; Basaklar et al., 2023), i.e., the vectorized rewards
can be scalarized by an affine function Sω : Rd → R with a preference vector ω ∈ Ω such that

Sω(r(s, a)) := ω⊤r(s, a) ≡ rω(s, a) (1)

where ω is a d-dimensional preference vector and rω serves as a shorthand for the scalarized re-
ward function under ω. Under linear scalarization, without loss of generality, we presume that the
preference vectors lie in a unit simplex for simplicity.

Inverse RL. As one major paradigm of imitation learning, inverse RL (IRL) imitates the expert
behavior by first inferring the underlying reward function that aligns with the expert demonstrations
and thereafter employs an off-the-shelf RL algorithm to obtain the corresponding optimal policy
(Ng & Russell, 2000; Abbeel & Ng, 2004). Given that IRL is known to be an underdetermined
problem in the sense that the expert policy can be optimal under multiple reward functions (Osa
et al., 2018), maximum causal entropy IRL (Ziebart et al., 2008; 2010; Ho & Ermon, 2016) addresses
this identification issue by reformulating IRL as the following optimization problem. Let ρe denote
the occupancy measure of the expert policy to be imitated. Given a class of candidate scalar reward
functionsR, we jointly solve for the unknown reward function and the imitation policy as

max
r∈R

(
min
π∈Π

−Eρπ [r(s, a)]−H(π)
)
+ Eρe [r(s, a)]− ψ(r), (2)

where H(π) := E(s,a)∼ρπ [− log π(a|s)]/(1 − γ) is the discounted causal entropy of a policy π
and ψ : RS ×A → R is a convex regularizer. Notably, the maximin problem in Equation (2)
can be viewed as the dual problem of matching the occupancy measures between the expert and
the imitator from the perspective of optimal transport (Xiao et al., 2019). To solve the problem
in Equation (2), one natural approach is to alternate between reward inference and policy learning
via RL, which could incur substantial computational cost. To address this, (Ho & Ermon, 2016)
pinpoints the connection between IRL and the generative adversarial network (GAN) (Goodfellow
et al., 2014) by showing the equivalence between Equation (2) under a proper regularizer and the
minimax problem for training GANs.

Soft Q-Function and Inverse Soft Bellman Operator: Despite the efficacy of Equation (2), the
corresponding adversarial training can be rather unstable in practice. To obviate the need for adver-
sarial training, (Garg et al., 2021) proposed to further characterize the relation between the reward
and the Q function.

For any given reward function r and any policy π, define the soft Bellman operator Bπr : R|S|×|A| →
R|S|×|A| as (BπrQ)(s, a) = r(s, a) + γEs′∼P(·|s,a)[V

π(s′)], where V π(s) := Ea∼π(·|s)[Q(s, a) −
log π(a|s)]. Notably, this operator uniquely characterizes the soft Q-function, which is defined as
the solution to the soft Bellman equation asQ = BπrQ (Geist et al., 2019). Built on this, (Garg et al.,
2021) introduces the inverse soft Bellman operator T π defined as

(T πQ)(s, a) := Q(s, a)− γEs′∼P(·|s,a)[V
π(s′)]. (3)

Through the operator T π , one can view T πQ as a Q-induced reward function. In fact, it has been
established that the soft Q-function and the Q-induced reward function enjoy a bijection under

1Throughout this paper, for a set X , we use ∆(X ) to denote the set of all probability distributions over X .
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T π (Garg et al., 2021). By leveraging inverse soft Bellman operator and an appropriate definition
of reward regularizer ψ, the maximin problem in Equation (2) can be further converted into an
alternative minimax problem in the Q-policy space with the objective function as

J (π,Q) = Eρe
[
ϕ
(
Q(s, a)− γEs′∼P(·|s,a)[V

π(s′)]
)]
− (1− γ)Ep0 [V π(s0)]︸ ︷︷ ︸

V0 loss
(4)

where ϕ : R → R is a concave function and p0 is the initial state distribution. This optimization
problem can be solved by a standard actor-critic RL algorithm, such as Soft Actor-Critic (Haarnoja
et al., 2018), and thereby obviates the need for adversarial training.

3 PROBLEM STATEMENT

Before providing the formal problem formulation, we first present an illustrative example to further
explain and clarify the relationship between objective and preference. Inherent to any environ-
ment is a set of performance criteria, which encompasses multiple conceivable long-term metrics or
goals. For example: (i) In robot locomotion tasks (Aller et al., 2019), the major performance criteria
typically include energy efficiency, moving speed, robustness to external disturbance, and human
likeness in locomotion behavior. (ii) In autonomous driving, the common long-term performance
criteria typically include safety metrics, such as scene drivability and collision-based risks (Guo
et al., 2019), as well as driving stability and fuel efficiency. Notably, despite that these long-term
criteria are pre-determined, this does not imply that the reward signal can be easily designed accord-
ingly. Based on the above motivation, we now present our problem statement.

Learning from Diverse Experts: Let D = {(s(i)1 , a
(i)
1 , · · · , s(i)T , a

(i)
T )} denote a collection of

demonstration trajectories from multiple diverse experts where s(i)t and a(i)t denote the state and
action of the i-th trajectory at time step t. There exist d common performance criteria that are
shared among the set of experts, and each expert performs the demonstrations based on its individ-
ual preference over these performance criteria. More specifically, we assume that there is an oracle
capable of assigning a preference label ω ∈ Ω to each trajectory with respect to the performance
criteria. There are two major settings considered in this paper: (i) Low-annotation regime: Only
a small part of the trajectory labels are known to the learner. (ii) Full-annotation regime: All the
trajectory labels are provided to the learner. The goal is to learn a conditional policy π(a|s, ω) that
can align the behavior of the learner with multiple experts under diverse preferences.

Remark on the Annotation of Preference Labels. While it is intuitively desirable to directly learn
from diverse demonstrations without any preference annotation, such unsupervised learning from
heterogeneous and unstructured data is known to be challenging, especially in the case of behav-
ior alignment. Specifically, recent research attempts have uncovered that unsupervised learning of
disentangled representations is inherently infeasible without any prior inductive biases on either the
model or the dataset (Locatello et al., 2019; Fu et al., 2023). For example, in the DST environment
(see Figure 1a), the performance criteria are treasure value and step cost. The trajectory that reaches
the farthest treasure has a preference of [0.9, 0.1]. In this case, the preference that can explain the
same behavior ranges from [0.607, 0.393] to [1, 0]. This shows that there can be multiple ambiguous
preferences, i.e., a unique preference does not necessarily exist in the unsupervised setting.

