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Abstract

Dropout is widespread in clinical trials and real-world oncology studies, with
up to half of patients leaving before the study ends due to side effects or other
reasons. When such dropout is informative (i.e., dependent on survival time), it
induces censoring bias that distorts causal survival analysis and leads to biased
treatment effect estimates. This challenge is particularly acute when estimating
conditional average treatment effects (CATEs), which are central to personalized
medicine because they reveal which patients benefit most from treatment. In this
paper, we propose an assumption-lean method to assess the robustness of CATE
estimates in survival analysis when facing censoring bias. Specifically, we frame
the underlying task through the lens of partial identification, which allows us
to obtain informative bounds on the CATE under such conditions. Importantly,
this approach helps identify patient subgroups where treatment is still effective
despite potential censoring. We then show that our bounds converge to the true
point estimates of the CATE when the censoring bias goes to zero. We further
propose a novel model-agnostic meta-learner to estimate the bounds that can be
used combined with arbitrary machine-learning models and that has favorable
theoretical properties such as double-robustness and quasi-oracle efficiency. We
finally demonstrate the effectiveness of our meta-learner across various experiments
using both simulated and real-world data.

1 Introduction

Dropout is common in survival studies, particularly in oncology. In a systematic review of cancer care
trials, between 7% and 57% of randomized controlled trials (RCT) reported missing outcome data,
with dropout rates as high as 53% in colorectal cancer and 43% in non—small cell lung cancer [Shand
et al., 2024]). Patients may leave a study because of severe side effects, personal circumstances, or
physician decisions about continued participation [Fizazi et al.,[2017]. Such incomplete follow-up
induces censoring, partially masking event times and, if unaccounted for, biasing treatment-effect
estimates (we refer to this as “censoring bias” in the following). Potentially making therapies appear
more or less effective than they truly are for the broader patient population.

This challenge is especially acute when estimating conditional average treatment effects (CATEs),
for personalized medicine, as it helps identify which patients benefit from treatment and can thereby
guide personalized decision-making [Dahabreh et al. [2019 [Feuerriegel et al., 2024}, |Wang et al.|
2024]). Unlike the average treatment effect (ATE), the CATE captures the variability, which accounts
for that some patients may experience substantial benefits (e.g., delayed disease progression), while
others may see little or even reduced survival due to side effects. In oncology, outcomes are often
measured as time-to-event variables (e.g., survival time, progression-free survival)[Falet et al.| 2022|
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Seitz et al.,[2023| Buell et al., [2024]. This is referred to as survival dataﬂ requires tailored methods
for CATE estimation from survival data [[Van Der Laan and Robins| [2003| |Curth et al., 2021}, | Xu
et al.,[2024, [Frauen et al., 2025]].

Methods are proposed to deal with censoring bias in ATE estimation, for survival data, but are typically
not directly applicable to CATE [Bai and Cui, [2025} Voinot et al., [2025]]. Existing approaches for
dealing with censoring bias in CATE estimates for survival data typically assume non-informative
censoring (i.e., censoring times are fully independent or conditionally independent of survival
time) [Rubin and van der Laan, 2007, Mao et al., |2018| |Cai and van der Laan, 2019, |Cheng et al.|
2022, Schrod et al.| 2022} Westling et al., 2024]. These include methods such as specific model-based
estimation, such as cox models [[Gao and Hastie, [2022], tree-based [Zhang et al.,|2017, [Henderson
et al., 2020, Tabib and Larocque, 2020, |Cui et al., 2023|], or neural-network-based [Schrod et al.,
2022, [Katzman et al., 2018, |Curth and van der Schaar} 2021]]. When the non-infromative censoring
assumption fails, estimates of CATE are biased. Even under it, they still have to estimate the full
distribution of observational time via hazard functions, which significantly increases the complexity
of the methods. A detailed review is given in Appendix [C]

In this paper, we make three contributions:E] (1) We propose an assumption-lean framework to
audit censoring bias in the CATE estimates from a censored dataset. Our method replaces the
non-informative censoring assumption with sensitivity functions that use censoring strength and
domain knowledge (e.g., expected survival after dropout) to form informative bounds. (2) We further
introduce a model-agnostic meta-learner called SurvB-learner to efficiently estimate bounds. (3)
We provide theoretical results for our meta-learners by showing consistency, double robustness, and
quasi-oracle efficiency properties. Finally, we confirm the effectiveness of our meta-learners by
performing various experiments using both synthetic and real-world data. - T L
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2 Problem setu >< 5 ><

Data: We consider the standard setting for estimating CATEs based on 9@

time-to-event data [[Van Der Laan and Robins| 2003} |Curth et al., [2021),
Frauen et al., 2025| Zhang et al.l 2017, |Cui et al.l 2023]]. That is, we
consider the full population (X, A, T, C) ~ P, where X € X C RP are
observed covariates, A € A C N is the discrete treatments, T' € T =
{0,1,..., Tinax} is the event time of interest (e.g., the time of overall
survival (OS), time of the patient or disease-free survival (DFS)), and T},,.x represents, in the general
medical sense, the theoretical maximum human lifespan. C' € 7T is the censoring time (e.g., the
time of a patient dropping out of the study). Because of censoring, we only observe a dataset
D = {(x, i, t;, 61)17:1} of size n € N sampled i.i.d. from the population Z = (X, A, T, A), where

A = 1(C < T) is a censoring indicator for the event and censoring times and T = min{7, C}. The
causal graph is shown in Fig.[I]

Figure 1: Causal graph.
Variables in are
observed, while in blue
are unobserved.

Causal estimand: We make use of the potential outcome framework [Rubin, [1974] to for-
malize our causal inference task. Let T'(a) € 7T denote the potential event time correspond-
ing to a treatment intervention A = a. We are interested in the CATE on the survival time
Tar,az(®) = E[T(a1) — T(az) | X = z] with corresponding we define the conditional average
potential outcomes (CAPO) of survival time via 7,(z) = E[T'(a) | X = z].

Key definitions: We rely on standard nuisance functions (detailed definitions see Appendix [B.I)): the
propensity score m(z) = P(A = 1| X = z), censoring strength {(z,a) =P(A=1|X =2,A =
a), expected survival time function p(z,a) = E[T | X = 2, A = a] and conditional survival time
function v(0, z,a) = E[T | A = §, X = x, A = al, and the post-dropout survival function v(x, a)
which denotes the expected maximum survival time after dropout for patients with covariates x under
treatment a.

We make use of the standard assumptions in Assumption [2.1]for partial identifiability, and provide
further explanation in Appendix on why relaxing the non-informative censoring assumption is
non-trivial.

'We deal with the problem of right censoring, which is very common in survival analysis settings. We thus
assume that events have not happened before time ¢t = 0.
?Code is available: https://anonymous.4open.science/r/auditing_censoring_bias-7A80
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Assumption 2.1: Forall z € X, a € A, it holds: (i) Consistency: A =a = T = min{7T,C} =
min{7T (a),C(a)}; (ii) Treatment overlap: 0 < w(x) < 1, Vo € X, (iii) Unconfoundedness: T(0),
T(1) L A | X; (iv) Censoring overlap: 0 < &(x,a) < 1, Vo € X andVa € A.

The assumptions (i)—(iii) are standard in causal inference for estimating CATEs [Rubinl |1974] Imbens,
2004, Shalit et al., 2017, |Candes et al.l |2023]. Censoring overlap is also common in survival
analysis [Cai and van der Laan| 2019| [Westling et al.,|2024], ensuring every covariate has a positive
chance of being uncensored. However, identifying CATE further requires the non-informative
censoring assumption [[Van Der Laan and Robins|, 2003|, |Curth et al.| 2021} [Frauen et al.,|2025]], which
assumes survival and censoring times are conditionally independent given covariates and treatment.
This is often violated in practice, leaving E[T" | X = =, A = a, A = 1] non-identified. We therefore
focus on partial identification of CATE.

