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EventPointMesh: Human Mesh Recovery Solely
From Event Point Clouds

Ryosuke Hori
and Hideo Saito

Abstract—How much can we infer about human shape using
an event camera that only detects the pixel position where the
luminance changed and its timestamp? This neuromorphic vision
technology captures changes in pixel values at ultra-high speeds,
regardless of the variations in environmental lighting brightness.
Existing methods for human mesh recovery (HMR) from event
data need to utilize intensity images captured with a generic frame-
based camera, rendering them vulnerable to low-light conditions,
energy/memory constraints, and privacy issues. In contrast, we
explore the potential of solely utilizing event data to alleviate these
issues and ascertain whether it offers adequate cues for HMR,
as illustrated in Fig. 1. This is a quite challenging task due to
the substantially limited information ensuing from the absence
of intensity images. To this end, we propose EventPointMesh, a
framework which treats event data as a three-dimensional (3D)
spatio-temporal point cloud for reconstructing the human mesh.
By employing a coarse-to-fine pose feature extraction strategy, we
extract both global features and local features. The local features
are derived by processing the spatio-temporally dispersed event
points into groups associated with individual body segments. This
combination of global and local features allows the framework
to achieve a more accurate HMR, capturing subtle differences
in human movements. Experiments demonstrate that our method
with only sparse event data outperforms baseline methods.

Index Terms—Event camera, human mesh recovery, human pose
and shape estimation, point cloud.

1. INTRODUCTION

ITH the rise of virtual reality (VR), augmented real-
W ity (AR), metaverse applications, and other immersive
experiences like sports viewing and stage performances, under-
standing a human pose and shape non-invasively has become
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paramount. These immersive applications not only enhance our
digital social interactions but also revolutionize content creation,
animation, training, and rehabilitation. However, the challenge is
to capture human states, including 3D pose and shape, accurately
across various real-world settings to elevate the depth of the
immersion in these digital realms.

So far, optical-based motion capture (MoCap) systems [1], [2]
have offered high-precision and high-speed capturing capabili-
ties. However, their primary challenge remained the associated
high costs. With the progression of technology, there has been a
notable drift towards data-driven pose estimation methods [3],
[4], [5], with techniques leveraging affordable RGB cameras
gaining traction. These pose estimation techniques predomi-
nantly work with sparse 3D joint representations in the form
of skeletal models. While these skeletal models can represent
simple actions relatively clearly, they fall short when detailing
intricate human behaviors. The need to describe the human
body with finer granularity has led to a renewed focus on HMR
methods [6], [7], [8]. HMR aims to delve deeper, estimating
intricate details of human form, including the 3D pose and shape.
However, a significant challenge with RGB-based methods re-
mains their heavy dependence on visible light, which leads to
issues such as object occlusions, lighting condition constraints,
privacy issues in some scenarios, and considerable power and
memory demands hindering edge device deployment. As a so-
lution, researchers have been exploring HMR techniques using
alternative modalities such as wireless signals. Notably, methods
leveraging radio frequency (RF) signals, including Wi-Fi and
millimeter-wave (mmWave) [9], [10], have gained attention.
These methods take advantage of longer wavelengths than vis-
ible light, reducing memory and personal data consumption.
However, they pose challenges, including potential restrictions
in environments with sensitive electronic equipment, such as
hospital rooms or aircraft.

The use of event-based cameras, henceforth event cameras,
has the potential to be a solution to these challenges. Unlike
conventional cameras, event cameras detect changes in scene
brightness, generating event data including coordinates, time,
and polarity. They independently monitor luminance changes for
each pixel, recording only significant changes asynchronously.
This mechanism ensures high temporal resolution and low
power consumption. Furthermore, focusing solely on brightness
changes, event cameras have a high dynamic range, making them
resilient in low-light conditions, as shown in Fig. 1(a). From
these characteristics, event cameras have been incorporated
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We propose EventPointMesh, a method for 3D human mesh recovery solely from event data. (a) Event cameras are designed to detect luminance changes,

offering high temporal resolution and a high dynamic range. These unique features effectively address the challenges faced by frame-based cameras, such as motion
blur and low frame rates in poorly-lit environments. (b) EventPointMesh treats event data as point clouds and estimates human meshes from these point clouds
segmented by fixed-time intervals. It enables high-speed HMR that is unaffected by lighting conditions.

into various research areas, including tracking, recognition, 3D
reconstruction, robotics, VR/AR, and autonomous driving [11].
Our focus is on employing event cameras for HMR. While there
have been proposals for HMR using event data [12], [13], these
methods utilize grayscale frame images captured simultaneously
with event data for initial pose and shape estimation at each time
step. This limits the anticipated resilience to dark conditions and
energy/memory efficiency of event-based methods.

In this paper, we tackle the challenge of HMR using only event
data, aiming to develop an HMR method that can operate under
various lighting conditions, consumes less power and memory,
and also preserves privacy. To this end, we propose Event-
PointMesh, a framework designed to estimate human meshes
from event data interpreted as 3D spatiotemporal point clouds.
As illustrated in Fig. 1(b), the event data consists of points
distributed over the 3D spatiotemporal domain, spanning the
xy-axes of the image and the temporal ¢-axis, henceforth referred
to as the “event point cloud”. Each point possesses a polarity
information indicating the direction of luminance change; the
red points in the figure represent pixels where the luminance
has increased, while blue denotes pixels where it has decreased.
In EventPointMesh, streams of event point clouds are segmented
into fixed time windows and fed into the network as blocks of
point clouds for processing. Within the network, a two-stage fea-
ture extraction process is conducted on these point cloud blocks
to estimate human meshes, traversing through multiple modules.
The first stage involves extracting coarse global features from
the point clouds, which contain information about the human’s
location, body shape, and approximate pose. The next stage
involves a mechanism for extracting fine point cloud features
to precisely replicate the human pose. Initially, a module within
the network estimates 2D joint positions on the image plane.
Then, for each joint individually, another module groups the
event points around that specific joint and extracts local features
for each of these groups. By combining the global and local
features obtained separately, the method ultimately estimates
the human’s accurate pose, body shape, and location in 3D
space. This coarse-to-fine feature extraction approach enables

the retrieval of useful information solely from point clouds,
allowing this method to faithfully depict human dynamics from
sparse event point clouds without the need for intensity images.
Additionally, the event point clouds input to the EventPointMesh
network can be set at any temporal width, harmonizing with
the high temporal resolution characteristic of event cameras.
This facilitates the realization of the HMR method capable
of restoring high-frequency 3D poses and shapes of diverse
movements in poor lighting conditions.

Furthermore, we propose EventPointMesh Dataset (EPMD),
a large-scale HMR dataset comprising event data, intensity
images, optical MoCap data, and human mesh models. While
there have been event-based HMR datasets before, what sets
EPMD apart is its capturing of diverse motion and shape data
in both well-lit and poorly-lit conditions. This is the first dataset
of its kind to incorporate such lighting variations. Extensive
experimental evaluations using the existing large-scale event-
based HMR dataset, Multi-Modality Human Pose and Shape
Dataset (MMHPSD) [13], and our EPMD, under both well-lit
and poorly-lit conditions, have validated the effectiveness of
our pose and shape estimation method solely using event point
clouds.

In summary, our contributions are as follows: (1) We are the
first to tackle the challenge of 3D HMR using only event data. !
(2) To this end, we propose EventPointMesh, a framework that
treats event data as 3D spatio-temporal point clouds for mapping
it to human meshes. (3) To faithfully restore human motion,
we explicitly extract global and local features from event point
clouds, utilizing 2D joint positions as cues for grouping. (4)
Given the absence of prior methods for executing this task,
we have created EPMD, a dataset for HMR comprising a vast
amount of event data, intensity images, optical MoCap data, and
mesh data captured under both well-lit and poorly-lit conditions;

'We have noticed that another research team is also attempting 3D HMR
using event data as presented in an arXiv paper [14]. However, please note that
this paper has not been published anywhere.
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and (5) We conduct extensive experimentation and show the
effectiveness of our method.

II. RELATED WORK
A. Human Pose and Shape Estimation

Capturing human pose and shape is at the core of the evolution
of VR, enabling a seamless mapping of users’ natural move-
ments into virtual spaces, thus enhancing real-time interactive
experiences. This, in turn, facilitates rich content generation and
animation creation, bolstering social communication within vir-
tual environments. One of the most accurate methods to capture
human pose is the optical MoCap system [1], [2], which relies on
tracking markers attached to the human body using pre-installed
optical sensors within a studio space. Although achieving high
accuracy and frame rates, this system comes with significant
constraints, including its high cost and the necessity of attaching
markers to the body. Addressing these limitations, considerable
advancements have been made in markerless MoCap [15], [16],
(171, [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
estimating 3D poses using RGB and depth cameras, substan-
tially reducing cost and complexity. However, synchronizing
and calibrating multiple camera systems still pose challenges. In
contrast, the advent of deep neural networks has ushered in the
proposal of 3D human pose estimation (HPE) methods based
on monocular RGB cameras [5], [28], [29], [30], [31], [32],
[33], [34], [35], [36]. These approaches facilitate accurate pose
acquisition in scenarios where setting up pre-calibrated cameras
or attaching markers may not be feasible.

