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FROM PAST TO PATH: MASKED HISTORY LEARNING
FOR NEXT-ITEM PREDICTION IN GENERATIVE REC-
OMMENDATION

ABSTRACT

Generative recommendation, which directly generates item identifiers, has
emerged as a promising paradigm for recommendation systems. However, its
potential is fundamentally constrained by the reliance on purely autoregressive
training. This approach focuses solely on predicting the next item while ignor-
ing the rich internal structure of a user’s interaction history, thus failing to grasp
the underlying intent. To address this limitation, we propose Masked History
Learning (MHL), a novel training framework that shifts the objective from sim-
ple next-step prediction to deep comprehension of history. MHL augments the
standard autoregressive objective with an auxiliary task of reconstructing masked
historical items, compelling the model to understand “why” an item path is formed
from the user’s past behaviors, rather than just “what” item comes next. We in-
troduce two key contributions to enhance this framework: (1) an entropy-guided
masking policy that intelligently targets the most informative historical items for
reconstruction, and (2) a curriculum learning scheduler that progressively transi-
tions from history reconstruction to future prediction. Experiments on three public
datasets show that our method significantly outperforms state-of-the-art generative
models, highlighting that a comprehensive understanding of the past is crucial for
accurately predicting a user’s future path. The code will be released to the public.

1 INTRODUCTION

Recommender systems have become essential tools for navigating the vast digital landscape, evolv-
ing from collaborative filtering (Wang et al., 2015; Li et al., 2024; Chen et al., 2018) to sequential
models that capture user behavior dynamics (Purificato et al., 2024; Yuan et al., 2023; He et al.,
2023). A new paradigm, generative recommendation (Rajput et al., 2023; Muennighoff et al., 2025),
has recently emerged, offering powerful new ways to model user preferences. This approach adapts
pre-trained language models like T5 (Rajput et al., 2023; Bao et al., 2023) and utilizes large language
models (Hou et al., 2025b) to directly generate a sequence of semantic IDs representing the items to
be recommended (Hua et al., 2023; Zhai et al., 2024), thus providing unprecedented flexibility.

However, despite their architectural diversity, these models share a fundamental limitation: they are
trained almost exclusively to predict the next single item, rather than to understand the path that
led there. This narrow focus on autoregressive next-item prediction, while intuitive, prioritizes local
transitions over global understanding of user behavior. We argue that this paradigm produces models
skilled at forecasting the immediate future but weak at understanding the user’s past. It hinders the
ability to capture crucial long-range dependencies and the underlying intent driving user behavior,
limiting the accuracy to predict a complex user’s path (see Appendix A for the pilot experiment).

For example, as shown in Fig. 1, consider the purchasing path of a photography enthusiast, who
interacts with the following items in order: camera body, tripod, camera bag, and camera lens.
Although the ground truth for the subsequent purchase is the memory card, existing models, fixated
on recent item (camera lens), often incorrectly predict other lens-related accessories. The user’s
intention is a direct continuation of purchasing the initial camera body, but this intention is obscured
by intermediate items. Due to the inability to fully internalize the underlying intention associations
behind items along the purchasing path, existing autoregressive models are trained merely to predict
“what comes next,” but cannot effectively understand “why this path matters.”
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Figure 1: Prediction comparison between the
traditional generative recommendation system
and the proposed MHL framework.

To address this limitation, we introduce Masked His-
tory Learning (MHL), a novel training framework
for generative recommendation. Specifically, we aug-
ment next-item prediction with an auxiliary objective
of reconstructing masked items within historical paths.
This approach shifts the learning paradigm from pre-
dicting results to understanding the process, yielding
three key advantages: (a) Capturing Logical Depen-
dencies. MHL compels the model to understand the
intrinsic associations between masked items and other
items, thereby shifting the focus from statistical co-
occurrence to the logical structure of a user’s path. For
example, by reconstructing the masked historical item
“tripod”, the model is forced to learn that “tripod” is a
logical complement to a “camera body” purchase. (b)
Inferring Latent User Intent. The deep understand-
ing of paths enables models to look beyond a user’s ex-
plicit behaviors and infer the latent intent driving them.
Models can learn to comprehend a coherent and higher-level goal (such as an intent of “pursuing
professional photography”) from seemingly disparate items (such as cameras, bags, and future ac-
cessories). (c) Learning Robust and Generalizable Representations. The history reconstruction
objective inherently enhances the quality of the learned representations. To reconstruct history ac-
curately, the model must prioritize strong, logically consistent signals while learning to discount
irrelevant or noisy interactions that provide poor contextual clues. This focus on the core signal
results in item representations that are more stable and less susceptible to incidental deviations in
behavior.