Given this, we first assume that the preferences are known in Section 4.1 for didactic purposes. In
Section 4.2, we will further discuss how our method works in the low-annotation regime.

4 METHODOLOGY

4.1 MOIRL FRAMEWORK WITH REWARD CONSENSUS

In this section, we formally introduce the MOIRL framework, which serves as a unified approach to
learning from diverse experts. The proposed MOIRL is built on the principle of reward consensus,
substantiated in two steps: (i) We extend the maximin problem in Equation (2) to accommodate the
demonstrations from n different experts with the help of vector-valued rewards as in MOMDP. (ii)
We propose an additional reward consensus constraint to enforce that the vector-valued rewards in-
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ferred by different experts are as consistent as possible. Specifically, this framework can be formally
stated as follows2

max
{ri}∈Rn

min
{πi}∈Πn

J
(
{πi}ni=1, {ri}ni=1, {ωi}ni=1

)
:=

n∑
i=1

ω⊤
i (Eρei [ri(s, a)]− Eρi [ri(s, a)])

subject to r1 = r2 = · · · = rn

where ωi is the preference of the i-th expert. Notably, such optimization problem is known to
be a global consensus problem, which can be efficiently solved by employing alternating direction
method of multipliers (ADMM) (Boyd et al., 2011). Specifically, given the initial π0

1 , ..., π0
n, ADMM

solves this reward consensus problem by iteratively update the variables as follows: for each i,

rk+1
i = argmax

ri∈R
ω⊤
i

(
Eρei [ri(s, a)]− Eρi [ri(s, a)]

)
− (ρ/2)||ri − r̄k + uki ||22,

uk+1
i = uki + rk+1

i − r̄k+1,
(5)

where ρ > 0 is the weight of quadratic penalty in ADMM and r̄k := 1
n

∑n
i=1 r

k
i denotes the

inferred reward averaged over experts. With the inferred common reward, we can train n agents by
running an off-the-shelf RL algorithm to obtain {πji }ni=1 accordingly. By repeating this procedure
for sufficiently many rounds, the inferred reward is expected to converge to the true reward.

Figure 2: Comparison of MOIQ and the expert. The
results are presented in terms of return and trajectory
length averaged over 5 random seeds. A Round is de-
fined as the completion of one iteration incorporating
the MOIRL algorithm with consensus ADMM and the
RL algorithm.

Motivating Experiments: For didactic
purposes, we first evaluate our algorithm
on discrete DST with two-dimensional
rewards. We learn from three experts
with preferences [0.9, 0.1], [0.5, 0.5], and
[0.1, 0.9]. As depicted in Figure 2, all
agents reach near-optimal reward within
10 rounds. This showcases the perfor-
mance of our approach in the DST envi-
ronment, indicating the idea of learning
a common reward function among agents
indeed helps.

4.2 PRACTICAL IMPLEMENTATION OF
MOIRL FOR CONTINUOUS CONTROL

Multi-Objective Inverse Soft-Q Learn-
ing. To implement MOIRL for the practical continuous control, we extend the concept of reward
consensus to the minimax problem in Equation (4). As the reward consensus constraint would result
in a constrained RL problem, we simplify the training by introducing a penalty term, which is the ℓ2
norm between the difference of each reward ri. Notably, by further decomposing the problem into
n separate optimization objectives, we can optimize each agent i as follows:

J (πi, Qi, ωi) = Eρei
[
ϕ
(
ω⊤
i (Qi(s, a)− γEs′∼P(·|s,a)V

πi(s′))
)]

− Eµ
[
ω⊤
i (V

π(s)− γEs′∼P(·|s,a)V
π(s′))

]
− ψ(ω⊤

i ri)− β
n∑
j=1

∥ri − rj+1∥2.
(6)

The regularizer ψ is chosen based on the environment, with details provided in Appendix A.7.

Preference annotation. To determine which preference a given trajectory belongs to, we introduce
a posterior network to predict the preference. The idea is to maximize the mutual information
between the preference and the trajectory. Unlike (Li et al., 2017), which simplifies the problem by
representing the trajectory with a single state-action pair, our approach leverages full trajectories of
arbitrary length, ensuring a more reliable preference estimation.

2For ease of exposition, we ignore the entropy and the reward regularizer in this subsection for brevity. That
being said, our framework is readily capable of accommodating these regularization terms.
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Due to the existence of multiple ambiguous preferences within the MOIRL framework, we employ
a small portion of preference-annotated trajectories to facilitate the learning of accurate preferences
(Fu et al., 2023). We sample trajectories from both experts and agents to train the posterior network:

L(P̂ ) = Eω∼p(ω),τ∼ρωπ [log P̂ (ω|τ)] + Eω∼p(ω),τ∼ρωe [log P̂ (ω|τ)] + 2H(ω) (7)

where P̂ is the posterior network, H(ω) is the entropy term, ρωπ and ρωE represent the distributions
of trajectories conveying the preference ω from agents and experts, respectively.

We employ an actor-critic framework to learn under different preferences. The actor network op-
timizes the policy based on the estimated Q-values, while the critic network learns and estimates
Q-values among various preference. MOIQ-PA extends MOIQ by adding a posterior network P̂θ to
capture expert preferences. Practical algorithms and network updates are detailed in Appendix A.1

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Diverse Preferences of Expert Demonstrations: We train our experts with various preferences:
For 2-dimensional environments (DST, Mo-Halfcheetah, Mo-Walker, Mo-Ant) using [0.9, 0.1], [0.5,
0.5], [0.1, 0.9], for the 3-dimensional environment (Mo-Hopper) using [0.8, 0.1, 0.1], [0.1, 0.8, 0.1],
[0.1, 0.1, 0.8], and for the 5-dimensional environment (Mo-Humanoid) using [0.6, 0.1, 0.1, 0.1, 0.1],
[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.1, 0.6, 0.1], [0.1, 0.1, 0.1, 0.1, 0.6].

Environments: For Mo-HalfCheetah, Mo-Hopper, we directly use MO-Gym (Felten et al., 2023),
which is a multi-objective gymnasium environment. For DST, we modify both the state and ac-
tion space of discrete DST from MO-Gym to a 2-dimensional continuous space. For Mo-Walker
and Mo-Ant, we inherit the classes of Walker2d and Ant from Gymnasium (Towers et al., 2024)
and extend the reward space to two dimensions. Similarly, for Mo-Humanoid, we extend the Hu-
manoid class to a five-dimensional reward space with a 378-dimensional observation space and a
17-dimensional action space. It is important to note that the Humanoid environment in MuJoCo is
one of the more complex environments. In the environments such as Mo-HalfCheetah, Mo-Walker,
and Mo-Humanoid, where expert performance is more challenging, we use 1M training steps. For
other environments, we limit the training steps to 0.5M. Descriptions of environments, rewards, and
more details are provided in the appendix A.2.