However, the skeleton models primarily used in these meth-
ods, while suitable for depicting relatively simple actions like
character animations [37], often require finer granularity when
measuring and representing intricate human behaviors. This
is because, as we interact with the world through our skin
rather than internal joints, inferring body shape, contact, and
gestures becomes vitally important. Against this background, the
low-dimensional statistical parametric body model, SMPL [38],
emerged, capable of realistically portraying human body shape
and efficiently animating it. Paving the way for its application
in diverse real-world scenarios such as VR/AR content creation,
virtual try-ons, and computer-assisted coaching, numerous tech-
niques have been proposed recently to estimate mesh models
from images or videos [6], [7], [39], [40], [41], [42].

While these HMR methods have democratized capturing hu-
man states in various everyday contexts, they also present chal-
lenges stemming from their substantial reliance on visible light.
For instance, when estimating pose using RGB(D) cameras for
prolonged periods or at high frame rates [43], [44], bottlenecks in
data processing and storage arise, posing significant challenges,
especially for edge devices. Additionally, obtaining accurate
estimations under low-light conditions, such as in dark rooms or
at night, becomes challenging. Furthermore, potential privacy
intrusion risks in specific use-cases cannot be overlooked. A
promising solution to these challenges is employing wireless
signals for pose and shape estimation [10], [45], [46], [47], [48],
[49], [50]. These approaches leverage RF, including WiFi and
mmWaves, known for their resilience in darkness and capability
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to penetrate obstacles. However, there are restrictions in using
those signals near delicate electronic equipment, such as in
hospitals and on aircraft, due to potential interference concerns.

Considering these challenges, we explore the use of event
cameras, a modality distinct from the aforementioned methods,
to recover human meshes. Unlike conventional RGB cameras
that record at fixed frame rates, event cameras independently
detect luminance changes per pixel, asynchronously record-
ing only the pixels with significant changes. This mechanism
achieves high temporal resolution, energy efficiency, and high
dynamic range. Furthermore, since areas with no luminance
changes are not recorded, event cameras present a potential
for HMR in operational scenarios where RGB camera usage is
restricted from a privacy standpoint [51]. Therefore, employing
event cameras for HMR holds the promise of overcoming limi-
tations encountered with RGB(D) imagery and wireless signals
providing a low-light resilient, power and memory efficient,
and privacy-preserving HMR technique. Details regarding pose
and shape estimation techniques using event cameras will be
discussed in the following subsection.

B. Human Pose and Shape Estimation Using Event Cameras

Event cameras, characterized by high temporal resolution (on
the order of  s) and a high dynamic range (over 100dB), have
tremendous potential in a variety of extreme scenes. Utiliz-
ing event data has been demonstrated to be effective in many
applications such as deblurring [52], scene segmentation [53],
[54], visual odometry [55], corner detection [56], object recogni-
tion [57], gesture recognition [58], optical flow estimation [59],
[60], depth estimation [61], Simultaneous Localization and
Mapping (SLAM) [62], and autonomous driving [63]. For a
comprehensive survey on event cameras, please refer to [11].

The high temporal resolution is particularly suited for captur-
ing fast-moving objects, and in recent years, HPE and HMR us-
ing event cameras have been proposed [12], [13], [64], [65], [66],
[67], [68]. In these approaches, event data is treated using various
representation methods to achieve HPE and HMR. Calabrese et
al. [64] proposed a method that accumulates events at consistent
intervals to form “event frames” (refer to the upper part of
Fig. 1(b)), and estimate 2D joint positions from those. Scarpellini
et al. [65] were the first to propose a method to estimate 3D joint
positions using a monocular event camera alone. This method
aggregates events into synchronized tensor representations, pre-
dicts orthogonal heatmaps of each joint through a multi-layer
convolutional neural network, and estimates 3D joint positions
via triangulation. Zhang et al. [66] utilized a retinal-inspired
event representation named TORE [69] and introduced an event
camera-based 3D high-frequency HPE system called YeLan,
capable of estimating dance movements in low-light condi-
tions or against dynamic backgrounds. Chen et al. [67] suc-
cessfully estimated 2D joint positions from event point clouds
alone using a new event representation called “Rasterized Event
Points” and a point cloud processing backbone. Shao et al. [68]
tackled sparse data from low-activity body parts due to event
cameras capturing only luminance changes. Using a recurrent
architecture, they enhanced 2D pose estimation by modeling
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event frame consistency and accumulating past information.
Goyal et al. [70] proposed MoveEnet, a system for 2D HPE
designed for online applications, which operates at high speed
using an event stream as input. By utilizing EROS [71], a
representation similar to edge maps that mitigates the issues
of sparsity and motion blur in event frames, they enabled pre-
training of Artificial Neural Networks (ANNs) with existing
large-scale image-based HPE datasets.

In addition to these skeleton-based methods, techniques have
also been proposed to express human pose and shape using para-
metric models, enabling more detailed human state estimation.
Rudnev et al. [72] proposed EventHands, the first learning-based
method that enables 3D hand reconstruction from a single event
stream. They utilized MANO, a mesh model specialized for
the reconstruction of hand pose and shape, similar in mecha-
nism to theSMPL, and trained their model with synthetic event
streams. This approach allowed them to construct a high-speed
hand reconstruction system operating at 1000Hz. Xu et al. [12]
were the first to propose a model-based HMR method using
event cameras. They captured event streams along with a series
of grayscale images, established initial poses over time, and
combined them to enable 3D HMR of fast human movements.
However, this method required multiple stages of optimization
and many modules for fine-grain predictions, necessitating nu-
merous optimization hyperparameters, and as aresult, demanded
significant computational time in both training and inference.
Zou et al. [13] trained a model to estimate mesh deformations
from an initial mesh, either known or estimated from intensity
images, based on compressed event frames at fixed intervals
along the time axis and the inferred optical flow from them,
achieving good accuracy. A common challenge among these
methods is the dependency on grayscale intensity images for
keyframe feature extraction and initial mesh estimation, where
the mesh estimation accuracy heavily relies on the quality of the
intensity images.

In this paper, we discuss a method to recover human meshes
using solely event data, without relying on intensity images.
Among various event data representations, such as the event
frames and TORE [69], we adopt the approach that treats events
as a spatiotemporal 3D point cloud, balancing processing ef-
ficiency with high temporal resolution. In the following sub-
section, we will elaborate on the point cloud-based method for
human pose and shape estimation.

C. Human Pose and Shape Estimation Using Point Clouds

The measurement data obtained from event cameras com-
prises coordinates, timestamps, and polarity (direction of lu-
minance change), forming a spatio-temporally distributed 3D
point cloud. Recently, HMR methods [73], [74] utilizing Light
Detection And Ranging (LiDAR) measurement data, which
similarly provides 3D point cloud data composed of spatial and
temporal information like event cameras, have been proposed.
Moreover, methods using 3D point cloud data obtained from
wireless signals for HPE [50] and HMR [10], as well as 3D HPE
techniques using depth cameras [75] and approaches registering
the SMPL mesh model to point cloud data acquired from 3D
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scans [76], [77], [78], have been proposed. Additionally, a
method for estimating 2D keypoints from event point cloud [67]
was proposed. Inspired by these methods, this paper adapts point
cloud-based HMR approaches to a method that takes event data
as input. The recent event-based HMR method [13] compressed
event streams at fixed intervals, treating them as event frames,
which potentially excluded significant temporal variations in
pose tracking. Instead, we propose a framework treating event
data as sparse point clouds. Our primary contribution is a con-
figuration that leverages the natural characteristics of events as
asynchronous signals with high temporal resolution, without
depending on intensity frames, enabling mesh shape estimation
for fast human movements in poorly-lit environments.

III. METHOD

We present EventPointMesh, a framework for estimating 3D
human meshes from the spatiotemporal point clouds generated
by an event camera. As shown in Fig. 2, given a sequence of event
point clouds e?" segmented into 7" fixed-width time windows,
EventPointMesh estimates the SMPL mesh sequence m 7. The
network is organized into four modules: the Base Module that
extracts point cloud features f! from the event point cloud e’
within the time window indexed by t; the Keypoints Module
which derives a global feature vector g* and predicts 2D human
joint positions sop! from f*; the Anchor Points Module designed
to group the point cloud around each estimated 2D human joint
positions s,p’ and subsequently extract local features I¢; and
the SMPL Module that infers the SMPL mesh model from the
assembled global and local feature vectors g* and I*.