We validate the proposed MHL at multiple granularities: item-, token-, and mixed-level, consis-
tently observing performance gains. To refine this learning process, we introduce two key inno-
vations. First, moving beyond random masking, we propose an adaptive strategy guided by in-
formation theory (MacKay, 2002). We selectively mask items sharing high entropy with others,
creating challenging training signals that focus on significant behavioral patterns. Second, we em-
ploy curriculum learning (Bengio et al., 2009) to connect the history reconstruction training with
autoregressive inference. The training process begins with a warmup phase (He et al., 2016) using
random masking, followed by a transition to a high masking ratio guided by entropy to build deep
contextual understanding. The ratio is gradually reduced to prepare the model for path generation.

We conduct extensive experiments on three categories of the Amazon Reviews 2014
dataset (McAuley et al., 2015). The results demonstrate that understanding the past significantly en-
hances the model’s ability to predict future paths, outperforming state-of-the-art baselines on metrics
like Recall@K and NDCG@K. The contributions of this paper can be summarized as follows:

• We identify a key limitation in generative recommenders: training dominated by next-step predic-
tion overlooks deep understanding of user history. We address this by proposing Masked History
Learning, which jointly learns to reconstruct a user’s past to better predict their future path.

• We design two strategies to enhance our framework: entropy-guided masking to focus on the
most informative historical parts, and curriculum learning to bridge the gap between under-
standing history and generating future paths.

• Extensive experiments on three categories of the Amazon Reviews 2014 dataset validate our ap-
proach’s effectiveness, achieving new state-of-the-art results for generative recommendation.

2 RELATED WORK

Sequential Recommendation. Sequential recommendation aims to model user behavior over time
to predict future interactions. Early methods use Markov chains to capture item-to-item transi-
tions (Rendle et al., 2010). Deep learning has since transformed this field. Modern approaches em-
ploy various neural architectures including recurrent neural networks (Hidasi et al., 2016; Li et al.,
2017; Yue et al., 2024), convolutional neural networks (Tang & Wang, 2018), Transformers (Kang &
McAuley, 2018; Sun et al., 2019), and graph neural networks (Chang et al., 2021; Wu et al., 2019).
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While most sequential models are trained autoregressively, some studies have explored alternative
learning objectives that go beyond simple next-item prediction. BERT4Rec (Sun et al., 2019) and
S3-Rec (Zhou et al., 2020) use masked item prediction with bidirectional encoders to learn rich
contextual representations for discriminative recommendation. These models randomly mask items
in user sequences and learn to reconstruct them using full bidirectional context. This approach helps
models capture richer dependencies compared to purely left-to-right training. Despite this success,
the generative recommendation paradigm has remained largely autoregressive.

Generative Recommendation. Recent advances in generative models have introduced a new
paradigm for recommendation systems. This approach shifts from discriminative to generative
frameworks (Rajput et al., 2023). Inspired by generative retrieval (Tay et al., 2022; Wang et al.,
2022), these methods tokenize items into discrete semantic identifiers. Sequence-to-sequence mod-
els can then directly generate these identifiers as recommendations.

Two main approaches have emerged in generative recommendation. The first leverages Large Lan-
guage Models (LLMs) through zero-shot prompting (Gao et al., 2023; Harte et al., 2023) and in-
struction tuning (Muennighoff et al., 2025) to align LLMs with user behaviors. The second focuses
on semantic ID-based generation, where items are first encoded as discrete token sequences (Rajput
et al., 2023) derived from quantizing dense representations (Hua et al., 2023; Wang et al., 2024),
then autoregressively decoded to produce recommendations (Zhai et al., 2024).

Despite their flexibility and scalability, existing generative recommenders (Rajput et al., 2023; Wang
et al., 2024; Hou et al., 2025b) share a common limitation: they rely almost exclusively on autore-
gressive training that predicts the next item token given previous tokens. This left-to-right approach
focuses on local transitions but may miss internal dependencies and underlying user intent.

Our Contribution. Our study addresses this gap by introducing history reconstruction learning
to generative recommendation. Unlike BERT4Rec and S3-Rec, which employ masked prediction
within bidirectional encoders to learn representations for discriminative scoring tasks, our proposed
MHL augments standard unidirectional, decoder-only model with an auxiliary historical reconstruc-
tion objective. This design preserves the model’s native autoregressive generation capability while
enriching the training signal through deeper historical understanding. We further introduce entropy-
guided masking to focus learning on the most informative historical patterns and curriculum learn-
ing to seamlessly transition from history understanding to future path generation. Together, these
contributions establish a new training paradigm for generative recommenders that emphasizes un-
derstanding the past to better predict future paths.

