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Abstract

Image stitching synthesizes images captured from multiple perspectives into a
single image with a broader field of view. The significant variations in object depth
often lead to large parallax, resulting in ghosting and misalignment in the stitched
results. To address this, we propose a depth-consistency-constrained seamless-free
image stitching method. First, to tackle the multi-view alignment difficulties caused
by parallax, a multi-stage mechanism combined with global depth regularization
constraints is developed to enhance the alignment accuracy of the same apparent
target across different depth ranges. Second, during the multi-view image fusion
process, an optimal stitching seam is determined through graph-based low-cost
computation, and a soft-seam region is diffused to precisely locate transition areas,
thereby effectively mitigating alignment errors induced by parallax and achieving
natural and seamless stitching results. Furthermore, considering the computational
overhead in the shift regression process, a reparameterization strategy is incorpo-
rated to optimize the structural design, significantly improving algorithm efficiency
while maintaining optimal performance. Extensive experiments demonstrate the
superior performance of the proposed method against the existing methods. Code
is available at https://github. com/DLUT-YRH/DSFN.

1 Introduction

Image stitching is a fundamental task in computer vision, aiming to combine multiple images captured
from different perspectives or positions into a single, high-resolution image with an extended field of
view. This task plays a crucial role in various applications, such as panoramic photography [1} 2],
remote sensing [3l 4], medical imaging [5} 6], and virtual reality [7, 8], where a comprehensive and
seamless representation of a scene is required.

Conventional stitching methods predominantly follow a feature-driven paradigm, relying on hand-
crafted local feature descriptors (e.g., SIFT [9], ORB [10]) for feature detection and robust matching
algorithms (e.g., RANSAC [11]]) to compute homography transformation matrices for reference and
target images alignment. However, the planar scene assumption inherent to homography models fails
to accommodate the complex geometric relationships arising from multi-depth layers in real-world
scenarios, resulting in ghosting artifacts and structural misalignment in stitched results. To mitigate
these issues, conventional methods adopt two primary optimization strategies: (1) enhancing local
alignment accuracy through region-adaptive deformation techniques (e.g., mesh warping [[12,113}(14])),
and (2) concealing residual artifacts by optimizing seam paths via energy functions [[15/16]. While
effective in most scenarios, their performance is critically constrained by feature density and quality,
leading to failures in low-texture, repetitive patterns, or large parallax scenarios.
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Recent advancements in deep learning have introduced novel solutions for image stitching. Convo-
lutional Neural Network (CNN)-based methods enable end-to-end learning of implicit geometric
correlations between images, such as directly predicting transformation parameters through deep
homography networks or modeling non-rigid deformations using deformable convolutions [[L7, [18].
Some works further integrate spatial attention mechanisms to enhance robustness against dynamic
objects [19} 20] or employ unsupervised learning frameworks to address the scarcity of annotated
real-world data [21]. Nevertheless, existing deep learning methods still face significant challenges:
dependency on synthetic training data limits cross-domain generalization capabilities, while ensuring
structural consistency in large-parallax scenarios remains challenging.

To address the aforementioned challenges, this paper proposes a depth-supervised image stitching
that focuses on resolving co-planar alignment in large-parallax scenarios and ensuring seamless
consistency transitions in multi-view overlapping regions. First, a two-stage depth-aware transforma-
tion estimation mechanism is introduced for large-parallax alignment. This mechanism leverages
depth information to differentiate feature disparities of identical objects across varyi ng depth layers,
while a recursive global-local deformation strategy integrates global homography estimation with
localized adaptive warping, addressing the rigidity of conventional single-homography models in
multi-plane scenes. During multi-view planar fusion, the optimal stitching seam is determined via
graph-structured low-cost computation. A diffusion-based soft-seam propagation then generates
pixel-wise confidence maps to define adaptive blending regions, effectively suppressing misalignment
and ghosting artifacts caused by parallax. Additionally, we design a reparameterized strategy to
optimize the shift regression model, ensuring the optimal effectiveness and the efficiency. The
contributions are summarized as follows:

* We propose a depth-supervised image stitching, which focuses on addressing the alignment
challenges caused by large parallax of significant depth differences, enabling the seamless
fusion of multi-view images.