EventPointMesh adopts an approach to extract pose features
from point clouds in a coarse-to-fine manner. The global fea-
tures g, extracted in the initial phase through the Keypoints
Module, represent coarse features such as the subject’s loca-
tion, body shape, and approximate pose derived from the event
point clouds. These features are utilized for mesh estimation
in the subsequent SMPL Module. The 2D joint positions ssp?,
estimated by the Keypoints Module, are used in the subsequent
Anchor Points Module to accurately replicate the human pose.
Specifically, based on the 2D joint positions sop?, the event point
clouds surrounding each joint are grouped, and local features I*
are extracted from each group. This process extracts fine features
from events triggered by the movement of each body part, which
are also utilized in the subsequent SMPL Module. Through such
a coarse-to-fine feature extraction process, EventPointMesh is
capable of replicating detailed human mesh reconstructions of
diverse human movements.

Further elaboration on each module will be provided in the fol-
lowing subsections. In addition, the final subsection introduces
our dataset EPMD, encompassing event data recorded under
diverse lighting conditions, intensity images, optical MoCap
data, and the SMPL mesh models.

A. Module Details

Base Module: This module serves as a component for convert-
ing the input event point clouds into high-dimensional features.
Each time a luminance change is detected, the event camera
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Fig. 2. Pipeline of our event-based HMR method, EventPointMesh. It consists of four modules: the Base Module, Keypoints Module, Anchor Points, and SMPL

Module (Section III-A). To achieve highly accurate mesh reconstruction, EventPointMesh employs a coarse-to-fine feature extraction process: the Keypoints
Module extracts global features from the event point cloud, and the AnchorPointsModule extracts local features.

generates 4D event data, which includes 2D pixel coordinates,
detected timestamp, and polarity indicating the direction of
the luminance change. Depending on the specifications of the
event camera, the timestamp of luminance change detection is
asynchronously recorded for each pixel.

Given the event point cloud segmented into fixed time win-
dows, represented as e, the module transforms it into high-
dimensional features using a Multi-Layer Perceptron (MLP).
Considering the n-th detected point within the point cloud as e°,,
this point is transformed into a high-dimensional feature vector
a!, = MLP(e! ; w,) by applying the MLP transformation with
parameters w,. This feature vector is then concatenated with
the 4D vector of €',, resulting in a high-dimensional vector f?,
which is then fed into the subsequent modules. This design aims
to enhance the expressiveness of the feature vectors used in
subsequent processing by combining the spatiotemporal rela-
tionship of point clouds acquired during the learning process
with the original attributes of each point (image coordinates,
timestamp, polarity). Additionally, the preservation of the orig-
inal point cloud data, along with the feature vectors, serves
another purpose: the subsequent Anchor Points Module requires
the spatial information of point clouds.

Keypoints Module: For accurately estimating human poses
from event data, it is crucial to have a clue as to which event point
corresponds to the movement of a specific body part. Hence,
the Keypoints Module estimates 2D coordinates of major joints
from the input point clouds. These estimated coordinates serve
as reference points (hereafter referred to as “anchor points”) in
subsequent modules, aiding in obtaining local features of the
point clouds generated by body movements around each joint.
This module is designed based on the network proposed by Chen
etal. [67], considering the temporal features and the overall point
cloud feature extraction.

Initially, the feature vector f! of each event point cloud
obtained by the Base Module is transformed into a global feature
of the point cloud, b’ = PointNet( f%) with a network that has

PointNet [79] as its backbone. Afterward, a feature vector con-
sidering temporal dynamics of the event point cloud sequence is
extracted from b via a Bidirectional Long Short-Term Memory
(BiLSTM). One of the challenges in working with event cameras
is their inherent limitation: they capture only moving body parts,
ignoring the stationary ones. This results in sparse data and com-
plicates pose estimation due to the absence of complete body part
information. The method by Chen et al. [67] faces challenges
due to its estimation of 2D joint positions for only one frame per
time window. To address this issue, we introduced a BiLSTM
to construct a model that is robust against the absence of events
from stationary parts, taking into account temporal information.
Our method leverages features of point clouds from both forward
and backward time windows, effectively compensating for these
sparse areas. With the weight parameters of the BILSTM w,,
the temporal dynamics aware feature vector can be represented
as gv'7 = BiILSTM(b%T; w,), where T is the number of time
windows used as input. While Chen et al. [67] utilize this feature
vector for 2D joint position estimation, we view it as a spatiotem-
poral feature of 3D point clouds that encapsulates information
about a person’s location, along with their approximate pose
and body shape. Consequently, we employ it as a global feature
vector for the estimation of 3D meshes in the subsequent SMPL
Module.

Subsequently, the time-series feature vector g* is transformed
into two 1D heat-vectors, (h, h) = FC(g";w), using fully
connected layers (FC) with parameters wy,. These heat-vectors
represent the confidence distribution of joint positions along the
z and y axes in an image plane. Chen et al. [67] introduced
this representation based on the novel coordinate representation,
SimCC [80]. Unlike conventional methods that estimate joint
positions using 2D heatmaps, this representation allows for
highly accurate estimation even in low-resolution images. The
heat-vectors are denoted as hl, = [ho, h1,..., i, ..., hy| and
h; = [ho,h1,..., hj, ..., hg], where ¢ and j are the indices
of the z-axis and y-axis in the image of width W and height
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estimated by the Keypoints Module, while red and blue indicate the input event point clouds, and green represents the grouped points. (a) An example of applying
spatiotemporal grouping to real event data, focusing on the right wrist, though in practice, this process is applied individually to all major joints. (b) A detailed view
of the nearest points selection. For each point in the event point clouds scattered in space and time, the L2 norm on the image plane with the 2D joint coordinates
is calculated, and the nearest G points with the closest distances are selected as a group.

H, respectively. The 2D joint positions sh, = (s, s} ) are then

determined by finding the coordinates with the maximum value
in each heat-vector. Specifically, the coordinates are obtained by
si, = argmax; (hl,(i)) and s}, = arg max;(hj (j)).

Anchor Points Module: In order to capture the detailed
features of the point cloud and to achieve accurate mesh es-
timation, we utilize anchor points, which are the 2D joint
coordinates estimated by the Keypoints Module. These points
facilitate the grouping of event point clouds scattered across
the 3D spatiotemporal space. This approach enables us to
classify events stemming from body movements around each
joint and extract localized features. This network configuration
is inspired by mmMesh, proposed by Xue et al. [10], which
estimates 3D human meshes from millimeter-wave point clouds.
Whereas mmMesh utilized fixed-size 3D grid-based anchor
points within an xyz spatial framework, our approach adopts
2D joint points as anchor points, incorporating the temporal
dimension into the xy image plane. These 2D joint positions
are then used to group surrounding event points in a 3D spa-
tiotemporal space, based on their euclidean distance in 2D
image coordinates. The details of this process are illustrated
in Fig. 3. For clarity in notation: the coordinates of the k-th
anchor point at the time window ¢ are denoted as s} € R?. The
set of indices of the grouped nearest G points is denoted as
NSP(st). A grouped event point is referred to as efly  Where
n € NSP(s!), and its 2D coordinates on the image plane are
given by a function ITas IT(e!, ;) € R?. Using these definitions,
the feature vector cfh i 1s derived through an MLP operation
as sz,k = MLP([s!, HH(eﬁhk) — st |l2, fL];w.). The input to
the MLP is a vector formed by concatenating the anchor point
coordinates, the distance between the grouped points and the
anchor point, and the feature vector from the Base Module.
This design enhances our model’s capability to recognize the
spatiotemporal relationships between anchor points and their
neighboring points.

The feature vector ¢!, is then fed into the attention network
to extract particularly important event point features from the
grouped point cloud. In existing point cloud based approaches,
such as PointNet [79], the Max Pooling operation is typically
used to extract the most prominent features by eliminating
redundant information. However, as the point cloud grouped
by this module already contains less redundant information,
we have adopted an attention mechanism to aggregate the
features of all points in the group while preventing the loss
of important information due to the Max Pooling operation.
Representing the attention network as a mapping function ATTN
with weight parameters w,, the feature vector ¢!, of each
grouped point is transformed into the following feature vector:
ol = 2 neNsp(s!) ATTN(c ;w,) - .. Furthermore, to aggre-
gate the feature vectors o}, of each anchor point and transform
them into features considering the spatial relationship between
each group, i.e., the events caused by each body joint, we
introduce a 1D convolution layer and obtain the feature vector
r! = IDCNN(0; w,.). This 7! is transformed into a temporal
relationship aware feature vector by using BiLSTM, similar
to the Keypoints Module. Letting w; be the weight parame-
ters of BiLSTM, the module obtains final local feature vector
T = BiLSTM(r+ 75 ).

