
Annealing Machine-assisted Learning of Graph Neural
Network for Combinatorial Optimization

Pablo Loyola1 Kento Hasegawa3 Andres Hoyos-Idobro2 Kazuo Ono3
Toyotaro Suzumura1,4 Yu Hirate1 Masanao Yamaoka3

1Rakuten Institute of Technology, Rakuten Group, Inc., Tokyo, Japan
2Rakuten Institute of Technology, Rakuten Group, Inc., Paris, France

3Hitachi, Ltd., Tokyo, Japan
4The University of Tokyo, Japan

{pablo.a.loyola, andres.hoyosidrobo, yu.hirate}@rakuten.com
{kento.hasegawa.bc, kazuo.ono.ap, masanao.yamaoka.ns}@hitachi.com

suzumura@acm.org

Abstract

While Annealing Machines (AM) have shown increasing capabilities in solving
complex combinatorial problems, positioning themselves as a more immediate
alternative to the expected advances of future fully quantum solutions, there are
still scaling limitations. In parallel, Graph Neural Networks (GNN) have been
recently adapted to solve combinatorial problems, showing competitive results
and potentially high scalability due to their distributed nature. We propose a
merging approach that aims at retaining both the accuracy exhibited by AMs and
the representational flexibility and scalability of GNNs. Our model considers a
compression step, followed by a supervised interaction where partial solutions
obtained from the AM are used to guide local GNNs from where node feature
representations are obtained and combined to initialize an additional GNN-based
solver that handles the original graph’s target problem. Intuitively, the AM can
solve the combinatorial problem indirectly by infusing its knowledge into the GNN.
Experiments on canonical optimization problems show that the idea is feasible,
effectively allowing the AM to solve size problems beyond its original limits.

1 Introduction

Graph-based approaches are one of the most predominant techniques for learning combinatorial
optimization solvers. Their distributed nature allows them to scale up to millions of nodes [33, 19].
Nevertheless, their probabilistic nature, which provides soft assignments to decision variables, may
produce solutions at a different level than their classic counterparts [25]. Annealing Machines (AM),
a concurrent line of research, is seen as a more immediate alternative to the expected advances of
future fully quantum solutions, which are currently in use in several industries [30]. Their major
drawback, similarly suffered by the fully quantum versions, is their scalability, handling a limited
number of variables, sometimes forcing problem reformulations to fit hardware limitations [28].

We see these two approaches working towards the same goal: i) GNN-based methods enable
scalability, but their solutions could be noisy; ii) AM-based methods provide high precision, yet they
are limited in the number of variables they can handle. This apparent trade-off motivates us to design
a framework to capture the best of each technology: high scalability and high precision. This work
proposes a way to combine the solving capabilities of both graph and annealing-based methods into a
single workflow that handles combinatorial optimization problems at scale.

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024(MLNCP 2024).

Given a combinatorial problem P and its associated graph GP = (VP , EP), with node set VP and
edge set EP , our framework considers a sequential compression step, that generates a list {Gi}si=1
of compressed versions of GP with |VP | ≥ |V1| ≥ . . . ≥ |Vs|. Then, we perform a supervised
interaction step where the AM solution for each graph Gi acts like target labels of a i-th local
GNN, ∀i ∈ [s]. Finally, we pool all these node feature representations and use them to initialize
an extra GNN-based solver that handles P on the original graph G. In that sense, the AM solves
the combinatorial problem indirectly by infusing its knowledge into the GNN. We conducted an
empirical study on three canonical optimization problems over various families of graphs. Our results
show that the proposed solution is feasible, allowing the AM to solve problems of size beyond its
initial scope, reduce the overall converge time, and, in some cases, even increase the solution quality.

