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Abstract

Dropout is widespread in clinical trials and real-world oncology studies, with1

up to half of patients leaving before the study ends due to side effects or other2

reasons. When such dropout is informative (i.e., dependent on survival time), it3

induces censoring bias that distorts causal survival analysis and leads to biased4

treatment effect estimates. This challenge is particularly acute when estimating5

conditional average treatment effects (CATEs), which are central to personalized6

medicine because they reveal which patients benefit most from treatment. In this7

paper, we propose an assumption-lean method to assess the robustness of CATE8

estimates in survival analysis when facing censoring bias. Specifically, we frame9

the underlying task through the lens of partial identification, which allows us10

to obtain informative bounds on the CATE under such conditions. Importantly,11

this approach helps identify patient subgroups where treatment is still effective12

despite potential censoring. We then show that our bounds converge to the true13

point estimates of the CATE when the censoring bias goes to zero. We further14

propose a novel model-agnostic meta-learner to estimate the bounds that can be15

used combined with arbitrary machine-learning models and that has favorable16

theoretical properties such as double-robustness and quasi-oracle efficiency. We17

finally demonstrate the effectiveness of our meta-learner across various experiments18

using both simulated and real-world data.19

1 Introduction20

Dropout is common in survival studies, particularly in oncology. In a systematic review of cancer care21

trials, between 7% and 57% of randomized controlled trials (RCT) reported missing outcome data,22

with dropout rates as high as 53% in colorectal cancer and 43% in non–small cell lung cancer [Shand23

et al., 2024]. Patients may leave a study because of severe side effects, personal circumstances, or24

physician decisions about continued participation [Fizazi et al., 2017]. Such incomplete follow-up25

induces censoring, partially masking event times and, if unaccounted for, biasing treatment-effect26

estimates (we refer to this as “censoring bias” in the following). Potentially making therapies appear27

more or less effective than they truly are for the broader patient population.28

This challenge is especially acute when estimating conditional average treatment effects (CATEs),29

for personalized medicine, as it helps identify which patients benefit from treatment and can thereby30

guide personalized decision-making [Dahabreh et al., 2019, Feuerriegel et al., 2024, Wang et al.,31

2024]. Unlike the average treatment effect (ATE), the CATE captures the variability, which accounts32

for that some patients may experience substantial benefits (e.g., delayed disease progression), while33

others may see little or even reduced survival due to side effects. In oncology, outcomes are often34

measured as time-to-event variables (e.g., survival time, progression-free survival)[Falet et al., 2022,35
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Seitz et al., 2023, Buell et al., 2024]. This is referred to as survival data1, requires tailored methods36

for CATE estimation from survival data [Van Der Laan and Robins, 2003, Curth et al., 2021, Xu37

et al., 2024, Frauen et al., 2025].38

Methods are proposed to deal with censoring bias in ATE estimation, for survival data, but are typically39

not directly applicable to CATE [Bai and Cui, 2025, Voinot et al., 2025]. Existing approaches for40

dealing with censoring bias in CATE estimates for survival data typically assume non-informative41

censoring (i.e., censoring times are fully independent or conditionally independent of survival42

time) [Rubin and van der Laan, 2007, Mao et al., 2018, Cai and van der Laan, 2019, Cheng et al.,43

2022, Schrod et al., 2022, Westling et al., 2024]. These include methods such as specific model-based44

estimation, such as cox models [Gao and Hastie, 2022], tree-based [Zhang et al., 2017, Henderson45

et al., 2020, Tabib and Larocque, 2020, Cui et al., 2023], or neural-network-based [Schrod et al.,46

2022, Katzman et al., 2018, Curth and van der Schaar, 2021]. When the non-infromative censoring47

assumption fails, estimates of CATE are biased. Even under it, they still have to estimate the full48

distribution of observational time via hazard functions, which significantly increases the complexity49

of the methods. A detailed review is given in Appendix C.50

In this paper, we make three contributions:2 (1) We propose an assumption-lean framework to51

audit censoring bias in the CATE estimates from a censored dataset. Our method replaces the52

non-informative censoring assumption with sensitivity functions that use censoring strength and53

domain knowledge (e.g., expected survival after dropout) to form informative bounds. (2) We further54

introduce a model-agnostic meta-learner called SurvB-learner to efficiently estimate bounds. (3)55

We provide theoretical results for our meta-learners by showing consistency, double robustness, and56

quasi-oracle efficiency properties. Finally, we confirm the effectiveness of our meta-learners by57

performing various experiments using both synthetic and real-world data.58

2 Problem setup59

Figure 1: Causal graph.
Variables in yellow are
observed, while in blue
are unobserved.

Data: We consider the standard setting for estimating CATEs based on60

time-to-event data [Van Der Laan and Robins, 2003, Curth et al., 2021,61

Frauen et al., 2025, Zhang et al., 2017, Cui et al., 2023]. That is, we62

consider the full population (X,A, T,C) ∼ P, where X ∈ X ⊆ Rp are63

observed covariates, A ∈ A ⊆ N is the discrete treatments, T ∈ T =64

{0, 1, . . . , Tmax} is the event time of interest (e.g., the time of overall65

survival (OS), time of the patient or disease-free survival (DFS)), and Tmax represents, in the general66

medical sense, the theoretical maximum human lifespan. C ∈ T is the censoring time (e.g., the67

time of a patient dropping out of the study). Because of censoring, we only observe a dataset68

D =
{(
xi, ai, t̃i, δi

)n
i=1

}
of size n ∈ N sampled i.i.d. from the population Z = (X,A, T̃ ,∆), where69

∆ = 1(C ≤ T ) is a censoring indicator for the event and censoring times and T̃ = min{T,C}. The70

causal graph is shown in Fig. 1.71

Causal estimand: We make use of the potential outcome framework [Rubin, 1974] to for-72

malize our causal inference task. Let T (a) ∈ T denote the potential event time correspond-73

ing to a treatment intervention A = a. We are interested in the CATE on the survival time74

τa1,a2
(x) = E [T (a1)− T (a2) | X = x] with corresponding we define the conditional average75

potential outcomes (CAPO) of survival time via τa(x) = E [T (a) | X = x].76

Key definitions: We rely on standard nuisance functions (detailed definitions see Appendix B.1): the77

propensity score π(x) = P(A = 1 | X = x), censoring strength ξ(x, a) = P(∆ = 1 | X = x,A =78

a), expected survival time function µ(x, a) = E[T | X = x,A = a] and conditional survival time79

function ν(δ, x, a) = E[T | ∆ = δ,X = x,A = a], and the post-dropout survival function γ(x, a)80

which denotes the expected maximum survival time after dropout for patients with covariates x under81

treatment a.82

We make use of the standard assumptions in Assumption 2.1 for partial identifiability, and provide83

further explanation in Appendix B.2 on why relaxing the non-informative censoring assumption is84

non-trivial.85

1We deal with the problem of right censoring, which is very common in survival analysis settings. We thus
assume that events have not happened before time t = 0.

2Code is available: https://anonymous.4open.science/r/auditing_censoring_bias-7A80
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Assumption 2.1: For all x ∈ X , a ∈ A, it holds: (i) Consistency: A = a ⇒ T̃ = min{T,C} =86

min{T (a), C(a)}; (ii) Treatment overlap: 0 < π(x) < 1, ∀x ∈ X ; (iii) Unconfoundedness: T (0),87

T (1) ⊥⊥ A | X; (iv) Censoring overlap: 0 ≤ ξ(x, a) < 1, ∀x ∈ X and ∀a ∈ A.88

The assumptions (i)–(iii) are standard in causal inference for estimating CATEs [Rubin, 1974, Imbens,89

2004, Shalit et al., 2017, Candès et al., 2023]. Censoring overlap is also common in survival90

analysis [Cai and van der Laan, 2019, Westling et al., 2024], ensuring every covariate has a positive91

chance of being uncensored. However, identifying CATE further requires the non-informative92

censoring assumption [Van Der Laan and Robins, 2003, Curth et al., 2021, Frauen et al., 2025], which93

assumes survival and censoring times are conditionally independent given covariates and treatment.94

This is often violated in practice, leaving E[T | X = x,A = a,∆ = 1] non-identified. We therefore95

focus on partial identification of CATE.96

3 Our approach to partial identification of CATE in the presence of censoring97

We now move away from point estimation to partial identification of the CATE, which allows us to98

obtain informative bounds in the presence of informative censoring. We define the lower and upper99

bounds for the CAPO, denoted by µ−(x, a) and µ+(x, a) respectively, which capture the range of100

plausible values under our partial identification framework that allows for censoring.101

Lower bound: To construct a lower bound for the CAPO, we leverage the definition of T̃ =102

min{C, T}. We then replace T with T̃ in Eq. 6 to account for that our analysis is conditioned on103

the censored events (i.e., ∆ = 1), so that T ≥ T̃ and ν(1, x, a) ≥ E[T̃ | ∆ = 1, X = x,A = a].104

Therefore, we have105

µ(x, a) ≥µ−(x, a) ≥ ν(0, x, a)[1− ξ(x, a)] + ν(1, x, a)ξ(x, a) = E[T̃ | X = x,A = a]. (1)

106 Upper bound: To construct an upper bound for the CAPO, we introduce the post-dropout survival107

time function γ(x, a) as a sensitivity function which is naturally defined: it captures the maximum108

possible average survival time a patient may live after censoring. Based on γ(x, a), the range of109

sensitivity function is given by110

E[T − T̃ | ∆ = 1, X = x,A = a] ≤ γ(x, a) ≤ tmax − E[T̃ | ∆ = 1, X = x,A = a], (2)

for all x ∈ X and a ∈ A. Then we can directly use it to construct informative upper bounds for111

the CAPO. By definition of γ(x, a), the resulting domain knowledge upper bound µ+(x, a) takes112

the form (we discuss a special case of the sensitivity function in Appendix B.3 as non-informative113

upper bound).114

µ+(x, a) =ν(0, x, a)[1− ξ(x, a)] + ν(1, x, a)ξ(x, a) + γ(x, a)ξ(x, a). (3)