SMPL Module: The primary role of the SMPL Module is to
estimate the SMPL mesh model [38] based on the global and
local features of the event point clouds obtained from the mod-
ules described above. By feeding these features into an MLP, we
derive vectors representing a human pose, shape, and translation.
Subsequently, by using the SMPL regression model [38], we
estimate mesh vertices and 3D human joint positions. The SMPL
model has gained traction in contemporary research on pose
and shape estimation. Its strength lies in its ability to represent
the complex and diverse poses and shapes of the human body
using a limited number of parameters. The model parameters
encompass pose parameters 8 € R?4*3, indicating the relative
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rotations of 23 joints and the global rotation of the root joint,
and shape parameters 3 € R'?, which influence aspects like
height, weight, and limb ratios. Based on these parameters, the
SMPL regression model estimates the triangular mesh vertices,
denoted as v € R%99, and the 3D joint positions, represented by
s3p € R?4%3, Additionally, the global translation of a person can
be captured using a parameter d € R®. The parameter indicates
the location information for positioning the SMPL model in 3D
space, specifically denoting the 3D coordinates of the root joint.

Delving into the technical details, the feature vectors g* and
1, obtained from the Keypoint and Anchor Points Modules
respectively, are concatenated. This combined feature vector
is then transformed into SMPL parameters using FC layers,
as represented by the equation (0%, 3", d] = FC([g*,1']; w,),
where w), represents the weight parameters of the MLP. The
mesh m! = (v', s3p?) is subsequently derived from 6%, 3¢, d*
using the pre-trained SMPL regression model [38], as m! =
SMPL(6?, 3%) + d'. To ensure the pre-trained model’s integrity,
which uniquely determines the mesh model from the pose and
shape parameters, its weights are kept fixed during both the
training and testing phases.

B. Loss Function

Our EventPointMesh network is trained using a comprehen-
sive loss function designed to address key aspects such as pose,
shape, translation, mesh vertex, and 3D joint positions.

Pose Loss (Lpose) measures the Mean Squared Error (MSE)

. ~1
between the predicted pose vector 8%, and ground truth 8, across
all time-windows 7" and joints K.

1 T K
Loe= 7= > 3|

t=1 k=1

~t
6. — 6,15, (1)

Shape Loss (Lsape) mesures the MSE between the estimated

. . ~
shape parameter 3! and its corresponding ground truth 3 over
all time-windows.

T
Lape = TZ 18" = B3, @

Translation Loss (Lyps) ensures accurate translation prediction
by calculating the MSE between the predicted translation vector

d' and ground truth d.

T
1 : Aatio
»Ctrans = T Z:l Hd —-d ”27 3)

Vertex Loss (Lyer) aims to optimize the prediction of vertices
by measuring the MSE of predicted vertices v with the ground
truth ¢ across all time-windows and vertices P.

Lyert = PZZHU - t||%7 4)
t=1 p=1

3D Joint Loss (L3p) ensures accurate 3D joint position predic-
tion by calculating the MSE of the predicted 3D joint positions
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TABLE I
DATASETS FOR EVENT-BASED HUMAN POSE AND SHAPE ESTIMATION
Dataset Seq/Sub  Frame Pose  Shape Pogrly—llt
nv.
DHP19 [64] 33/17 87k Yes No No
Yelan-Syn [66] 8/10 4M Yes No Yes
Yelan-Real [66] 4/9 446k Yes No Yes
EventCap [12] 2/6 N/A N/A N/A N/A
MMHPSD [13] 12/15 240k Yes Yes No
EPMD (Ours) 16/3 228k Yes Yes Yes
s3p’ with their respective ground truth 83p?.
1 T K
_ t s t)2
Lip = 7 D> s — 80’13, &)

t=1 k=1
2D Joint Loss (Lop) measures the discrepancy between the

predicted heat-vector h? and its ground truth h'. To compute
this loss, the ground truth 3D joint positions 83p are first pro-
jected onto the 2D image plane. Using known camera param-
eters and the projection function m, the 2D joint coordinates
30 = (54, 8,) are obtained by 3,p = m(83p). Following the
projection, a Gaussian filter is applied to generate the heat-
vectors, which are represented as h [ho, hl, R hi7 R hW]
and h [ho, hi,.. ,h hH] The confidence values for

h are calculated as:
—_5.)2
(1 —5) ) . ©)

1
; = ———eX
(= e (-
The confidence values for hy can be computed similarly by
replacing ¢ with j and 3, with §,. To quantify the diver-
gence between the predicted and ground truth heat-vectors, the
Kullback-Leibler (KL) divergence is employed:

202

T
1 ot
Lop = T ZKL(h | h). @)
t=1
Overall Loss (L) aggregates the aforementioned losses to train
our EventPointMesh network and is described by:

L= )\pose»cpose + )\shape»cshape + )\lransﬁtrans
+ AvertLyert + 23pL3p + A2pLop. (8)

In this formulation, the A coefficients serve as hyperparameters
that balance the impact of each loss component during the
model’s training phase. Notably, while mesh vertices v and
3D joint positions s3p are uniquely determined by the pose
parameters 0 and shape paremeter 3, the vertex loss Ly and
the 3D joint loss £3p are included to enhance training stability
and accelerate convergence.

C. EventPointMesh Dataset (EPMD)

Why the Original Dataset is Required? We propose our
original dataset EPMD to address the lack of a dataset for
HMR in low-light conditions, a domain where event cameras
are particularly advantageous. Table I provides a comparison
of EPMD with existing datasets for HPE and HMR, focusing
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The EventPointMesh Dataset (EPMD) encompasses diverse actions from daily activities to sports motions. Subjects performed the actions multiple times

in both well-lit and poorly-lit environments. Captured using two event cameras and a MoCap system, EPMD comprises synchronized event data, intensity images,

SMPL meshes, and optical MoCap data.

on metrics such as the number of sequences per subject, total
subjects, total frame count, as well as the availability of data
on poses, shapes, and poorly-lit environments. EPMD presents
mesh data acquired in varied lighting conditions, a feature not
available in other HMR datasets such as EventCap [12] and
MMHPSD [13]. This enables the exploration of HMR in lighting
conditions where conventional frame-based cameras struggle,
highlighting the capabilities of event cameras. While the number
of subjects in our dataset is fewer than existing datasets, EPMD
offers a comparable volume of captured data ranging from daily
activities to sports motions, as illustrated in Fig. 4. This supports
the creation of adaptable and broadly applicable HMR models,
in contrast to datasets like Yelan-Syn and Yelan-Real [66], which
are limited to dance movements. The dataset comprises not only
mesh data but also synchronized intensity images, event data,
and optical MoCap marker data. This multifaceted composition
ensures EPMD is a valuable resource for advancing HMR re-
search, particularly in challenging lighting conditions.

Data Acquisition: EPMD was acquired using two event
cameras and an optical MoCap system. We used iniVation
DAVIS346 models [81] with a spatial resolution of 346 x 260
pixels and a temporal resolution of 1 us as event cameras. These
cameras recorded synchronized grayscale frame images and
event data, which were transmitted in packets. The event data
within these packets were then converted into point cloud data
segmented at fixed time intervals for input into the network.
The event point clouds contain an average of 270 k points per
second across the entire dataset. The OptiTrack Motive [1] is
used as the optical MoCap system. Three subjects were asked to
wear a MoCap suit with markers and were recorded performing
various motions. They performed medium-speed motions like
walking, jogging, jumping, waving hands, and kicking, as well as
fast motions such as fast running, dancing, boxing, kickboxing,
baseball, tennis, badminton, football, basketball, and javelin
(Fig. 4). These actions are captured in both bright and dark
conditions. Our dataset includes approximately 228 k intensity
frames shot at about 15 fps in bright conditions and about 4 fps
in dark conditions. It also contains event data synchronized with

the intensity images, MoCap marker trajectory data captured at
120 fps, and data from the generated SMPL mesh model, totaling
about 3 hours. The study was formally approved by the Bioethics
Committee of the Graduate School of Science and Technology
at Keio University under approval number 2023-112.

