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ABSTRACT

To augment protein sequence models with language, we introduce Condition-
ing on Residue-level Annotations from TExt (CRATE), a fine-tuning method that
fuses two models using feature-wise linear modulation. We fine-tune protein lan-
guage models at a large scale, first constructing a dataset (CRATE-train) joining
annotations from InterPro and UniProtKB with sequences from UniRef90 result-
ing in approximately 105 million sequences each with at least three annotations
and nearly 100% sequence coverage on average. Applying CRATE to mutation ef-
fect prediction improves performance on the ProteinGym over prior benchmarks.
Leveraging these improvements, we show CRATE can be used to select annota-
tions with the largest positive impact on mutation effect prediction and estimate
the deep mutational scan (DMS) scores tested over multiple different assay selec-
tion types.

1 INTRODUCTION

Recent studies (Zheng et al., 2023; Lin et al., 2022; Meier et al., 2021; Madani et al., 2023) of
protein language models (PLMs) have been shown to exhibit complex behavior that demostrates
performative modeling of protein sequence, structure, function, and evolution (Rives et al., 2021;
Zhang et al., 2024; Chowdhury et al., 2022; Huo et al., 2024). These findings elicit interest in aug-
menting and controlling protein language model behavior using additional contextual information,
such as functional labels, text, or structure (Su et al., 2024; Hayes et al., 2024; Liu et al., 2025; Dai
et al., 2024; Zhou et al., 2024; Duan et al., 2024). The increasing interest in multimodal representa-
tions of proteins increase the importance of investigating the modalities that, in addition to sequence,
may provide contextual information that enriches the foundation model representation and result in
performance improvements on downstream tasks.

In this work, we propose a framework for Conditioning on Residual-level Annotations from Text
(CRATE) and evaluate the influence on model performance of residue-level text annotations on
the ProteinGym benchmark. In addition to increased performance, CRATE-trained models benefit
from being able to automatically identify the most influential annotations to provide as context on a
per-task basis. CRATE fuses a protein foundation network with a text conditioning network using
feature-wise linear modulation (FiLM) (Perez et al., 2017). Given a sequence and a set of residue-
level annotations, the text conditioning network processes the set into annotation tracks and produces
a contextual representation that is used for the FiLM calculations at each layer. We fine-tune CRATE
models on CRATE-train, an inner join of the InterPro annotation database (Blum et al., 2024) and
UniRef90 (Suzek et al., 2014) sequence cluster.

We train a CRATE model and evaluate its performance under different conditions on the Prote-
inGym benchmark (Notin et al., 2023). To enable text conditioning during evaluation, we propagate
wildtype InterPro scan annotations onto the mutants. We find that in all but one assay category, we
are able to improve performance by introducing some subset of the available annotations. We also
demonstrate the capability of CRATE to accommodate different tasks by showcasing the model’s
performance on distinct selection assays of mutants with a common genotype.
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2 METHODS

We hypothesize that incorporating text information from residue-level annotations from site-specific
protein family models, such as HMM signatures for homologous proteins in InterPro (Blum et al.,
2024), will sharpen the per-residue logit distributions along annotated intervals. Furthermore, we be-
lieve that after pre-training, the sharpened logit distributions are useful for downstream applications
such as mutation effect prediction, given that the signal provided by the annotation may contribute
to a more nuanced likelihood estimate.

2.1 MODEL
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Figure 1: CRATE Model schematic. For a given sequence with residue-level annotations, we process
the annotations by constructing a multi-hot embedding matrix and applying a single bidirectional
Llama (Touvron et al., 2023) block trained from scratch. At each layer of the protein foundation
model, we use FiLM (Perez et al., 2017) to inject the contextual information.

As seen in Fig. 1, CRATE fuses a text conditioning network (the context processing module) and a
protein foundation model and is fine-tuned on a text-augmented dataset (see Section 2.2) using the
foundation model’s pre-training objective.

2.1.1 TEXT CONDITIONING NETWORK

Given a set of labels {y0, . . . , yN−1}, we first construct a description embedding matrix E ∈ RN×m

so that the k-th row Ek,: ∈ Rm corresponds to the description embedding for yk. Let S be a protein
sequence of length ℓ and CS = {(i, j, k) | 0 ≤ i ≤ j < ℓ, 0 ≤ k < N} be the set of residue
level annotations of S, where some (i, j, k) ∈ CS is meant to represent that the closed index interval
[i, j] is annotated with label yk. The text conditioning network consumes the annotation set CS and
constructs a coarse conditioning matrix C̃S ∈ Rℓ×m by assigning each residue position i to the sum
of the description embeddings that annotate it.