Baselines: In this section, we use these baselines to demonstrate the ability to learn from multi-
expert demonstrations. (i) InfoGAIL: The original InfoGAIL with a fixed uniform categorical dis-
tribution. (ii) Ess-InfoGAIL: The original Ess-InfoGAIL without giving any inducement in the form
of training reward from environments. (iii) GAIL: GAIL with SAC as the generator. (iv) IQ: The
original IQ. (v) MOIQ: The original MOIQ. (vi) MOIQ-PA: MOIQ with preference annotation.

5.2 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we address four key questions through comprehensive experiments. First, we ex-
plore the performance of MOIQ-PA in low-annotation regimes (Q1), presenting a detailed compar-
ison with existing methods. Next, we investigate its transferability to unseen preferences (Q2) and
delve deeper into the impact of annotation quality (Q3). Finally, we assess whether our method
outperforms stronger baselines while maintaining sample efficiency and achieving expert-level per-
formance in full-annotation settings (Q4). Additional experiments are included in the appendix A.4.

Evaluation metrics: We introduce Mutual Information (NMI) to measure the correlation between
two clusterings, ranging from 0 to 1, with higher values indicating stronger correlation, and Average
Entropy (ENT) to evaluate classification consistency under fixed preferences and latent preference
consistency under fixed classifications. For returns, we adopt the normalization method from (Agar-
wal et al., 2021), where a score of 1 represents expert performance and 0 corresponds to a random
policy, allowing comparisons between environments.

Q1: Can MOIQ-PA perform well in the low-annotation regime? To evaluate this, we collected
10 expert demonstrations for each distinct preference, with each consisting of only one trajectory
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labeled with ground-truth preference. As shown in Table 1, MOIQ-PA exhibits exceptional disentan-
glement ability across environments, outperforming both InfoGAIL and Ess-InfoGAIL in most en-
vironments. While InfoGAIL and Ess-InfoGAIL only excel in the Mo-Hopper environment, MOIQ-
PA demonstrates consistent performance across all environments. This performance disparity can
be attributed to our posterior network, which is conditioned on the entire trajectory, allowing the
model to more effectively extract latent preferences from movement patterns in demonstrations.

Table 1: Evaluation of behavior disentanglement quality. We collect 100 trajectories for each
preference generated by the trained policy, which will later be classified by our pre-trained classi-
fiers. The results are averaged from 5 seeds. Boldface marks cases where performance is the best.

MOIQ-PA(Ours) InfoGAIL Ess-InfoGAIL
Env NMI ENT NMI ENT NMI ENT

DST 1.0 ± 0 0.0 ± 0 0.73 ± 0 0.29 ± 0 0.78 ± 0 0.23 ± 0
Mo-HalfCheetah 0.48± 0.10 0.37 ± 0.05 0.34 ± 0.23 0.57 ± 0.16 0.33 ± 0.28 0.34 ± 0.10
Mo-Walker 0.97 ± 0.01 0.02 ± 0.01 0.36 ± 0.27 0.37 ± 0.07 0.38 ± 0.34 0.33 ± 0.12
Mo-Ant 0.74 ± 0.06 0.25 ± 0.05 0.00 ± 0.01 0.51 ± 0.07 0 ± 0 0.54 ± 0
Mo-Hopper 1 ± 0 0 ± 0 0.97 ± 0.04 0.02 ± 0.04 0.80 ± 0.18 0.19 ± 0.19
Mo-Humanoid 0.06 ± 0.05 0.84 ± 0.10 0.01 ± 0.01 0.93 ± 0.11 0.04 ± 0.05 0.92 ± 0.11

Furthermore, as shown in Table 2, MOIQ-PA significantly outperforms Ess-InfoGAIL, consistently
achieving over 80% of expert-level performance. Although MOIQ-PA shows low NMI and high
ENT in the Mo-Humanoid environment, it surpasses Ess-InfoGAIL in the reward achieved for each
preference, where the latter only performs near random policy levels. Note that InfoGAIL is not
included, as it lacks a fixed correspondence between latent codes and demonstrated behavioral pref-
erences, making it difficult to manually identify preferences in most environments. A detailed visu-
alization of the training curve, IQM metric, and performance profiles is in the appendix A.3.

Table 2: Testing return of the best model. The results are averaged across 5 seeds, with each tested
over 100 demonstrations. The expert scores are averaged over ten demonstrations. Boldface marks
cases where performance is the best. Underlined results indicate those that outperform the expert.

Env DST Mo-HalfCheetah Mo-Walker Mo-Ant
Preference [0.9,0.1] [0.5,0.5] [0.1,0.9] [0.9,0.1] [0.5,0.5] [0.1,0.9] [0.9,0.1] [0.5,0.5] [0.1,0.9] [0.9,0.1] [0.5,0.5] [0.1,0.9]

MOIQ-PA 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.74 ± 0.05 0.99 ± 0.03 0.86± 0.05 1.04 ± 0.33 0.93 ± 0.04 0.87 ± 0.14 0.85 ± 0.02 0.87 ± 0.03 1.01 ± 0.01
Ess-InfoGAIL −0.38± 0 1.0 ± 0 −3.54± 5.30 0.02± 0.02 0.01± 0.01 −0.09± 0.08 0.02± 0.01 0.00 ± 0.00 0.39 ± 0.27 0.28 ± 0.01 0.01 ± 0.05 −0.44± 0.22

Env Mo-Hopper Mo-Humanoid
Preference [0.8,0.1,0.1] [0.1,0.8,0.1] [0.1,0.1,0.8] [0.6,0.1,0.1,0.1,0.1] [0.1,0.6,0.1,0.1,0.1] [0.1,0.1,0.6,0.1,0.1] [0.1,0.1,0.1,0.6,0.1] [0.1,0.1,0.1,0.1,0.6]

MOIQ-PA 0.66 ± 0.34 1.02 ± 0.23 0.85 ± 0.22 1.06 ± 0.05 0.78 ± 0.02 0.63 ± 0.02 0.67 ± 0.02 0.74 ± 0.30
Ess-InfoGAIL 0.32 ± 0.31 0.04 ± 0.08 1.01 ± 0.03 −0.01± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 -0.22 ± 0.13

Q2: Does MOIQ-PA enjoy good transfer to other unseen preferences? As shown in Figure 3, we
demonstrate the transferability of our model by visualizing the return in two dimensions for environ-
ments with 2-dimensional reward space. Additionally, we calculate their respective Hypervolumes
(HV) and Expected Utility Maximization (EUM) scores, as shown in table 3. HV is a key indica-
tor of a model’s ability to explore and dominate a multi-objective reward space, with larger values
indicating better performance in covering the objective space. EUM measures how well the learned
policy maximizes expected rewards in a given environment.