Annotation: The annotation of the SMPL mesh model is
conducted based on the trajectory data of the MoCap markers.
By labeling the markers with their corresponding position names
during recording with the OptiTrack, it becomes feasible to
employ the Mosh++ [82], [83] method, which fits the SMPL
model to the labeled marker data through optimization. The
SMPL model generated by Mosh++ contains pose parameters,
shape parameters, vertex coordinates of the mesh model, 3D
joint positions, and 3D translation data in the MoCap coordinate
system. A total of 24 joints are annotated, which include: Pelvis,
Left and Right Hips, Left and Right Knees, Left and Right
Ankles, Left and Right Feet, Spinel, Spine2, Spine3, Neck,
Head, Left and Right Collars, Left and Right Shoulders, Left
and Right Elbows, Left and Right Wrists, and Left and Right
Hands. The ground truth data of 2D joint positions used in
the Keypoints Module is acquired by projecting the 3D joint
positions onto the image in the event camera coordinate system.
The intrinsic camera parameters used in this projection are
obtained through calibration using a checkerboard pattern. The
extrinsic parameters are calculated by obtaining corresponding
points in the MoCap and event camera coordinate systems and
solving the Perspective-n-Point (PnP) problem.

IV. EXPERIMENTS
A. Experimental Settings

Dataset: To demonstrate the efficacy of our approach, we
employed both the existing large-scale dataset MMHPSD [13]
and our EPMD for experiments. The MMHPSD comprises data
from a total of 15 subjects: 11 males and 4 females. Each subject
performed a total of 21 different motions, categorized into three
groups based on speed: fast, middle, and slow. Each motion was
repeated four times. For each subject, 12 video clips (totaling 180
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TABLE II
QUANTITATIVE RESULTS FROM EXPERIMENTS USING THE MMHPSD AND EPMD DATASETS NOTE: FOR DETAILS ON THE NOTATION OF VALUES IN THIS TABLE,
PLEASE REFER TO SECTION IV-B ‘BASELINE METHOD’

Datase Method MPJPE  PEL-MPJPE  PA-MPIPE PVE PCKh@0.5  Miss Rate
[mm] ({) [mm] (]) [mm] () [mm] ({) [%] (1) [%] (1)
EventHPE(GT) 723 526 413 50.5 86.0 -
( Xﬁ\_’lsl:g.se?t) EventHPE(VIBE) - 713 514 (70.5) 79.6 1.4
d EPM(Ours) 97.4 59.1 428 51.9 84.8 0.0
EventHPE(GT) 103.9 80.4 64.8 79.0 76.0 -
(Clr\gl\;'_HSEts)Bct) EventHPE(VIBE) - 88.5 66.6 (86.0) 69.3 14
) EPM(Ours) 145.1 6.3 61.6 74.7 71.9 0.0
EPMD EventHPE(GT) 198.0 90.3 712 81.1 70.2 -
(AlLSubjecy  EventHPE(VIBE) : 128.9 95.7 (109.0) 55.0 21
L EPM(Ours) 110.7 86.0 60.7 718 71.7 0.0

clips) were collected, each consisting of approximately 1,300
frames spanning about a minute and a half at 15 fps. Additionally,
our EPMD uniquely contains a rich set of data recorded in low-
light conditions, which are not found in existing datasets for
HMR. Therefore, we used the EPMD to assess the low-light
robustness of our proposed method.

Implementation Details: During training, the event data was
segmented by time windows corresponding to the intervals of the
intensity image frames and treated as point cloud data between
adjacent frames. Given the vast volume of raw data points, which
posed challenges in storage and data processing, the point cloud
within each time window was randomly sampled down to 7,500
points to reduce data size. The sequence of event data fed into the
network was time series point cloud data for 15 consecutive time
windows. In the Keypoints Module, we identified 13 primary
human body joints (Pelvis, Left and Right Knee, Left and Right
Ankle, Spine, Head, Left and Right Shoulder, Left and Right
Elbow, and Left and Right Wrist) and estimated their 2D joint
positions following Xue et al. [10]. In the Anchor Points Module,
we grouped the nearest 500 points from the spatiotemporal
domain based on the 2D euclidean distance on the image plane,
centered around the 2D joint coordinates. For network training,
we employed the Adam optimizer [84]. The weights for each
element in the loss function, namely Apose, Ashapes Atranss Averts
Asp, and Aop, were empirically determined to be 10, 10, 10,
100, 10, and 1, respectively. To discourage settling into local
minima during the learning process, the learning rates for the
Base Module and Keypoints Module were set to le-4, while
that of the Anchor Points Module and SMPL Module were set
to 1e-3, based on experimental findings. The batch size was set to
8. End-to-end learning was conducted across the entire network,
including all modules.

Evaluation Metrics: Referring to the prior research [13],
we evaluated experimental results using six metrics: mean
per joint position error (MPJPE), pelvis-aligned MPJPE (PEL-
MPJPE), Procrustes-aligned MPJPE (PA-MPIJPE), per vertex
error (PVE), percentage of correct keypoints (PCKh@0.5), and
miss rate. In Tables [T and IV, MPJPE, PA-MPJPE, PEL-MPJPE,
and PVE are all denoted in mm.

MPJPE calculates the average 3D euclidean distance between
the ground truth and estimated joint positions. PEL-MPJPE
computes MPJPE after aligning the translation of the root joint.

PA-MPIJPE is an evaluation metric that calculates MPJPE after
applying a Procrustes analysis [85], which aligns the predicted
and ground true poses by minimizing the distances between
corresponding joints through translation, scaling, and rotation
adjustments. PVE metric assesses the 3D euclidean distance
between the true and estimated coordinates of each vertex of the
SMPL mesh model. MPJPE and PVE are respectively computed
using the following equations.

T K
1 R
Ewmpipe = TK Z Z |s3pf — 83p7 ]2, 9)
t=1 k=1
AN
Epve =75 ) > llaf — il (10)

t

Il
-

1p

In the above equation, T, K, P, s3p, and q represent the number
of time windows for the event point clouds, the number of
body joints, the number of vertices in the SMPL mesh model,
the 3D coordinates of the joints, and the vertex coordinates of
the SMPL mesh model, respectively. $3p and q represent the
ground truth corresponding to the estimated values s3p and q.
PCKh@0.5 evaluates the percentage of joints whose euclidean
distance between the ground truth and the estimated position is
less than 50% of the bone length from the neck to the head. Miss
rate evaluates the percentage of failure to output a mesh in the
test data.

B. Comparison Against Event-Based Methods

Through three experiments utilizing two distinct datasets,
MMHPSD and EPMD, we demonstrate the efficacy of our
approach in estimating meshes solely from event data compared
to baseline methods. The experiments were conducted under
two different settings: (i) an all-subject setting, where data for
all subjects was divided into training and test sets, and (ii) a
cross-subject setting, where different subjects’ data were used
for training and testing. Given the large number of subjects
included in the MMHPSD, the experiment was conducted under
both conditions (i) and (ii). On the other hand, EPMD, designed
for assessing performance under diverse lighting conditions,
contains fewer subjects; hence, only condition (i) was applied in
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Fig. 5. Qualitative results from the experiment using MMHPSD as detailed in Section IV-B. The top rows display the results under the all-subject setting, while

the bottom rows show the results under the cross-subject setting. Although our proposed method only uses event data as input, it estimates the mesh with an
accuracy comparable to EventHPE(VIBE), which uses intensity images to estimate the initial mesh for each sequence, and EventHPE(GT), which employs ground

truth mesh for the initial frame of the sequences.

its experiments. This subsection first details the baseline meth-
ods, followed by a description of the experiments conducted
using each dataset.

Baseline Methods: Our approach is the first to estimate the
3D human meshes solely from the point cloud of event data,
and no existing methods are tackling the same task. Therefore,
we compared our network model against EventHPE [13], a
similar approach to ours. EventHPE differs significantly from
our method in thatitrequires intensity images in addition to event
frames to obtain the initial mesh model at the starting point for
the sequence. Subsequent mesh models in the sequence are then
estimated based on their displacements from this initial model.
EventHPE computes this initial mesh model by using VIBE [7],
which estimates the SMPL mesh from videos.

Throughout the experiments, EventHPE using VIBE is de-
noted as EventHPE(VIBE), and the method using the ground
truth mesh as the initial mesh of the sequence is referred to
as EventHPE(GT). Following the experimental setup of Zou
et al. [13], EventHPE(GT) operates under the assumption that
the mesh of the initial frame in each sequence is known, and
the sequence consists of 8 frames. This method represents the
upper bound of estimation accuracy that EventHPE network can
achieve. In Table II, the highest accuracy values, when including
EventHPE(GT), are underlined, while the best scores excluding
itare highlighted in bold. The VIBE [7] estimates camera param-
eters based on a weak perspective projection model, not account-
ing for global translation, and thus we do not report MPJPE for
EventHPE(VIBE). Additionally, the mesh model used by VIBE

is a gender-neutral model, unlike the gender-specific models
used in MMHPSD and EPMD. Consequently, the PVE values
for EventHPE(VIBE) are provided in parentheses as reference
values.