3 Our approach to partial identification of CATE in the presence of censoring

We now move away from point estimation to partial identification of the CATE, which allows us to
obtain informative bounds in the presence of informative censoring. We define the lower and upper
bounds for the CAPO, denoted by 11~ (, a) and u™ (x, a) respectively, which capture the range of
plausible values under our partial identification framework that allows for censoring.

Lower bound: To construct a 10wer~bound for the CAPO, we leverage the definition of T =
min{C,T}. We then replace T with T" in Eq. |§I to account for that our analysis is conditioned on

the censored events (i.e., A = 1), so that 7 > T and v(l,z,a) > E[T |A=1,X =2,A=a
Therefore, we have

p(z,a) >p~ (x,a) > v(0,z,a)[1 — &(x,a)] + v(1,z,a)é(x,a) =E[T | X =z,A = al. (1)

Upper bound: To construct an upper bound for the CAPO, we introduce the post-dropout survival
time function (z, a) as a sensitivity function which is naturally defined: it captures the maximum
possible average survival time a patient may live after censoring. Based on ~y(z, a), the range of
sensitivity function is given by

BT -T|A=1,X=z,A=a] <y(z,a) < tmax —E[T |A=1,X =2,A =a, )

forall x € X and a € A. Then we can directly use it to construct informative upper bounds for
the CAPO. By definition of v(x, a), the resulting domain knowledge upper bound 1" (x, a) takes
the form (we discuss a special case of the sensitivity function in Appendix [B.3as non-informative
upper bound).

,u+(ac, a) =v(0,z,a)[l — &(z,a)] + v(1,z,a)é(z, a) + v(z, a)é(z, a). 3)

where the bound is expressed as a weighted combination of the uncensored survival function v(0, z, a),
the observed censored follow-up 7', and the post-dropout survival captured by y(z, a).

Next, we present our main result: the partial identification bounds, 7., ,. () and 7}, . (2), which
characterize the range of the CATE in the presence of censoring bias.

Theorem 3.1: Under assumptions the CATE is bounded via 7, ,,(x) < Ta, a,(x) < 7. 4, (2),

ap,az
where 7 . (z) = pt(z,a1) — p~ (z,a2) and 7, ,. () = p~ (z,a1) — p* (x, az). Here, p™ (x,a1)

ay,as ay,a2

and pi* (z, as) are given by Eq. (1), and p* (z, a1) and p* (z, as) are given by Eq. (3).
Proof: See Appendix[D.2]

We state the width property of our bounds in Proposition [B.2] Appendix [B.4} Our partial identification
bounds are especially effective under low censoring, where they remain tight enough to approximate
point estimates without modeling the full hazard function, enabling reliable identification of treatment-
benefiting subgroups.

4 SurvB-learner: A meta-learner for estimating the bounds

We now develop our two-stage meta-learner for estimating the bounds in Theorem [3.1] For simplicity,
we derive the two-stage meta-learner for the CAPOs, while the corresponding bounds for the CATE
can be obtained directly by taking the difference between the two CAPOs. Importantly, our two-stage
meta-learner is flexible and can be instantiated with arbitrary machine learning methods.

Why simple “plug-in”’ learners are problematic and our solution: The plug-in approach, which
directly “plug in” estimated nuisance functions into the bounds formula, is statistically inefficient due



135
136
137
138
139

140

141
142

143

145

146
147
148

149

150
151
152
153
154

156
157
158
159

161
160
163
164
165

166
167
168
169
170
171
172

to plug-in bias [Kennedyl 2023a]]. We therefore propose a two-stage meta learner that mitigates this
issue. Our SurvB-learner proceeds in two stages (see Algorithm[I]in Appendix[A.2). First, estimates
the nuisance functions with any suitable machine learning models. Second, combines them with
observed data to construct a debiased estimator. This design ensures consistency, double-robustness,
and quasi-oracle efficiency (details in Appendix [B.5).

Lower bounds: The pseudo-outcome for the lower bound is defined via:

i () =R E T o000} + PEBIEEZ D (18 = 0) 1 - )]} + 500,001~ ECnv0)]
%{T — (1, @,0)} + WQ(A =1) - é(z,a)} + 2(1, z, a)é(x, a).

“)

Upper bounds: The upper bounds constructed for a given v(z, a) are stated in Eq. [3] Then, the
pseudo-outcome is given by

At (z,a)
:W{T — (0, 2,a)} + W{lm =0) — [1 — &, a)]} + 2(0,z,a)[1 — &(x, a)]
=a = - v(l,z,a =a ~ - )
—+ %{T —0(1,z,a)} + %{I(A =1) = &(z,a)} + (1, z,a)§(z, a)
1(A=a) A N
() — = 1A = ) = é@ )} + (@ @b a).

Theorem 4.1: Our SurvB-learner is consistent, doubly-robust, and quasi-oracle efficient.
Proof: Proof and detailed theorem see Appendix|B.3| and Appendix[D]

Using the pseudo-outcomes derived above, our SurvB-learner first estimates the nuisance functions
and then computes the pseudo-outcomes. In future work, we plan to extend our methods to continuous
treatment settings and observational data, which we aim to include in a journal version.

S Experiments

We now evaluate the effectiveness of the proposed bounds and SurvB-learner by performing experi-
ments on synthetic and open-access public datasets. Synthetic data are commonly used to evaluate
causal inference methods [Van Der Laan and Robins, 2003} |Curth et al.| 2021, |[Frauen et al., 2025] as
they have the advantage that we have access to the ground-truth CATEs and thereby can make compar-
isons against oracle estimates. Further, medical data allows us to demonstrate both the applicability
and relevance of our method in practice. Data. Following Frauen et al.| [2025], we simulate datasets
from different functions under varying censoring strengths (£ = 0.2, 0.4, 0.6). Since the ground-truth
data-generating process is known, we compare SurvB-learner against the oracle CATE and oracle
bounds derived from ground-truth nuisance estimators. Both domain-knowledge and non-informative
bounds are evaluated against the plug-in learner. In total, we generate over 60 datasets; details of the
data-generating mechanisms are given in Appendix [E]

Dataset Exponential function Sin function Logistic-sin function

Censoring strength & 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Plug-in Learner 3.219 £ 3.528 1.063 + 3.214 1.529 £ 2.576 0.710 £ 0.508 0.753 + 0.484 0.637 £ 0.406 1.395 £ 0.106 1.696 £ 0.312 1.961 £ 0.412
SurvB Learner 0.143 £0.003 0.147+0.006 0.152+0.008 0.209+0.058 0.204+0.042 0.210+0.035 0.574+0.403 0.954+0.487 1.269 +0.542
Plug-in Learner 5.455 £ 6.573 6.359 + 5.801 6.620 + 4.581 2.999 £ 2.605 3.399 £ 2.355 3.655 + 1.941 1.250 +0.169 1.298 + 0.350 1.383 +0.531
SurvB-learner 0.138 £0.003 0.137+0.004 0.135+0.006 0.176+0.026 0.172+0.019 0.180+0.022 0.380+0.326 0.629 +0.449 0.825+0.538

Bound Type

Domain knowledge

Non-informative

" Smaller is better. Best value in bold.

Table 1: Mean and standard deviation of the RMSE over 5 random runs for synthetic datasets.
Results. Table[I|reports RMSEs relative to oracle bounds. SurvB-learner achieves the lowest average
error and variability, with RMSE up to 7.4 fold smaller than the plug-in learner, consistent with
Kiinzel et al.| [2019], Nie and Wager| [2020]. In Appendix [F} we provide Figure [3]further shows that
SurvB-learner reliably recovers both domain-knowledge and non-informative bounds, and the width
of non-informative bounds shrinks as censoring decreases.