115 where the bound is expressed as a weighted combination of the uncensored survival function ν(0, x, a),116

the observed censored follow-up T̃ , and the post-dropout survival captured by γ(x, a).117

Next, we present our main result: the partial identification bounds, τ−a1,a2
(x) and τ+a1,a2

(x), which118

characterize the range of the CATE in the presence of censoring bias.119

Theorem 3.1: Under assumptions 2.1, the CATE is bounded via τ−a1,a2
(x) ≤ τa1,a2

(x) ≤ τ+a1,a2
(x),120

where τ+a1,a2
(x) = µ+(x, a1)−µ−(x, a2) and τ−a1,a2

(x) = µ−(x, a1)−µ+(x, a2). Here, µ+(x, a1)121

and µ+(x, a2) are given by Eq. (1), and µ+(x, a1) and µ+(x, a2) are given by Eq. (3).122

Proof: See Appendix D.2.123

We state the width property of our bounds in Proposition B.2 Appendix B.4. Our partial identification124

bounds are especially effective under low censoring, where they remain tight enough to approximate125

point estimates without modeling the full hazard function, enabling reliable identification of treatment-126

benefiting subgroups.127

4 SurvB-learner: A meta-learner for estimating the bounds128

We now develop our two-stage meta-learner for estimating the bounds in Theorem 3.1. For simplicity,129

we derive the two-stage meta-learner for the CAPOs, while the corresponding bounds for the CATE130

can be obtained directly by taking the difference between the two CAPOs. Importantly, our two-stage131

meta-learner is flexible and can be instantiated with arbitrary machine learning methods.132

Why simple “plug-in” learners are problematic and our solution: The plug-in approach, which133

directly “plug in” estimated nuisance functions into the bounds formula, is statistically inefficient due134
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to plug-in bias [Kennedy, 2023a]. We therefore propose a two-stage meta learner that mitigates this135

issue. Our SurvB-learner proceeds in two stages (see Algorithm 1 in Appendix A.2). First, estimates136

the nuisance functions with any suitable machine learning models. Second, combines them with137

observed data to construct a debiased estimator. This design ensures consistency, double-robustness,138

and quasi-oracle efficiency (details in Appendix B.5).139

Lower bounds: The pseudo-outcome for the lower bound is defined via:140

µ̂
−
(x, a) =

1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)} +

ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0) − [1 − ξ̂(x, a)]} + ν̂(0, x, a)[1 − ξ̂(x, a)]

+
1(A = a,∆ = 1)

π̂(x)
{T̃ − ν̂(1, x, a)} +

ν̂(1, x, a)1(A = a)

π̂(x)
{1(∆ = 1) − ξ̂(x, a)} + ν̂(1, x, a)ξ̂(x, a).

(4)

Upper bounds: The upper bounds constructed for a given γ(x, a) are stated in Eq. 3. Then, the141

pseudo-outcome is given by142

µ̂
+
(x, a)

=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)} +

ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0) − [1 − ξ̂(x, a)]} + ν̂(0, x, a)[1 − ξ̂(x, a)]

+
1(A = a,∆ = 1)

π̂(x)
{T̃ − ν̂(1, x, a)} +

ν̂(1, x, a)1(A = a)

π̂(x)
{1(∆ = 1) − ξ̂(x, a)} + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
1(A = a)

π̂(x)

{
1(∆ = 1) − ξ̂(x, a)

}
+ γ(x, a)ξ̂(x, a).

(5)

143 Theorem 4.1: Our SurvB-learner is consistent, doubly-robust, and quasi-oracle efficient.144

Proof: Proof and detailed theorem see Appendix B.5 and Appendix D.145

Using the pseudo-outcomes derived above, our SurvB-learner first estimates the nuisance functions146

and then computes the pseudo-outcomes. In future work, we plan to extend our methods to continuous147

treatment settings and observational data, which we aim to include in a journal version.148

5 Experiments149

We now evaluate the effectiveness of the proposed bounds and SurvB-learner by performing experi-150

ments on synthetic and open-access public datasets. Synthetic data are commonly used to evaluate151

causal inference methods [Van Der Laan and Robins, 2003, Curth et al., 2021, Frauen et al., 2025] as152

they have the advantage that we have access to the ground-truth CATEs and thereby can make compar-153

isons against oracle estimates. Further, medical data allows us to demonstrate both the applicability154

and relevance of our method in practice. Data. Following Frauen et al. [2025], we simulate datasets155

from different functions under varying censoring strengths (ξ = 0.2, 0.4, 0.6). Since the ground-truth156

data-generating process is known, we compare SurvB-learner against the oracle CATE and oracle157

bounds derived from ground-truth nuisance estimators. Both domain-knowledge and non-informative158

bounds are evaluated against the plug-in learner. In total, we generate over 60 datasets; details of the159

data-generating mechanisms are given in Appendix E.

Bound Type Dataset Exponential function Sin function Logistic-sin function

Censoring strength ξ 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

Domain knowledge Plug-in Learner 3.219± 3.528 4.063± 3.214 4.529± 2.576 0.710± 0.508 0.753± 0.484 0.637± 0.406 1.395± 0.106 1.696± 0.312 1.961± 0.412
SurvB Learner 0.143± 0.003 0.147± 0.006 0.152± 0.008 0.209± 0.058 0.204± 0.042 0.210± 0.035 0.574± 0.403 0.954± 0.487 1.269± 0.542

Non-informative Plug-in Learner 5.455± 6.573 6.359± 5.801 6.620± 4.581 2.999± 2.605 3.399± 2.355 3.655± 1.941 1.250± 0.169 1.298± 0.350 1.383± 0.531
SurvB-learner 0.138± 0.003 0.137± 0.004 0.135± 0.006 0.176± 0.026 0.172± 0.019 0.180± 0.022 0.380± 0.326 0.629± 0.449 0.825± 0.538

* Smaller is better. Best value in bold.

Table 1: Mean and standard deviation of the RMSE over 5 random runs for synthetic datasets.

160

Results. Table 1 reports RMSEs relative to oracle bounds. SurvB-learner achieves the lowest average161

error and variability, with RMSE up to 7.4 fold smaller than the plug-in learner, consistent with162

Künzel et al. [2019], Nie and Wager [2020]. In Appendix F, we provide Figure 3 further shows that163

SurvB-learner reliably recovers both domain-knowledge and non-informative bounds, and the width164

of non-informative bounds shrinks as censoring decreases.165

We demonstrate our framework using the ADJUVANT trial [Zhong et al., 2018, Liu et al., 2021]166

of adjuvant gefitinib in resected EGFR-mutant NSCLC in Appendix F.1 Fig. 4. Although the trial167

reported improved DFS over chemotherapy, it failed to show an OS benefit, likely due to high dropout168

(36.84% for DFS, 63.18% for OS). Applying our framework, we identify subgroups with biomarker169

co-alterations (e.g., SMAD4+MYC, CDK4+MYC) where the lower bounds of DFS treatment effects170

remain positive, indicating robust benefit. Despite small sample size, high dropout, and heterogeneous171

outcomes, this illustrates how our method can still yield reliable clinical evidence.172

4



References173

Jenny Shand, Elizabeth Stovold, Lucy Goulding, and Kate Cheema. Cancer care treatment attrition174

in adults: Measurement approaches and inequities in patient dropout rates - a rapid review. BMC175

cancer, 24(1):1345, 2024.176

Karim Fizazi, NamPhuong Tran, Luis Fein, Nobuaki Matsubara, Alfredo Rodriguez-Antolin, Boris Y.177
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Figure 2: Overview of the framework. A. Data: A key challenge in survival analysis is censoring,
that is, the follow-up information about patient outcomes is incomplete. In practice, this can be due
to various reasons such as patients dropping out of clinical studies for side effects [Wiegrebe et al.,
2024, Gupta et al., 2025]. Hence, the exact time of the time (e.g., death or disease progression) for
censored patients is unknown. B. Intuition behind our method: Due to censoring, the assumptions
for point estimation for the CATE τ(x) are violated. We thus reframe the task through the lens
of patient identification, which allows us to construct informative bounds (i.e., LB and UB ) for
CATE, while explicitly accounting for censoring bias. C. Output example: We construct the method
using SurvB-Learner, which is a flexible meta-learner with arbitrary ML methods. The output of our
framework is then the bounds, such as for the traditional Kaplan-Meier curve, which demonstrate
how unknown censoring may affect the variability in estimating CATE. D. Theoretical property:
We show theoretically (see Proposition B.2) that the width of our bounds shrinks to zero as either
the censoring strength → 0. Altogether, our method supports evidence-based personalization by
leveraging covariate-specific bounds to inform individualized treatment decisions.
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A Detailed framework and algorithm393

A.1 Framework394

In this section, we provide the framework of our method in Fig. 2, from data, the intuition behind our395

method, an output example, to theoretical property.396
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A.2 Algorithm397

In our main paper, we stated our two-stage meta-learner clearly. Here, we provide the pseudocode of398

our algorithm 1.399

Algorithm 1: The SurvB-learner

Input: observational data D =
{(
xi, ai, t̃i, δi

)n
i=1

}
Output: estimated lower bound µ̂−(x, a) and upper bound µ̂+(x, a)

1 /* Stage 1: Nuisance estimation */
2 ν̂(δ, x, a)← Ê[T | ∆ = δ,X = x,A = a]

3 ξ̂(x, a)← P̂[∆ = δ | X = x,A = a]

4 π̂(x)← P̂[A = a | X = x]
5 /* Stage 2: Pseudo-outcome calculation */
6 µ̂−(x, a) = Ê[µ̂− | X = x,A = a]

7 µ̂+(x, a) = Ê[µ̂+ | X = x,A = a]

400
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B Additional theoretical results401