2 Background and Related Work

Annealing Machines for Combinatorial Optimization AM can operate based on various mech-
anisms, including both quantum and classical: superconducting flux qubits, degenerating optical
parametric oscillators, and semiconductor CMOS integrated circuits. However, there are various types
of AM since D-Wave released the first commercial quantum AM [18, 31, 23, 30, 12, 11, 14, 17, 1, 20].
AM requires casting the target problem as a Quadratic Unconstrained Binary Optimization (QUBO)
problem [10, 8]. The QUBO formulation models the problem as a graph, with nodes as decision
variables and edges as (energy) couplings that encode their relationships. This formulation has proven
versatile, with AM covering a wide range of applications [7, 26, 6, 22, 24, 21, 16, 32]. We refer the
reader to [10] for a comprehensive QUBO formulation tutorial. We consider the following problem:

minimize xTQx =: HQUBO(x)

subject to x ∈ {0, 1}n,
(1)

where HQUBO is the Hamiltonian associated with the QUBO matrix Q ∈ Rn×n, which is the
symmetric matrix that encodes the target problem, and x is the vector of binary assignments. In this
work, we explore to what extent the GNNs can enable AMs to handle larger problems, hopefully
without sacrificing accuracy.

QUBO-based Graph Learning for Combinatorial Optimization Recently [25] exploited the
relationship between GNNs and QUBO for solving combinatorial problems. This method relies on
the QUBO formulation of a target problem, where a GNN takes the Hamiltonian as the cost function
and minimizes it in an unsupervised way. Thus, for the k-th GNN layer and a given node v ∈ V ,
we obtain a node feature representation that depends on both of its previous representation at the
(k − 1)-th layer and the aggregated representations of the direct neighbors,

hkv = Φθ
(
hk−1v ,

{
hk−1u

∣∣ ∀u ∈ Nv

})
,∀k ∈ [K], (2)

where hkv ∈ Rdk , dk is the dimension of the k-th representation, Nv is the set of neighbors of v,
and Φθ a learnable function [15]. The resulting representation passes through a linear layer and an
activation function to obtain a single positive real value, and is then projected to integer values to
obtain a final binary node assignment.

We write it in compact form as:

xGNN = ψω(GNNθ(G, F)︸ ︷︷ ︸
= F̄∈R|V|×dK

), (3)

where F ∈ R|V|×d0 is the matrix of initial node features1, GNNθ maps the graph G and F to F̄, and
ψω : R → {0, 1} is the composition of a linear layer and an activation function. Let fv ∈ Rd0 be the
v-row of F, the feature vector of the node v. Thus, the initial embedding in Eq. 2 corresponds to
h0
v = fv, ∀v ∈ V . Therefore, finding a solution xGNN amounts to minimizing HQUBO(x

GNN) in an
unsupervised manner.

1We assume that the ordering of the nodes is consistent with the ordering in the adjacency matrix.

2

3 Methodology

Problem Statement Our main goal is to assess AM and GNN complementarity. We assume a scenario
where the target problem is large enough that it cannot be solved solely by the AM. Therefore, we
propose a framework that divides the problem into smaller pieces so the AM can consume and solve,
and the GNN can act as a bridge, aggregating information to achieve a global solution.

(a) (b)

Figure 1: (a) Proposed approach: Original graph GP is compressed into a sequence of decreasing size
problem graphs, which are solved by AM. A local GNN solver uses those solutions as guidance, and
their resulting learned node representations are aggregated through a Mapping module to initialize a
Main GNN solver that attaches to the original graph GP . (b) Guiding block (GB) diagram.

Graph Compression We reduce the size of the original graph GP using Louvain decomposition for
network community detection [2]. The output of this decomposition is a list of size-decreasing graphs
{Gi}si=1. For each Gi = (Vi, Ei), the algorithm admits a mapping back to the original graph. Thus,
we can relate a single artificial node n ∈ Gi with the corresponding set of actual nodes in the original
graph GP . We ensure the size of all resulting graphs is smaller than the aforesaid feasibility limit
exhibited by the AM. We chose Louvain decomposition because i) it is one of the most cited and
well-understood methods for community detection ii) it is hierarchical, allowing reconstruction from
a given granularity to the original graph, iii) among hierarchical models, Louvain provides the most
homogeneous results, as literature shows [9]. Given the expected diversity of graphs our method
should handle, we consider homogeneity to be a desirable factor.