Evaluation on MMHPSD (All-Subject): We evaluated the
generalization ability of the models under the all-subject setting.
Specifically, the networks were trained using three out of the
four video sequences representing each subject’s actions and
used the remaining sequence for testing. The qualitative and
quantitative results are presented in Table II and the upper
part of Fig. 5, respectively. A comparison of the methods, as
shown in Fig. 5, reveals that despite slight discrepancies in body
orientation and limb positions, the models generally achieve
mesh estimations of high accuracy that closely mirror the ground
truth. A detailed examination of Table II, which presents results
across the entire test dataset, indicates that EventHPE(GT) with
ground truth-based initialization achieves the highest accuracy.
Without EventHPE(GT), our method EPM(Ours) emerged as
the most accurate. This underscores that our approach, despite
not relying on intensity images, outperforms existing methods
that estimate meshes from intensity images and event data.

Evaluation on MMHPSD (Cross-Subject): We aimed to assess
the generalization performance of the models across different
subjects. We conducted a cross-subject evaluation by training
our network on data from 12 out of the 15 subjects and employ-
ing the remaining 3 subjects’ data for testing. The qualitative
and quantitative results are shown in Table II and the lower
part of Fig. 5, respectively. Our method consistently surpassed
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Qualitative results from the experiment using EPMD under the all-subject setting (Section IV-B). The top two rows display well-lit data results, while the

bottom two rows show poorly-lit data results. The images, segmented into four blocks separated by wide spaces, are adjacent frames arranged in the top and bottom
rows. Note that the Optical Flow, assisting mesh estimation in EventHPE(VIBE) and EventHPE(GT), comes from the FlowNet module and is unrelated to EMP
(Ours). Our method estimates a mesh closer to ground truth than EventHPE, and is significantly better than them, especially for data in poorly-lit environments.

EventHPE(VIBE) in all metrics, and the results for PEL-MPJPE
and PVE were even better than those for EventHPE(GT). PEL-
MPIJPE and PVE evaluate the error in 3D joint coordinates when
aligning translation and rotation of the root joint. These out-
comes suggest that our method excels in estimating the pose and
shape relative to the root joint from event data compared to that
of EventHPE [13]. However, the influence of root joint rotation
on accuracy was evident, indicating room for improvement.

Comparing the outcomes for the all-subject setting and the
cross-subject setting revealed that all metrics degraded in the
cross-subject setting, hinting at a reduced estimation accuracy
when predicting non-included individuals. This suggests that
variations in the same movements by different subjects, along
with differences in clothing and physique, led to distinct event
data characteristics. Future work could focus on developing
techniques to mitigate the effects of clothing and physique
variations on data characteristics.

Evaluation on EPMD (All-Subject): To evaluate the robust-
ness of the methods against variations in lighting, we conducted
an all-subject evaluation using EPMD that contains data cap-
tured while subjects performed various medium to high-speed
movements in both well-lit and poorly-lit environments. Due to
the limited number of subjects, in this experiment, we utilized
80% of the takes from each subject’s data for training and
the remaining 20% for testing. The experimental results are
presented in Fig. 6 and Table II. The optical flows, displayed
in Fig. 6, were estimated by the FlowNet module used in Even-
tHPE. It is important to note that in our experiments, this optical
flow is commonly utilized in both EventHPE(GT) and Even-
tHPE(VIBE). In contrast, our proposed method, EPM(Ours),
does not make use of optical flow.

As can be seen from Table II, our method achieved the
highest accuracy across all metrics, even when including Even-
tHPE(GT). While the EventHPE [13] inputs not only the event
frames but also the optical flow estimated from them into the
mesh estimation network ShapeNet, its performance tends to
deteriorate when the optical flow estimation is not accurate,
as illustrated in the lower part of Fig. 6. In particular, in
the bottom right two rows showcasing the EventHPE method,
both adjacent frames appear to be in almost the same pose.
This is due to EventHPE’s mechanism of using a sequence
of data comprising optical flow and event frames from eight
adjacent frames for mesh estimation. If the sequence includes
an optical flow that has significantly failed in estimation, it
greatly impacts the accuracy of subsequent frame estimations,
resulting in a failure to replicate changes in the subject’s
movement.

One potential cause for these inaccuracies in optical flow
estimation lies in the presence of motion blur in the intensity
images and the reduced frame rates. When capturing data in dim
lighting, the camera requires longer exposure times to gather
sufficient light, leading not only to motion blur but also to
reduced frame rates. This reduction in frame rate means that
the poses between adjacent frames can vary significantly. Since
EventHPE trains its FlowNet to predict optical flow based on
such intensity images, both the motion blur and the large pose
differences between frames can hinder accurate optical flow es-
timation. This adverse effect impacts not just the EventHPE [13]
network but also VIBE [7], which is utilized to predict the mesh
of the sequence’s initial frame. In contrast, EventPointMesh can
estimate meshes with high accuracy without being affected by
issues related to intensity images.



5604

The miss rate in Table II indicates the proportion of test data
frames where the mesh was not estimated. EventHPE(VIBE)
failed to estimate the mesh for 1.4% of the frames in MMHPSD
and 2.1% in EPMD, resulting in missing outputs. In contrast,
our method, which solely relies on event data without using
intensity images, achieves the miss rate of 0.0% as it is not
subject to the adverse effects of the intensity image caused
by the dark environment. The miss rate of 0.0% represents
an absolute zero value, indicating that our proposed method
reliably outputs a mesh model based on the input event data. The
presence of missing parts in the estimated mesh could necessitate
additional processing, such as motion infilling, to fill in the
gaps, particularly in applications requiring online streaming.
This could potentially affect real-time performance. From this
perspective, the error rate of 0.0% for our proposed method is
an important and beneficial metric for the development of future
applications.

C. Comparison Against a Frame-Based Method

We demonstrate the effectiveness of our method utilizing an
event camera under conditions that are challenging for tradi-
tional frame-based cameras, namely dim environments where
images tend to become dark, unclear, and prone to motion
blur. To this end, we conduct accuracy comparison experiments
between the existing frame-based camera method, VIBE [7], and
our proposed method, EventPointMesh. We divided the EPMD
dataset into data captured in light and dark environments and
tested both VIBE and EventPointMesh against each setting. The
event camera used in this study dynamically adjusts exposure
time according to lighting conditions to obtain images with
sufficient brightness. During our data collection, the camera
captured at approximately 15 fps in light environments and
around 4 fps in dark environments. Consequently, the number
of frames was 188k in the light environment and 40 k in the
dark environment, leading to an imbalance in the number of
frames between the two conditions. However, since the subjects
performed the same actions for the same duration under both
lighting conditions, the data is balanced in terms of the types
and frequency of actions performed by the subjects across both
conditions. Tests conducted in light environments are denoted
as VIBE(L) and EPM(L), while those in dark environments
are marked as VIBE(D) and EPM(D). Tests on data from both
lighting environments combined are labeled as VIBE(L+D) and
EPM(L+D). The results of these experiments are presented in
Table III. Additionally, qualitative results are shown in Fig. 7.

The results from Table III demonstrate that our proposed
method achieves higher accuracy across all conditions, whether
in light, dark, or mixed environments. Furthermore, comparing
the relative increase in error from light (L) to dark (D) environ-
ments between VIBE and EPM reveals that VIBE experiences
a larger increase in error. For instance, while EPM shows an
increase of +22.4% in PEL-MPJPE and +26.3% in PA-MPJPE,
VIBE’s errors escalate to +41.6% in PEL-MPJPE and +63.8% in
PA-MPJPE. This indicates that the frame-based method VIBE
is more adversely affected by dim lighting. Moreover, compar-
ing the increase in the magnitude of PEL-MPJPE relative to
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TABLE III
QUANTITATIVE RESULTS OF THE COMPARISON BETWEEN EVENT-BASED AND
FRAME-BASED METHODS

Method PEL-MPJPE PA-MPJPE PVE
[mm] ({) [mm] (}) [mm] (})
VIBE(L) 150.4 75.6 89.7
VIBE(D) 2129 123.8 145.7
VIBE(L+D) 158.9 82.1 97.3
EPM(L) 84.4 59.4 70.0
EPM(D) 103.3 75.0 90.2
EPM(L+D) 86.0 60.7 71.8
Intensity Event GT EPM VIBE

Fig. 7. Qualitative results of the experiment comparing our event-based
method with the frame-based method. The top row displays the mesh estimation
results of both methods in bright environments, while the bottom row presents
the estimation results in dark environments. In the bottom row, it is shown that the
frame-based VIBE incorrectly reverses the orientation of the estimated meshes,
whereas EventPointMesh demonstrates robustness in dark environments, accu-
rately estimating the correct mesh orientation.