Figure 3: Transferability of the best-performance model. Each point is obtained by feeding in a
specific preference value from [1 − 0.05 × i, 0.05 × i] for i ∈ [1, 19]. Evaluations are conducted
over 100 episodes, and the results are averaged across 5 different seeds.
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Table 3: Evaluation of objective space coverage and reward optimization The HV(×103) and
EUM results across environments with 2-dimensional reward space. The results are averaged across
5 different seeds. Boldface highlights the best performance.

MOIQ-PA (Ours) InfoGAIL ESS-InfoGAIL
Env HV (×103) EUM HV (×103) EUM HV (×103) EUM

Mo-HalfCheetah 2896.47 ± 251.35 3858.63 ± 337.25 146.36 ± 75.04 87.40 ± 118.42 354.44 ± 174.98 401.37 ± 198.91
Mo-Walker 4042.90 ± 233.37 2557.89 ± 90.25 455.75 ± 91.75 696.58 ± 70.13 1012.49 ± 503.75 959.20 ± 292.37
Mo-Ant 8399.82 ± 257.46 1291.47 ± 49.80 6077.55 ± 365.16 878.63 ± 81.69 2869.60 ± 216.95 417.76 ± 106.13

From the results, MOIQ-PA demonstrates strong performance in Mo-HalfCheetah and Mo-Ant,
while its results in Mo-Walker are impacted by the absence of intermediate preferences. However, it
consistently outperforms InfoGAIL and ESS-InfoGAIL. Notably, MOIQ-PA achieves superior HV
and EUM scores across all environments, underscoring its effectiveness in covering the objective
space, maximizing rewards, and transferring to unseen preferences.

Q3: Can MOIQ-PA still perform well in the noisy-annotation regime? To answer this, we
still collected 10 expert demonstrations for each preferences, with each containing only one trajec-
tory labeled with misspecified preference. As shown in table 4, MOIQ-PA can still have similar
performance in most environments under inaccurately labeled demonstrations, demonstrating the
robustness of our approach. The exception is the Mo-Hopper environment, where the added noise
leads to increased instability, as the environment was already unstable in the original setting.

Table 4: Comparison between the accurate and inaccurate trials. MOIQ-PA shows strong per-
formance with inaccurate preferences, deviating minimally from accurate ones. The results are
averaged across 3 seeds, with boldface marking cases that perform the best. The preferences listed
in the table represent the inaccurate preferences for each environment.

Env DST Mo-HalfCheetah Mo-Walker Mo-Ant
Preference [0.8,0.2] [0.4,0.6] [0.2,0.8] [0.8,0.2] [0.4,0.6] [0.2,0.8] [0.8,0.2] [0.4,0.6] [0.2,0.8] [0.8,0.2] [0.4,0.6] [0.2,0.8]

Accurate 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.74 ± 0.05 0.99 ± 0.03 0.86 ± 0.05 1.04 ± 0.33 0.93 ± 0.04 0.87 ± 0.14 0.85 ± 0.02 0.87 ± 0.03 1.01 ± 0.01
Inaccurate 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.75 ± 0.04 0.97± 0.07 0.90 ± 0.06 1.02 ± 0.09 0.79 ± 0.16 0.97 ± 0.08 0.92 ± 0.04 0.87 ± 0.02 1.00± 0.01

Env Mo-Hopper Mo-Humanoid
Preference [0.6,0.2,0.2] [0.3,0.6,0.1] [0.1,0.3,0.6] [0.4,0.15,0.15,0.15,0.15] [0.15,0.4,0.15,0.15,0.15] [0.15,0.15,0.4,0.15,0.15] [0.15,0.15,0.15,0.4,0.15] [0.15,0.15,0.15,0.15,0.4]

Accurate 0.66 ± 0.34 1.02 ± 0.23 0.85 ± 0.22 1.06 ± 0.05 0.78 ± 0.02 0.63 ± 0.02 0.67 ± 0.02 0.74 ± 0.30
Inaccurate 0.59 ± 0.17 0.59 ± 0.34 0.34 ± 0.30 1.08 ± 0.07 0.86 ± 0.04 0.67 ± 0.02 0.69 ± 0.02 1.08 ± 0.51

Q4: Do our methods outperform other baselines and achieve expert performance in fully an-
notation? We collected 10 expert demonstrations for each preference, with trajectories labeled by
ground-truth preferences. We evaluate our method against two baselines: GAIL and IQ-Learn, two
single-objective IRL algorithms. These baselines are employed in place of the previously used multi-
objective IRL approaches, providing a more accurate comparison. Unlike the baselines, which train
separately on each preference and require n-times more environment interactions (where n is the
number of preferences), MOIQ trains simultaneously on all preferences. This simultaneous train-
ing approach highlights the efficiency and effectiveness of MOIQ in leveraging shared knowledge
across preferences without additional environment interactions for each preference.

As demonstrated in Table 5, MOIQ consistently outperforms both GAIL and IQ-Learn across most
environments and even surpass experts in some. This is because an expert with a particular prefer-
ence may dominate the performance of another expert under a different preference. In other words,
in a single expert setting where each expert is trained independently, agents cannot observe the su-
perior performance of experts with different preferences. This result highlights and underscores the
benefits and necessity of learning from multi-expert demonstrations. In particular, in the complex
Mo-Humanoid environment, where GAIL and IQ-Learn perform near random levels, MOIQ-PA
demonstrates significantly better results, highlighting its capability to handle high-dimensional and
complex environments. This demonstrates the advantages of our method in handling complex high-
dimensional environments. Overall, our methods exhibit expert-like performance and remarkable
sample efficiency. A comprehensive visualization of the IQM metric and performance profiles in
the full-annotation regime can be found in in the appendix A.3.
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Table 5: Testing return of the best-performance model. The results are averaged across 3 random
seeds, while the expert scores are averaged over ten demonstrations. Boldface denotes performance
within 10% of the expert score, and underline denotes those that outperforms the expert.