B.1 Detailed key definition402

In this section, we provide more detailed definition of our nuisance functions. We define the propensity403

score as π(x) = P(A = 1 | X = x), which captures the treatment assignment mechanism, and the404

censoring strength as ξ(x, a) = P(∆ = 1 | X = x,A = a), which gives the probability that patient405

does not complete the study based on covariates X = x and treatment A = a. We further define406

the expected survival time function as µ(x, a) = E[T | X = x,A = a] and the expected conditional407

survival time function as ν(δ, x, a) = E[T | ∆ = δ,X = x,A = a]. The former, the potential408

survival time function µ(x, a), denotes the expectation of the survival time given covariates X = x409

and treatment A = a, while the latter, the conditional potential survival time, denotes the expectation410

of survival time with covariates X = x, treatment A = a, and censoring indicator ∆ = δ. Finally,411

we define the post-dropout survival function γ(x, a), which denotes how long censored individuals412

live maximally in expectation, given covariates X = x and treatment A = a.413
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B.2 Explanation of non-identifiability414

The assumptions (i)–(iii) in Assumption 2.1 are standard in casual literature and are widely used for415

estimating CATEs in general [Rubin, 1974, Imbens, 2004, Shalit et al., 2017, Candès et al., 2023].416

(i) Consistency ensures that no interference between individuals. (ii) Treatment overlap means that,417

for all covariate values, patients have a positive probability of receiving treatment, which ensures418

sufficient support. (iii) Unconfoundedness assumes that there are no unobserved confounders, which419

means that, in the uncensored subgroup, the expected conditional survival time function ν(0, x, a)420

is identifiable. (iv) Censoring overlap is additionally common in survival analysis [Cai and van der421

Laan, 2019, Westling et al., 2024] and ensures a positive probability of being uncensored or surviving422

for every covariate value.423

Violation of standard causal survival inference assumptions: The standard causal survival litera-424

ture [Van Der Laan and Robins, 2003, Curth et al., 2021, Frauen et al., 2025] imposes the following425

additional assumption to identify the CATE τa1,a2
(x) from censored data:426

Assumption B.1: Non-informative censoring: T ⊥⊥ C | X = x,A = a, for all x ∈ X , a ∈ A.427

The above assumption requires that the censoring time is independent of the patient’s survival time428

(given covariates and treatments). Under this assumption, the expected conditional survival time429

function in the censored subgroup, ν(1, x, a), is identifiable. In practice, however, this assumption is430

often violated. For example, patients with more severe disease (and thus shorter true survival times431

T ) may drop out earlier because they are transferred to palliative care or other facilities. Similarly,432

patients may be more likely to be lost to follow-up as death approaches, as patients may then withdraw433

from the trial [Hernán et al., 2004, Templeton et al., 2020]. In these cases, the expected conditional434

potential survival function under censoring, E[T | X = x,A = a,∆ = 1], is non-identified.435

Therefore, the causal estimand, the CATE, is also non-identified. We state clearly in Lemma B.1.436

To address this, we relax the strict survival-specific non-informative censoring assumptions (see437

Assumption B.1) in the following and focus on partial identification.438

Lemma B.1: Let the expected conditional survival function ν(δ, x, a) and the censoring strength439

ξ(x, a) be defined as above. Under informative censoring, the true survival time is unobserved, and,440

therefore, the CATE is not identified; i.e.,441

τa1,a2(x) =E[T (a1)− T (a2) | X = x]

=E[T (a1) | X = x]− E[T (a2) | X = x]

=ν(0, x, a1)[1− ξ(x, a1)] + E[T (a1) | X = x,∆ = 0]ξ(x, a1)

− ν(0, x, a2)[1− ξ(x, a2)]− E[T (a2) | X = x,∆ = 0]ξ(x, a2).

(6)

As a result, obtaining an unbiased estimate of the CATE in our survival setting is not possible.442

To address this, we relax the strict survival-specific non-informative censoring assumptions (see443

Assumption B.1) in the following and focus on partial identification.444
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B.3 Non-informative upper bound445

In the main paper, we consider using domain knowledge about post-dropout survival time γ(x, a) to446

construct the upper bound of CAPO. Depending on the available domain knowledge, we consider a447

special case. If such knowledge is not available, one can instead rely on the upper bound of inequality448

in Eq. (2) to construct a non-informative upper bound of the CAPO. This reflects a conservative449

scenario where no strong assumptions are made, while ensuring that the resulting bounds remain450

robust.451

Case 2 (non-informative upper bounds): In the second case, domain knowledge about post-dropout452

survival may be unavailable. This occurs, for example, when patients leave a study for reasons such453

as relocation, withdrawal of consent, or complete loss to follow-up, making it unclear how long454

they survive after censoring. In such situations, we can use a non-informative sensitivity function.455

Specifically, we take the upper bound of γ(x, a),456

γ(x, a) = tmax − E[T̃ | ∆ = 1, X = x,A = a], (7)

where tmax is the maximum support of the distribution of T̃ . Substituting this into Eq. 6 yields a457

conservative, non-informative upper bound458

µ+(x, a) =ν(0, x, a)[1− ξ(x, a)] + tmaxξ(x, a). (8)

Next, we present the SurvB-learner for the non-informative upper bounds. The corresponding459

pseudo-outcome is given by460

µ̂+(x, a)

=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}

+ ν̂(0, x, a)[1− ξ̂(x, a)] + tmax
1(A = a)

π̂(x)

{
1(∆ = 1)− ξ̂(x, a)

}
+ tmaxξ̂(x, a).

(9)
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B.4 Property of width of bounds461

Proposition B.2: Let µ−(x, a) and µ+(x, a) be the lower bound and upper bound of the CAPO.462

The width of the bound for the CAPO is then463

µ+(x, a)− µ−(x, a) = 2γ(x, a)ξ(x, a), (10)

where γ(x, a) is a user-specified sensitivity function and censoring strength ξ(x, a) is the probability464

of being censored. The width of the bound shrinks as either component decreases, and converges to465

zero under either of the following conditions: (a) γ(x, a) = 0, reflecting strong domain knowledge466

that removes uncertainty about post-dropout survival; or (b) ξ(x, a) = 0, corresponding to the467

absence of censoring.468

Proof: See Appendix D.3469

Our proposed partial identification bound is particularly well-suited for settings with low censoring:470

as stated in Proposition B.2, when censoring is low, estimating the targeted estimand (e.g., the471

expectation of survival time via the hazard function) introduces unnecessary complexity, since the472

bounds of themselves are already tight enough to approximate the point estimand. Thus, even without473

modeling the full hazard function, the resulting CATE bounds are sufficiently tight and valid to474

identify the patient subgroups that benefit from treatment.475
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B.5 Theoretical Properties476

The following theoretical result shows the consistency, double-robustness, and quasi-oracle efficiency477

of our SurvB-learners.478

Theorem B.3 (Consistency and double-robustness): Let ν̂(δ, x, a), ξ̂(x, a) and π̂(x), denote the479

estimators of ν(δ, x, a), ξ(x, a), and π(x), respectively. Then, for all x ∈ X , we have that480

E [µ̂+(x, a) | X = x] = µ+(x, a) and E [µ̂−(x, a) | X = x] = µ−(x, a) if at least one of the481

following conditions holds: (1) π̂(x) = π(x), or (2) ν̂(δ, x, a) = ν(δ, x, a) and ξ̂(x, a) = ξ(x, a).482

Proof: See Appendix D.5.483

These guarantees hold for any choice of base ML models. Analogous to the DR-learner for standard484

CATEs [Kennedy, 2023b], but extended here to censored survival data, Theorem B.3 establishes485

double robustness, the bound estimators are consistent if either the propensity score π(x) is correct486

or both the conditional survival mean ν(δ, x, a) and the censoring probability ξ(x, a) are correct.487

Consequently, the CAPO bounds, and hence the CATE bounds obtained by differencing, remain488

consistent under single-nuisance misspecification.489

We further derive an asymptotic bound on the convergence rate of the SurvB-learner. The full490

smoothness and boundedness assumptions are provided in Appendix D.6.491

Theorem B.4 (Quasi-oracle efficiency): Let ν̂(δ, x, a), ξ̂(x, a) be trained on D1, and π̂(x) be492

trained on D2. We denote µ̂± as the pseudo-outcome and τ̂±(x)(x) = Ên[µ̂
± | X = x] as493

the pseudo-outcome regression on D3 for some generic estimator Ên[· | X = x] of En[· | X = x].494

Suppose that the second-stage estimator Ên achieves the minimax rate n
−2η
2η+p and satisfies the stability495

assumption from Kennedy [2023b]. Under the assumptions of smoothness, the oracle risk has the496

following upper bound:497

E
[
(τ̂±a1,a2

(x)− τ±a1,a2
(x))2

]
≲ n

−2η
2η+p + rτ (n)n

( −2ζ
2ζ+p−

2β
2β+p ) + n(

−2ζ
2ζ+p−

2α
2α+p ). (11)

Proof: See Appendix D.6. In the proof, we even provide a more general bound, which depends on498

the pointwise mean-squared errors of the nuisance parameters estimators.499
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C Extended related work500

In the following, we provide a systematic overview of existing works for the partial identification of501

CATEs with censored datasets. Specifically, we elaborate on the review by two streams of work: (1)502

partial identification for CATEs estimation, and (2) methods combining causal survival analysis.503

C.1 Causal partial identification504

There is a rich body of literature on the partial identification of causal quantities from uncensored data.505

Existing works can be grouped along two dimensions: (1) partial identification, and (2) sensitivity506

models.507

The aim of partial identification is to compute bounds on the interested causal quantities of interest508

whenever point identification is not possible [Manski, 1990]. Furthermore, there are several works509

that have been proposed when different assumptions are imposed, e.g., discrete variables [Duarte510

et al., 2024], instrumental variables [Gunsilius, 2020, Kilbertus et al., 2020, Schweisthal et al., 2024,511