Multiresolution Guidance I : Locally-assisted Solvers Interaction We get a QUBO matrix Qi

for each Gi. We assume that while these derived matrices are not equivalent to GP , there should be
certain alignment as they are working on different granularities of the original graph GP . As each
Gi is smaller than the AM’s limit, we can apply it to solve them. This step outputs, for each Gi, the
solution found by the AM, in the form of a binary solution vector xAM

i ∈ R|Vi|.
Multiresolution Guidance II : Guiding block (GB) We consider AM solutions a good source of
supervision and use them to drive local GNNs that solve upon the same set of Gi graphs. Instead
of just minimizing the Hamiltonian in an unsupervised way, as described in Sec. 2, we propose to
combine the Hamiltonian cost with a measure of alignment between the AM’s solution and GNN’s
partial solutions at each training time/epoch t. For a graph Gi, let xGNN

i,t be the GNN’s partial solution.
xGNN
i,t denotes assignment scores. Thus, we have θi = argminθ∈Θ ℓ

(
xGNN
i,t , xAM

i

)
∀i ∈ [s], where

xGNN
i,t = ψω(GNNθ(Gi,F)). We set ℓ(a,b) = ∥a − b∥2. Local GNNs can quickly converge for

each compressed graph due to this guidance. While we check these local results’ specific behavior
and quality, we focus more on the final node representations. For each Gi, this step gets a matrix
F̄i ∈ R|Vi|×dK (with dK a predefined vector dimensionality) with the node vectors after the GNN
converged. Fig. 1b depicts this process for one compressed graph.

Aggregating Partial Solutions The output of the previous step gives a node feature vector for
each compressed graph Gi. We reuse these feature vectors to initialize a larger GNN to solve P
on the original graph GP , called Main GNN solver in Fig. 1a. We hypothesize that these feature
representations associated with AM-guided solutions on compressed versions of GP may encode
valuable information that, if passed as initial node vectors for the main solver, could benefit the
solution-finding process, in contrast, to initialize those node vectors randomly (h0

v is random).

Mapping Module Let Vni denote the set of real nodes in the original graph GP associated with a given
node ni ∈ Gi, the i-th compressed version of GP . Thus, Vni =

{
v ∈ VP | v ∈ Louvainmap(n

i)
}

,

3

where Louvainmap is a lookup table (the Louvain mapping) that tracks back any artificial node to
real nodes. We use the inverse degree as a normalization factor to distribute the learned feature
representation associated with ni. Formally, let deg : VP → N0 denote the degree function,
then, given an artificial node ni ∈ Gi with learned feature vector f̄ni = F̄in ∈ RdK , for each
real node v ∈ Vni the associated feature vector will be r̄iv = (deg(v)/

∑
u∈Vni

deg(u)) f̄ni . Let

R̄i ∈ R|VP |×dK be the matrix of synthetic node features, where each row of R̄i
v corresponds to r̄iv

for all v ∈ Vi. These node features will be fixed from now on. We repeat the above process for all
compressed versions Gi for i ∈ [s], resulting in s feature vectors for each real node v ∈ V . Then, we
obtain a single representation using any aggregation/pooling function. Our preliminary experiments
showed that a simple average provided consistent results, R = 1

s

∑s
i=1 R̄

i.

Guided initialization At this point, we have obtained a feature vector associated with each node
in the original graph, and we use them now to initialize a GNN-based solver that will be tasked to
find a solution on the original graph G. This step is simple: we construct a node features matrix
R ∈ R|VP |×dK and use it as initialization for the GNN. Then, the solution procedure follows
the standard unsupervised way described in Sec. 2. At the end of such a procedure, we finally
obtain binary value vectors representing each node’s solution assignments. Therefore, we minimize
HQUBO(x

GNN), where xGNN = ψω (GNNθ(GP ,R)). Algo. 1 summarizes this process.