Env DST Mo-HalfCheetah Mo-Walker Mo-Ant
Preference [0.9, 0.1] [0.5, 0.5] [0.1, 0.9] [0.9, 0.1] [0.5, 0.5] [0.1, 0.9] [0.9, 0.1] [0.5, 0.5] [0.1, 0.9] [0.9, 0.1] [0.5, 0.5] [0.1, 0.9]

MOIQ 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.94 ± 0.01 1.02 ± 0.01 0.93 ± 0.02 0.99± 0.01 0.79 ± 0.26 0.85 ± 0.05 0.99± 0.01 0.91 ± 0.03 0.83 ± 0.01
GAIL 0.42± 0.58 1.0 ± 0 0.92± 0.10 0.73± 0.03 0.69± 0.04 0.59± 0.04 0.36± 0.02 0.53± 0.04 0.96 ± 0.01 1.06 ± 0.03 1.0 ± 0.01 0.87± 0.10
IQ −0.07± 0 0.28± 0.02 1.0 ± 0 0.01± 0.0 0.03± 0.0 0.18± 0.0 0.99 ± 0.01 0.96 ± 0.01 0.90 ± 0.01 0.89 ± 0.03 0.74± 0.02 1.03 ± 0.0

Env Mo-Hopper Mo-Humanoid
Preference [0.8, 0.1, 0.1] [0.1, 0.8, 0.1] [0.1, 0.1, 0.8] [0.6, 0.1, 0.1, 0.1, 0.1] [0.1, 0.6, 0.1, 0.1, 0.1] [0.1, 0.1, 0.6, 0.1, 0.1] [0.1, 0.1, 0.1, 0.6, 0.1] [0.1, 0.1, 0.1, 0.1, 0.6]

MOIQ 0.84 ± 0.09 1.27 ± 0.10 0.97 ± 0.03 1.03 ± 0.05 0.81 ± 0.02 0.59 ± 0.01 0.64 ± 0.01 0.58 ± 0.19
GAIL 1.05 ± 0.07 1.38 ± 0.09 1.01 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.06 ± 0.02
IQ 0.92 ± 0.04 1.30 ± 0.04 1.01 ± 0.0 0.02 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.15 ± 0.01 -0.04 ± 0.01

6 RELATED WORK

Imitation learning from single-expert demonstrations: Addressing the impracticality of solv-
ing the max-min optimization problem through nested RL and IRL loops, (Ho & Ermon, 2016)
and (Xiao et al., 2019) proposed a framework based on the duality between IRL and occupancy
measure, analogous to GANs (Goodfellow et al., 2014). (Fu et al., 2018) presented an adversarial
IRL algorithm for robust reward recovery, effective in high-dimensional tasks but inefficient due
to its adversarial architecture. Recently, (Garg et al., 2021) proposed a Q-learning approach using
an energy-based policy and an inverse soft Bellman operator, simplifying the objective to a single
maximization problem over Q space.

Imitation learning from multi-expert demonstrations. Recent works have focused on disentan-
gling mixed expert trajectories using latent variables, as seen in extensions of GAIL (Li et al., 2017;
Hausman et al., 2017). (Fu et al., 2023) further extended InfoGAIL with semi-supervised GANs
to separate behavior representations from imbalanced demonstrations. Another extension, (Kuefler
& Kochenderfer, 2018) enhances policy consistency with a learned inference model conditioned
on ”burn-in” expert demonstrations, maximizing mutual information to avoid degenerate solutions
and produce realistic driver models. In addition, (Beliaev et al., 2022) treats demonstrations het-
erogeneously and considers the demonstrator’s expertise using state and demonstrator embeddings.
However, these approaches are limited by IL’s reliance on the quality and quantity of expert data.
(Kishikawa & Arai, 2021) introduced Non-Negative Matrix Factorization (Lee & Seung, 2000) into
MOIRL for reward estimation and later incorporated neural networks (Kishikawa & Arai, 2022), but
limited to discrete environments, as it necessitates running single-objective IRL. (Chen et al., 2020)
employed network distillation to share knowledge from individual strategies. However, the approach
struggles with lifelong learning and requires training all components simultaneously. In response,
(Chen et al., 2023b) proposed modeling new demonstrations as combinations of prior prototypes,
although the methods remain computationally expensive due to repeated IRL calculations.

For a detailed comparison of our method with related works, along with additional discussions on In-
verse Constrained Reinforcement Learning and Multi-task Inverse RL, please refer to Appendix A.6.

7 CONCLUSION AND LIMITATIONS

The limitation of our method is the small portion of annotations needed, which leads to certain
requirements for retrieving demonstrations. However, we clearly show that multiple feasible prefer-
ences exist within the problem framework, which makes finding the unique ground-truth preference
in an unsupervised manner impossible.
We have witnessed the need to consider multiple heterogeneous experts in IRL. Enlightened by
this, we utilized the reward consensus among agents. We first conduct a simple and meaning-
ful experiment on a discrete environment to demonstrate that the idea works. We propose MOIQ
and its extended version, MOIQ-PA, which can learn the policy under various behaviors of prefer-
ences and infer the latent preferences. Various experiments are conducted on both navigation and
robotic locomotion tasks, showcasing the capabilities of our method across various aspects, includ-
ing transferability, disentanglement ability, and, most importantly, the ability to learn from expert
demonstrations of diversified preferences.
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A APPENDIX

A.1 ALGORITHMS AND NETWORK UPDATE

We present our proposed Algorthim 1 and Algorthim 2 as follows. MOIQ learns from multi-expert
demonstrations by updating two networks: the critic network Qϕ and the actor network πψ . MOIQ-
PA extends MOIQ by adding a posterior network P̂θ to capture expert preferences. These annota-
tions help guide the learning process and improve performance.