* The proposed method employs a depth-aware two-stage transformation estimation, coupled
with a reparameterization strategy, which significantly enhances alignment performance in
scenarios with large parallax.

* The determination of the soft-seam region enables a flexible adjustment for multi-view
fusion, effectively avoiding issues such as misalignment and ghosting.

* Extensive experiments demonstrate that our method outperforms the state-of-the-arts, in
terms of the large parallax alignment and seamless fusion.

2 Related Work

2.1 Image Stitching

Feature-Based Image Stitching. The core of manual feature-based image stitching lies in achieving
accurate alignment through effective feature extraction and matching, which relies on sufficient
geometric features in the scene. Brown et al. [22] pioneered this field by employing scale-invariant
feature extraction combined with random sampling consistency to establish global rigid transfor-
mations. To address parallax issues, Li ef al. [23] developed an analytical warp function based on
point correspondences, enabling improved alignment through geometric constraints. Recognizing
the limitations of single global transformations, Gao et al. [24] introduced dual-plane alignment by
establishing separate warping models for distinct scene layers, though this approach faced challenges
in complex environments with ambiguous planar divisions. Further advancing spatial adaptability,
Zaragoza et al. proposed As Projective As Possible (APAP) [25], which localized mesh-based
projective transformations, significantly increasing parameter flexibility while introducing artifacts at
depth-discontinuous regions such as object boundaries.

The inherent alignment challenges in multi-view image stitching often manifest as ghosting artifacts
within overlapping regions, necessitating sophisticated seam selection strategies. Zhang et al. [26]]
proposed a dual-scale alignment framework that preserves global structural consistency through
optimal homography while enabling local seam-driven adjustments. Subsequent approaches focused
on optimizing seam placement through energy minimization principles, with Kwatra et al. [27]
introducing graph-based segmentation techniques to avoid object intersections. However, the compu-
tational intensity of these pixel-level optimization methods presents significant practical limitations



for real-world applications.

Deep Learning-Based Image Stitching. While contemporary feature descriptors [28],29] 30] demon-
strate potential for learned representations, their isolated application within traditional pipelines has
limited practical adoption, driving research toward fully learned stitching frameworks. Deep learning
approaches circumvent manual feature engineering by learning semantic representations through
supervised (Lai et al. [19], Kweon et al. [20]), weakly supervised (Song e al. [31])), or unsupervised
(Nie et al. [32]]) paradigms, offering enhanced robustness in complex scenes. However, supervised
methods’ reliance on labeled data constrains their effectiveness in high-parallax scenarios. Nie et
al. pioneered unsupervised frameworks with improved cross-scene generalization and parallax
tolerance, though persistent plane misalignments in extreme depth-varying scenes reveal fundamental
limitations of current learning architectures.

2.2 Single Image Depth Estimation

Single image depth estimation aims to recover per-pixel depth from monocular visual data. Traditional
approaches relied on geometric priors [33]] or non-parametric depth transfer mechanisms [34]], funda-
mentally constrained by color consistency assumptions. The advent of CNNs revolutionized this field
through data-driven feature learning. Li et al. [33]] pioneered multi-scale superpixel-to-pixel mapping
via shallow CNNs with CRF refinement, though limited by local receptive fields. Liu er al. [36]
advanced this by integrating CRF potentials within CNN frameworks, yet remained constrained
by insufficient global context modeling. Eigen et al. [37] introduced a two-stage architecture that
significantly enhanced spatial reasoning capabilities. Subsequent breakthroughs by Laina et al.
demonstrated the critical role of deep residual architectures in capturing holistic scene geometry
through expanded receptive fields. The recent emergence of Depth Anything [39] marks a paradigm
shift, establishing new state-of-the-art performance through unified representation learning.
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Figure 1: Workflow of the proposed method. It consists of two procedure: depth-aware transformation
estimation and soft-seam based multi-view fusion. Besides, the transformation estimation process
incorporates reparameterized regression to establish the optimal model.