C̃S
r,: :=

∑
{(i,j,k)∈CS | i≤r≤j}

Ek,: (1)

The coarse conditioning matrix then passes through a bidirectional attention module implemented
as a single Llama (Touvron et al., 2023) block so that the final representation captures the mutual
information between position-specific annotations. The final representation is a matrix C ∈ Rℓ×d,
where d is the hidden dimension of the foundation model.

2.1.2 PROTEIN FOUNDATION MODEL

At each hidden layer of the foundation model, we insert a FiLM (Perez et al., 2017) module, which
shifts and scales the input hidden representation by the conditioning input C (see Section 2.1.1).
Importantly, the FiLM parameters are initialized to zero in order to avoid a high deviation from the
input at the beginning of training.
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2.1.3 GREEDY ANNOTATION SUBSET SELECTION

There is no guarantee that every label positively influences the correlation between model likelihood
and DMS score. For example, the presence of an annotation may overly collapse the logit distri-
bution in a specific position and therefore assign a mutant residue an artifically low log-probability.
In order to find a subset of label types that positively impact the Spearman correlation, we employ
a greedy algorithm for optimal subset selection. Starting from an empty set of labels, the greedy
algorithm populates a “greedy subset” under the invariant that the label in question together with the
running greedy subset improves the running best average Spearman correlation. This construction
allows the user to focus the algorithm on a specific subset of assays, for example the group of assays
with the same selection and mutation type, allowing for adaptation of CRATE to select different
contextual information depending on the selection assay or mutation type.

2.2 DATA

We construct two datasets for pre-training (CRATE-train) and evaluation (CRATE-vet) by aug-
menting existing sequence databases with residue-level text annotations. For pre-training, we inner
joined UniRef90 (Suzek et al., 2014) sequences with InterPro (Blum et al., 2024) annotations and
UniProtKB (Bateman et al., 2024) binding/active site annotations, resulting in 43729 different Inter-
Pro label types, 552 different site label types, and 105,347,199 sequences with a significant amount
of annotation coverage per sequence (Appendix A). For evaluation, we first obtain InterProScan an-
notations for each wildtype sequence tested in the ProteinGym (Notin et al., 2023) deep mutational
scanning (DMS) assays. We then propagated the residue-level wildtype annotations onto their re-
spective mutants by either direct transfer (in the case of substitutions) or by adjusting the annotation
intervals appropriately by aligning the wildtype and mutant and inferring the sites of indels.

2.2.1 ANNOTATION TEXT EMBEDDINGS

We hypothesize that information described in natural-language text contextualized along the se-
quence is useful to sharpen the logit distribution along an annotated residue interval. In order to
condition on text information at the residue-level, we embed the long-form descriptions of each In-
terPro/site label type present in CRATE-train using the state-of-the-art embedding model on the
Massive Text Embedding Benchmark (MTEB) leaderboard (Muennighoff et al., 2023), NV-Embed-
v2 (Lee et al., 2025). In order to save memory, we apply dimensionality reduction using principal
component analysis (PCA) to reduce the original NV-Embed-v2 hidden dimension from 4096 to
1024. For the UniProt sites that did not already have long-form abstracts, we generated them by
prompting Llama-3-1B (MetaAI Llama Team, 2024) to elaborate on the short-form name of the
term (see Appendix D).

3 RESULTS

3.1 DEEP MUTATIONAL SCANNING BENCHMARK

Table 1: Performance comparison for different CRATE settings and the baseline averaged per (se-
lection type, mutation type) pair.

Expression Organismal Stability Activity Binding
Fitness

Model Indels Subs. Indels Subs. Indels Subs. Indels Subs. Subs.