2025]. Additionally, more recent methods leverage neural networks for partial identification [Xia512

et al., 2021, 2023, Padh et al., 2023].513

Alternatively, a large class of partial identification methods employs sensitivity models by intro-514

ducing assumptions on the strength of unobserved confounding, which are typically grouped by515

the underlying model specification. Popular sensitivity models include Rosenbaum’s sensitivity516

model [Rosenbaum and Rubin, 1983, Rosenbaum, 1987, Heng and Small, 2021], the marginal517

sensitivity model (MSM) [Tan, 2006, Kallus et al., 2019, Zhao et al., 2019, Jesson et al., 2021, Dorn518

and Guo, 2023, Frauen et al., 2023, Oprescu et al., 2023, Soriano et al., 2023, Dorn et al., 2025], and519

f -sensitivity models [Jin et al., 2022]. There are further sensitivity models suitable for our continu-520

ous treatment setting. Most methods are based on the marginal sensitivity model (MSM) [Frauen521

et al., 2023, Bonvini et al., 2022, Jesson et al., 2022], while one method is proposed based on the522

f -sensitivity model [Jin et al., 2023]. Frauen et al. [2024] provides a unified framework that is523

compatible with multiple sensitivity models, including MSM, f -sensitivity model, and Rosenbaum’s524

sensitivity model. However, all of them are dealing with unobserved confoundedness in the datasets525

and are not directly applicable to censored datasets (i.e., censoring bias leads to biased bounds).526

C.2 Methods in causal survival analysis527

Survival times are not always observed due to censoring [Leung et al., 1997]. The most classical528

estimation methods are Kaplan–Meier curve [Kaplan and Meier, 1958] and cox-model [Cox, 1972,529

Breslow, 1975]. Other popular models, such as accelerated failure time (AFT) [Cox, 1972, Wei, 1992]530

and proportional odds models [Murphy et al., 1997, Harrell, 2015], also combine non-parametric and531

parametric model specifications.532

While classical survival analysis models time-to-event outcomes, recent work extends it to causal533

settings, enabling CATEs estimation under censoring. We could also group them by the underly534

estimation models [Hu et al., 2021], including tree-based learners [Zhang et al., 2017, Henderson535

et al., 2020, Tabib and Larocque, 2020, Cui et al., 2023] or neural-network-based learners [Katzman536

et al., 2018, Curth and van der Schaar, 2021, Schrod et al., 2022]. Few works have proposed537

(orthogonal) meta-learners tailored to censored time-to-event data [Van Der Laan and Robins, 2003,538

Xu et al., 2022, Gao and Hastie, 2022, Xu et al., 2024]. But they are all tailored to point estimation539

and need additional censoring-independent assumptions that hinder the application of methods to540

real-world datasets. Another stream of work proposes an inferential method for censored data based541

on conformal inference [Candès et al., 2023, Gui et al., 2024, Davidov et al., 2025]. However, these542

approaches aim to construct prediction intervals for individual treatment effects, rather than bounds543

for CATEs.544

There are also some methods proposed to release the independence of censoring. Bai and Cui [2025]545

proposed a partial identification method for the average treatment effect (ATE) through instrumental546

variables. Other methods release the assumption to historical independence [Robins and Finkelstein,547

2000], or use the proxy causal inference [Ying, 2024]. None of them truly proposed a method to deal548

with the dependence of censoring for CATE estimation.549
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Research gap: So far, there are no existing CATE estimation methods that account for violations of550

censoring independence. Existing approaches either cannot handle censoring at all or rely on strong551

assumptions such as conditional independent censoring, which may not hold in practice.552
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D Proofs and derivations553

D.1 Proof of Lemma B.1554

Proof: The result follows from the law of total expectation [Barnard, 1949] and the identifiability555

assumptions,556

E[T (a) | X = x]

=E[T | X = x,A = a]

=E[T | X = x,A = a,∆ = 0]P (∆ = 0 | X = x,A = a)

+ E[T | X = x,A = a,∆ = 1]P (∆ = 1 | X = x,A = a).

(12)

Then, we have557

E[T (a1)− T (a2) | X = x]

=E[T (a1) | X = x]− E[T (a2) | X = x]

=E[T | X = x,A = a1]− E[T | X = x,A = a2]

=ν(0, x, a1)[1− ξ(x, a1)] + ν(1, x, a1)ξ(x, a1)− ν(0, x, a2)[1− ξ(x, a2)]− ν(1, x, a2)ξ(x, a2).
(13)
□558
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D.2 Proof of Theorem 3.1559

Proof: Note that,560

τa1,a2(x) = µ(x, a1)− µ(x, a2). (14)
Also, we have that561

µ(x, a) = ν(0, x, a)[1− ξ(x, a)] + E[T | X = x,A = a]ξ(x, a). (15)

while E[T̃ | ∆ = 1, X = x,A = a] ≤ E[T | ∆ = 1, X = x,A = a] ≤ E[T̃ | ∆ = 1, X = x,A =562

a] + γ(x, a) by the definition of γ(x, a). Therefore, by the definition of µ−(x, a) and µ+(x, a), we563

have564

µ−(x, a) ≤ µ(x, a) ≤ µ+(x, a). (16)
Hence, taking the minimum and maximum of µ(x, a1) and µ(x, a2), yields the result,565

µ−(x, a1)− µ+(x, a2) ≤ τa1,a2
(x) ≤ µ+(x, a1)− µ−(x, a2). (17)

□566
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D.3 Proof of Proposition B.2567

Proof: First, we recall the definition of the domain knowledge upper bounds for two CAPOs with568

different treatments a1 and a2,569

µ−(x, a1) =ν(0, x, a1)(1− ξ(x, a1)) + ν(1, x, a1)ξ(x, a1),

µ+(x, a1) =ν(0, x, a1)(1− ξ(x, a1)) + ν(1, x, a1)ξ(x, a1) + γ(x, a1)ξ(x, a1),

µ−(x, a2) =ν(0, x, a2)(1− ξ(x, a2)) + ν(1, x, a2)ξ(x, a2),

µ+(x, a2) =ν(0, x, a2)(1− ξ(x, a2)) + ν(1, x, a2)ξ(x, a2) + γ(x, a2)ξ(x, a2).

(18)

Then we follow Theorem 3.1 could derive the domain knowledge bounds of CATE τa1,a2
(x).570

τ−a1,a2
(x)

=µ−(x, a1)− µ+(x, a2)

=ν(0, x, a1)(1− ξ(x, a1)) + ν(1, x, a1)ξ(x, a1)− ν(0, x, a2)(1− ξ(x, a2))− ν(1, x, a2)ξ(x, a2)
− γ(x, a2)ξ(x, a2),
τ+a1,a2

(x)

=µ+(x, a1)− µ−(x, a2)

=ν(0, x, a1)(1− ξ(x, a1)) + ν(1, x, a1)ξ(x, a1)− ν(0, x, a2)(1− ξ(x, a2))− ν(1, x, a2)ξ(x, a2)
+ γ(x, a1)ξ(x, a1).

(19)
Therefore, we have the width of bounds, which is571

τ+a1,a2
(x)− τ−a1,a2

(x) = γ(x, a1)ξ(x, a1) + γ(x, a2)ξ(x, a2). (20)

Then we could consider the special non-informative case.572

µ−(x, a1) =ν(0, x, a1)(1− ξ(x, a1)) + ν(1, x, a1)ξ(x, a1),

µ+(x, a1) =ν(0, x, a1)(1− ξ(x, a1)) + tmaxξ(x, a1)

µ−(x, a2) =ν(0, x, a2)(1− ξ(x, a2)) + ν(1, x, a2)ξ(x, a2),

µ+(x, a2) =ν(0, x, a2)(1− ξ(x, a2)) + tmaxξ(x, a2)

(21)

Then we follow Theorem 3.1 could derive the domain knowledge bounds of CATE τa1,a2
(x).573

τ−a1,a2
(x)

=µ−(x, a1)− µ+(x, a2)

=ν(0, x, a1)(1− ξ(x, a1)) + ν(1, x, a1)ξ(x, a1)− ν(0, x, a2)(1− ξ(x, a2))− tmaxξ(x, a2),

τ+a1,a2
(x)

=µ+(x, a1)− µ−(x, a2)

=ν(0, x, a1)(1− ξ(x, a1)) + tmaxξ(x, a1)− ν(0, x, a2)(1− ξ(x, a2))− ν(1, x, a2)ξ(x, a2).
(22)

Therefore, we have the width of bounds, which is574

τ+a1,a2
(x)− τ−a1,a2

(x) = tmaxξ(x, a1) + tmaxξ(x, a2)− ν(1, x, a2)ξ(x, a2)− ν(1, x, a1)ξ(x, a1).
(23)
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D.4 Derivation of meta-learners575

First, we derive the efficient influence function (EIF) score for the lower bound.576

EIF(ψ(P))

=EIF
(∫

x

E [ν(0, x, a) (1− ξ(x, a)) + ν(1, x, a)ξ(x, a)] p(x)dx

)
=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}+ ν̂(0, x, a)[1− ξ̂(x, a)]

+
1(A = a,∆ = 1)

π̂(x)
{T̃ − ν̂(1, x, a)}+ ν̂(1, x, a)1(A = a)

π̂(x)
{1(∆ = 1)− ξ̂(x, a)}+ ν̂(1, x, a)ξ̂(x, a).

(24)
Upper bound:577

Case 1 : Gamma upper bounds. We treat the domain function γ(x, a) as a constant function,578

EIF(ψ(P))

=EIF
(∫

x

E [ν(0, x, a) (1− ξ(x, a)) + ν(1, x, a)ξ(x, a) + γ(x, a)ξ(x, a)] p(x)dx

)
=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}+ ν̂(0, x, a)[1− ξ̂(x, a)]

+
1(A = a,∆ = 1)

π̂(x)
{T̃ − ν̂(1, x, a)}+ ν̂(1, x, a)1(A = a)

π̂(x)
{1(∆ = 1)− ξ̂(x, a)}+ ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
1(A = a)

p(a | X)
{1(∆ = 1)− ξ(X, a)}+ γ(x, a)ξ(X, a)− ψ(a).