As illustrated in Fig. [T} in the proposed method, we first feed the target image I; and reference
image I, into the ResNet50 [38]] for feature encoding. The extracted features from both views
are then processed through a depth-aware transformation estimation module to obtain the warping
matrices. To address alignment challenges in large parallax scenarios, a two-step recursive strategy
is employed for the shift regression. Subsequently, the resulting transformations are applied to the
observed images for alignment, and a soft-seam based multi-view fusion module is employed to
blend the aligned images, producing a wide-field-of-view result /, with natural transitions and no
visible artifacts. The comprehensive description of each module is provided in the following.



3.1 Depth-Aware Transformation Estimation

We employ ResNet50 [38]] to initiate the multi-scale feature extraction from both reference and
target images, generating feature pairs at 1/16 and 1/8 resolutions, denoted as {Fr1 / 10, Ftl/ 16}

and {FT1 / 8, Ftl/ 8}. Beginning with the coarser 1/16-scale features, the Feature Correlation Aggrega-
tion (FCA) block [40] computes inter-view correspondences through:

Ci; = FCA(FY', F}'%), (1)

where C; ; is the correlation volume. A regression block then predicts quadrilateral vertex off-

sets Ap € R**2, from which a coarse homography matrix Ho € R3*3 is derived via Direct Linear
Transformation (DLT) [41]:

4
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pi. denotes the coordinate of the k-th point in the reference image, and pj, means the corresponding

point of the target image. This initial alignment warps the target feature to Ftl/ 8 = HC(Ftl/ 8).
Subsequently, a mesh-based refinement stage employs grid-wise offset estimation for sub-pixel
precision. Let M = {(z;,y;)} define the mesh grid, with Radial Basis Function (RBF) interpolation
generating the continuous deformation field:

M
A(x’y) = Z wm¢(”(xay) - (xmvym)H)a 3
m=1
where ¢(r) = —e~(¢)” denotes the Gaussian basis function with shape parameter e. The final dense
warping field YW combines coarse homography and residual deformation:
W(p) = Hc - p + A(p). ©)

In the training process, we calculate the mean pixel error in the overlapping region after the coarse
and residual transformations separately, which can be expressed as:

Latignment =fatignment (Ir, It, A, v, 1)
=AM - Mg — Wy (L)|1+
Y- M- =Wy (L) |1+
Ly - My = Wa (L) |1,

&)

where My, My—1 and My are homography transformation masks, inverse homography transforma-
tion masks and residual masks, which are obtained through homography H, inverse homography H !,
and residual transformation A. A, y, n are balance weights. For ease of calculation, we choose to
transform the mask, and since nonlinear transformations do not always support inverse operations,
we do not design inverse losses.

To preserve structural consistency with the original scene, we impose a shape-preserving constraint
for the mesh. We design the mesh loss from the point of the edge size of a single mesh and the offset
of adjacent meshes. The number of control points is recorded as U x V, €, and €}, are the set of two
adjacent edges in the mesh, and the edge loss of a single mesh can be described as:

1 . 1 .
ﬁedge = m ZU(<6771> - 2Wmesh) + m ZJ(<67 > - 2Hmesh)v (6)

€w €h

where i and ; are unit horizontal and vertical vectors, o () is a non-linear activation function, H,esp
and W4, are the length and width of a single mesh. By calculating the loss in the mesh, the mesh
stretching is limited and the distortion is reduced. We believe that the adjacent edges between the
meshes in the non-overlapping region should be as parallel as possible, so we constrain the mesh
angle as:

1
Langle = o Z 5(1 — cosb), @)

€el,€e2



where a is the number of edge pairs, ¢ is the region label, and is denoted as 1 when the edge pair is
in the non-overlapping region, 0 when the edge pair is in the overlapping region, and 6 is the angle
between the edge pairs. Considering the large parallax caused by significant depth variation, we
incorporate the depth information as knowledge prior to supervise the learning of the transformation
estimation. Specifically, we obtain the depth map through Depth Anything [39]], characterizing the
relative depth rather than the absolute depth. To this end, we perform normalization in the overlapping
region of the reference and target images to reduce the relative error caused by the depth mutation of
the non-overlapping region, expressed as:

‘cdepth = falign'rnent (Id7'7 Idt7 )‘/7 ’y/a 77/) (8)

where 1., I;; mean the depth maps of I,., I;. The total loss for depth-aware transformation estimation
can be expressed as:

»Ct = Ealignment + lu/ﬁedge + Cﬁangle + gﬁdepthn (9)