3 METHOD

This section introduces proposed Masked History Learning (MHL) framework. MHL jointly learns
to reconstruct a user’s past and predict the future path. We enhance the framework with two strate-
gies: entropy-guided masking and curriculum learning. We first present the preliminaries of gener-
ative recommendation. Then we detail the MHL framework and its two enhancement strategies.

3.1 PRELIMINARY

Generative recommendation models the recommendation task as an end-to-end sequence generation
task. Given a sequence of user’s historical interaction items ST = {ϕ(i1), . . . , ϕ(iT )}, each item
it ∈ I is represented by its unique semantic ID (denoted as wit ):

ϕ(it) = {w1
it , w

2
it , . . . , w

K
it } (1)

which contains K codewords, and each codeword at position k belongs to a fixed codebook Wk. The
generative recommendation model is required to predict the semantic ID of the next item ϕ(iT+1).

Naturally, the training objective follows the standard autoregressive sequence generation task to
maximize the conditional log-likelihood of the next item:

max
θ

logPθ

(
ϕ(iT+1) | ST

)
= max

θ

K∑
k=1

logPθ

(
wk

iT+1
| ST , w

<k
iT+1

)
(2)
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Figure 2: Overview of the proposed MHL framework. It enhances generative recommendation
using a masked history learning objective. A curriculum training scheduler manages its three distinct
phases, beginning with a random masking warm-up, transitioning to an adaptive entropy-guided
masking strategy, and concluding with a fine-tuning stage without masking.

During inference, the model decodes the most probable semantic ID for a historical item sequence.
The generated semantic ID is then used to retrieve the corresponding item from the catalog as the
next predicted item for recommendation (Rajput et al., 2023).

3.2 MASKED HISTORY LEARNING FRAMEWORK

The above training objective of the conventional generative recommendation model mainly focuses
on predicting the next item but neglects the learning of the ability to understand user history. There-
fore, we propose MHL, which enables the model to reconstruct masked items in the user’s historical
sequence. Specifically, we have designed three masking strategies with different granularities.

Item-level Masking. This strategy masks entire items within the historical sequence. We select
a subset of items and replace their whole semantic ID codewords with “[MASK]” tokens. For an
selected item it, its item-level masked semantic ID representation is:

ϕ̃(it) = {[MASK1], [MASK2], . . . , [MASKK ]} (3)
It forces the model to reconstruct items from context and learn item-to-item dependencies.

Token-level Masking. This strategy masks individual codewords within the semantic ID sequence.
For a selected subset of items, we replace one or more of their semantic ID codewords with
“[MASK]” tokens. For selected item it, its token-level masked semantic ID can be:

ϕ̃(it) = {w1
it , [MASK2], w3

it , . . . , [MASKK ]} (4)
It allows the model to learn fine-grained semantic relationships between codewords, which is crucial
for modeling sub-item-level attributes and enhancing the generalization of item representation.

Mixed Masking. This strategy combines item- and token-level masking. For each selected item, we
randomly choose between the two masking approaches to provide comprehensive training signals.
It promotes a deeper understanding of both item-level and codeword-level relationships.

Base on the original historical sequence ST , we apply the proposed mask strategies to obtain the
masked sequence S̃T for training. We define a joint loss function with the following two objectives:

1) Next-Item Prediction Loss. It follows the popular autoregressive paradigm, predicting the se-
mantic ID of the next item based on the masked historical sequence S̃T . The loss is defined as:

Lnext = − logPθ

(
ϕ(iT+1)

∣∣∣ S̃T

)
(5)
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In practice, it is the average of digit-wise cross-entropy over K codeword positions.

2) Masked History Reconstruction Loss. It reconstructs original semantic IDs at masked posi-
tions in a non-autoregressive manner. Let M denote the set of all masked codewords in S̃T . The
reconstruction loss is defined as follows:

Lmask = − 1

|M|
∑
w∈M

logPθ

(
w
∣∣∣ S̃T

)
(6)

It is noted that only the cross-entropy loss at masked positions is averaged.

The overall loss combines both next-item prediction and masked history reconstruction losses:

LMHL = λ1 · Lnext + λ2 · Lmask (7)

where λ1 and λ2 are weighting parameters to balance the two tasks. If there are no masked items,
only the next-item prediction loss is retained.