Algorithm 1 Multi-Objective Inverse soft-Q Learning (MOIQ)

Initialize networks Qϕ and πψ
Input: DLE
while environment step t ≤ N do

for each expert i do
for each episode step in [1, T] do

at ∼ π(·|st, ωi)
st+1 ∼ P(·|st, at)
Di ← Di ∪ {(st, at, st+1)}
Update Qϕ according to Equation (8)
ϕt+1 ← ϕt + λQ∇ϕJ (Q, i)
Update πψ according to Equation (9)
ψt+1 ← ψt − λπ∇ψJ (π, i)

end for
t← t+ T

end for
end while

Algorithm 2 MOIQ with Preference Annotation (MOIQ-PA)

Initialize networks Qϕ, πψ and P̂θ
Input: DE , a limited number of DLE
while environment step t ≤ N do

for each ωi do
for each episode step in [1, T] do

at ∼ π(·|st, ωi)
st+1 ∼ P(·|st, at)
D ← D ∪ {(st, at, st+1, ωi)}
Update Qϕ according to Equation (8)
ϕt+1 ← ϕt + λQ∇ϕJ (Q, i)
Update πψ according to Equation (9)
ψt+1 ← ψt − λπ∇ψJ (π)

end for
Update P̂θ according to Equation (10)
θt+1 ← θt + λP∇θJ (P, τ)
t← t+ T

end for
end while

Critic network update: We use Q(s, a, ωi) ≈ Qi(s, a), which allows us to learn and estimate Q
value among various preferences. Starting with Equation (6), we fix π and update the critic network:
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max
Q
J (Q, i) = 1

2
· Eρe

[
ϕ
(
ω̂⊤(Q(s, a, ω̂)− γEs′∼P(·|s,a)V

πe(s′, ω̂))
)]

+
1

2
· EρLE

[
ϕ
(
ω⊤

LE(Q(s, a, ωLE)− γEs′∼P(·|s,a)V
πE (s′, ωLE))

)]
− Eτ∼µ,(s,a)∼τ

[
ω⊤(V π(s)− γEs′∼P(·|s,a)V

π(s′))
]
− ψ(ω⊤

i ri)− β
n∑
j=1

∥ri − rj∥2

(8)

where ri = T πQi is the estimated vector reward of ith agent. We choose µ to be the mixture
distribution 1

2ρπ + 1
4ρE + 1

4ρLE . ω̂ is the predicted preference from posterior network conditioned
on τE , ωLE is the labeled preference, and ω is the preference according to the chosen τ .

Actor network update: We use π(s, a, ωi) ≈ πi(s, a). For a fixed Q, we update π by minimizing
the expected KL-divergence (Haarnoja et al., 2018):

min
π
J (π) = Eτ∼µ,(s,a)∼τ

[
log π(a|s,ω)− ω⊤Q(s, a,ω)

]
(9)

Posterior network update: By maximizing Equation (7) with respect to P̂ , we have:

max
P̂
J (P̂ ) = Eω∼p(ω),τ∼ρωπ [log P̂ (ω|τ)] + Eω∼p(ω),τ∼ρωE [log P̂ (ω|τ)] (10)

A.2 ENVIRONMENT DETAILS

DST: DST environment is a classic MORL problem where the agent, controlling a submarine in a 2D
world, observes a 2D continuous box with values in the range [0, 11] for both x and y coordinates.
2-dimensional reward space in the form (treasure value, step cost), where treasure value follows
(Yang et al., 2019) and step cost is −1 for each step.

Mo-HalfCheetah: Mo-HalfCheetah is a 2-dimensional robot with 9 body parts and 8 connecting
joints. The goal is to apply torque on the joints to make the cheetah run forward (right) as fast as
possible and minimize the control cost associated with each step taken. The system operates within
a 17-dimensional observation space and a 6-dimensional action space. 2-dimensional reward space
in the form (velocity in x-axis, control cost).

Mo-Walker: Mo-Walker, characterized by a 6-degree-of-freedom bipedal robot with two legs and
feet attached to a common base, operates within a 17-dimensional observation space and a 6-
dimensional action space. The goal is to walk in the forward (right) direction by applying torques on
six hinges connecting the seven body parts while minimizing the control cost. 2-dimensional reward
space in the form (velocity in x-axis, control cost) with the healthy reward +1 is directly added to
every dimension of reward if the agent is healthy at timestep t.

Mo-Ant: Mo-Ant, a 3D robot with a torso and four legs, operates in a 27-dimensional observation
space and an 8-dimensional action space. It aims to coordinate four legs for forward motion while
minimizing control costs. 2-dimensional reward space in the form (velocity in x-axis, control cost)
with the healthy reward +1 is directly added to every reward dimension if the agent is healthy at
timestep t.

Mo-Hopper: Mo-Hopper, a single-legged two-dimensional entity with four primary body segments,
operates within an 11-dimensional observation space and a 3-dimensional action space. Its objective
is to execute hops both in the forward (right) and in the upward direction by strategically applying
torques to the three hinges connecting the body parts while mitigating control costs. 3-dimensional
reward space in the form (velocity in x-axis, height, control cost) with the healthy reward +1 is
directly added to every reward dimension if the agent is healthy at timestep t.

Mo-Humanoid:: Mo-Humanoid, a 3D bipedal robot designed for complex locomotion tasks, op-
erates in a 378-dimensional observation space and a 17-dimensional action space. The agent must
balance and coordinate its movements for efficient locomotion while minimizing energy costs. The
reward space is 5-dimensional in the form (x-velocity, y-velocity, left elbow angle, right elbow an-
gle, control cost). A healthy reward +1 is added to each dimension of the reward when the agent is
healthy at timestep t.
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A.3 TRAINING CURVE AND IQM EVALUATION

Training curve of MOIQ-PA on low-annotation regime: As shown in Figure 4, MOIQ-PA signif-
icantly outperforms ESS-InfoGAIL in all environments except Mo-Hopper, highlighting its superior
performance in most cases.

Figure 4: Evaluation results while training. The results are averaged from 5 seeds. All are
smoothed by taking ewma return with alpha=0.1.
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IQM metric and performance profiles on low and annotation regime: In our evaluation, we in-
corporate the Interquartile Mean (IQM) metric and performance profiles, both introduced by Agar-
wal et al. (2021). The IQM metric enhances robustness by computing the mean score over the
middle 50% of run results, mitigating the impact of outliers. Meanwhile, performance profiles pro-
vide a comprehensive visualization of algorithmic performance by illustrating the distribution of
normalized scores across environments.

As shown in Figure 5 and 6, our method consistently outperforms all baselines across both low-
annotation and full-annotation settings, achieving normalized scores of 0.8 and 0.9, respectively.
This demonstrates the effectiveness in both limited and fully supervised scenarios. Furthermore, the
performance profiles highlight the stability of our approach. The smoother curve, in comparison
to the baselines, indicates lower performance variance and greater reliability across tasks. This
suggests that our method not only achieves higher average scores but also maintains robust and
consistent performance across different runs.

Figure 5: IQM metric and performance profiles in the low-annotation regime. Left. Showing
the median, IQM, and mean scores under low-annotation. Right. Performance profiles under low-
annotation based on score distributions

Figure 6: IQM metric and performance profiles in the full-annotation regime. Left. Showing
the median, IQM, and mean scores under full-annotation. Right. Performance profiles under full-
annotation based on score distributions.