3.2 Soft-Seam based Multi-View Fusion

Based on the results inferenced from the transformation estimation, we obtain the aligned image
pair I, I,;. However, precise alignment remains challenging in real-world parallax scenarios, and
the multi-view image fusion process must additionally ensure authenticity and accurate reconstruction,
such as preserving structures and achieving natural transitions between multi-view scenes. To address
this, we relax the conventional definition of “seams" in the stitching, and suppose that any region
requiring fusion within overlapping areas can be treated as a potential seam. We build upon the
low-cost seam localization and establish a soft-seam region diffused from the distinct seam to serve
as the adaptive fusion adjustment, aiming to resolve the ghosting and misalignment artifacts while
enabling natural transitions.

Specifically, we calculate the corresponding region masks M,,,., M,,; based on the aligned images.
These masks are fed into a Soft-Seam Estimation (SSE) to obtain soft-seam mask M, within
overlapping areas, serving as the candidate region for fusion. SSE module is built upon a UNet
architecture [42}143], in which 3 x 3 convolutions are replaced with dilated convolutions, with dilation
rates are set as 1,2, 3, 4, and 5. At the four skip connections, the same-scale features from both input
images are first upsampled using nearest-neighbor interpolation and then passed through a 1 x 1
convolution to reduce the number of channels. The difference map is first computed by subtracting
the feature maps of the two images pixel by pixel. It is then concatenated with the upsampled features
along the channel dimension, and the resulting representation is fed through two dilated convolution
layers to further advance the decoding process.

M is then integrated with the original aligned image masks through a single filter and the sigmoid
function, yielding two more flexible masks Mj,., M, with pixel-level regional adaptability. These
adaptive masks are subsequently applied to weighted fusion processing of the aligned images,
enabling refined fusion tailored to local pixel characteristics.

In the training process, we first need to determine the terminal points of the seam, expressed as:
Eterminal = ||(Is - Iwr) : (Mw'r ® jJw’wr)”l + ||(Is - Iw ) : (th (O wt)H1~ (10)

It combines the inverted and original masks via element-wise multiplication to restrict the fusion mask
boundary to the intersection area, controlling its endpoints. In which ©® represents the pixel-by-pixel
calculation of the two masks. —M,,,,- and —M,,; represent the inverted and expanded mask. In order
to improve the sensitivity of the difference values, we choose the pixel square difference to construct
the cost map and the cost loss is defined as:

Loost = Z |MbI — MIFVI|(DW + DF1I) 4 Z | MBI — MBHIFY(DY 4+ DWHY (11)
0,J ,J
where D is the squared difference between the warped image I, and I,,;. In order to constrain the
smoothness of the fused image, the smoothness loss, which calculates the smoothness penalty by
measuring the distance between adjacent pixels within the fusion region of the stitched image, is also
adopted:
Lomooth = Y [M7 = MIWI|(I = 1) 43 " |MET — M1 — 174, (12)

4,J 2%



Furthermore, we also introduce the depth consistency to supervise the inference results. Specifically,
the base depth maps are first aligned with the estimated transformation. Then, a secondary local
regularization of the aligned depth images I,,4,, [,q¢ 1s performed to further calibrate the local
relative depth, expressed as:

Lreg = Y |MPT = MY\ (F(Lyar, Tar)™ = Iy )

]
L L (13)
+ D IMET = MEF(F (Lodrs Toad)™ = Ll ).
.3

F denotes the fusion process. The total loss for the soft-seam based multi-view fusion can be
expressed as:

‘Cf = p»cterminal + Tﬁcost + Lﬁsmooth + Uﬁreg~ (14)

3.3 Reparameterization Regression

In the realm of learning-based image stitching methodologies, the adoption of fully connected archi-
tectures for shift regression often incurs significant computational costs while yielding suboptimal
performance. To mitigate this issue, we leverage reparameterization techniques [44]] to identify the
optimal structural configuration during the parameter regression process.

Although reparameterization techniques enhance feature diversity and structural flexibility through the
introduction of Reparameterization Blocks (RepBlocks), existing reparameterized architectures fail to
achieve robust performance improvements due to inherent limitations in RepBlocks [45]. To address
this, we propose a Reparameterization Block Adaption (RBA) algorithm, which dynamically adapts
the model training process by selectively integrating either a RepBlock or a standard convolutional
layer based on the specific requirements of the convolution layer.