3.3 ENTROPY-GUIDED MASKING

When we training with MHL framework, there is still a core challenge: which items should be
selected for masking? An intuitive approach is to randomly select items for masking. It will serve
as our baseline strategy. However, random masking may be inefficient for training, causing the
model to easily predict frequent items and rendering reconstruction insignificant. More importantly,
this fails to address our core motivation: understanding the logical dependencies and latent intent
behind user paths. Therefore, we further introduce Entropy-Guided Masking into the proposed MHL
framework, to alleviate both issues by intelligently masking the most challenging and informative
positions in user history.

We measure prediction uncertainty using predictive entropy, where a high-entropy prediction indi-
cates uncertain probability distributions, revealing that the model struggles to understand the reasons
why the predicted item appears at its position in the interaction path. By precisely targeting and
masking high-entropy positions, we implicitly force the model to reconstruct items via understand-
ing underlying user intent and deeper contextual reasoning, thereby guiding the model to learn more
robust and generalizable representations.

Specifically, for token-level masking, we compute entropy for each codeword in original user’s his-
torical sequence ST . For any item it in the path, its K codewords are embedded (denoted as Emb(·))
and then input into the mean-pooling layer (denoted as Mean-pooling(·)) as the item representation:

E(it) = Mean-pooling
(
Emb(ϕ(it))

)
(8)

Then a transformer decoder (denoted as Dec(·)) captures the dependencies among the representation
sequences of items:

DT = Dec({E(i1), . . . , E(iT )}) (9)

For a codeword wk
it

at position k of item it, its entropy is:

H(wk
it) = −

∑
w∈Wk

P k
θ

(
w | DT

)
logP k

θ

(
w | DT

)
, (10)

where Wk is the codebook for the k-th position. The probabilities are computed with temperature
scaling, P k

θ (w | DT ) = softmax(MLPk(DT )/τ).

For item-level masking, the entropy for an entire item it is the aggregation of its constituent code-
word entropies:

H̄
(
ϕ(it)

)
=

1

K

K∑
k=1

H(wk
it) (11)

Based on the entropy scores, we can select top-N tokens or items to mask.
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3.4 CURRICULUM TRAINING SCHEDULER

While entropy-guided masking helps the model focus on understanding logical dependencies in user
paths, our preliminary experiments indicate that a static masking strategy is usually sub-optimal.
High-ratio masking from scratch may prevent the model from grasping basic sequential patterns
before tackling complex user intent inference. In addition, the difference between the next-item
prediction task and the masked history reconstruction task requires us to consider how to careful
bridge the gap between historical understanding and future path generation in the learning process.
Consequently, we design a curriculum training scheduler that gradually transitions from learning
“why this path matters” to predicting “what comes next.” The scheduler is divided into three phases.

Phase I: Warm-up with Random Masking. Training begins with low-complexity random mask-
ing. This allows the model to learn fundamental reconstruction and next-item prediction. It estab-
lishes a baseline understanding of sequential patterns.

Phase II: Entropy-Guided Training with Adaptive Ratio. After warm-up, we adopt entropy-
guided masking to increase difficulty. We mask the top-N high predicted entropy tokens/items, and
set a masking ratio γ to control the upper limit of N . For the token-level and item-level masking, N
is a random integer with a value range of [1, ⌊γ ·K ·T ⌋] and [1, ⌊γ ·T ⌋], respectively. Masking ratio
adaptively decreases from an initial value of γ0 as the validation performance plateaus.

Phase III: Fine-tuning without Masking. In the final phase, we set γ = 0 to remove the masked
history reconstruction task. The model is trained on original historical sequence ST with only the
next-item prediction objective. This ensures that the model can focus on fine-tuning next-item infer-
ence tasks. It mitigates train-test discrepancy and improves real-world performance.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate models on three Amazon product categories: Sports and Outdoors, Beauty,
and Toys and Games from the Amazon Reviews 2014 dataset (McAuley et al., 2015). We prepro-
cess each category with core-5 filtering (He & McAuley, 2016). This retains only users and items
with at least five interactions to ensure sufficient density for sequential modeling. For item meta-
data, we concatenate title, price, brand, feature, categories, and description into natural language
sentences. This facilitates semantic representation learning following recent practice in generative
recommendation (Wang et al., 2024). Table 10 from Appendix B shows detailed dataset statistics.