Algorithm 1 AM-assisted GNN solver

Require: graph GP , initial node features F, learning rate of global
solver α, learning rate of local solver αin,

Ensure: xGNN ∈ argmin
x∈{0,1}n

HQUBO(x)

1: {Gi}si=1 ← Louvain(GP)

2: for i ∈ [s] do
3: F̄i ← GB(Gi, Fi, αin)
4: end for
5: for i ∈ [s] do
6: for v ∈ Vi do
7: r̄iv ←

deg(v)∑
u∈V

ni
deg(u)

f̄ni

8: end for
9: end for
10: R← 1

s

∑s
i=1 R̄i ▷Multiresolution aggregation

11: repeat
12: xGNN ← ψω (GNNθ(GP , R)) ▷AM-guided GNN

solution
13: θ ← θ − α∇θHQUBO(xGNN) ▷Update parameters
14: ω ← ω − α∇ωHQUBO(xGNN)

15: until Convergence
16: return xGNN

4 Empirical Study

Data Generation We generated a set of synthetic random d-regular graphs of sizes n ∈
[50 000, 100 000, 150 000] and node degree d ∈ [3, 4, 5], leading to a total of nine graphs. Ran-
dom graphs are used for testing, as they allow us to evaluate the generalizability of our approach
without the bias of structured adjacency matrices. The current AM has a limit of 100k nodes/variables,
so the selected range allows us to study before and after such a feasibility threshold. For each graph,
Louvain decomposition available on Networkx[13] was used.

Optimization Problems Let V and E be the set of all nodes and edges, respectively. Maximum Cut
(MaxCut) finds a partition of nodes into two subsets such that the number of edges between different
subsets is maximal. Its QUBO formulation is HMaxCut(x) :=

∑
(i,j)∈E 2xixj − xi − xj , where xi

is 1 if node i is in one set and 0 otherwise. Maximum Independent Set (MIS) finds the largest subset of
nodes that are not connected. Its QUBO formulation of isHMIS(x) := −

∑
i∈V xi+β

∑
(i,j)∈E xixj ,

where xi is 1 if a node i belongs to the independent set and 0 otherwise; β > 0 is the penalty
coefficient. We used β = 2. Graph Partition (GP) partitions a graph into two equal-sized parts
such that the number of divided edges is minimized. It is a generalization of MaxCut and its QUBO
formulation is HGP(x) := −HMaxCut(x)−β

∑
i∈V((1− |V|)xi+

∑
j>i 2xixj). We used β = 10.

Graph Neural Network Both Local and Main GNN-based solvers have the same architecture: two
convolutional layers (GraphConv) linked via ReLu activations. We pass the output from the second
layer through a sigmoid function to get soft node assignments. Experiments were performed on a
single GPU Tesla V100 with 32 GB of memory. Local solvers use as a loss function the sum of the
Hamiltonian, see Sec. 2, and the Mean Squared Error (MSE) between the solution at time t and the
AM solution. We tested several alternatives, but MSE had better consistency across graphs. For the

4

Main GNN solver, the loss function is solely the Hamiltonian using the original QUBO matrix (per
problem). Both solvers run until convergence, defined using a tolerance parameter or a maximum
number of epochs. We set the maximum epochs to 10k and 1k for the Main and Local, respectively.

Annealing Machine We used a CMOS-based AM that implements momentum annealing [23].
Unlike the standard simulated annealing that updates variables individually, momentum annealing
updates all connected variables simultaneously. Momentum annealing executed on a GPU is much
faster than the simulated annealing performed on a CPU. We used an NVIDIA Tesla V100 GPU to
perform the momentum annealing. Our AM can handle up to 100k decision variables. Variables were
updated 1k times during each run of the annealing process. The momentum annealing was performed
1k times, and the best solution was retrieved.