Specifically, in the model forward process, different convolution structures provide distinct feature
representations to extract diverse feature maps from input features. Therefore, in the initial model,
following the research in [46], we replace the 3 x 3 convolution in our regression block located behind
the FCA block of the proposed depth-aware transformation estimation to a RepBlock consists of a 1 x 1
convolution layer Conv' and a 3 x 3 convolution layer Conwv®. To evaluate the contribution of these
two layers, we formulate a linear combination. Given a set of input feature maps f;,, € RCin xHXW
where C;,, H and W are the input channel number, height and width, the output features f,,; of a
RepBlock are calculated as:

fout = Re(wy x Conv' (fin) + wa x Conv®(fin) +b), (15)

where wq, wg and b € R%ut*1X1 are the weights and bias. Re denotes the ReL.U function.
fout € RCoutxHXW ‘where ., is the output channel number. In our formulation, wy and ws can
be trained to evaluate the contribution of the two branches. The contribution ¢; of the Conv! in the
RepBlock is calculated as:
1
Cout (Z Wl)

o (W) + o (Cws)
The effect of our RBA is to prevent the output features of the Conwv! layer from playing a damaging
role in feature extraction. Therefore, in the training process, if ¢; < ¢, where ¢ presents the
hyperparameter of the minimum threshold, we cut the Conwv' by coupling it to the Conv? layer, and
the parameter weight W5 of the new 3 x 3 layer Conv® ™ is calculated as:

Wgeu; =ws3- - W3+ wy -pad(Wl), (17)
where W1 and W are the weights of Conv' and Conv?, and the pad operation indicates adding

value 0 around the W [44]]. After cutting the 1 x 1 branch, we ensure the model can be adapted to
the training task while avoiding the feature degradation caused by the additional branches.

(16)

c1 =

4 Experiments

4.1 Implementation Details

Our method is implemented using the PyTorch framework and executed on an NVIDIA RTX 3090
GPU. For training both the depth-aware transformation estimation and soft-seam based multi-view



fusion models, we employ the Adam optimizer [47], and the learning rate decays exponentially, with
an initial value of 10~%. The transformation model is trained for 100 epochs, with the hyperparame-
ters A, v, and 7 set to 3, 3, and 1, respectively. The values of ', v/, n" are identical to those of ), v,
and 7. u, ¢, € are set to 10, 10 and 0.3. For the multi-view fusion model, we initially train the model
for 50 epochs on the training set, with the hyperparameters p, 7, ¢, o set to 10000, 1000, 1000, 10.

The UDIS-D training set [32]] is employed as the training data. To enhance the reliability of the
experimental results, we evaluate the model on the UDIS-D testing set and further validate it using
real-world data from the IVSD dataset [40].

4.2 Performance Comparison

We compare our method with APAP [23]], ELA [23]], LPC (48], SPW [49], UDIS [32]], UDIS++ [21],
TRIS [50] and SRS [51]], where each method adopts the pre-trained model and configuration parame-
ters provided by the official.

4.2.1 Qualitative Evaluation

The qualitative comparison on the UDIS-D dataset is shown in Fig. [2| In the first example, our
method achieves a clearer fusion result for the wall area, effectively avoiding issues such as blurring
and ghosting artifacts. Additionally, within the region marked by the red framework, the proposed
method successfully preserves the complete information of the bicycle without any loss of content. In
the second example, while other comparative methods exhibit ghosting or content loss, our method
delivers a stitching result that is both visually clear and realistic, demonstrating a better reconstruction
quality. Furthermore, to compare the alignment accuracy of different methods, we visualize the
alignment errors in the lower-right corner of the corresponding figures. It can be observed that the
proposed method achieves significantly higher alignment precision compared to the others.

Visual results on the IVSD dataset are presented in Fig.[3] The proposed method demonstrates superior
stitching performance across varying depths of the captured scene, with alignment errors further
confirming its effectiveness. The consistent performance across both datasets robustly validates the
efficacy of the proposed method.
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Figure 2: Visual comparison of stitched images from UDIS-D dataset. The alignment error is
visualized in the lower right corner.
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Figure 3: Visual comparison of stitched images from IVSD dataset. The alignment error is visualized
in the lower right corner.
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Table 1: Quantitative comparison on UDIS-D and IVSD datasets. The best and second results are
marked in red and blue.