PA-MPJPE in dark environments (D), EPM increases by
+37.7%, whereas VIBE significantly jumps to +72.0%.

This disparity suggests that VIBE, when estimating meshes
in dark environments, often misestimates the orientation of the
person, confusing the front and back. The top row of Fig. 7
presents the estimation results of EPM and VIBE in light en-
vironments, while the bottom row shows the results in dark
environments. It is evident in the dark environments that VIBE
reverses the orientation of the person compared to the ground
truth mesh. This phenomenon leads to a relatively larger error
in PEL-MPJPE, which calculates error after aligning the root
joint’s position only, compared to PA-MPJPE, which aligns
position, rotation, and scale for error calculation. The results
from both quantitative and qualitative analyses indicate that
VIBE, which utilizes traditional frame-based cameras, experi-
ences a significant degradation in estimation accuracy in dark
environments. In contrast, EventPointMesh, which solely relies
on event data, shows a minor decrease in estimation accuracy.
These findings demonstrate the high robustness of our proposed
method against dim lighting conditions.

D. Ablation Study

We conduct an ablation study to verify the contribution of
our coarse-to-fine feature extraction to the accuracy of mesh
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TABLE IV
QUANTITATIVE RESULTS FROM THE ABLATION STUDY

Method MPJPE PEL-MPIPE  PA-MPIPE PVE PCKh@0.5
[mm] ({) [mm] (}) [mm] (}) [mm] (1) [%] (1)
EPM(G) 115.8 89.3 63.2 73.3 69.9
EPM(L) 116.0 87.0 61.8 71.9 71.0
EPM(G+L) 110.7 86.0 60.7 71.8 7.7
TABLE V

QUANTITATIVE RESULTS FROM THE PERFORMANCE EVALUATION UNDER VARIOUS INPUT CONDITIONS

Method MPJPE PEL-MPIPE  PA-MPIPE PVE PCKh@0.5
[mm] (}) [mm] (}) [mm] (}) [mm] (}) [%] (1)
EPM(1) 167.3 138.1 97.2 111.0 51.7
Taskl ~ EPM(5) 1252 100.8 70.5 82.4 65.8
EPM(15) 110.7 86.0 60.7 71.8 71.7
Taskz  EPM(120) 160.6 1293 90.6 105.6 54.8
EPM(img) 110.7 86.0 60.7 71.8 717

estimation. The architecture of our EPM network leverages the
global features from the Keypoints Module and the local features
from the Anchor Points Module. Both these features are inte-
grated within the SMPL Module. To illustrate the contributions
of these elements to mesh estimation, we evaluate the accuracy
of estimation when each component is omitted. We denote the
method that estimates meshes using only global features as
EPM(G), the method using only local features as EPM(L), and
the method leveraging both as EPM(G+L). The results of the
experiments are presented in Table IV.

The results indicated that EPM(G+L) achieved the high-
est scores across all metrics. When comparing EPM(G) and
EPM(L), it was found that EPM(G) had higher accuracy in
MPIJPE, while EPM(L) scored higher in both PEL-MPJPE and
PA-MPJPE. MPJPE is a metric that evaluates the 3D euclidean
distance of joint coordinates without aligning the estimated and
ground true poses in terms of position, rotation, and scale.
Therefore, it is reasonable that EPM(G), which captures the
coarse global features of human pose, 3D position, and body
shape, performed better in MPJPE. On the other hand, PEL-
MPJPE applies MPJPE after aligning the position of the root
joint, and PA-MPJPE applies MPJPE after aligning translation,
rotation, and scale. The higher accuracy of EPM(L) in these
metrics suggests that focusing on the finer details around each
joint led to better precision than EPM(G). As global and local
features can be complementary, the combined use of both in
EPM(G+L) resulted in further improved accuracy over either
approach alone. Therefore, our pioneering coarse-to-fine feature
extraction approach, initially extracting coarse global features of
the event point cloud and then grouping the spatiotemporal event
point cloud around each joint to extract detailed local features,
demonstrates effectiveness in HMR using only event data.

E. Performance Evaluation Under Various Input Conditions

Taskl: Different Length of Input Event Sequence. This exper-
iment was conducted to evaluate the effectiveness of feeding
the event point cloud into the network as sequential temporal
data. In our EPM network, we incorporate BiLSTM into both

the Keypoints Module and Anchor Points Modules to consider
the temporal characteristics of the input event point clouds. We
demonstrate the efficacy of the proposed network architecture
that accounts for temporal features by evaluating the accuracy
of the estimated mesh from varying lengths of event data. In this
study, the event point clouds fed into the network were divided
into individual time windows between intensity image frames.
We experimented with three patterns: feeding event point clouds
from 1, 5, and 15 continuous time windows into the model,
denoted as EPM(1), EPM(5), and EPM(15) respectively. The
experimental results are shown in Table V.

The results indicate that EPM(15) yielded the highest mesh
estimation accuracy, demonstrating the effectiveness of extract-
ing temporal features for mesh estimation. Due to the event
cameras’ nature, they don’t capture static parts of the subject.
This makes estimating the entire body mesh from brief event data
segments, such as a single time window, challenging. However,
our proposed network overcomes these limitations, enabling
high-precision mesh estimation.

Task2: Different Width of Time-Window: We evaluate the
precision of mesh estimation over different time-window widths,
assessing how adaptably the EventPointMesh network can han-
dle variations in time-window sizes. In previously discussed
experiments, event data were segmented according to the frame
rate of intensity images captured by the event camera. The
frame rate of intensity images within the EPMD is roughly
15 fps under well-lit conditions and about 4 fps in poorly-lit
scenarios. Prior research, EventHPE [13], estimated the mesh
synchronized to the frame rate of the intensity images taken with
the event camera. This approach inherently limits the maximum
frame rate of the output mesh to that of the intensity images.
In contrast, our EventPointMesh does not rely on intensity
images, allowing it to process input event data at any chosen
time window. Consequently, we carried out training and testing
with event data segmented to match the 120 fps time window,
corresponding to the optical MoCap [1] data.

The experimental results are presented in Fig. 8 and Table V.
The method segmented based on the frame rate of intensity
images is labeled as EPM(img), while the one conducted at
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Fig. 8.

Qualitative results of the Task2 described in Section IV-E. The topmost “EPM(img)” represents our method’s results when segmenting events according

to the intensity image frame rate, which varies with the lighting conditions. The middle “EPM(120)” shows the outcomes when segmenting events and estimating
the meshes at the same 120 fps. The bottom “GT” shows the ground truth meshes with a frame rate of 120 fps. Note that the transparent meshes in the bottom two

rows are only for visual clarity; there is no difference from the opaque meshes.

120 fps is defined as EPM(120). The results show that al-
though EPM(120) is slightly less effective than EPM(img), it
still possesses sufficient capability for mesh estimation. The
decrease in accuracy for EPM(120) compared to EPM(img)
can be attributed to the significantly reduced amount of event
information in the time window when operating at a high frame
rate and the subject’s movements are slow. In this experiment,
the number of events per time window is set to 7500, and if the
detected number of events falls below this, points are randomly
duplicated to increase to 7500, but this does not add useful
information for reconstructing the movement. Therefore, at this
stage, increasing the frame rate reduces the number of events
per time window, thereby decreasing the estimation accuracy.
Addressing this issue by developing a mechanism that can
extract useful information from a small number of events, rather
than randomly duplicating them, could lead to the construction
of a higher frame rate method.

Fig. 8 demonstrates that our proposed method can achieve
HMR at a high frame rate comparable to traditional optical
motion capture (MoCap). This indicates that even in challeng-
ing environments for traditional frame-based cameras, such as
poorly-lit conditions like dark rooms and high-speed subject
movements, our method enables a simplified 3D HMR with just
a single monocular event camera.

V. DISCUSSION AND LIMITATIONS
A. Failure Cases

Our method has liberated event-based HMR from dependence
on intensity images, enhancing its applicability in real-world
scenarios. Moreover, although our approach involves bidirec-
tionality in its processing, it can sequentially estimate meshes
from event point clouds, making it feasible for transition to
online applications. Specifically, there is potential for utilizing
our method in activity monitoring systems within environments
requiring privacy, such as hospitals, care facilities, and homes.
Additionally, for existing efforts in developing projection map-
ping that projects video fitted to the body of performers on stage

in real-time, our method offers a highly beneficial system capa-
ble of handling fast movements in dark environments. However,
towards the realization of such applications, there are several
scenarios where we currently face challenges, necessitating
improvements. Below, we discuss several representative failure
cases and the corresponding strategies for addressing them.