Graph Solver Variants We compared three solver variants: i) Raw GNN (rGNN), a single GNN
that takes as input the original graph, i.e., Main (global) solver; ii) Multiresolution GNN (mrGNN),
a GNN-based local solver that receives the compressed versions of the original graph and solves
the local QUBO problem. After convergence, the resulting node vectors are pooled following the
Louvain schema to initialize the node vectors of the main GNN solver; iii) mrGNN+AM, a mrGNN
with local guidance from the AM.

5 Results and Discussion

Solution Quality and Convergence We sampled solutions 50 times per target graph and obtained
the final solution. We experimented on large graphs; therefore, no ground truth is available. Given
this limitation, we used the final loss value as a measure of the quality of the solution, assuming
that, in the absence of violations, a lower value means a better solution. Let loss be the evaluation
of the Hamiltonian on a binarized solution; see Sec. 2. Unlike the relaxed version we used during
training, this loss is our original optimization objective. We also checked violations based on the
problem definition. In this scenario, a good solver achieves the lowest loss and, simultaneously,
the minimum number of violations. For MIS, rGNN is faster than the other alternatives, reaching
loss values 48% larger with 15% more violations on average. This pattern persists across problems,
providing evidence that a single GNN block trained in a purely unsupervised way, while fast, seems
unable to provide high-quality results. Between mrGNN and mrGNN +AM, while mrGNN is
consistently faster, it also produces more violations across graphs, mainly for the largest graph. This
behavior indicates that the information from the local GNN-based solver is indeed useful, compared
to rGNN, but not enough to beat the contribution of an AM-based solver. We omit rGNN from the
following analyses and focus on the trade-off between quality and speed of mrGNN and mrGNN
+AM. Our comparison deals with i) a main GNN solver that received AM’s information against
and ii) a main GNN solver that received information only from the GNN-based solvers. Given the
lack of ground truth (global minimum), we employed the Relative loss difference. It computes the
difference between absolute values of the minimum loss achieved by mrGNN and mrGNN +AM
models: ∆rel =

|lossmrGNN+AM|−|lossmrGNN|
|lossmrGNN| × 100. ∆rel > 0 means mrGNN+AM has a lower loss

than mrGNN. Table 4 presents the values of ∆rel across all target graphs for the three selected
problems. In addition, Table 2 provides insights into how well models handle constraints. For MIS,
we present the number of violations and how balanced the resulting sets are in the case of GP (ratio
of their number of nodes).

Our approach is particularly effective for larger graphs. For smaller graphs (up to 100k nodes),
mrGNN performs comparatively well. This performance reinforces our initial goal of using the GNN
as a bridge to bring the accurate problem-solving capabilities of the AM to large-scale graphs. The
quality of mrGNN degrades as we expand to more complex graphs (in terms of n and d), where
violations increase compared to mrGNN+AM. Table 4 shows the relative differences in terms of
total execution time, ∆T = timemrGNN+AM−timemrGNN

timemrGNN
× 100. ∆T > 0 means mrGNN is faster than

mrGNN+AM. Interestingly, if we look at the execution time comparison, there is a considerable
difference depending on the combinatorial problem. This difference is evident when comparing MIS,
where mrGNN is much faster. We hypothesize that the primary input discrepancy resides in the
QUBO matrix’s shape, as the underlying graph structures remain the same. Therefore, differences
may be due to solver technicalities, such as the sparsity2. Note that, for a given graph, a local

2In fact, preliminary experiments showed that training time could be further optimized by using a sparse
representation of the QUBO matrix.

5

GNN-based solver is, on average, 9× faster than the local AM-based solver, ignoring solution quality
aspects. This speed advantage of the GNN solver underscores its practicality in real-world scenarios.
We report the total time: the sum of local AM and GNN global solver times; the price to pay for a
better solution is the extra time the AM takes. It is worth noting that such time comparison assumes
the Louvain compression has been performed in advance, a realistic scenario in the real world.

Impact of GNN module selection We compared GCN against a Graph Attention Network (GAT)
[29, 4], as the latter automatically learns to weight incoming node vectors from the set of neighbors
during the aggregation step. For MIS, we could see a slight decrease in the achieved loss by up to
100k nodes, but at the expense of 8× total time (average for all target graphs). Unfortunately for the
other problems, no conclusive evidence was found across graphs, which may suggest the GNN layer
could be problem-specific.