UDIS-D IVSD
PSNR(T) SSIM(1) SIQE(T) LPIPS(})|PSNR(1) SSIM(T) SIQE(T) LPIPS({)

APAP [25] 23.792  0.794 417707 0472 | 22904 0.681 39.281 0.454
ELA [23] 24012 0.808 41.781 0470 | 23.452 0.701 37.186  0.435
LPC [48] 22595 0736 43.616  0.467 | 20996 0.641 37.517 0.447
SPW [49] 21.606  0.687 41.060 0.466 18.868  0.575 36.156  0.449
UDIS [32] 21.171  0.648 42.186 0475 | 23535 0.743 40474 0451
UDIS++ [21]| 25.426  0.837 43.184 0.469 | 26.649 0.819 46.383 0.439
TRIS [50] 24476  0.821 41.621 0476 | 24.187 0.753 40.873  0.448
SRS [51]] 24.828 0.811 41.857 0473 | 24234 0.796 35.641  0.445
Ours 25467 0.839 43.732 0.462 | 26.778 0.820 46.568  0.436

Method

Table 2: Efficiency comparison against the state-of-the-art methods.

APAP ELA LPC SPW UDIS UDIS++ TRIS SRS
Methods Ours
[25] [23]] (48] [49]] [132] [21] [50] (511

Time (ms) 6683.14 8347.79 13435.47 11651.68 193.66 79.73 107.98 83.17 67.04

4.2.2 Quantitative Evaluation

We employ a set of evaluation metrics, including PSNR [52]], SSIM [53]], SIQE [54], and LPIPS [55]],
to conduct a comprehensive performance assessment. According the UDIS++ [21], the test sets of
UDIS-D are categorized into three levels based on their complexity, and the corresponding quantitative
results are summarized in Table[I] Furthermore, to rigorously evaluate the generalization capability
of the proposed method, quantitative results on the IVSD dataset are also presented in Table[I] It is
evident that the proposed method outperforms other methods across multiple metrics, substantiating
its superiority further.

To further evaluate the efficiency of the proposed method, we present the processing time required by
each comparative method for image stitching at a size of 512 x 512, with the results summarized
in Table[2] It can be observed that, although our method involves deep estimation and inference
processes, the overall running time is still better than that of the other methods, making it more
suitable for practical applications.

4.2.3 User Study

To evaluate the subjective performance of our method, we conducted a user study to assess the visual
quality of the stitched images. The input and output images were organized according to their scene
categories, and participants were presented with a set of input images alongside the corresponding
output images generated by each comparison method. Participants were asked to evaluate quality
from multiple perspectives, including ghosting, misalignment, structural accuracy, and realistic scene
restoration. They were allowed to zoom in or out for detailed observation and were instructed to
rate each image on a scale of 1 to 5 based on visual quality. The study involved 50 participants,
including 30 researchers or students with a background in computer vision and 20 individuals without
specific expertise. The results of the user study, as illustrated in Fig.[4] demonstrate that our method
consistently received higher ratings compared to other methods.

4.3 Ablation Studies

Loss Function Evaluation. We conduct a comprehensive ablation study to analyze the impact
of different constraints in the depth-aware transformation estimation and soft-seam based multi-
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Figure 4: Visual quality survey.

Figure 5: Ablation study on different loss components.

view fusion modules, respectively. During the experiments, we would like to clarify that L.qge
and L4 exhibit complementary effects, where retaining one constraint alone renders the other
nearly ineffective. Therefore, we combine these constraints into a unified loss term, denoted as
mesh loss L5, for ablation analysis. As shown in Fig. |§[, the removal of mesh constraints in the
transformation estimation leads to noticeable distortions in the deformed images, while the absence
of fusion module constraints hinders the model’s ability to compensate for stitching errors caused by
insufficient local alignment. Furthermore, the lack of depth supervision not only increases the visual
errors in both transformation and fusion but also degrades the overall accuracy of the method. The
quantitative results across the entire UDIS-D dataset are presented in Fig. [5]and Table. 3] Although
the ablation of mesh constraints marginally improves certain metrics by relaxing the image distortion
limits, this improvement is not meaningful from a visual perspective.