A.4 ADDITIONAL RESULTS

Can MOIQ-PA handle demonstrations with noise? We investigate the effect of weaker demon-
strations by adding noise to the expert policies (this is achieved by randomly sampling an action with
a 0.1 probability and otherwise following the original expert policy). As shown in Figure 7, despite
the presence of noisy demonstrations, MOIQ-PA achieves performance that matches or exceeds that
of experts, highlighting its robustness to demonstration quality.
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Figure 7: Average return with weaker experts. MOIQ-PA is able to approach and even exceed the
performance of noisy experts. Results are averaged from 3 different seeds and smoothed by taking
ewma return with alpha=0.1

Can MOIQ-PA still perform well under an even lower-annotation regime? To further demon-
strate that the proposed MOIQ only requires a relatively small number of preference labels, we
consider an even more challenging experimental scenario: For each preference, there are 100 expert
trajectories but with only 1 of them is labeled (i.e., 1% annotation). As shown in Figure 8, the results
show that MOIQ can still well imitate diverse expert behavior under only 1% annotation.

Figure 8: Average return with 1%-annotation regime. MOIQ-PA performs well in most cases,
demonstrating its robustness. Results are averaged from 3 different seeds and smoothed by taking
ewma return with alpha=0.1

Can MOIQ-PA still well perform under the imbalanced amount of demonstrations? We in-
vestigate six imbalanced scenarios where the number of trajectories for the preferences [0.9, 0.1],
[0.5, 0.5], and [0.1, 0.9] are denoted by (x, y, z), respectively. We include six scenarios: (1, 10, 10),
(10, 1, 10), (10, 10, 1), (10, 1, 1), (1, 10, 1), and (1, 1, 10), each preference contains only one tra-
jectory labeled with ground-truth preference. We compare these imbalanced settings to the original
balanced setting of (10, 10, 10). As shown in Figure 9, we notice that in most imbalanced settings,
given a specific preference, the results with 10 trajectories of that preference are generally better than
the results with only 1 trajectory of that preference. The performance of MOIQ-PA remains remark-
ably stable across most imbalanced settings, highlighting its robustness to demonstration quantity,
especially in imbalanced situations.
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Figure 9: Average return under imbalanced settings. Each imbalanced setting is conducted over
1 seed and smoothed by taking ewma return with alpha = 0.1. While the evaluation preferences are
identical across columns, they are intentionally separated for better readability.

Does reward consensus actually bring benefits in transferbility? We aim to quantify and analyze
the benefits brought by reward consensus. Therefore, in addition to training the model with β = 5,
we also trained the model with β = 0, representing the case without the reward consensus constraint.
We present our ablation studies of the constraint coefficient by testing the transferability of these two
models in Table 6.

The results indicate that the model with β = 5 exhibits significantly superior transferability com-
pared to the model with β = 0, with the only exception being a minor disadvantage in EUM for
Mo-Ant. Moreover, in the Mo-Hopper environment, β = 5 shows a clear advantage. To further
illustrate this, we visualize the return of Mo-Hopper. Given that Mo-Hopper is in a 3-dimensional
reward space, we assess transferability by fixing one dimension while varying the other two, result-
ing in three 2D projections, as shown in Figure 10. These visualizations demonstrate that β = 5
consistently provides a clear advantage, with well-defined transferability patterns observed in the
Dimension 0 vs. Dimension 1 and Dimension 0 vs. Dimension 2 projections. In summary, our
findings highlight that incorporating reward consensus significantly improves transferability across
environments, particularly in complex reward spaces and unstable environments such as Mo-Hopper.

Table 6: Evaluation of objective space coverage and reward optimization in the full-annotation
regime. The HV (×103) and EUM results for MOIQ-PA, InfoGAIL, and ESS-InfoGAIL across
environments with a 2-dimensional reward space. The results are averaged across 5 different seeds,
with boldface indicating the best performance. Additionally, for the Mo-Hopper environment, which
has a 3-dimensional reward space, the HV is reported as ×107.

Beta=5 Beta=0
Env HV EUM HV EUM

Mo-HalfCheetah 3462.93 ± 156.72 5473.24 ± 155.09 3420.29 ± 104.07 5417.02 ± 108.62
Mo-Walker 4160.45 ± 200.11 2597.17 ± 88.64 3927.60 ± 76.80 2506.19 ± 25.16
Mo-Ant 9904.36 ± 151.73 1449.21 ± 26.12 9736.95 ± 464.99 1452.92 ± 43.21
Mo-Hopper 1772.06 ± 268.31 1841.25 ± 112.43 1129.97 ± 224.27 1536.20 ± 117.68
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Figure 10: Transferability of the best model on Mo-Hopper environment. Each point is obtained
by feeding in a specific preference value from [0.8 − 0.1 × i, 0.1 + 0.1 × i, 0.1], [0.1, 0.8 − 0.1 ×
i, 0.1+ 0.1× i], [0.8− 0.1× i, 0.1, 0.1+ 0.1× i] for i ∈ [1, 7]. Evaluations are conducted over 100
episodes, and the results are averaged across 5 different seeds. The results for these three cases are
presented in the following three figures.

A.5 ABLATION STUDY

Ablation on window size: This refers to the input length of the trajectory for our posterior network.
Intuitively, a larger window size would lead to more accurate predictions, while a smaller window
size is more flexible and can analyze smaller segments of a trajectory to determine which preference
it aligns with. We evaluate MOIQ-PA under a window size of 10 and under the full trajectories.

Figure 11: Posterior accuracy and average return during training. The full window size shows
better posterior accuracy, while the performance shows mixed results. Results are averaged from 3
different seeds and smoothed by taking ewma return with alpha=0.1

A.6 ADDITIONAL RELATED WORK

Inverse Constrained Reinforcement Learning: Early ICRL approaches focused on learning con-
straints from single-expert demonstrations using maximum entropy frameworks (Baert et al., 2023)
and Bayesian methods (Papadimitriou et al., 2022), resulting robust policies but struggled with vari-
ous conditions or types of multiple experts. (Qiao et al., 2024) addressed learning constraints from a
mixture of expert demonstrations using flow-based density estimators for unsupervised agent identi-
fication. By incorporating contrastive learning, MMICRL captures diverse agent behaviors, improv-
ing constraint recovery and control performance with contrastive learning.