Last Louvain
used n

∆
MIS

∆
MaxCut

1st 67 146 5.94% 3.10%
2nd 30 935 3.84% 1.74%
3rd 14 641 0.11% 1.02%
4th 7 013 0.01% 0.21%

Table 1: Difference in terms of final loss
value using the k-th Louvain compressed
graphs against using all of them for MIS
and MaxCut on (n=150k, d=5) graph.

n d = 3 d = 4 d = 5

MIS
violations

50k 0 / 0 0 / 1 0 / 3
100k 0 / 1 0 / 1 0 / 2
150k 1 /1 2 / 2 1 / 2

GP
ratio balance

50k 0.48 / 0.46 0.46 / 0.46 0.44 / 0.44
100k 0.46 / 0.43 0.44 / 0.44 0.46 / 0.43
150k 0.42 / 0.39 0.41 / 0.40 0.39 / 0.39

Table 2: Performance of AM-based and GNN-based
methods. Ratio denotes AM /GNN.

Node Decision Assignment Uncertainty Fig. 2 shows the decision assignments to nodes during
training. While, in general, there is progressive accumulation at the extremes, in red, we can see
some cases that exhibit shifts. This phenomenon is undesirable as it could hinder early stopping. We
focus on characterizing late shifts, i.e., changes at the late state of training. To do that, we uniformly
divided the total number of epochs into three segments: early, mid, and late and counted how many
shifts occur in each segment for both mrGNN and mrGNN+AM. Table 3 shows the proportion of
shifts per segment for all target problems. This example shows a clear difference in the proportion of
late-stage shifts, with mrGNN+AM reducing them in most cases. This behavior is consistent across
graphs, which are omitted due to space limitations.

Problem Solver early mid late

MIS mrGNN 0.46 0.19 0.35
mrGNN+AM 0.53 0.25 0.22

MaxCut mrGNN 0.68 0.21 0.1
mrGNN+AM 0.77 0.21 0.03

GP mrGNN 0.44 0.31 0.25
mrGNN+AM 0.54 0.27 0.19

Table 3: Proportion of assignment
shifts per training stage for various
problems on the n = 150k, d = 5
graph. mrGNN+AM solver consis-
tently produces less late stage shifts.

Figure 2: Evolution of the assignment scores from for
a sample of 200 nodes for the MaxCut problem on the
n = 50k, d = 3 graph using mrGNN.

Comparison Against other Baselines For ML-based solvers, most works operate only on small to
medium-size graph benchmarks, such as [5], which represents the state-of-the-art for MIS, considers
benchmarks less than a hundred nodes (in average). The assumption is the same for classical
(heuristic) solvers. While they can be very efficient on small to medium-sized graphs, they cannot
provide comparable solutions as size increases. We conducted the same experimental setting for
graphs with sizes 50K, 100K, and 150K varying degrees in [3, 4, 5] for the MIS problem to assess
such an assumption. We selected two representative classical algorithms: Greedy Search (GS) and
the HB algorithm [3]. Results confirm our central hypothesis on the difficulty of scaling up classical
heuristics: GS finished within 2h only for the family of graphs with n=50K, with an MIS of size 17%
lower than the one obtained by the proposed model. For larger graphs, we stopped the execution after
2h, considering that the total time for the proposed approach was, on average, 12 min. HB algorithm
did not finish for n =50K. In light of this evidence, we consider our approach to be able to scale and

6

∆rel ∆T
n d = 3 d = 4 d = 5 d = 3 d = 4 d = 5

MIS
50k -4.83% -5.77% -5.556% -79.12% -66.31% -46.6%
100k 25.06% 28.11% 33.248% 21.04% 21.86% 24.7%
150k 25.91% 31.07% 34.731% 63.11% 69.01% 89.4%