We demonstrate our framework using the ADJUVANT trial [Zhong et al., [2018| |Liu et al., 2021]]
of adjuvant gefitinib in resected EGFR-mutant NSCLC in Appendix [F.1|Fig.[4] Although the trial
reported improved DFS over chemotherapy, it failed to show an OS benefit, likely due to high dropout
(36.84% for DFS, 63.18% for OS). Applying our framework, we identify subgroups with biomarker
co-alterations (e.g., SMAD4+MYC, CDK4+MYC) where the lower bounds of DFS treatment effects
remain positive, indicating robust benefit. Despite small sample size, high dropout, and heterogeneous
outcomes, this illustrates how our method can still yield reliable clinical evidence.
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Figure 2: Overview of the framework. A. Data: A key challenge in survival analysis is censoring,
that is, the follow-up information about patient outcomes is incomplete. In practice, this can be due
to various reasons such as patients dropping out of clinical studies for side effects
2024 [Gupta et all,[2025]. Hence, the exact time of the time (e.g., death or disease progression) for
censored patients is unknown. B. Intuition behind our method: Due to censoring, the assumptions
for point estimation for the CATE 7(x) are violated. We thus reframe the task through the lens
of patient identification, which allows us to construct informative bounds (i.e., LB and UB) for
CATE, while explicitly accounting for censoring bias. C. Output example: We construct the method
using SurvB-Learner, which is a flexible meta-learner with arbitrary ML methods. The output of our
framework is then the bounds, such as for the traditional Kaplan-Meier curve, which demonstrate
how unknown censoring may affect the variability in estimating CATE. D. Theoretical property:
We show theoretically (see Proposition [B.2) that the width of our bounds shrinks to zero as either
the censoring strength — 0. Altogether, our method supports evidence-based personalization by
leveraging covariate-specific bounds to inform individualized treatment decisions.
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A Detailed framework and algorithm

A.1 Framework

In this section, we provide the framework of our method in Fig.[2] from data, the intuition behind our
method, an output example, to theoretical property.
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397 A.2 Algorithm

398 In our main paper, we stated our two-stage meta-learner clearly. Here, we provide the pseudocode of
ae9 our algorithm [T}

Algorithm 1: The SurvB-learner

Input: observational data D = { (xi, aq, t~i, 51-):;1}
Output: estimated lower bound 2~ (z, @) and upper bound " (x, a)
1 /* Stage 1: Nuisance estimation */

p(6,x,a0) — E[T|A=6X=uxA=d

£(x,a) « PA=0|X =2,A=d]

#(z) «PlA=a| X =2

/* Stage 2: Pseudo-outcome calculation */
A (z,a) = ]E[la_ | X =z,A= Cl]

[["(337@) = E[ﬂ+ | X =2,A=d]

400
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B Additional theoretical results

B.1 Detailed key definition

In this section, we provide more detailed definition of our nuisance functions. We define the propensity
score as m(x) = P(A = 1| X = x), which captures the treatment assignment mechanism, and the
censoring strength as £(x,a) = P(A = 1| X = z, A = a), which gives the probability that patient
does not complete the study based on covariates X = x and treatment A = a. We further define
the expected survival time function as p(x,a) = E[T | X = x, A = a] and the expected conditional
survival time function as v(6,x,a) = E[T | A = §,X = z, A = a]. The former, the potential
survival time function u(x, a), denotes the expectation of the survival time given covariates X = x
and treatment A = a, while the latter, the conditional potential survival time, denotes the expectation
of survival time with covariates X = x, treatment A = «, and censoring indicator A = §. Finally,
we define the post-dropout survival function v(x, a), which denotes how long censored individuals
live maximally in expectation, given covariates X = x and treatment A = a.
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B.2 Explanation of non-identifiability

The assumptions (i)—(iii) in Assumption [2.1]are standard in casual literature and are widely used for
estimating CATEs in general [Rubinl 1974} Imbens| 2004} Shalit et al.,[2017, (Candes et al.,2023]].
(1) Consistency ensures that no interference between individuals. (ii) Treatment overlap means that,
for all covariate values, patients have a positive probability of receiving treatment, which ensures
sufficient support. (iii) Unconfoundedness assumes that there are no unobserved confounders, which
means that, in the uncensored subgroup, the expected conditional survival time function (0, x, a)
is identifiable. (iv) Censoring overlap is additionally common in survival analysis [Cai and van der
Laan| 2019, Westling et al.,2024]] and ensures a positive probability of being uncensored or surviving
for every covariate value.

Violation of standard causal survival inference assumptions: The standard causal survival litera-
ture [[Van Der Laan and Robins, [2003} |Curth et al., 2021} |Frauen et al., [2025]] imposes the following
additional assumption to identify the CATE 7, 4, (z) from censored data:

Assumption B.1: Non-informative censoring: T 1L C' | X = x,A=q, forallz € X,a € A.

The above assumption requires that the censoring time is independent of the patient’s survival time
(given covariates and treatments). Under this assumption, the expected conditional survival time
function in the censored subgroup, v(1, z, a), is identifiable. In practice, however, this assumption is
often violated. For example, patients with more severe disease (and thus shorter true survival times
T) may drop out earlier because they are transferred to palliative care or other facilities. Similarly,
patients may be more likely to be lost to follow-up as death approaches, as patients may then withdraw
from the trial [Hernan et al., 2004, Templeton et al., 2020]. In these cases, the expected conditional
potential survival function under censoring, E[T' | X = z,4A = a,A = 1], is non-identified.
Therefore, the causal estimand, the CATE, is also non-identified. We state clearly in Lemma@
To address this, we relax the strict survival-specific non-informative censoring assumptions (see
Assumption[B.T) in the following and focus on partial identification.

Lemma B.1: Let the expected conditional survival function v(0, x, a) and the censoring strength
&(x, a) be defined as above. Under informative censoring, the true survival time is unobserved, and,
therefore, the CATE is not identified; i.e.,
Tar,a2 (%) =E[T'(a1) — T(az) | X = 7]
=E[T(a1) | X = z] — E[T(a2) | X = z]
—(0,,a1)[1 - £(x,a1)] + E[T(a1) | X = 2, A = 0&(z, a1)
- V(07 T, aQ)[l - £(x7 a2)] - E[T((JZ) | X = €, A= U}f(iﬁ, a’Q)'

©)

As a result, obtaining an unbiased estimate of the CATE in our survival setting is not possible.
To address this, we relax the strict survival-specific non-informative censoring assumptions (see
Assumption[B.T) in the following and focus on partial identification.
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B.3 Non-informative upper bound

In the main paper, we consider using domain knowledge about post-dropout survival time v(zx, a) to
construct the upper bound of CAPO. Depending on the available domain knowledge, we consider a
special case. If such knowledge is not available, one can instead rely on the upper bound of inequality
in Eq. (2) to construct a non-informative upper bound of the CAPO. This reflects a conservative
scenario where no strong assumptions are made, while ensuring that the resulting bounds remain
robust.

Case (2) (non-informative upper bounds): In the second case, domain knowledge about post-dropout
survival may be unavailable. This occurs, for example, when patients leave a study for reasons such
as relocation, withdrawal of consent, or complete loss to follow-up, making it unclear how long
they survive after censoring. In such situations, we can use a non-informative sensitivity function.
Specifically, we take the upper bound of v(z, a),

Y(@,0) =tmax —E[T |A=1,X = 2,4 =al, 7

where t,,x 1S the maximum support of the distribution of T. Substituting this into Eq. E] yields a
conservative, non-informative upper bound

pt(z,a) =v(0,2,a)[1 — £(z,a)] + tmaxé (T, a). 8)

Next, we present the SurvB-learner for the non-informative upper bounds. The corresponding
pseudo-outcome is given by

it (z,a)
_1(A=a,A=0) o 5(0.2.a (Oxa)l(A—a) —é.a
+9(0,2,0)[1 ~ (2, @) + e -5 =2 {1 )}+tmx€(ﬂc )
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B.4 Property of width of bounds

Proposition B.2: Let 1~ (z,a) and p*(z,a) be the lower bound and upper bound of the CAPO.
The width of the bound for the CAPO is then

:U'Jr(mv a) —p (.’t, a) = 27(‘%7 a)g(m, a), (10)

where y(x, a) is a user-specified sensitivity function and censoring strength &(x, a) is the probability
of being censored. The width of the bound shrinks as either component decreases, and converges to
zero under either of the following conditions: (a) v(x,a) = 0, reflecting strong domain knowledge
that removes uncertainty about post-dropout survival; or (b) £(x,a) = 0, corresponding to the
absence of censoring.