(25)

Case 2 : Non-informative upper bounds. we set γ(x, a) as our most trivial function.579

EIF(ψ(P))

=EIF
(∫

x

ν(0, x, a) (1− ξ(x, a)) + tmaxξ(x, a)p(x)dx

)
=

∫
x

EIF [ν(0, x, a) (1− ξ(x, a)) + tmaxξ(x, a)p(x)dx]

=

∫
x

EIF [ν(0, x, a) (1− ξ(x, a)) p(x)] + EIF [tmaxξ(x, a)p(x)] dx

=

∫
x

EIF [ν(0, x, a) (1− ξ(x, a)) p(x)] + EIF [tmaxξ(x, a)p(x)] dx

=

∫
x

EIF [ν(0, x, a) (1− ξ(x, a)) p(x)] dx︸ ︷︷ ︸
Eq1

+

∫
x

EIF [tmaxξ(x, a)p(x)] dx︸ ︷︷ ︸
Eq2

.

(26)
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We proceed with the derivation by separating it into two parts.580

Eq1

=

∫
x

EIF [ν(0, x, a)] [1− ξ(x, a)] p(x) + ν(0, x, a)EIF [1− ξ(x, a)]p(x) + ν(0, x, a) [1− ξ(x, a)]EIF [p(x)]dx

=

∫
x

1{X = x,A = a,∆ = 0}
p(x, a)[1− ξ(x, a)]

[T̃ − ν(0, x, a)] [1− ξ(x, a)] p(x)

+ ν(0, x, a)
1{X = x,A = a}

p(x, a)
[1(∆ = 0)− 1 + ξ(x, a)]p(x)

+ ν(0, x, a) [1− ξ(x, a)] [1{X = x} − p(x)]dx

=

∫
x

1(X = x,A = a,∆ = 0)

p(a | x)

[
T̃ − ν(0, x, a)

]
+

1(X = x,A = a)

p(a | x)
ν(0, x, a) [1(∆ = 0)− 1 + ξ(x, a)]

+ ν(0, x, a)[1− ξ(x, a)] [1{X = x} − p(x)] dx

=
1(A = a,∆ = 0)

p(a | X)

[
T̃ − ν(0, x, a)

]
+

1(A = a)

p(a | X)
ν(0, X, a){1(∆ = 0)− [1− ξ(X, a)]}

+ ν(0, X, a)[1− ξ(X, a)]− ψEq1(a),
(27)

and581

Eq2

=

∫
x

EIF [tmaxξ(x, a)p(x)] dx

=tmax

∫
x

EIF [ξ(x, a)p(x)] dx

=tmax

∫
x

EIF [ξ(x, a)]p(x) + ξ(x, a)EIF [p(x)]dx

=tmax

∫
x

1(X = x,A = a)

p(X = x,A = a)
{1(∆ = 1)− ξ(x, a)} p(x) + ξ(x, a) [1{X = x} − p(x)] dx

=tmax
1(A = a)

p(a | X)
{1(∆ = 1)− ξ(X, a)}+ tmaxξ(X, a)− ψEq2(a).

(28)

Finally, our built estimator for the non-informative upper bound is582

µ̂+(x, a)

=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}

+ ν̂(0, x, a)[1− ξ̂(x, a)] + tmax
1(A = a)

π̂(x)

{
1(∆ = 1)− ξ̂(x, a)

}
+ tmaxξ̂(x, a).

(29)
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D.5 Proof of Theorem B.3583

Proof: We proceed by calculating E [µ̂+ | X = x] and E [µ̂− | X = x] for each pseudo-outcome584

µ̂+ and µ̂−, which corresponds to an oracle second stage regression.585

We start with the lower bounds, which uses pseudo-outcomes defined in Eq. 4, and we could write it586

more simple as587

µ̂−(x, a)

=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}

+
1(A = a,∆ = 1)

π̂(x)
{T̃ − ν̂(1, x, a)}+ ν̂(1, x, a)1(A = a)

π̂(x)
{1(∆ = 1)− ξ̂(x, a)}

+ ν̂(0, x, a)[1− ξ̂(x, a)] + ν̂(1, x, a)ξ̂(x, a)

=
1(A = a,∆ = 0)

π̂(x)
T̃ − 1(A = a)

π̂(x)
ν̂(0, x, a)[1− ξ̂(x, a)] + ν̂(0, x, a)[1− ξ̂(x, a)]

+
1(A = a,∆ = 1)

π̂(x)
T̃ − 1(A = a)

π̂(x)
ν̂(1, x, a)ξ̂(x, a) + ν̂(1, x, a)ξ̂(x, a).

(30)

Hence, by calculating the conditional expectation, we obtain588

E
[
µ̂−(x, a) | X = x

]
=E

[
1(A = a,∆ = 0)

π̂(x)
T̃ | X = x

]
− E

[
1(A = a)

π̂(x)
ν̂(0, x, a)[1− ξ̂(x, a)] | X = x

]
+ E

[
ν̂(0, x, a)[1− ξ̂(x, a)] | X = x

]
+ E

[
1(A = a,∆ = 1)

π̂(x)
T̃ | X = x

]
− E

[
1(A = a)

π̂(x)
ν̂(1, x, a)ξ̂(x, a) | X = x

]
+ E

[
ν̂(1, x, a)ξ̂(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(1z, x, a) + ν̂(1, x, a)ξ̂(x, a).

(31)

Hence, ν̂(δ, x, a) = ν(δ, x, a), ξ̂(x, a) = ξ(x, a) and π̂(x) = π(x) implies589

E
[
µ̂−(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

=[1− ξ(x, a)]ν(0, x, a)− [1− ξ(x, a)]ν(0, x, a) + [1− ξ(x, a)]ν(0, x, a)
+ ξ(x, a)ν(1, x, a)− ξ(x, a)ν(1, x, a) + ξ(x, a)ν(1, x, a)

=[1− ξ(x, a)]ν(0, x, a) + ξ(x, a)ν(1, x, a)

=µ−(x, a),

(32)

which proves the consistency.590

Also, (1) under ν̂(δ, x, a) = ν(δ, x, a) and ξ̂(x, a) = ξ(x, a), this reduces to591

E
[
µ̂−(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a) + ν(0, x, a)[1− ξ(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ(x, a)ν(0, x, a) + ν(1, x, a)ξ(x, a)

=[1− ξ(x, a)]ν(0, x, a) + ξ(x, a)ν(1, x, a)

=µ−(x, a).

(33)
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(2) Under π̂(x) = π(x), this reduces to592

E
[
µ̂−(x, a) | X = x

]
=
π(x)

π(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π(x)
ξ(x, a)ν(1, x, a)− π(x)

π(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

=[1− ξ(x, a)]ν(0, x, a) + ξ(x, a)ν(1, x, a)

=µ−(x, a).

(34)

Then we prove the double-robustness.593

Then, we move on to the upper bounds and prove them in two cases. The pseudo-outcome of Case 1 :594

domain knowledge upper bounds defined in Eq. 5, we also simplify it first,595

µ̂+(x, a)

=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}

+
1(A = a,∆ = 1)

π̂(x)
{T̃ − ν̂(1, x, a)}+ ν̂(1, x, a)1(A = a)

π̂(x)
{1(∆ = 1)− ξ̂(x, a)}

+ ν̂(0, x, a)[1− ξ̂(x, a)] + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
1(A = a)

π̂(x)

{
1(∆ = 1)− ξ̂(x, a)

}
+ γ(x, a)ξ̂(x, a)

=
1(A = a,∆ = 0)

π̂(x)
T̃ − 1(A = a)

π̂(x)
ν̂(0, x, a)[1− ξ̂(x, a)] + ν̂(0, x, a)[1− ξ̂(x, a)]

+
1(A = a,∆ = 1)

π̂(x)
T̃ − 1(A = a)

π̂(x)
ν̂(1, x, a)ξ̂(x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
1(A = a,∆ = 1)

π̂(x)
− γ(x, a)1(A = a)

π̂(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a).

(35)

The proof works analogously to the lower bound. Then we calculate the conditional expectation over596

the pseudo outcome.597

E
[
µ̂+(x, a) | X = x

]
=E

[
1(A = a,∆ = 0)

π̂(x)
T̃ | X = x

]
− E

[
1(A = a)

π̂(x)
ν̂(0, x, a)[1− ξ̂(x, a)] | X = x

]
+ E

[
ν̂(0, x, a)[1− ξ̂(x, a)] | X = x

]
+ E

[
1(A = a,∆ = 1)

π̂(x)
T̃ | X = x

]
− E

[
1(A = a)

π̂(x)
ν̂(1, x, a)ξ̂(x, a) | X = x

]
+ E

[
ν̂(1, x, a)ξ̂(x, a) | X = x

]
+ E

[
γ(x, a)

1(A = a,∆ = 1)

π̂(x)
| X = x

]
− E

[
γ(x, a)

1(A = a)

π̂(x)
ξ̂(x, a) | X = x

]
+ E

[
γ(x, a)ξ̂(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
π(x)

π̂(x)
ξ(x, a)− γ(x, a)

π(x)

π̂(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a).

(36)
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Hence, ν̂(δ, x, a) = ν(δ, x, a), ξ̂(x, a) = ξ(x, a)and π̂(x) = π(x) implies598

E
[
µ̂+(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
π(x)

π̂(x)
ξ(x, a)− γ(x, a)π(x)

π̂(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a)

=[1− ξ(x, a)]ν(0, x, a) + ξ(x, a)ν(1, x, a) + γ(x, a)ξ(x, a)

=µ+(x, a),

(37)

which proves the consistency.599

Also, (1) under ν̂(δ, x, a) = ν(δ, x, a) and ξ̂(x, a) = ξ(x, a), this reduces to600

E
[
µ̂+(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
π(x)

π̂(x)
ξ(x, a)− γ(x, a)π(x)

π̂(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a)

=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a) + ν(0, x, a)[1− ξ(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ(x, a)ν(0, x, a) + ν(1, x, a)ξ(x, a)

+ γ(x, a)
π(x)

π̂(x)
ξ(x, a)− γ(x, a)π(x)

π̂(x)
ξ(x, a) + γ(x, a)ξ(x, a)

=[1− ξ(x, a)]ν(0, x, a) + ξ(x, a)ν(1, x, a) + γ(x, a)ξ(x, a)

=µ+(x, a).