MaxCut
50K 0.22% 0.096% 0.031% 3.57% 1.07% -9.61%
100k -0.755% 0.351% 0.156% 1.94% -7.601% -11.27%
150k 9.001% 8.767% 8.94% -13.06% -19.44% -19.83%

GP
50K 0.098% 0.111% 0.141% 9.57% 11.04% 11.37%
100k -1.43% 2.095% 2.641% 3.11% -1.99% -4.08%
150k 2.063% 1.812% -1.773% -1.67% 0.57% -3.99%

Table 4: Relative time and loss differences between mrGNN+AM and mrGNN

provide suitable solutions where classical methods cannot. Finally, we considered a neural model
(NM), as presented in [27]. In this case, we compare at MIS size obtained by MN and our proposed
method. Out of the nine target graphs, NM only obtains higher MIS size for three: 50K, d= [3,4] and
100K, d=3. For the rest, our approach obtains on average of 4.9% higher MIS values, at equal or less
number of violations.

6 Conclusion and Future Work

We explore how to combine the accuracy of AM and the flexibility of GNN to solve combinatorial
optimization problems. Our approach was tested on canonical combinatorial problems, showing that
the flexibility of GNNs can allow the transfer of the accurate capabilities of the AM to graphs that are
initially out of its reach. For future work, we are interested in i) the reuse of partial solutions across
similar problems and ii) an end-to-end differentiable framework.

References
[1] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber. Physics-

inspired optimization for quadratic unconstrained problems using a digital Annealer. Front.
Phys., 7(APR):48, 2019.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities
in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008,
2008.

[3] R. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding
subgraphs. BIT Numerical Mathematics, 32(2):180–196, 1992.

[4] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In International
Conference on Learning Representations, 2022.

[5] L. Brusca, L. C. Quaedvlieg, S. Skoulakis, G. Chrysos, and V. Cevher. Maximum independent
set: Self-training through dynamic programming. Advances in Neural Information Processing
Systems, 36, 2024.

[6] G. Chapuis, H. Djidjev, G. Hahn, and G. Rizk. Finding Maximum Cliques on the D-Wave
Quantum Annealer. J. Signal Process. Syst., 91(3-4):363–377, 2019.

[7] A. Dan, R. Shimizu, T. Nishikawa, S. Bian, and T. Sato. Clustering approach for solving
traveling salesman problems via ising model based solver. In 57th ACM/IEEE Des. Autom.
Conf., pages 1–6, 2020.

[8] P. Date, D. Arthur, and L. Pusey-Nazzaro. Qubo formulations for training machine learning
models. Scientific reports, 11(1):10029, 2021.

[9] G. Drakopoulos, P. Gourgaris, and A. Kanavos. Graph communities in neo4j: Four algorithms
at work. Evolving Systems, 11(3):397–407, 2020.

[10] F. Glover, G. Kochenberger, R. Hennig, and Y. Du. Quantum bridge analytics i: a tutorial on
formulating and using qubo models. Annals of Operations Research, 314(1):141–183, 2022.

7

[11] H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Hamakawa, R. Hidaka, M. Yamasaki, and
K. Tatsumura. High-performance combinatorial optimization based on classical mechanics. Sci.
Adv., 7(6):eabe7953, 2021.

[12] H. Goto, K. Tatsumura, and A. R. Dixon. Combinatorial optimization by simulating adiabatic
bifurcations in nonlinear Hamiltonian systems. Sci. Adv., 5(4):eaav2372, 2019.

[13] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

[14] R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Lan-
grock, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, S. Utsunomiya, S. Kako, K. I.
Kawarabayashi, R. L. Byer, M. M. Fejer, H. Mabuchi, D. Englund, E. Rieffel, H. Takesue, and
Y. Yamamoto. Experimental investigation of performance differences between coherent Ising
machines and a quantum annealer. Sci. Adv., 5(5):eaau0823, 2019.

[15] W. L. Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

[16] M. Hernandez and M. Aramon. Enhancing quantum annealing performance for the molecular
similarity problem. Quantum Inf. Process., 16(5):133, 2017.