Baseline 0.3594 0.3923 0.4212 0.3449 0.4885 0.3655 0.5109 0.3619 0.2822

CRATE∅ 0.3645 0.3937 0.4244 0.3573 0.4936 0.3646 0.5245 0.3664 0.2550

CRATEall 0.3571 0.4062 0.4476 0.3724 0.5072 0.3910 0.5158 0.4062 0.2680

CRATEgreedy 0.3645 0.3995 0.4708 0.3628 0.5666 0.4264 0.5304 0.3702 0.2770
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We CRATE-trained ProGen2-small by fine-tuning the pre-trained weights using the procedure de-
scribed in Section 2.1 and evaluated its performance on CRATE-vet. For fairness in evaluation, we
also fine-tune a baseline ProGen2-small architecture with no modifications on the CRATE-train
sequences. We compare three different inference modes of CRATE to the baseline: CRATE∅ (no
annotations are provided), CRATEall, (all annotations are provided), and CRATEgreedy, (only the
greedy optimal subset of annotations is provided). Table 1 shows that CRATE either outperforms
or ties the baseline model on all but one assay/mutation type category. We also note that in certain
cases, the greedy subset of annotations outperforms the all-in setting, CRATEall, and sometimes
vice versa. The cases where the greedy subset outperforms the all-in settings indicate that indeed
a certain tuned subset of labels are perhaps independently correlated with the output signal. The
latter cases, where the all-in setting exceeds the greedy one, may be explained by the existence of
dependencies between the labels that were not tested during the course of the greedy algorithm.

Table 2: Performance comparison for different CRATE settings and the baseline averaged per group
of (mutation-type, taxon division) pairs.

Taxon Mutation type CRATEall CRATE∅ Baseline

Eukaryote Indels 0.5057 0.5299 0.5372
Subs. 0.3981 0.3758 0.3831

Human Indels 0.5438 0.5015 0.4921
Subs. 0.4091 0.3846 0.3791

Prokaryote Indels 0.4148 0.3802 0.3647
Subs. 0.3507 0.3375 0.3210

Virus Indels 0.4698 0.5068 0.5007
Subs. 0.2956 0.2808 0.2721

Table 2 similarly shows favorable performance of CRATE models to the baseline in all but one
setting. These ablations provide evidence that conditioning on residue-level information improves
downstream mutation effect prediction performance.

3.2 TASK-SPECIFIC CONDITIONING

VKOR1 is a transmembrane protein that drives the vitamin K cycle playing a role in blood clotting.
VKOR1 contains 3-4 transmembrane domains and 4 conserved functional cysteine residues (Chi-
asson et al., 2020), depicted in Fig. 2. CRATE-trained models can be adapted at inference time
to task-specific conditions; here, we compared the performance of two different CRATE variants
to the baseline model on two different assay selection types, abundance and activity, for the same
VKOR1 phenotype. Not only do the CRATE variants outperform the baseline on each assay, they
also correctly exhibit different behaviors from distinct annotation inputs.

In order to demonstrate the differences in CRATE performance for the separate tasks, we illustrate
the logit distributions in two different ways. For the abundance assay, we visualize the logit standard
deviations calculated per-position, per-token across each mutant to focus on the variance across the
sequence (see Fig. 2B and Fig. 2C). The greedy annotation set and propagated VKOR1 labels
have one label in common “Vitamin K epoxide reductase complex subunit I” (IPR042406). As
shown in Fig. 2, the annotation collapses token distributions in and surrounding the transmembrane
domains, contributing to a slightly more robust mutation effect prediction. By contrast, the baseline
model has much higher variance per token which may contribute to a more erroneous prediction.
For the activity assay, we visualize the softmax probabilities per-token computed across each mutant
(see Fig. 2E and Fig. 2F). Notably, CRATE correctly places most probability mass on 3/4 of the
conserved cysteine residues (as opposed to the baseline), which echoes the findings in Chiasson
et al. (2020) that only 3/4 of the conserved cysteines may be relevant to retain activity, supporting
the notion that there is relevant information in the annotations that further collapses the softmax
probabilities, resulting in more effective mutation effective prediction.
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VKOR1

Sequence position

Figure 2: Left. VKOR1 case study on task specific inference. Right. AlphaFold 2 (Jumper et al.,
2021) predicted structure of VKOR1. Highly conserved functional cysteine residues are shaded in
blue. (A, D) Position specific perplexities for CRATE (blue) and the baseline (orange) averaged over
abundance (A) and activity (D) phenotypes. Shaded regions represent trans-membrane domains and
dashed lines represent positions of conserved, functional cysteine residues. (B, C) Logit standard
deviations across abundance phenotypes for CRATE-greedy (B) and the baseline (C). Positions with
higher variance are shaded with more intensity. (E, F) Softmax probabilities calculated from activity
phenotypes for CRATE-all (E) and the baseline (F). Positions with higher probability mass are
shaded with more intensity. Black boxes represent the softmax probability of conserved cysteines.