(38)

(2) Under π̂(x) = π(x), this reduces to601

E
[
µ̂+(x, a) | X = x

]
=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
π(x)

π̂(x)
ξ(x, a)− γ(x, a)π(x)

π̂(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a)

=
π(x)

π(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π(x)
ξ(x, a)ν(1, x, a)− π(x)

π(x)
ξ̂(x, a)ν̂(1, x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
π(x)

π(x)
ξ(x, a)− γ(x, a)π(x)

π(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a)

=[1− ξ(x, a)]ν(0, x, a) + ξ(x, a)ν(1, x, a) + γ(x, a)ξ(x, a)

=µ+(x, a).

(39)

Finally, the pseudo-outcomes of Case 2 : non-informative upper bounds is defined in Eq. 9, and we602

simplify it as603
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µ̂+(x, a)

=
1(A = a,∆ = 0)

π̂(x)
{T̃ − ν̂(0, x, a)}+ ν̂(0, x, a)1(A = a)

π̂(x)
{1(∆ = 0)− [1− ξ̂(x, a)]}

+ ν̂(0, x, a)[1− ξ̂(x, a)] + tmax
1(A = a)

π̂(x)

{
1(∆ = 1)− ξ̂(x, a)

}
+ tmaxξ̂(x, a)

=
1(A = a,∆ = 0)

π̂(x)
T̃ − 1(A = a)

π̂(x)
ν̂(0, x, a)[1− ξ̂(x, a)] + ν̂(0, x, a)[1− ξ̂(x, a)]

+ tmax
1(A = a,∆ = 1)

π̂(x)
− tmax

1(A = a)

π̂(x)
ξ̂(x, a) + tmaxξ̂(x, a).

(40)

Again, by taking expectation conditional on X = x, A = a, we obtain604

E[µ̂+(x, a) | X = x]

=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+ tmax
π(x)

π̂(x)
ξ(x, a)− tmax

π(x)

π̂(x)
ξ̂(x, a) + tmaxξ̂(x, a).

(41)

Hence, ν̂(δ, x, a) = ν(δ, x, a), ξ̂(x, a) = ξ(x, a) and π̂(x) = π(x) implies605

E
[
µ̂+(x, a) | X = x

]
=[1− ξ(x, a)]ν(0, x, a)− [1− ξ(x, a)]ν(0, x, a) + ν(0, x, a)[1− ξ(x, a)]
+ tmaxξ(x, a)− tmaxξ(x, a) + tmaxξ(x, a)

=[1− ξ(x, a)]ν(0, x, a) + tmaxξ(x, a)

=µ+(x, a),

(42)

which proves the consistency.606

Also, (1) under ν̂(δ, x, a) = ν(δ, x, a) and ξ̂(x, a) = ξ(x, a), this reduces to607

E[µ̂+(x, a) | X = x]

=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+ tmax
π(x)

π̂(x)
ξ(x, a)− tmax

π(x)

π̂(x)
ξ̂(x, a) + tmaxξ̂(x, a)

=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a) + ν(0, x, a)[1− ξ(x, a)]

+ tmax
π(x)

π̂(x)
ξ(x, a)− tmax

π(x)

π̂(x)
ξ(x, a) + tmaxξ(x, a)

=ν̂(0, x, a)[1− ξ̂(x, a) + tmaxξ(x, a)

=µ+(x, a).

(43)
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(2) Under π̂(x) = π(x), this reduces to608

E[µ̂+(x, a) | X = x]

=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+ tmax
π(x)

π̂(x)
ξ(x, a)− tmax

π(x)

π̂(x)
ξ̂(x, a) + tmaxξ̂(x, a)

=
π(x)

π(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+ tmax
π(x)

π(x)
ξ(x, a)− tmax

π(x)

π(x)
ξ̂(x, a) + tmaxξ̂(x, a)

=ν(0, x, a)[1− ξ(x, a) + tmaxξ(x, a)

=µ+(x, a).

(44)

□609
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D.6 Proof of Theorem B.4610

We further derive an asymptotic bound on the convergence rate of the SurvB-learner under standard611

smoothness assumptions. For this, we consider the definition of s-smooth functions belonging to the612

Hölder classH(s), which are associated with Stone’s minimax rate [Stone, 1980] of n
−2s
2s+p , where p613

is the dimension of X .614

Assumption D.1 (Smoothness): We assume that (1) the nuisance component ν(δ, x, a) is α-smooth,615

ξ(x, a) is β-smooth, and π(x) is ζ-smooth; (2) all nuisance components are estimated with their616

respective minimax rate of n
−2k
2k+p , where k ∈ {α, β, ζ}; and (3) the oracle CAPO τa(·) and the617

oracle CATE τ(·) are η-smooth and the initial CATE estimator τ̂(x) converges with rate rτ (n).618

Assumption D.2 (Boundedness): We assume that there exist constants C, ϵ, L > 0 such that, for619

all x ∈ X , it holds that: (1) | ν(δ, x, a) |≤ C, (2) ϵ < π̂(x) < 1− ϵ; and (3) | τ̂± |≤ L.620

Assumptions D.1 and D.2 are standard in the literature and in line with previous works on the621

theoretical analyses of CATE point estimators [Curth and van der Schaar, 2021, Kennedy, 2023b]622

and estimators for partial identification bounds [Oprescu et al., 2023]. Assumption D.1 provides623

a strategy to quantify the difficulty of the underlying nonparametric regression problems through624

smoothness conditions, while Assumption D.2 ensures that both the oracle bounds for CATE and625

their estimators are bounded.626

We now state our main theoretical result: an upper bound on the risk of the SurvB-learner. To derive627

this bound, we leverage the sample-splitting approach from [Kennedy, 2023b]. The approach was628

initially used to analyze the DR-learner for CATE estimation under unconfoundedness, where it629

allowed for the derivation of robust convergence rates. It has since been adapted to other meta-630

learners [Curth and van der Schaar, 2021], but, notably, not to partial identification in the causal631

survival setting.632

We take the gamma upper bounds as an example.633

Lemma D.1: Consider the setting described in Theorem B.4. Then,634

E
[
(µ̂+(x, a)− µ+(x, a))2 | X = x

]
≲R(x) + E

[
(π̂(x)− π(x))2

] (
E
[
(ν̂(0, x, a)− ν(0, x, a))2

]
+E

[
(ν̂(1, x, a)− ν(1, x, a))2

]
+ E

[
(ξ̂(x, a)− ξ(x, a))2

])
.

(45)

Proof: Let µ+(x, a) be the corresponding oracle to µ̂+(x, a) and define µ̃+(x, a) = Ên[µ
+(x, a) |635

X = x]. Using the assumption, we can apply Proposition 1 of [Kennedy, 2023b] and obtain636

E
[
(µ̂+(x, a)− µ+(x, a))2 | X = x

]
≲ R(x, a) + E

[
r̂(x, a)2

]
, (46)

whereR(x, a) = E
[
(µ+(x, a)− µ̃+(x, a))2

]
is the oracle risk of the second stage regression. We637

can apply Eq. (41) in section D.5 to obtain638
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Case 1 : domain knowledge upper bound.639

r̂(x, a)

=
π(x)

π̂(x)
[1− ξ(x, a)]ν(0, x, a)− π(x)

π̂(x)
[1− ξ̂(x, a)]ν̂(0, x, a) + ν̂(0, x, a)[1− ξ̂(x, a)]

+
π(x)

π̂(x)
ξ(x, a)ν(1, x, a)− π(x)

π̂(x)
ξ̂(x, a)ν̂(0, x, a) + ν̂(1, x, a)ξ̂(x, a)

+ γ(x, a)
π(x)

π̂(x)
ξ(x, a)− γ(x, a)π(x)

π̂(x)
ξ̂(x, a) + γ(x, a)ξ̂(x, a)− µ+(x, a)

=

{
π(x)

π̂(x)
− 1

}{
ν(0, x, a)

[
ξ̂(x, a)− ξ(x, a)

]
+ [1− ξ̂(x, a)] [ν(0, x, a)− ν̂(0, x, a)]

}
+

{
π(x)

π̂(x)
− 1

}{
ν(1, x, a)

[
ξ(x, a)− ξ̂(x, a)

]
+ ξ̂(x, a) [ν(1, x, a)− ν̂(1, x, a)]

}
+

{
π(x)

π̂(x)
− 1

}
γ(x, a)

[
ξ(x, a)− ξ̂(x, a)

]
=

{
π(x)

π̂(x)
− 1

}{
[ν(1, x, a) + γ(x, a)− ν(0, x, a)]

[
ξ̂(x, a)− ξ(x, a)

]
+[1− ξ̂(x, a)] [ν(0, x, a)− ν̂(0, x, a)] + ξ̂(x, a)[ν̂(1, x, a)− ν(1, x, a)]

}

(47)

Applying the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) together with Assumption 4 and the fact that640

π(x) ≤ 1 yields641

r̂(x, a)2 =

{
π(x)

π̂(x)
− 1

}2 {
[ν(1, x, a) + γ(x, a)− ν(0, x, a)]

[
ξ̂(x, a)− ξ(x, a)

]
+[1− ξ̂(x, a)] [ν(0, x, a)− ν̂(0, x, a)] + ξ̂(x, a)[ν̂(1, x, a)− ν(1, x, a)]

}2

≤3

{
π(x)

π̂(x)
− 1

}2 {
[ν(1, x, a) + γ(x, a)− ν(0, x, a)]2

[
ξ̂(x, a)− ξ(x, a)

]2
+[1− ξ̂(x, a)]2 [ν(0, x, a)− ν̂(0, x, a)]2 + ξ̂(x, a)2[ν̂(1, x, a)− ν(1, x, a)]2

}
=3

{
π(x)

π̂(x)
− 1

}2

[ν(1, x, a) + γ(x, a)− ν(0, x, a)]2
[
ξ̂(x, a)− ξ(x, a)

]2
+ 3

{
π(x)

π̂(x)
− 1

}2

[1− ξ̂(x, a)]2 [ν(0, x, a)− ν̂(0, x, a)]2

+ 3

{
π(x)

π̂(x)
− 1

}2

ξ̂(x, a)2 [ν̂(1, x, a)− ν(1, x, a)]2 .