Soft-Seam Fusion Evaluation. We also perform an ablation study of the fusion strategy compared
with average fusion and seam cutting [27]]. As shown in Fig.[7] the first row exhibits the gradient
results from different fusion strategies and the second row visualizes the corresponding fusion regions.
We can see that a larger fusion region increases the likelihood of ghosting artifacts. However, an
excessively small fusion region may result in insufficient gradient smoothness. The proposed soft-
seam fusion strategy adaptively preserves gradient continuity to the greatest extent, facilitating natural
and seamless results.

Adaptive Mask Evaluation. The fusion mask in our method is derived from an adaptive weight
matrix based on the soft-seam region. A comparison with the absolute weight derived from traditional
seam-based methods is illustrated in Fig.[8] The result produced by our method exhibits a more
visually appealing effect and smoother region.

Reparameterization Evaluation. We test 10 thresholds for hyperparameter selection, where ¢ = 1
represents the original model and ¢ = 0 represents the model without RBA. Results shown in Fig. 9]
indicate that both the original model and the full reparameterization model cannot perform the best.
The model with ¢ = 0.25 realizes the best performance, while maintaining efficient training.

w/o ‘cmesh

Ours

Loss [PSNR(1)|SSIM(1)/SIQE(1)|LPIPS({)
WIo Lomootn] 25431 | 0.833 | 43.156 | 0.466
Wio Loos: | 25438 | 0.836 | 43.186 | 0.463
W0 Lsmooth W/O Lyeg 25.432 | 0.837 | 43.651 | 0.463
WIo Lonesn | 25.473 | 0.840 | 43.701| 0.463
WI0 Laepe, | 25434 | 0.838 | 43.703 | 0.463
A Ours | 25.470 | 0.839 | 43.732 | 0.462

Figure 6: Ablation study on loss function. Table 3: Ablation study on loss components of transfor-
mation estimation and multi-view fusion models.
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Figure 7: Ablation study of the fusion strategy. The corresponding fusion regions are visualized on
the right part.
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Figure 9: Ablation study on the hyperparameter ¢

5 Limitations

The proposed method is primarily designed for stitching two images and currently lacks full capability
to address the challenges associated with multi-image panoramic stitching. Key limitations include
difficulties in maintaining loop consistency and mitigating global error propagation in complex
scenarios. These issues can compromise the geometric coherence of the final output, thereby
constraining the method’s robustness and broader applicability.

6 Conclusion

This paper proposed a depth-supervised image stitching method designed to address the alignment
challenges in large parallax scenarios and achieve seamless wide field-of-view reconstruction. Firstly,
a depth-aware two-stage transformation estimation is developed, which leverages depth-consistency
priors to align targets across varying depth ranges. Secondly, a soft-seam region diffusion strategy
is introduced to accurately identify transition regions, enabling natural and smooth fusion while
mitigating ghosting and misalignment issues. Additionally, the reparameterization strategy for shift
regression enhances the adaptability and reduces computational overhead. Extensive experiments
validate the effectiveness of the proposed method. Although our method can improve multi-view
alignment and fusion performance by leveraging depth consistency guidance, the presence of dynamic
elements in the scene poses challenges for obtaining accurate depth information. In the future, we
will focus on robust stitching under dynamic conditions to further enhance alignment robustness in
such scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .
Justification: We have claimed the contribution and scope in the abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: In the conclusion section, we discuss the limitations of the proposed method
and potential directions for future improvements.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: We provide a detailed description of the implementation details required to
reproduce this algorithm within the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] .
Justification: We are willing to open access our source data and code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: We provide a detailed description of the training and testing procedures.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We have provided an explanation and clarification of the accuracy of the
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We have provided a detailed description of the computational resources
required for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .
Justification: We conform with the NeurIPS Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We have discussed and analyzed the positive impact of the proposed method
on subsequent visual applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper does not involve data or models that have a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: The creators or original owners of the assets used in the paper, including
code, data, and models, are properly credited. The licenses and terms of use are explicitly
mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: This paper did not employ LLMs in our methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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