Proof: See Appendix

Our proposed partial identification bound is particularly well-suited for settings with low censoring:
as stated in Proposition when censoring is low, estimating the targeted estimand (e.g., the
expectation of survival time via the hazard function) introduces unnecessary complexity, since the
bounds of themselves are already tight enough to approximate the point estimand. Thus, even without
modeling the full hazard function, the resulting CATE bounds are sufficiently tight and valid to
identify the patient subgroups that benefit from treatment.

16



476

477
478

479
480
481

482

483

484

486
487
488
489

490
491
492
493

494

495
496
497

499

B.5 Theoretical Properties

The following theoretical result shows the consistency, double-robustness, and quasi-oracle efficiency
of our SurvB-learners.

Theorem B.3 (Consistency and double-robustness): Let (9, z,a), £(x,a) and 7 (x), denote the
estimators of v(0,x,a), &(x,a), and ©(x), respectively. Then, for all v € X, we have that
E[pt(z,a) | X =2] = pt(z,a) and E[g~ (z,a) | X =x] = p~(x,a) if at least one of the
following conditions holds: (1) 7(x) = m(x), or (2) D(8,x,a) = v(5,x,a) and &(x, a) = &(z, a).

Proof: See Appendix[D.5]

These guarantees hold for any choice of base ML models. Analogous to the DR-learner for standard
CATE:s [Kennedyl, [2023b], but extended here to censored survival data, Theorem |B.3| establishes
double robustness, the bound estimators are consistent if either the propensity score 7(x) is correct
or both the conditional survival mean v(d, x, a) and the censoring probability £(x, a) are correct.
Consequently, the CAPO bounds, and hence the CATE bounds obtained by differencing, remain
consistent under single-nuisance misspecification.

We further derive an asymptotic bound on the convergence rate of the SurvB-learner. The full
smoothness and boundedness assumptions are provided in Appendix [D.6|

Theorem B.4 (Quasi-oracle efficiency): Let (5, x,a), £(z,a) be trained on D1, and #(x) be
trained on Dy. We denote i as the pseudo-outcome and 7% (x)(z) = E,[g* | X = z] as

the pseudo-outcome regression on D3 for some generic estimator E,,[- | X = z] of E,[- | X = z].

. - . . . 72/’7 . o7
Suppose that the second-stage estimator IE,, achieves the minimax rate n?7+r and satisfies the stability
assumption from|Kennedy| [2023b|]. Under the assumptions of smoothness, the oracle risk has the

following upper bound:

E[(E ., (@) — 7% . ()] Snos 4 ()l 50) 4plas-n5), 1)

ay,az ap,az

Proof: See Appendix[D.6 In the proof, we even provide a more general bound, which depends on
the pointwise mean-squared errors of the nuisance parameters estimators.
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C Extended related work

In the following, we provide a systematic overview of existing works for the partial identification of
CATEs with censored datasets. Specifically, we elaborate on the review by two streams of work: (1)
partial identification for CATEs estimation, and (2) methods combining causal survival analysis.

C.1 Causal partial identification

There is a rich body of literature on the partial identification of causal quantities from uncensored data.
Existing works can be grouped along two dimensions: (1) partial identification, and (2) sensitivity
models.

The aim of partial identification is to compute bounds on the interested causal quantities of interest
whenever point identification is not possible [Manski, [1990]. Furthermore, there are several works
that have been proposed when different assumptions are imposed, e.g., discrete variables [Duarte
et al.,[2024]], instrumental variables [Gunsilius, 2020, [Kilbertus et al., 2020l |Schweisthal et al., [2024],
2025]|. Additionally, more recent methods leverage neural networks for partial identification [Xia
et al.| 2021} 2023} [Padh et al., [2023].

Alternatively, a large class of partial identification methods employs sensitivity models by intro-
ducing assumptions on the strength of unobserved confounding, which are typically grouped by
the underlying model specification. Popular sensitivity models include Rosenbaum’s sensitivity
model [Rosenbaum and Rubin, (1983 Rosenbaum, 1987, Heng and Small, 2021]], the marginal
sensitivity model (MSM) [Tanl 2006, Kallus et al., 2019, |Zhao et al.| 2019, Jesson et al.,[2021}, Dorn
and Guol 2023} [Frauen et al., 2023| |Oprescu et al., 2023 |Soriano et al., 2023 |Dorn et al., 2025]], and
f-sensitivity models [Jin et al., 2022]|. There are further sensitivity models suitable for our continu-
ous treatment setting. Most methods are based on the marginal sensitivity model (MSM) [Frauen
et al.} [2023| [Bonvini et al., [2022, Jesson et al., |2022]], while one method is proposed based on the
f-sensitivity model [Jin et al., 2023]]. |[Frauen et al.| [2024]] provides a unified framework that is
compatible with multiple sensitivity models, including MSM, f-sensitivity model, and Rosenbaum’s
sensitivity model. However, all of them are dealing with unobserved confoundedness in the datasets
and are not directly applicable to censored datasets (i.e., censoring bias leads to biased bounds).

C.2 Methods in causal survival analysis

Survival times are not always observed due to censoring [[Leung et al., [1997|]. The most classical
estimation methods are Kaplan—Meier curve [Kaplan and Meier, |1958]] and cox-model [[Cox,|[1972,
Breslowl [1975]]. Other popular models, such as accelerated failure time (AFT) [Cox,|1972| Wei, |1992]
and proportional odds models [Murphy et al.,[1997, |Harrell, 2015], also combine non-parametric and
parametric model specifications.

While classical survival analysis models time-to-event outcomes, recent work extends it to causal
settings, enabling CATEs estimation under censoring. We could also group them by the underly
estimation models [Hu et al.l [2021]], including tree-based learners [Zhang et al.l 2017, Henderson
et al., 2020, [Tabib and Larocquel 2020, Cui et al.| 2023] or neural-network-based learners [Katzman
et al., 2018, |Curth and van der Schaar, 2021} [Schrod et al.l [2022]]. Few works have proposed
(orthogonal) meta-learners tailored to censored time-to-event data [Van Der Laan and Robins| 2003,
Xu et al., 2022 |Gao and Hastiel 2022} Xu et al.| 2024]]. But they are all tailored to point estimation
and need additional censoring-independent assumptions that hinder the application of methods to
real-world datasets. Another stream of work proposes an inferential method for censored data based
on conformal inference [Candes et al., [2023] |Gui et al., 2024, Davidov et al., 2025]]. However, these
approaches aim to construct prediction intervals for individual treatment effects, rather than bounds
for CATE:s.

There are also some methods proposed to release the independence of censoring. [Bai and Cuil [[2025]]
proposed a partial identification method for the average treatment effect (ATE) through instrumental
variables. Other methods release the assumption to historical independence [Robins and Finkelstein,
2000, or use the proxy causal inference [[Ying, |2024]]. None of them truly proposed a method to deal
with the dependence of censoring for CATE estimation.
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s50 Research gap: So far, there are no existing CATE estimation methods that account for violations of
551 censoring independence. Existing approaches either cannot handle censoring at all or rely on strong
ss2  assumptions such as conditional independent censoring, which may not hold in practice.
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ss53 D Proofs and derivations

ss4 D.1  Proof of Lemma[B.1l

555 Proof: The result follows from the law of total expectation [Barnard, |1949|] and the identifiability
556  ASSUMPLIONS,

E[T(a) | X = 2]
=E[T| X =z, A=d]
=E[T|X=2,A=a,A=0P(A=0|X=2,A=q)
+ET | X=2,A=a,A=1PA=1|X=2z,A=a).