(48)

By combining with Assumption D.2 and the fact that ϵ < π̂(x) < 1− ϵ < 1, we obtain642

r̂(x, a)2 ≤12C2tmax [π̂(x)− π(x)]2
[
ξ̂(x, a)− ξ(x, a)

]2
+ 3 [π̂(x)− π(x)]2 [ν(0, x, a)− ν̂(0, x, a)]2 + 3 [π̂(x)− π(x)]2 [ν̂(1, x, a)− ν(1, x, a)]2 .

(49)
Applying expectations on both sides yields the results, because π̂(x) ⊥⊥ (ν̂(δ, x, a), ξ̂(x, a)) due to643

sample splitting.644
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E Details regarding simulated data645

Data-generating process: For our synthetic dataset, we simulate an observed confounder X ∼646

Uniform[10, 100] to mimic the patients’ age in real-world data. we define propensity score which647

is π(x) = P(A = 1 | X = x) = σ(x), where σ(·) denotes the sigmoid function σ(x) = 1
1+exp(−x) .648

Then, we could design the treatment effect function as τa1,a2
(x). Exponential function:649

τ(x, a) = 20 · exp
(
x+ 0.01X

)
+ ε, (50)

Sin function:650

τ(X,A) =
(
sin

(
X−10
90 · 2π

)
+ 1.2

)
· 10 ·A+X + ϵ, (51)

Logistic-sin function:651

τ(X,A) =
30

1 + exp
(
−0.1(X − 50)

) + 5 · sin(0.2X) + 10 + ϵ. (52)

where ϵ ∼ N (0, 0.1). Finally, we simulate the survival time652

T = τ(X)A+
1

3
(sin (12X) +X) +

1

60
cos (20X) + ϵ. (53)

To create the censoring data, we randomly generate the event indicator based on ξ(x, a) ∼653

Bernoulli(p = σ(2.5X). The shrinkage effect λ ∼ N (1, 0.01), and then censoring time is C = λ ·T .654
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F Additional experiment results655

Figure 3 provides additional insights by comparing the oracle bounds and plug-in learner. We can656

observe the following: (i) From the left and center columns in Figure 3, our SurvB-learner learn valid657

domain-knowledge bounds and non-informative bounds reliably, and more closely align with the658

oracle bounds, than the plug-in learner across different functions and censoring strengths. This is659

in line with previous work around meta-learners [Künzel et al., 2019, Nie and Wager, 2020], our660

SurvB-learner additionally corrects the plug-in bias. (ii) In the right column, we report the widths of661

the non-informative bounds, which shrink as the censoring strength decreases toward zero. This is in662

line with our expectation that censoring strength primarily determines the width. Consequently, our663

method is particularly well-suited for scenarios with low censoring strength.664
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Figure 3: Comparison of estimation methods for bounds based on synthetic datasets.Left: SurvB-
learner for domain-knowledge bounds versus oracle bounds and plug-in learner. Center: SurvB-
learner for non-informative bounds versus oracle bounds and plug-in learner. Right: Estimated
convergence of bounds across censoring strengths.
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B. Single covariate analysis

A. General statistics C. Data-driven analysis

Samples =171
LBs = 34.5%

SMAD4 = 0
LBs = 32.7%

SMAD4 = 1 
LBs = 53.3%

MYC = 0
LBs = 46.2%

MYC = 1
LBs = 100.0%

Pathology = 0
LBs = 31.7%

Pathology = 1&2
LBs = 50.0%Pe

rc
en

ta
ge

 o
f l

ow
er

 b
ou

nd
s 

(L
Bs

) >
 0

0%

25%

50%

Covariates Sample sizes

0: 98, 1: 73
0: 156, 1: 15
0: 159, 1: 12
0: 137, 1: 34
0: 156, 1: 15

TP53
SMAD4
CDK4
NKX2-1
MYC

Genes

Baseline
characteristics

Age

Sex

Pathology
Clinical stage

>=55: 115, <55: 56

Male: 71, Female:100

0: 163,   1: 4, 2:4 
0: 1,       1: 57, 2: 113

100%

75%

D. Co-alteration analysis

Lower bounds (LBs) > 0 [%]

TP53 + SMAD4

TP53 + NKX2-1

TP53 + MYC

SMAD4 + MYC

CDK4 + NKX2-1

CDK4 + MYC

NKX2-1 + MYC

50.0%

13.3%

33.3%

100.0%
66.7%

100.0%

33.3%

0.0%

6.7%

33.3%

50.0%

33.3%

100.0%

66.7%

Biomarker co-alteration DFS OS

Baseline characteristics + genes

 L
Bs

 o
f d

is
ea

se
 fr

ee
 s

ur
vi

va
l (

D
FS

) >
 0

 
 L

Bs
 o

f o
ve

ra
ll 

su
rv

iv
al

 (O
S)

 >
 0

 

Kaplan-Meier Curve

Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Figure 4: ADJUVANT results.A. General statistics: The table on the left summarizes the sample
distribution across baseline characteristics and genetic alterations, while the Kaplan–Meier curves
on the right illustrate survival probabilities estimated by lower and upper bounds. The solid line
represents the point estimate from the causal survival forest. B. Single-covariate analysis: Violin
and box plots show the distributions of the estimated lower bounds of the CATE within subgroups
defined by baseline characteristics or genetic covariates. C. Data-driven analysis: A regression
partition tree based on the lower-bound estimates identifies the most informative covariates for
dividing the population into subgroups with distinct treatment effects. D. Co-alteration analysis:
The heatmap (left) reports the probabilities that the non-informative lower bounds above zero for pairs
of biomarkers, while the table (right) summarizes these probabilities for both disease-free survival
(DFS) and overall survival (OS), especially for genes.

F.1 ADJUVANT results665
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Question: Do the main claims made in the abstract and introduction accurately reflect the667

paper’s contributions and scope?668

Answer: [Yes]669

Justification: Yes, we state clearly in the last paragraph of introduction of contributions.670

Guidelines:671

• The answer NA means that the abstract and introduction do not include the claims672

made in the paper.673

• The abstract and/or introduction should clearly state the claims made, including the674
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• The authors should reflect on the factors that influence the performance of the approach.697
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and how they scale with dataset size.703

• If applicable, the authors should discuss possible limitations of their approach to704

address problems of privacy and fairness.705

• While the authors might fear that complete honesty about limitations might be used by706

reviewers as grounds for rejection, a worse outcome might be that reviewers discover707

limitations that aren’t acknowledged in the paper. The authors should use their best708

judgment and recognize that individual actions in favor of transparency play an impor-709

tant role in developing norms that preserve the integrity of the community. Reviewers710

will be specifically instructed to not penalize honesty concerning limitations.711
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a complete (and correct) proof?714
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• The answer NA means that the paper does not include theoretical results.718
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• The proofs can either appear in the main paper or the supplemental material, but if722
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4. Experimental result reproducibility728

Question: Does the paper fully disclose all the information needed to reproduce the main ex-729

perimental results of the paper to the extent that it affects the main claims and/or conclusions730

of the paper (regardless of whether the code and data are provided or not)?731

Answer: [Yes]732

Justification: We provide all the code of experiments.733

Guidelines:734

• The answer NA means that the paper does not include experiments.735

• If the paper includes experiments, a No answer to this question will not be perceived736

well by the reviewers: Making the paper reproducible is important, regardless of737

whether the code and data are provided or not.738

• If the contribution is a dataset and/or model, the authors should describe the steps taken739

to make their results reproducible or verifiable.740

• Depending on the contribution, reproducibility can be accomplished in various ways.741

For example, if the contribution is a novel architecture, describing the architecture fully742

might suffice, or if the contribution is a specific model and empirical evaluation, it may743

be necessary to either make it possible for others to replicate the model with the same744

dataset, or provide access to the model. In general. releasing code and data is often745

one good way to accomplish this, but reproducibility can also be provided via detailed746

instructions for how to replicate the results, access to a hosted model (e.g., in the case747

of a large language model), releasing of a model checkpoint, or other means that are748

appropriate to the research performed.749

• While NeurIPS does not require releasing code, the conference does require all submis-750

sions to provide some reasonable avenue for reproducibility, which may depend on the751

nature of the contribution. For example752

(a) If the contribution is primarily a new algorithm, the paper should make it clear how753

to reproduce that algorithm.754

(b) If the contribution is primarily a new model architecture, the paper should describe755

the architecture clearly and fully.756

(c) If the contribution is a new model (e.g., a large language model), then there should757

either be a way to access this model for reproducing the results or a way to reproduce758

the model (e.g., with an open-source dataset or instructions for how to construct759

the dataset).760

(d) We recognize that reproducibility may be tricky in some cases, in which case761

authors are welcome to describe the particular way they provide for reproducibility.762

In the case of closed-source models, it may be that access to the model is limited in763

some way (e.g., to registered users), but it should be possible for other researchers764

to have some path to reproducing or verifying the results.765

5. Open access to data and code766

Question: Does the paper provide open access to the data and code, with sufficient instruc-767

tions to faithfully reproduce the main experimental results, as described in supplemental768

material?769

Answer: [Yes]770

Justification: We have the data generation file in our code.771
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• The answer NA means that paper does not include experiments requiring code.773

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/774

public/guides/CodeSubmissionPolicy) for more details.775

• While we encourage the release of code and data, we understand that this might not be776