Multi-task inverse RL: Early work (Dimitrakakis & Rothkopf, 2012) extended IRL to multi-task
scenarios from a Bayesian perspective, where each demonstration represented a different task, but
struggled to scale to high-dimensional continuous state spaces. Maximum causal entropy-based
approaches (Gleave & Habryka, 2018) improved on this by incorporating a regularization term in
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Table 7: Comparison of different related work and their characteristics. The symbols used have the
following meanings: ✓ indicates that the work fully supports the feature; ✗ indicates that the work
does not support the feature;△ indicates that the featurework is partially supported.

Method Non-Adversarial
Training Heterogeneous Meaningful

latent factors Recovers reward

GAIL-like methods/WAIL (Ho & Ermon, 2016) ✗ ✗ ✗ △
Behavioral Cloning (Sasaki & Yamashina, 2020) ✓ ✗ ✗ ✗
IQ-Learn (Garg et al., 2021) ✓ ✗ ✗ ✓
ILEED (Beliaev et al., 2022) ✓ ✓ △ ✗
InfoGAIL-like methodsrelated (Fu et al., 2023) ✗ ✓ ✗ △
MOIQ (Ours) ✓ ✓ ✓ ✓

the loss function to reduce the number of demonstrations needed for reward recovery, and scaling
to MDPs with infinite state spaces. Subsequently, Multi-task Hierarchical Adversarial IRL (Chen
et al., 2023a) was introduced to learn hierarchical structures for multi-task policies, improving per-
formance on complex tasks and demonstrating transferability without task annotations. Although
multi-task IRL and multi-objective IRL both aim to increase the sample efficiency of IRL, multi-task
IRL focuses on tasks across different environments, whereas multi-objective IRL involves heteroge-
neous demonstrations reflecting individual preferences in a consistent environment.

We summarize the characteristics of our method compared to related works in the table. Some
works partially meet these characteristics. For example, GAIL (Ho & Ermon, 2016) and InfoGAIL
(Li et al., 2017) do not directly recover the expert’s reward function; instead, they learn a policy
that approximates the expert’s strategy by imitating the expert’s behavior. ILEED’s (Beliaev et al.,
2022) latent factors are used to assess the expertise of trajectories, which differs from our definition
of latent factors, and its assessment heavily relies on high-quality expert data.

A.7 COMPUTE RESOURCES AND IMPLEMENTATION DETAILS

Compute resources: For all our experiments, we run on both RTX 6000 Ada generation and RTX
4000 SFF Ada Generation GPU. For MOIQ, it took around 3 hours to train. For MOIQ-PA, it took
around 24 and 8 hours for window size = 10 and full window size, respectively.

Demonstrations: For discrete DST, an optimal stochastic policy is adopted to collect demonstra-
tions. Specifically, let dbx, dby be the distances to the border of the current grid along x and y axis,
d⊤x , d⊤y be the distances to the target treasure of the current grid along x and y axis. The probability
of going right or down is proportional to the min(dbx, d

⊤
x ) and min(dby, d

⊤
y ) of the current grid. For

the continuous DST and Mujoco tasks (except for Mo-HalfCheetah), the experts are trained from
scratch with SAC for each preference for 0.5M steps. For Mo-HalfCheetah, the experts are trained
for 1.0M steps.

Regularizers: In most of our environments, we utilized the regularization term computed as the ℓ2-
norm, which measures the deviation between the predicted and expected Q-values. This approach is
inspired by the method in IQ-Learn. By leveraging this regularization, we ensured stable and precise
updates to the policy.

In contrast, for the DST and HalfCheetah environments, we adopted a weighted regularization ap-
proach, expressed as ψ(ω⊤

i · ri). This method introduces preference-based adjustments, enhancing
the distinction between different preferences within the system. By incorporating these preferences,
the model is able to better align its learning objectives with the nuances of the environment.

GAIL: We implement GAIL using imitation (Gleave et al., 2022), with SAC as the generator.

MOIQ and Experts in continuous DST and Mujoco tasks (except for Mo-HalfCheetah): We
implement our algorithm based on the open-source code of IQ-Learn (Garg et al., 2021). Its imple-
mentation is built on SAC, the hyperparameters used are listed in table 9.

Experts in Mo-HalfCheetah and Mo-Humanoid: To train stronger experts on Mo-HalfCheetah
and Mo-Humanoid, we specifically implemented SAC from the open-source code of CleanRL
(Huang et al., 2022). The hyperparameters used are listed in table 10.
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Table 8: Hyperparameters of GAIL

Parameter Value

Policy MlpPolicy
Learning rate 3e-4
Buffer size 1e6
Batch size 256
Tau 0.05
Gamma 0.99
Train frequency 1

Table 9: Hyperparameters of MOIQ

Parameter Value

Policy MlpPolicy
Hidden dim [255, 255]
Critic lr 3e-4
Actor lr 3e-5
Buffer size 1e6
Batch size 256
Critic update frequency 1
Actor update frequency 1
Critic tau 0.005

InfoGAIL and Ess-InfoGAIL: We implement our algorithm based on the open-source code of Ess-
InfoGAIL (Fu et al., 2023). In Ess-InfoGAIL, the hyperparameters used are listed in table 11. In
InfoGAIL, we remove the latent skill variable from Ess-InfoGAIL and eliminate the semi-supervised
encoder update. Instead, we set the latent code to be a one-hot encoded vector with 3 dimensions.
The hyperparameters used are listed in table 12.
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Table 10: Hyperparameters of experts in Mo-HalfCheetah and Mo-Humanoid

Parameter Value

Policy MlpPolicy
Hidden dim [255, 255]
Critic lr 1e-3
Actor lr 3e-4
Buffer size 1e6
Batch size 256
Critic update frequency 1
Actor update frequency 2
Critic tau 0.005

Table 11: Hyperparameters of Ess-InfoGAIL

Parameter Value

Optimizer Adam
Hidden dim [100, 100]
Policy/Value learning rate 0.003
Discriminator learning rate 0.005
Encoder learning rate 0.01
Batch size 1000
Policy/Value update iterations 20
Discriminator/Encoder iterations 50
Gumbel-Softmax temperature tau 0.1
Weighting coefficient lamda1 1.0
Weighting coefficient lamda2 4.0
Weighting coefficient lamda3 3.0

Table 12: Hyperparameters of InfoGAIL

Parameter Value

Optimizer Adam
Hidden dim [100, 100]
Policy/Value learning rate 0.003
Discriminator learning rate 0.005
Encoder learning rate 0.01
Batch size 1000
Policy/Value update iterations 20
Discriminator/Encoder iterations 50
Weighting coefficient lamda1 1.0
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