(12)

s57  Then, we have
E[T(a1) —T(az) | X = ]
=E[T'(a1) | X = 2] - E[T(a2) | X = 2]
=E[T|X=z,A=a1|-E[T| X =2,4 = ay)
(

v(0,z,a1)[1 — &(x,a1)] + v(1, 2,a1)&(x,a1) — v(0,z,a2)[1 — &(x, a2)] — u(l,ar,ag)g(x,czglé.)
O
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566

D.2 Proof of Theorem 3.1]
Proof: Note that,
Tay,a2 (Z‘) = /,L(JJ, al) - ,u(xva'Q)' (14)
Also, we have that
N’(xaa) = Z/(O,(t,a)[]. - 5(1'7(1)] +E[T | X = va = a]f(:v,a). (15)
whileE[T |A=1,X =2, A=a]<E[T|A=1,X=0,A=a <E[T|A=1,X=2,A=
a

|
a] + v(x, a) by the definition of v(x, a). Therefore, by the definition of u~(x,a) and ™ (x,a), we
have

u (@) < () < (o 0) (16)

Hence, taking the minimum and maximum of p(x, a1) and p(x, as), yields the result,
:Ufi(xval) - MJr(l'v a2) < Tay,az (x) < [L+({E,a1) - :ui(xvaa)' a7
([
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s67 D.3  Proof of Proposition [B.2]

ses Proof: First, we recall the definition of the domain knowledge upper bounds for two CAPOs with
se9 different treatments a1 and as,

u (zya1) =v(0,z,a1)(1 — &(z,a1)) + v(1,x,a1)é(x, a1),
P (z,ar) =v(0,2,a1)(1 = &(z, 1)) + (1,2, a1)€ (2, a1) + y(z, a1)E(z, ar), (18)
po (@, a2) =v(0,z,a2)(1 — §(z, a2)) + v(1, 2, a2)¢(, az),
p(z,a9) =v(0,2,a2)(1 = (2, a2)) + v(1, x, a2)é(x, az) + v(x, az)é(x, as).

570 Then we follow The()remcould derive the domain knowledge bounds of CATE T4, q,(z).

Tar.az (%)

=~ (zr,a1) — p*(z,a2)

=v(0,z,a1)(1 = &(z,a1)) + v(1,z,a1)&(z,a1) — v(0,2,a2) (1 — &(x,a2)) — v(1,z,a2)€(x, az)
— (2, a2)&(x, az),
Tah az ()

=" (x,a1) — p~ (z,02)

=v(0,z,a1)(1 —&(z,a1)) + v(1,z,a1)&(z,a1) — v(0,2,a2)(1 — &(x,a2)) — v(1,z,a2)€(x, as)

+ ’Y(xv al)g(xa al)'
(19)
571 Therefore, we have the width of bounds, which is

Taras (%) = Tay a0 (¥) = 7(@,01)€(w, 01) +7(2, a2)€(, az). (20)
572 Then we could consider the special non-informative case.
p(z,a1) =v(0,2,a1) (1 = §(x, a1)) +v(1, 2, 01)¢ (2, 1),
o ( §(x, 1)) + tmax€ (7, a1)
w(x,a2) =v(0,z,a2)(1 — {(z,a2)) + v(1, z,a2)&(z, az),
+(x as) =v(0,x,a2)(1 — &(x, a2)) + tmaxé(x, az)
573 Then we follow Theoremncould derive the domain knowledge bounds of CATE T4, q,(z).

T, a1) —V(O7$aa1)( (21)

Tar,az (%)

=p (2, a1) 7M+(IE,CL2)
=v(0,z,a1)(1 —&(z,a1)) + v(1,z,a1)&(z,a1) — v(0,2,a2)(1 — &(x, a2)) — tmaxé(z, az),

a0 ()

—u* (2,01) — 1 (2, a2)

:V(Oaxval)(]- - f(‘ra al)) + tmaxg(xval) - I/(O,SL',G,Q)(]. - f(fﬂ,ag)) - 1/(1,1},0,2)5(1', CL2)~
(22)
s74  Therefore, we have the width of bounds, which is

TaJrl)QQ (x) - T;7a2 (QC) - tmaxg(x7a1) + tmaxf(x,aﬂ) - 1/(1,1',(12)5(1',042) - V(Ll’, al)f(m, al)‘
(23)
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579

D.4 Derivation of meta-learners

First, we derive the efficient influence function (EIF) score for the lower bound.

EIF (¢ (PP))
=EIF (/ E[v(0,z,a) (1 —&(z,a)) +v(1,z,a)f(z,a)]p (x)dg;)
_1(A Zfr(z;v)A—O){T_y(OJ? a)}+%{l( 0) — [l—é(w,a)}}—&— (0, 2, a)[1 — € (m o]
+ LS —frcz,x)A =1 {T-0(1,2,a0)} + ! m’;)(i()A - a){l(A =1) —&(z,a)} + (1, z,a)é(z, a).
(24)
Upper bound:

Case (1): Gamma upper bounds. We treat the domain function y(z, a) as a constant function,

EIF (4 (P))
=EIF (/ E[v(0,z,a) (1 —&(z,a)) + v(1,x,a)é(z, a) + v(z, a)f(x,a)]p(x)dx)

x

:W‘:ﬁ‘zﬁ:o){f 50, 2,a)} + ﬁ(o’w’;)(i()A =D 11(A = 0)  [1 - &, )]} + (0,2, @)1 — E(z, )]
W{T (L x,a)} + ﬁ(l’x’?&(f =D 1(A = 1) — (. a)} + 0(L, 7, )é(, a)
200 S (A = 1) = €} +9 (s (X ) — V(o)
(25)
Case @): Non-informative upper bounds. we set v(x, a) as our most trivial function.
EIF((P))
—EIF ( / (0, 2,0) (1 — £z, a)) + taae (1, a)p(a:)dx)
/ EIF [1(0,2,a) (1 — &(x,a)) + tmaxé (@, a)p(z)dz]
= / EIF [v(0,x,a) (1 — &(z,a)) p()] + EIF [tmaxé(z, a)p(z)] dx (26)
_ / EIF [1(0, z, @) (1 — &(x, a)) p()] + EIF [tmaxé (2, a)p(z)] dz
_ / EIF [1(0, z, a) (1 — £(z, a)) p(a)] dz + / EIF [tmané (¢, a)p(z)] da

Eql Eq2
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580 We proceed with the derivation by separating it into two parts.