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not777

including code, unless this is central to the contribution (e.g., for a new open-source778

benchmark).779

• The instructions should contain the exact command and environment needed to run to780

reproduce the results. See the NeurIPS code and data submission guidelines (https:781

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.782

• The authors should provide instructions on data access and preparation, including how783

to access the raw data, preprocessed data, intermediate data, and generated data, etc.784

• The authors should provide scripts to reproduce all experimental results for the new785

proposed method and baselines. If only a subset of experiments are reproducible, they786

should state which ones are omitted from the script and why.787

• At submission time, to preserve anonymity, the authors should release anonymized788

versions (if applicable).789

• Providing as much information as possible in supplemental material (appended to the790

paper) is recommended, but including URLs to data and code is permitted.791

6. Experimental setting/details792

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-793

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the794

results?795

Answer: [Yes]796

Justification: Yes it is in the code.797

Guidelines:798

• The answer NA means that the paper does not include experiments.799

• The experimental setting should be presented in the core of the paper to a level of detail800

that is necessary to appreciate the results and make sense of them.801

• The full details can be provided either with the code, in appendix, or as supplemental802

material.803

7. Experiment statistical significance804

Question: Does the paper report error bars suitably and correctly defined or other appropriate805

information about the statistical significance of the experiments?806

Answer: [Yes]807

Justification: Yes, we use RMSE and report the mean and standard deviation over five runs.808

Guidelines:809

• The answer NA means that the paper does not include experiments.810

• The authors should answer "Yes" if the results are accompanied by error bars, confi-811

dence intervals, or statistical significance tests, at least for the experiments that support812

the main claims of the paper.813

• The factors of variability that the error bars are capturing should be clearly stated (for814

example, train/test split, initialization, random drawing of some parameter, or overall815

run with given experimental conditions).816

• The method for calculating the error bars should be explained (closed form formula,817

call to a library function, bootstrap, etc.)818

• The assumptions made should be given (e.g., Normally distributed errors).819

• It should be clear whether the error bar is the standard deviation or the standard error820

of the mean.821

• It is OK to report 1-sigma error bars, but one should state it. The authors should822

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis823

of Normality of errors is not verified.824
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• For asymmetric distributions, the authors should be careful not to show in tables or825

figures symmetric error bars that would yield results that are out of range (e.g. negative826

error rates).827

• If error bars are reported in tables or plots, The authors should explain in the text how828

they were calculated and reference the corresponding figures or tables in the text.829

8. Experiments compute resources830

Question: For each experiment, does the paper provide sufficient information on the com-831

puter resources (type of compute workers, memory, time of execution) needed to reproduce832

the experiments?833

Answer: [Yes]834

Justification: Yes, we record them in our code.835

Guidelines:836

• The answer NA means that the paper does not include experiments.837

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,838

or cloud provider, including relevant memory and storage.839

• The paper should provide the amount of compute required for each of the individual840

experimental runs as well as estimate the total compute.841

• The paper should disclose whether the full research project required more compute842

than the experiments reported in the paper (e.g., preliminary or failed experiments that843

didn’t make it into the paper).844

9. Code of ethics845

Question: Does the research conducted in the paper conform, in every respect, with the846

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?847

Answer: [Yes]848

Justification: I reviewed it.849

Guidelines:850

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.851

• If the authors answer No, they should explain the special circumstances that require a852

deviation from the Code of Ethics.853

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-854

eration due to laws or regulations in their jurisdiction).855

10. Broader impacts856

Question: Does the paper discuss both potential positive societal impacts and negative857

societal impacts of the work performed?858

Answer: [Yes]859

Justification: We state it in our introduction.860

Guidelines:861

• The answer NA means that there is no societal impact of the work performed.862

• If the authors answer NA or No, they should explain why their work has no societal863

impact or why the paper does not address societal impact.864

• Examples of negative societal impacts include potential malicious or unintended uses865

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations866

(e.g., deployment of technologies that could make decisions that unfairly impact specific867

groups), privacy considerations, and security considerations.868

• The conference expects that many papers will be foundational research and not tied869

to particular applications, let alone deployments. However, if there is a direct path to870

any negative applications, the authors should point it out. For example, it is legitimate871

to point out that an improvement in the quality of generative models could be used to872

generate deepfakes for disinformation. On the other hand, it is not needed to point out873

that a generic algorithm for optimizing neural networks could enable people to train874

models that generate Deepfakes faster.875
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• The authors should consider possible harms that could arise when the technology is876

being used as intended and functioning correctly, harms that could arise when the877

technology is being used as intended but gives incorrect results, and harms following878

from (intentional or unintentional) misuse of the technology.879

• If there are negative societal impacts, the authors could also discuss possible mitigation880

strategies (e.g., gated release of models, providing defenses in addition to attacks,881

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from882

feedback over time, improving the efficiency and accessibility of ML).883

11. Safeguards884

Question: Does the paper describe safeguards that have been put in place for responsible885

release of data or models that have a high risk for misuse (e.g., pretrained language models,886

image generators, or scraped datasets)?887

Answer: [NA]888

Justification: We don’t make use of the large language or generatino model.889

Guidelines:890

• The answer NA means that the paper poses no such risks.891

• Released models that have a high risk for misuse or dual-use should be released with892

necessary safeguards to allow for controlled use of the model, for example by requiring893

that users adhere to usage guidelines or restrictions to access the model or implementing894

safety filters.895

• Datasets that have been scraped from the Internet could pose safety risks. The authors896

should describe how they avoided releasing unsafe images.897

• We recognize that providing effective safeguards is challenging, and many papers do898

not require this, but we encourage authors to take this into account and make a best899

faith effort.900

12. Licenses for existing assets901

Question: Are the creators or original owners of assets (e.g., code, data, models), used in902

the paper, properly credited and are the license and terms of use explicitly mentioned and903

properly respected?904

Answer: [Yes]905

Justification: [TODO]906

Guidelines:907

• The answer NA means that the paper does not use existing assets.908

• The authors should cite the original paper that produced the code package or dataset.909

• The authors should state which version of the asset is used and, if possible, include a910

URL.911

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.912

• For scraped data from a particular source (e.g., website), the copyright and terms of913

service of that source should be provided.914

• If assets are released, the license, copyright information, and terms of use in the915

package should be provided. For popular datasets, paperswithcode.com/datasets916

has curated licenses for some datasets. Their licensing guide can help determine the917

license of a dataset.918

• For existing datasets that are re-packaged, both the original license and the license of919

the derived asset (if it has changed) should be provided.920

• If this information is not available online, the authors are encouraged to reach out to921

the asset’s creators.922

13. New assets923

Question: Are new assets introduced in the paper well documented and is the documentation924

provided alongside the assets?925

Answer: [Yes]926

Justification: I correctly cited the origin paper of adjuvant dataset.927
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Guidelines:928

• The answer NA means that the paper does not release new assets.929

• Researchers should communicate the details of the dataset/code/model as part of their930

submissions via structured templates. This includes details about training, license,931

limitations, etc.932

• The paper should discuss whether and how consent was obtained from people whose933

asset is used.934

• At submission time, remember to anonymize your assets (if applicable). You can either935

create an anonymized URL or include an anonymized zip file.936

14. Crowdsourcing and research with human subjects937

Question: For crowdsourcing experiments and research with human subjects, does the paper938

include the full text of instructions given to participants and screenshots, if applicable, as939

well as details about compensation (if any)?940

Answer: [NA]941

Justification: The paper uses publicly available datasets and does not involve new experi-942

ments with human subjects or crowdsourcing.943

Guidelines:944

• The answer NA means that the paper does not involve crowdsourcing nor research with945

human subjects.946

• Including this information in the supplemental material is fine, but if the main contribu-947

tion of the paper involves human subjects, then as much detail as possible should be948

included in the main paper.949

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,950

or other labor should be paid at least the minimum wage in the country of the data951

collector.952

15. Institutional review board (IRB) approvals or equivalent for research with human953

subjects954

Question: Does the paper describe potential risks incurred by study participants, whether955

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)956

approvals (or an equivalent approval/review based on the requirements of your country or957

institution) were obtained?958

Answer: [NA]959

Justification: The study uses publicly available datasets and does not involve new experi-960

ments with human participants; hence no IRB approval is required.961

Guidelines:962

• The answer NA means that the paper does not involve crowdsourcing nor research with963

human subjects.964

• Depending on the country in which research is conducted, IRB approval (or equivalent)965

may be required for any human subjects research. If you obtained IRB approval, you966

should clearly state this in the paper.967

• We recognize that the procedures for this may vary significantly between institutions968

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the969

guidelines for their institution.970

• For initial submissions, do not include any information that would break anonymity (if971

applicable), such as the institution conducting the review.972

16. Declaration of LLM usage973

Question: Does the paper describe the usage of LLMs if it is an important, original, or974

non-standard component of the core methods in this research? Note that if the LLM is used975

only for writing, editing, or formatting purposes and does not impact the core methodology,976

scientific rigorousness, or originality of the research, declaration is not required.977

Answer: [Yes]978

Justification: I use LLM to help me correct the grammar of writing and some typos.979
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• The answer NA means that the core method development in this research does not981

involve LLMs as any important, original, or non-standard components.982

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)983

for what should or should not be described.984

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem setup
	Our approach to partial identification of CATE in the presence of censoring
	SurvB-learner: A meta-learner for estimating the bounds
	Experiments
	Detailed framework and algorithm
	Framework
	Algorithm

	Additional theoretical results
	Detailed key definition
	Explanation of non-identifiability
	Non-informative upper bound
	Property of width of bounds
	Theoretical Properties

	Extended related work
	Causal partial identification
	Methods in causal survival analysis

	Proofs and derivations
	Proof of Lemma B.1
	Proof of Theorem 3.1
	Proof of Proposition B.2
	Derivation of meta-learners
	Proof of Theorem B.3
	Proof of Theorem B.4

	Details regarding simulated data
	Additional experiment results
	ADJUVANT results