Case 1: Few or no Detected Events. This case considers three
types of scenarios. The first and most common scenario is when
there is minimal movement of the body. Event cameras function
by detecting per-pixel changes in luminance. Thus, movements
that are not significant but still result in changes in luminance
values will be detected as events. Since EventPointMesh utilizes
time-series point cloud data as input, it is capable of estimating
the most plausible pose for the entire body by leveraging the
features from event point clouds of other moving body parts,
even if events for a specific part of the body are temporarily
sparse. This capability is evidenced in Fig. 5, where accurate
mesh estimations are achieved even in instances where a body
part is not captured in the events.

However, with the current network architecture, if the 2D joint
positions estimated by the Keypoint Module are incorrect, it can
result in the inability to extract useful information from the point
cloud for mesh estimation in that local area, or it might capture
features that adversely affect the estimations of subsequent
modules. One effective solution to this problem could involve
modifying the loss function used in the Keypoint Module for
estimating 2D joint positions from KL divergence to Negative
Log-Likelihood. This adjustment would allow the estimation
process to also yield confidence levels, which could then be used
by the Anchor Points Module to more accurately extract local
features. Consequently, this could enhance the transmission of
only the most beneficial local features to subsequent modules.
The potential benefits of this refinement will be explored in
future research to develop the method further.

Nevertheless, the current system, which utilizes BiLSTM
to account for temporal relationships, can result in the out-
put of meshes with high uncertainty in situations where there
is a prolonged static state, as it may lead to the loss of
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Fig. 9. Failure cases of mesh estimation by EventPointMesh. The top row
presents the output of our method for a scenario discussed in V-A Case 1, where
the subject steps out of the camera’s view. Currently, in cases where no events
are generated due to the absence of the subject, a mesh in a typical standing
pose is outputted. The bottom row shows an example of mesh estimation when
events are generated by parts other than the subject, as discussed in V-A Case
2. It demonstrates that the presence of shadows causing events can lead to a
reduction in mesh estimation accuracy.

information supporting the presence of certain body parts. An
effective solution to such long-term event omissions could be
the implementation of autoregressive network architectures. An
autoregressive network incorporates a loop structure that feeds
the pose information, the output of the current time window,
combined with the event data for the next time window as input
to estimate the pose for the next time window. This means that
once the pose has been estimated from the events associated
with movement of body parts, the existence of these parts can
still be inferred in their last known positions even if no new
events are generated due to their lack of movement. Hence, it is
anticipated that accurate estimations of the entire body pose at
any given moment can be made based on the pose information
carried over from previous time windows, even in cases where
no events are detected over an extended period.

The second scenario involves situations where parts or the
entirety of the subject’s body move out of the camera’s field of
view, a common occurrence in real-world applications utilizing
video-based pose estimation methods. The EPMD dataset as-
sumes that the subject remains within the camera’s field of view,
with almost all data capturing the full body. Consequently, the
pose estimation accuracy decreases in this scenario due to the
network being trained on such data. When only a small part of
the body (such as the hands, feet, or head) moves out of view, the
system can still estimate a plausible 3D body model that includes
the body parts located outside the 2D image frame by utilizing
temporal point cloud features and the structural constraints of the
parametric human model. However, as the amount of the body
outside the field of view increases, the accuracy of position and
pose estimation deteriorates, ultimately leading to an unexpected
output as illustrated in the upper part of Fig. 9. Ideally, no
mesh model should be generated when the subject is outside the
camera’s view, as no events occur within the frame. However,
the current system produces a standing pose mesh, likely because
the model outputs the most common pose within the dataset
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when faced with such an unfamiliar scenario. To address this
issue, incorporating a mechanism commonly known as the “top-
down approach” in RGB image-based pose estimation methods,
which estimates poses based on bounding boxes detected as
human regions, could effectively handle situations where the
subject moves in and out of the field of view.

The third scenario occurs when insufficient lighting prevent
the generation of events. The EPMD dataset includes event data
captured under both well-lit and poorly-lit lighting conditions.
In Fig. 6, event data captured in dim environments appears to
have more background noise compared to that from well-lit
environments at first glance. However, this appearance is due
to accumulating event point clouds over long time windows to
match the frame rate of intensity images, creating a single event
frame. Thus, event cameras fundamentally are not adversely
affected by dark environments and can accurately capture the
movements of subjects with high temporal resolution without
blurring. Nonetheless, poor lighting can impact the accuracy of
event data. This issue arises in lighting conditions so dim that the
changes in luminance caused by the subject’s movement do not
exceed the threshold set on the event camera device for detecting
event occurrences. In such extremely dark environments, it
might be preferable to use night vision cameras utilizing infrared
instead of event cameras.

Case 2: Events Caused by Entities Other Than the Subject.
Our method faces challenges even when events are generated
by entities other than a single subject, such as multiple people
within the frame or movements of the camera itself. Our EPMD
dataset is specifically designed for a stationary event camera
capturing a single subject. When other humans or dynamic
objects enter the field of view, or the camera moves, events
unrelated to the subject’s movement are detected, which can sig-
nificantly compromise the accuracy of mesh estimation. Indeed,
some data in the EPMD dataset captured in dim environments
show shadows cast on the wall behind the subject. The bottom
row of Fig. 9 presents an example where such conditions have
led to a decrease in estimation accuracy. As illustrated by the
intensity and event images in the figure, the presence of a
shadow on the left side of the subject can disrupt event patterns
to an extent that currently impacts mesh estimation accuracy.
Therefore, the addition of other people’s movements or camera
motion is expected to further reduce estimation accuracy. One
potential solution to this problem is to enrich the dataset with
real or synthesized data capturing scenes with multiple humans
or objects, or where the camera is in motion. Alternatively,
introducing detectors and trackers to segment event data by
individual or object and estimating the intended subject’s pose
could be an effective approach.

B. Room for Improvement in Event-Based HVR

Existing event-based HMR methods, including this study, still
leave an important aspect unaddressed: the ability to accurately
represent the clothing worn by the subjects. As demonstrated
by the results of the experiment in the Section IV-B “Evaluation
on MMHPSD (Cross-Subject)”, differences in clothing and in-
dividual subject movements lead to variations in events, which
in turn affect the accuracy of mesh reconstruction. This issue
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becomes more pronounced in EPMD, where the limited number
of subjects worsens the problem. Addressing this challenge
necessitates the creation of more diverse datasets through the
augmentation of subject numbers and the use of data synthesis
with computer graphics in future work.

In addition to this issue, there are more fundamental problems
that require deeper solutions. Both the MMHPSD and EPMD
datasets utilize the SMPL model to replicate the body shape
including clothing. However, models trained on such datasets
face limitations in generalizing across diverse clothing types
when applied in real-world settings. While MMHPSD attempts
to fit the SMPL model to the 3D shapes reconstructed using
multiple RGB-D cameras around subjects in various outfits,
this approach struggles with accurately representing oversized
clothes or skirts. Similarly, EPMD employs optical MoCap to
capture motion data, necessitating the use of specialized suits
for attaching optical markers. Consequently, the placement and
number of markers can alter the shape of the SMPL model, also
presenting challenges in accommodating diverse clothing styles.

While this issue is also present in HMR using traditional
frame-based cameras, it is particularly pressing for event cam-
eras due to their principle of capturing only the subject’s move-
ment. The fluctuation of clothing has a significant impact on
the captured event data, demanding more thorough solutions. In
future research, one potential solution could involve construct-
ing mesh models that differentiate between the subject’s body
shape and the shape of their clothing. Additionally, developing
mechanisms capable of distinguishing whether captured events
are caused by body movement or clothing movement will also
be crucial for achieving more accurate HMR.

VI. CONCLUSION

This paper explored the potential of using event data ex-
clusively for effective human mesh recovery (HMR), by-
passing the limitations of conventional intensity images. Our
proposed EventPointMesh framework demonstrated superior
performance by interpreting event data as a 3D spatio-temporal
point cloud and leveraging both global and local features. The
series of experiments and the ablation study affirmed the efficacy
of our approach, especially under varied lighting conditions.
However, several challenges remain, such as capturing static
body parts in event data, people entering and exiting the frame,
and events caused by objects other than the subject. Future
endeavors will focus on enhancing accuracy and adaptability in
real-world scenarios, but our current achievements represent a
significant leap in event-based HMR, paving the way for efficient
methodologies in challenging conditions.
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