FEql
= / EIF [v(0,2,a)] [1 — &(z, a)] p(x) + v(0, 2, a)EIF [1 — &(z, a)]p(z) + v(0, 2, a) [1 — &(z, a)] EIF [p(z)]dx

B 1{X:x,A:a,A:O}~7V va e aVl oz

- [ e T - vl )] ple)

22 =0 - 1+ malplo)
+0(0,2,0) [~ €, )] [1{X = 2} ~ p(a)]do

[ 1X=x,A=aA=0) F_ (0.2.q (X =zA=a)

[ Eovees] D
(0, 2,0)[1 ~ &G, )] [1{X = 2} ~ pla)] do

+v(0,z,a)

v(0,z,a) [L(A =0) —1+£&(z,a)]

_MA=aA=0) 1z o1 UA=a) o —0)-[1-£&X.a
i [T 0]+ S0 X 1A = 0) ~ 16X a)])
+ V(07X7 a)[l - f(Xa a)] - '(/}qu(a')a
(27)
581 and
Eq2
:/EHIF [tmaxé(x, a)p(x)] dx
:tmax/IE]HE‘ [£(z,a)p(z)] dx
-~ / EIF [¢(z, a)lp(x) + &(z, o)ETF [p(x)]dz %)
=tma / ;g:ij:; (1A =1) = &(z,0)} p(2) + €(w, a) [{X = 2} — p(x)] du
e (1A = 1) = €0} + (X, @) = o).
ss2  Finally, our built estimator for the non-informative upper bound is
it (z,a)
1(A=a,A=0) P 5(0.2.q v(0,z,a)1(A = a) 0 - —E(xa
— SRS T o)+ RS 1A = 0 - - g

+ (0,2, a)[1 — £(z,a)] + tmaxl(;l(;a) {1(A =1)— é(x,a)} + tmaxé (2, @).
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583 D.5 Proof of Theorem|[B.3

ss4  Proof: We proceed by calculating E [t | X = x] and E [~ | X = x| for each pseudo-outcome
sss 1T and fi~, which corresponds to an oracle second stage regression.

ss6  We start with the lower bounds, which uses pseudo-outcomes defined in Eq. 4} and we could write it
587 more simple as

i (x,a)

:W{T— (001} + T

Lld=ald=1) :;E;C)A - 1){T — (1 a))+ 2
+0(0,z,a)[1 — &(z,a)] + 2(1, z,a)é(z, a)
_l4 —;zx)A =04 1(‘2 (;“) 50,2, a)[1 — £z, a)] + (0, 2, a)[1 — (x, )]

(A=a,A=1)- 1(A=a)
Ao @

(30)

o(L, 2, a)é(z,a) + (1,2, a)é(z, a).
sss Hence, by calculating the conditional expectation, we obtain

(z,a \X—x}

E i~
{ OF) x = } IE{1(2(;@&(0,%@)[1ff(x,a)]|X:m] +E[ﬁ(0,m,a)[1f§:(w,a)]|X:m}
[ A—aA—l) 1(A=a)
#(z) ()

TIX= x} _E [ o(1,2,a)é(z,a) | X = x} +E [ﬁ(l,x,a)f(a:,a) | X = :c]

=—2[1—&(z,a)v(0,z,a) — ﬁ[l —é(a: a)]9(0, z,a) + 0(0, z,a)[1 — (m a)]

(€3]
sso  Hence, (6, 2,a) = v(6,x,a), £(z,a) = £(x, a) and 7(x) = n(x) implies
[

:A—)[l —&(z,a)lv(0,2,a) — w[l - é(x, a)|9(0,z,a) + (0,2, a)[1 — f(m,a)}

7r(x)
+ T (L 2.0) — SO 0(0,0,0) + £(1, 2, 0)(w.0) )
=[1-¢(z,a)lv(0,2,a) — [1 — &(x, a)]v(0,z,a) + [1 — &(x, a)|v(0, z,a)
+&(z,a)v(l,z,a) — E(z,a)v(l,z,a) + E(z,a)v(l, z,a)
:[1 - g(l‘, a)]y(O, x, a) + f(.’L‘, CL)Z/(l, x, CL)
=p~ (z,a),
590 which proves the consistency.
sot Also, (1) under 0(8,x,a) = v(0,z,a) and &(x, a) = &(x, a), this reduces to
E[4 (z,a) | X =]

T~ gl 0,.0) - T (0.0,0) + 10,01 - .0

+ ;Egcgf(x, a)v(l,x,a) — g;f(a:, a)v(0,z,a) +v(1,z,a)é(x,a) (33)
=[1 —&(z,a)|v(0,z,a) + (2, a)v(1, 2, a)
:,ui(xaa)'
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sz (2) Under #(x) = m(x), this reduces to

E [ (z,a) | X =z
T a0, 7,0) - 20
() ’ T 7(z)
+ T al1a,0) - T 00,5, + (120w, 0) G4
=[1—-&(z,a)lv(0,z,a) + &(x, a)v(l, z,a)
=p (z,0a).

- é(aj, a)]o(0,z,a) + (0, x,a)[1 — f(m, a)]

593 Then we prove the double-robustness.

594 Then, we move on to the upper bounds and prove them in two cases. The pseudo-outcome of Case (1
sos domain knowledge upper bounds defined in Eq.[5] we also simplify it first

_T)_{T - 17(0,:13,a)} + 9(07:1:7?/)1(14 — a)

=1) {T—0v(1,z,0)} + 7, x’?)l(A —

1 —&(@.)] + (1., a)é(,q)
1(A=a) A .
) A== Eea f 4ok (3%)

a); —&(z,a 2(0,z,a)[1 — &(z,a
5 0301 =€) + 20,7 )1~ (.0

) ﬁ(;) )D(l, z,a)é(z,a) + (1, z,a)(z, a)
W —(z, a)l(’:(;)a)g(g:, a) + v(z, a)é(z, a).

s96 The proof works analogously to the lower bound. Then we calculate the conditional expectation over
597 the pseudo outcome.

E[4"(z,a) | X = 7]
—E {”A :ﬁ(m)A =97 x :x} _E [1(;‘(3“)1/(0 z,a)1 — £z, a)] | X :x] +E [5(0,,)[1  &(z,0)] | X =4]
+E {1(14 :ﬂax)A - 1)T | X :x} —E {1(2(;)(1)17(1,;15,@)5(%(;) | X :x} +E [9(1 z,0)é(z,a) | X :x]

() &(z,a) | X ] (m a)é(z,a) | X —ac}
:%[kam,anu(o z,a) - g(—gu — E(,a))p(0,2.a) + 2(0,z,a)[1 — E(x,a)
Lx) xTr,a)v xr,a)— Lx)A T, a T, a ﬁ Tr,a T, a
+ 28w av(1,,0) — T, )9(0,2.0) + 51,7,z
PN ()

(36)
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see  Hence, 0(6,x,a) = v(0,x,a), £(x,a) = &(x,a)and 7t(x) = w(x) implies
[

E[it(z,a) | X =]
:;(g[ &(x,a)v(0,2,a) — ;Eg[l — é(a:,a)]f/(o,a:,a) +2(0,z,a)[1 — é(m,a)]
@xau :ca—Lz)A:caﬁ z,a) + (1,2, 0)é(z,a
+ T e ala,0) - T 0000, + (1. 0)é(r.0) )
20,0 {6 0) = 1w 0) S a) + (0w
=[1—&(z,a)]v(0,z,a) + &{(z,a)v(1, z,a) + y(z,a)é(x, a)
:M"'_(.’L‘,a),
599 which proves the consistency.
600 Also, (1) under 0(6,x,a) = v(d,x,a) and é(a:, a) = &(x, a), this reduces to
E[at(z,a) | X = 2]
:;:(g[l —&(z,a)lv(0,2,a) — ;Ei;[l - é(x, a)]v(0,z,a) + 0(0,z,a)[1 — é(z,a)}
+ T (L) - 5 a)o(0.0.0) + 5(0, . 0)é(z.0
#9000 T €(0,0) = 10,0 T E ) + (0 )é(r.)
:;(2[1 — ¢(z,a)|(0,z,a) - ;Ei;[l (0,0, 0) + (0,2, )1 — E(x,a)] D)
+ I (L, - 56 a)u(0.0.0) + v(1, 2. 0)éla.a
#9000 2 e(0,0) = 90,0 ZD e, + (0, 0)8(o.0)
:[1 - f((E, a)]l/(ov T, a) + f(éﬂ, CL)I/(l, T, a) + 7(x7 a)g(xv a)
:NJr(xva)'
o1 (2) Under #(x) = m(x), this reduces to
E[i"(z,a) | X = x]
:;Egp — £(2, )0, 2, a) — ;(i;[l — &(z, )]0, . a) + (0, z, a)[1 — &(x, a)
Lx)xay xaf@Axaﬁ z,a)+ (1, z,0)é(x, a
+ T aplLa,0) - T 0000, + (1. 0)d(r.0)
#9000 Ze(0,0) = 1(0.0) ZE( ) + (0 )e.0)
:%[1 ~ £(2, )0, 2, a) — %[l (@ a0, 2,a) + DO, 2, @)1 — E(x,a)] O
+ :E?f(x, a)v(l,z,a) — :(gé(z, a)v(l,z,a) + ﬁ(l,x,a)é(:c, a)
#9000 T e(0,0) = 10,0 D) + (0 )e.0)
=[1—&(z,a)]v(0,z,a) + &{(z,a)v(1, z,a) + y(z,a)é(x, a)
:,u"’(x,a).