[17] T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama, K. Enbutsu,
T. Umeki, R. Kasahara, K. I. Kawarabayashi, and H. Takesue. 100,000-spin coherent Ising
machine. Sci. Adv., 7(40):eabh0952, 2021.

[18] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J.
Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizin-
sky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. Truncik,
S. Uchaikin, J. Wang, B. Wilson, and G. Rose. Quantum annealing with manufactured spins.
Nature, 473(7346):194–198, 2011.

[19] T. Kaler, N. Stathas, A. Ouyang, A.-S. Iliopoulos, T. Schardl, C. E. Leiserson, and J. Chen.
Accelerating training and inference of graph neural networks with fast sampling and pipelining.
Proceedings of Machine Learning and Systems, 4:172–189, 2022.

[20] N. Mohseni, P. L. McMahon, and T. Byrnes. Ising machines as hardware solvers of combinatorial
optimization problems. Nat. Rev. Phys., 4(6):363, 2022.

[21] S. Mugel, C. Kuchkovsky, E. Sánchez, S. Fernández-Lorenzo, J. Luis-Hita, E. Lizaso, and
R. Orús. Dynamic portfolio optimization with real datasets using quantum processors and
quantum-inspired tensor networks. Phys. Rev. Res., 4(1):013006, 2022.

[22] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and B. Parney. Traffic flow
optimization using a quantum annealer. Front. ICT, 4(DEC):29, 2017.

[23] T. Okuyama, T. Sonobe, K. I. Kawarabayashi, and M. Yamaoka. Binary optimization by
momentum annealing. Phys. Rev. E, 100:12111, 2019.

[24] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, and M. L. De Prado. Solving
the Optimal Trading Trajectory Problem Using a Quantum Annealer. IEEE J. Sel. Top. Signal
Process., 10(6):1053–1060, 2016.

[25] M. J. Schuetz, J. K. Brubaker, and H. G. Katzgraber. Combinatorial optimization with physics-
inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

[26] D. Shimada, T. Shibuya, and T. Shibasaki. A Decomposition Method for Makespan Minimiza-
tion in Job-Shop Scheduling Problem Using Ising Machine. 2021 IEEE 8th Int. Conf. Ind. Eng.
Appl. ICIEA 2021, page 307, 2021.

[27] J. Toenshoff, M. Ritzert, H. Wolf, and M. Grohe. Graph neural networks for maximum constraint
satisfaction. Frontiers in artificial intelligence, 3:580607, 2021.

[28] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura. An accelerator architecture for
combinatorial optimization problems. Fujitsu Sci. Tech. J, 53(5):8–13, 2017.

8

[29] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

[30] K. Yamamoto, T. Takemoto, C. Yoshimura, M. Mashimo, and M. Yamaoka. A 1.3-Mbit
Annealing System Composed of Fully-Synchronized 9-board x 9-chip x 16-kbit Annealing
Processor Chips for Large-Scale Combinatorial Optimization Problems. Proc. - A-SSCC 2021
IEEE Asian Solid-State Circuits Conf., 2021.

[31] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno. 20k-spin Ising
chip for combinational optimization problem with CMOS annealing. Dig. Tech. Pap. - IEEE Int.
Solid-State Circuits Conf., 58:432, 2015.

[32] K. Yawata, Y. Osakabe, T. Okuyama, and A. Asahara. QUBO-inspired Molecular Fingerprint
for Chemical Property Prediction. Proc. - 2022 IEEE Int. Conf. Big Data, Big Data 2022, pages
2437–2440, 2022.

[33] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and G. Karypis. Distdgl:
distributed graph neural network training for billion-scale graphs. In 2020 IEEE/ACM 10th
Workshop on Irregular Applications: Architectures and Algorithms (IA3), pages 36–44. IEEE,
2020.

9

	Introduction
	Background and Related Work
	Methodology
	Empirical Study
	Results and Discussion
	Conclusion and Future Work