4 CONCLUSIONS & FUTURE WORK

We proposed conditioning on residue-level annotations from text (CRATE), that fuses two networks
to incorporate positional annotation information during training. We create two new annotation aug-
mented datasets for training and inference, CRATE-train and CRATE-vet. We introduce the
CRATE approach and demonstrate its improvement over the baseline as both a mutation effect pre-
dictor and task-specific method that can be modified to leverage different contextual information at
test time. In the latter case, we greedily optimized label sets on a per-mutation-type, per-selection-
type basis and showed that whereas all available annotations seem to contribute to improved pre-
dictions of VKOR1 activity phenotypes, the greedy annotation set improves abundance prediction
for the same phenotype. We hypothesize that the annotations contribute to a more focused concen-
tration of probability mass on a smaller subset of tokens over the baseline. Furthermore, in cases
where CRATEgreedy performs better, each label may independently contribute to the concentration
of mass. By the same intuitions, higher-order dependencies between annotations may better explain
instances where CRATEall performs better.

4.1 FUTURE WORK

A promising next step would be investigating not only residue-level and sequence-level annotation
conditioning in the context of protein engineering, but also studying applications of CRATE to other
foundation models such as masked language models. In particular, we are interested in incorporating
more annotations sources than InterPro (e.g., taxonomic and structure derived) as well as developing
more principled frameworks for testing the effect of different annotation encodings. Finally, we are
interested in testing CRATE models on other downstream tasks, such as protein function prediction
and design.
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A ANNOTATION COVERAGE

We investigated the coverage, or the distribution of percentages of positions annotated by at least one
residue-level annotation, in CRATE-train. As shown in Fig. 3, on average the majority of residues
in the bulk of sequences have at least one annotation. Importantly, the overlapping annotations may
contain redundant information, in which case we expect the model to preference certain labels over
others.

B MORE INFORMATION ON CRATE FINE-TUNING

We fine-tune our ProGen2-small variants according to the recommendations in Nijkamp et al.
(2022). In particular, we reduce the learning rate to 4× 10−5, implement a linear warmup schedule
for 3000 steps followed by cosine annealing, and use the same optimizer weight decay and momen-
tum parameters.

During training, we regularize the model by dropping out all annotations of a given sample with
probability pdrop = 0.5. For next token prediction models such as ProGen2-small, we also reverse
the sequence (and associated annotations) with probability prev = 0.5.

C PROTEINGYM EVALUATION

The ProteinGym benchmark (Notin et al., 2023) uses the assay-level Spearman rank correlations
between the model estimate of the mutant log-likelihood and its experimental DMS score. The final
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Figure 3: Annotation coverage distributions across a random subsample (10%) of CRATE-train.
Left. The distribution of percent coverages per sequence (covered are counted once per sequence).
Right. The distribution of percent coverage when we repeat the count of residues participating in
multiple annotations.

evaluation scores are averages grouped over specific metadata properties of the assays, such as the
mutation type (substitutions or indels), the DMS selection signal, or the taxon.

In all of our experiments using ProGen2-small, we follow Nijkamp et al. (2022) and compute the
bidirectional sequence likelihood score by evaluating the model/annotations twice in forward and
reverse configuration.

D MORE INFORMATION ON LONG FORM DESCRIPTION GENERATION

We condition CRATE model on natural-language embeddings of annotation descriptions. In order
to generate description embeddings for the 552 different UniProt sites without natural language
abstracts we first constructed for each site type a short form phrase of the form site type:
site name if a site name was provided or otherwise just site type. Using the short form
phrase, we prompted Llama-3-1B to generate abstracts based on the following prompt.

You are an expert molecular biologist with over 30 years of experience and an
extensive knowledge of protein structure and function. You will be provided with
a technical, short-form phrase. Generate a long-form description (no more than
500 words) that expands on the subject. Provide only the long-form description,
without any explanation or comment otherwise.

We expand the short-form phrase into a long-form description with the intuition that the longer
context creates a more informative description embedding.

9


	Introduction
	Methods
	Model
	Text conditioning network
	Protein foundation model
	Greedy annotation subset selection

	Data
	Annotation text embeddings


	Results
	Deep mutational scanning benchmark
	Task-specific conditioning

	Conclusions & Future work
	Future work

	Annotation coverage
	More information on CRATE fine-tuning
	ProteinGym evaluation
	More information on long form description generation