e02  Finally, the pseudo-outcomes of Case (2): non-informative upper bounds is defined in Eq. |§| and we
603 simplify it as
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604

605

606

607

i* (@, 0)
:W{f _5(0,0,0) + 20 ;@()A =9 1(A = 0) - [1 - é(z, )]}

+9(0,7,0)[1 - £(w, )] + tmaxl(;‘(;)a) {18 = 1) = &@.0) | + tuaré (@, )
= 1(4 :;Z’I)A =0 T — 1(:(;@ 2(0,2,a)[1 — &(x,a)] + 2(0,z, a)[1 — £(x, a)]
1(A=a,A=1)

+ tmax - tmax A(:L'))é(my a) + tmaxé(wv @)'

Again, by taking expectation conditional on X = x, A = a, we obtain

E[f"(z,a) | X = 2]

21— o (0.5.0) ~ 21— E(a.)o(0.2,0) + (0. .01 — E(r,0)
@ L,a)—= ﬁ (2,0
+tmaxﬁ_(x)€( y ) tmax .%') ( ) maxé( , )

Hence, 0(0,z,a) = v(6, 2, a), £(x,a) = £(x,a) and 7 (z) = 7 (x) implies

E[i*(z,a) | X = 2]
=[1 —&(z,a)]v(0,2,a) — [1 = &(z,a)]v(0,,a) + v(0,z,a)[1 — £(z, a)]
+ tmax (T, @) — tmaxé (T, @) + tmax (T, @)
=[1 —&(z,a)]v(0, 2, a) + tmaxé (2, a)

=pu*(z,a),

which proves the consistency.

Also, (1) under (8, ,a) = v(8,x,a) and &(x, a) = &(x, a), this reduces to

T~ gl 0,2.0) = S = s o(0.0,0) + 0,01~ e,
(@) (@) z,a (2, a
+tmaxﬁ(m)§(x a) tmaxﬁ(x)f( , @) + tmaxé(7, )
T~ gl 0,.0) - T Ea(0.2,0) + 10,1 - .0
s I(0,0) — b NE(,0) + b (020)
=9(0,2,0)[1 ~ £(2,0) + i (,0)
_M+(xva)
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08 (2) Under () = m(x), this reduces to

T~ € (0.0,0) - T~ E(aa)}o(0,2,0) + 20,2, 0){1 — E(o,0)]
M r,a)— @ 3 I, a 3 xr,a
+tmaxﬁ_(x)€( 5 ) tmaxﬁ(x)g( P >+tmax€( ) )
:Z(gu &z, ) (0, 2, 0) — Z(i;[l )90, 2, 0) + (0,3, 0)[1 — Ewa)] Y
() @) z,a (2,0
+tmaxﬂ_(x)£(x’a) tmaxﬂ_(x)f( b )+tmax£( ’ )
=v(0,z,a)[l — &(x, a) + tmaxé(x, a)
—MJ'_(.’L‘,LL)
609 O
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D.6 Proof of Theorem[B.4]

We further derive an asymptotic bound on the convergence rate of the SurvB-learner under standard
smoothness assumptions. For this, we consider the definition of s-smooth functions belonging to the

Holder class H(s), which are associated with Stone’s minimax rate [Stone, |1980] of n% , where p
is the dimension of X.

Assumption D.1 (Smoothness): We assume that (1) the nuisance component v(0, x, a) is c-smooth,
&(z,a) is B-smooth, and w(x) is (-smooth; (2) all nuisance components are estimated with their

respective minimax rate of n%, where k € {a, 8,(}; and (3) the oracle CAPO 7,(-) and the
oracle CATE 7(+) are n-smooth and the initial CATE estimator 7(x) converges with rate . (n).

Assumption D.2 (Boundedness): We assume that there exist constants C, €, L > 0 such that, for
all x € X, it holds that: (1) | v(,x,a) |< C, (2) e < 7(x) <1 —¢ and (3)| 7% |< L.

Assumptions [D.1] and [D.2] are standard in the literature and in line with previous works on the
theoretical analyses of CATE point estimators [[Curth and van der Schaar, 2021} Kennedy), 2023b|]
and estimators for partial identification bounds [[Oprescu et al.| [2023]. Assumption [D.I]|provides
a strategy to quantify the difficulty of the underlying nonparametric regression problems through
smoothness conditions, while Assumption[D.2]ensures that both the oracle bounds for CATE and
their estimators are bounded.

We now state our main theoretical result: an upper bound on the risk of the SurvB-learner. To derive
this bound, we leverage the sample-splitting approach from [Kennedy}, 2023b]. The approach was
initially used to analyze the DR-learner for CATE estimation under unconfoundedness, where it
allowed for the derivation of robust convergence rates. It has since been adapted to other meta-
learners [[Curth and van der Schaar, [2021]], but, notably, not to partial identification in the causal
survival setting.

We take the gamma upper bounds as an example.

Lemma D.1: Consider the setting described in Theorem|B.4} Then,

E (7" (z,0) = p*(2,0))* | X = 2]
SR(x) +E [(ﬁ(x) - 7_‘_(33))2} (E [(ﬁ(07 T, a) - V(Ov z, a))Q] (45)
+E [(9(1,2,0) = v(1,3,0))?] + E [({(z,0) - §(z,0))?] ).

Proof: Let ju (x,a) be the corresponding oracle to i (x, a) and define it (z,a) = By, [t (z, a) |
X = z]. Using the assumption, we can apply Proposition 1 of [Kennedy, 2023b] and obtain

E[(i"(z,a) — pt(2,0))? | X = 2] £ R(z,a) +E [f(z,0)], (46)

where R(z,a) = E [(u"(x,a) — i (2, a))?] is the oracle risk of the second stage regression. We
can apply Eq. (#1) in section[D.3]to obtain
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e30 Case(7): domain knowledge upper bound.

7(z,a)

7;52[1 —&(x,a)lv(0,z,a) — ;(g 1- é(m,a)]ﬁ(O,x,a) + (0, z,a)[1 — é(m,a)]
7(x) @Aza ra)+ (1 1. )¢z a
ﬁ(m)ﬁ(z,a)u(l,x,a) fr(a:)g( ,a)0(0,z,a) + (1,2, a)é(z, a)

”@vaiﬁiiﬂw —W(%@;Egé(ﬂc a) + 1(z, a)(z,a) — it (z,a)

m(z) A
- {m) ) 1} {r0.2.0) [§@.0) - €@.0)| + 1 - &) (0.2.0) - 20, 2.0)] |} (49
m(x) ) . )
* {ff(z) B 1} {V(l’x’a) {5(9”7@) - §(sc,a)} +&(z,a) [v(1,z,a) — V(Lx,a)]}
@)\ [ ) Elra

{21 oo - 0.0

7(x) A
- {ﬂ. ) - 1} {[V(l,x,a) +y(z,a) — v(0,z,a)] [g(x,a) - f(x,a)}
L~ €(a,0)] 0,,0) — 5(0,2,0)) + (e, (L. ) — v(1,,0)]}

ss0 Applying the inequality (a + b+ ¢)? < 3(a® + b + c?) together with Assumption 4 and the fact that
ear  w(x) < 1 yields

Pz, a)® = {% — 1}2 {[V(l,x,a) +v(z,a) — v(0, z,a)] [é(m,a) — §(m,a)}

2

+[1 = &(z,a)] [v(0, z,a) — (0, z,a)] + &(x, a)[D(1, z,a) — V(l,x,a)]}
{ 1} { (1,z,a) +'yxa)—1/(0xa)] [E(x,a)—f(x,a)r
)

1~ &, @) [9(0,2,0) = 20,2, 0)* + £, 0)*0(1,7,0) —v(Lz, )P} (4)

—

2

{:(i 1} v(1,z,a) +v(z,a) — v(0,z,a)]? [é(x,a) —g(x,a)]
+3{
+3{

642 By combining with Assumptionand the fact that e < #(x) < 1 — € < 1, we obtain

~

3

(z

(x
(

~

} 1 - &(, )] [0, 2, @) — (0,2, )]

303

T

() 1} &(z,a)" 0(1,z,a) —v(l,z,a)]”.

‘\./\_/

N

92 2
#(2,0)? 12C% s [7(2) = 7(@))” [€(,0) — (o, a)]

+3[i(z) = m(2)]* [1(0, 2, a) = 2(0,2,))" + 3 [(z) —7(2)]” [P(1,2,a) - v(1,2,0)".
(49)
43 Applying expectations on both sides yields the results, because 7(x) 1L (9(6, x,a),&(z, a)) due to
644 sample splitting.
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E Details regarding simulated data

Data-generating process: For our synthetic dataset, we simulate an observed confounder X ~
Uniform[10, 100] to mimic the patients’ age in real-world data. we define propensity score which
ism(z) =P(A=1| X =z) = o(x), where o(-) denotes the sigmoid function o(z) = L

Then, we could design the treatment effect function as 74, 4, (z). Exponential function: rreme
7(x,a) =20 - exp(:c + 0.0IX) + e, (50)
Sin function:
(X, A) = (sin(Xg_olo ~27r) n 1.2) 10 A+ X +e (51)
Logistic-sin function:
T(X,A) = 50 +5-s8in(0.2X) + 10 + e (52)
1+ exp(—0.1(X —50))
where € ~ A(0,0.1). Finally, we simulate the survival time
T:T(X)A—l—%(sin(lQX)+X)+%cos(%X)-i—e. (53)

To create the censoring data, we randomly generate the event indicator based on &(x,a) ~
Bernoulli(p = 0(2.5X). The shrinkage effect A\ ~ A(1,0.01), and then censoring time is C' = \-T".
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F Additional experiment results

Figure 3| provides additional insights by comparing the oracle bounds and plug-in learner. We can
observe the following: (i) From the left and center columns in Figure EI, our SurvB-learner learn valid
domain-knowledge bounds and non-informative bounds reliably, and more closely align with the
oracle bounds, than the plug-in learner across different functions and censoring strengths. This is
in line with previous work around meta-learners [Kiinzel et al., 2019, Nie and Wager} [2020], our
SurvB-learner additionally corrects the plug-in bias. (ii) In the right column, we report the widths of
the non-informative bounds, which shrink as the censoring strength decreases toward zero. This is in
line with our expectation that censoring strength primarily determines the width. Consequently, our
method is particularly well-suited for scenarios with low censoring strength.

Plug-in Learner:
SurvB-Learner: 0.068 +
Error reduction: 79%

Plug-in Learner: 0.720 + 0.719
SurvB-Learner: 0.069 + 0.069
Error reduction: 90%

80

40

Exponential
CATE

204

T 0-—r T T T T T T
20 40 60 80 100 20 40 60 80 100 0.30 0.25 0.20 0.15 0.10 0.05 0.00

40 40
Plug-in Learner: 0.938 + 0.784
SurvB-Learner: 0.143  0.138
Error reduction: 8!

Plug-in Learner: 0.723 + 0.518
SurvB-Learner: 0169 + 0.155
Error reduction: 77%

30 304

204

204 204

Sin
CATE

-10 v v v v T -10 v v v v T
20 40 60 80 100 20 40 60 80 100

60 60 60
1

Plug-in Learner: 1,08 Plug-in Learner: 0.994 + 0.999
SurvB-Learner: 0.214 + 0.238
50 7 [Error reduction: 78% 504

SurvB-Learner: 0.347 + 0.34
40

Error reduction: 68%
404 40
304 304 30
204 204 204
10 104 104

20 40 60 80 100 20 40 60 80 100 0.30 0.25 0.20 0.15 0.10 0.05 0.00
X Censoring strength §

-10

0.30 025 0.20 0.15 0.10 0.05 0.00

50

Logistic-Sin
CATE

—— True CATE Plug-in Learner =~ —— Oracle Bounds —— SurvB-Learner

Figure 3: Comparison of estimation methods for bounds based on synthetic datasets.Left: SurvB-
learner for domain-knowledge bounds versus oracle bounds and plug-in learner. Center: SurvB-
learner for non-informative bounds versus oracle bounds and plug-in learner. Right: Estimated
convergence of bounds across censoring strengths.
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A. General statistics C. Data-driven analysis
%

Samples =171
LBs = 34.5%
Covariates Sample sizes :
Z | 5%
Age 52650115, <55:56 3
Baseline o =
Baselne o S Male: 71, Female:100 2 H SvADI—0 A1
Pathology  0:163, 1:4, 24 3 . LBs =32.7% LBs = 533%
Clinical stage 0:1,  1:57,2: 113 s | 0%
H
TP53 0:98, 173 e 2
SMAD4 0: 156, 118 L °
Genes CDK4 0: 159, 112 E‘ L_75%
NKX2-1 0:137, 134 o = g
MYC 0:156, 115 b D e e S Pathology =0 | | Pathology = 182 MYC=0 MYC=1
Time o LBs=31.7% LBs =50.0% LBs = 46.2% LBs =100.0%
L 100%
B. Single covariate analysis D. Co-alteration analysis

. Lower bounds (LBs) > 0 [%]

Biomarker co-alteration  DFS [eS]

TP53 + SMAD4 50.0% 00%
TP53 + NKX2-1 13.3% 67%
P53 + MYC 33.3% 333%
SMADA4 + MYC 1000%  50.0%
CDK4 + NKX2-1 66.7% 33.3%
CDK4 + MYC 1000%  100.0%
NKX2-1+MYC 333% 86.7%

Figure 4: ADJUVANT results.A. General statistics: The table on the left summarizes the sample
distribution across baseline characteristics and genetic alterations, while the Kaplan—Meier curves
on the right illustrate survival probabilities estimated by lower and upper bounds. The solid line
represents the point estimate from the causal survival forest. B. Single-covariate analysis: Violin
and box plots show the distributions of the estimated lower bounds of the CATE within subgroups
defined by baseline characteristics or genetic covariates. C. Data-driven analysis: A regression
partition tree based on the lower-bound estimates identifies the most informative covariates for
dividing the population into subgroups with distinct treatment effects. D. Co-alteration analysis:
The heatmap (left) reports the probabilities that the non-informative lower bounds above zero for pairs
of biomarkers, while the table (right) summarizes these probabilities for both disease-free survival
(DFS) and overall survival (OS), especially for genes.

665 F.1 ADJUVANT results
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, we state clearly in the last paragraph of introduction of contributions.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We state clearly in the last sentence of SurvB-learner.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We have clear assumption and proof in main paper and appendix.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all the code of experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have the data generation file in our code.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes it is in the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we use RMSE and report the mean and standard deviation over five runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we record them in our code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: I reviewed it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We state it in our introduction.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We don’t make use of the large language or generatino model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: I correctly cited the origin paper of adjuvant dataset.
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Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper uses publicly available datasets and does not involve new experi-
ments with human subjects or crowdsourcing.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study uses publicly available datasets and does not involve new experi-
ments with human participants; hence no IRB approval is required.

Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: I use LLM to help me correct the grammar of writing and some typos.
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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