Baselines. We evaluate against comprehensive baselines in two categories: item ID-based meth-
ods and semantic ID-based approaches. Item ID-based methods operate directly on item IDs:
GRU4Rec (Hidasi et al., 2016), HGN (Ma et al., 2019), SASRec (Kang & McAuley, 2018),
FDSA (Hao et al., 2023), BERT4Rec (Sun et al., 2019), Caser (Tang & Wang, 2018), S3-Rec (Zhou
et al., 2020). Semantic ID-based approaches tokenize items into discrete semantic identifiers for
generative recommendation: VQRec (Hou et al., 2023), RecJPQ (Petrov & Macdonald, 2024),
TIGER (Rajput et al., 2023), HSTU (Zhai et al., 2024), RPG (Hou et al., 2025a).

Evaluation Metrics. We evaluate recommendation performance using Recall@K and NDCG@K
with K=5 and 10. Following prior works (Kang & McAuley, 2018; Rajput et al., 2023; Sun et al.,
2019; Hou et al., 2025a), we adopt standard leave-one-out strategy. For each user sequence, the last
item is reserved for testing, the second-to-last for validation, and the remaining items for training.

Implementation Details. We encode item metadata (e.g., title, brand, price) with Sentence-T5-
base (Ni et al., 2022). The resulting 768-dimensional embeddings are reduced to 128 dimensions
via PCA and then discretized into sequences of 32 semantic tokens using FAISS-based optimized
product quantization (OPQ) (Ge et al., 2014). Our backbone is a Transformer decoder, identical
to the one used in RPG (Hou et al., 2025a), featuring a hidden size of 448, two layers, and four
attention heads. The model is trained to jointly optimize next-item prediction and masked token
reconstruction with equal weights. We apply an entropy-guided curriculum masking strategy, and
early stopping is used when the mask ratio decays to zero. During optimization, we use AdamW
with a learning rate of 5e-4, a batch size of 64, and cosine scheduling with 10k warmup steps.
Inference is performed with graph-constrained beam search (Hou et al., 2025a) (beam size 50, 3
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Table 1: Performance comparison of Item ID-based and Semantic ID-based models across three
datasets. * denotes results reproduced using both the code and parameters from the authors.

Model
Beauty Toys and Games Sports and Outdoors

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Item ID-based

Caser
GRU4Rec
HGN
BERT4Rec
SASRec
FDSA
S3-Rec

.0205 .0131 .0347 .0176 .0166 .0107 .0270 .0141 .0116 .0072 .0194 .0097

.0164 .0099 .0283 .0137 .0097 .0059 .0176 .0084 .0129 .0086 .0204 .0110

.0325 .0206 .0512 .0266 .0321 .0221 .0497 .0277 .0189 .0120 .0313 .0159

.0203 .0124 .0347 .0170 .0116 .0071 .0203 .0099 .0115 .0075 .0191 .0099

.0387 .0249 .0605 .0318 .0463 .0306 .0675 .0374 .0233 .0154 .0350 .0192

.0267 .0163 .0407 .0208 .0228 .0140 .0381 .0189 .0182 .0122 .0288 .0156

.0387 .0244 .0647 .0327 .0443 .0294 .0700 .0376 .0251 .0161 .0385 .0204

Semantic ID-based

RecJPQ
VQ-Rec
TIGER
HSTU
RPG*

.0311 .0167 .0482 .0222 .0331 .0182 .0484 .0231 .0141 .0076 .0220 .0102

.0457 .0317 .0664 .0383 .0497 .0346 .0737 .0423 .0208 .0144 .0300 .0173

.0454 .0321 .0648 .0384 .0521 .0371 .0712 .0432 .0264 .0181 .0400 .0225

.0469 .0314 .0704 .0389 .0433 .0281 .0669 .0357 .0258 .0165 .0414 .0215

.0500 .0358 .0745 .0436 .0550 .0386 .0778 .0460 .0284 .0197 .0436 .0246

MHL (ours) .0574 .0424 .0795 .0495 .0656 .0471 .0885 .0544 .0342 .0243 .0484 .0289

propagation steps). The models are trained for up to 300 epochs on NVIDIA RTX A6000 GPUs.
More details can be found in Appendix C.

4.2 EXPERIMENTS

Overall Performance. Table 1 presents the results across three Amazon product categories. We can
find that MHL consistently achieves state-of-the-art performance. In addition, the results confirm
that semantic ID-based models outperform traditional item ID-based approaches, with MHL leading
all baselines, including strong competitors like TIGER and HSTU. The performance improvements
are substantial. For example, MHL achieves a 27.1% improvement over TIGER in the NDCG@5
score for Sports and Outdoors. This validates our claim: understanding why a user path is formed is
crucial for predicting what comes next. MHL’s superior performance demonstrates three key bene-
fits. First, by reconstructing masked historical items, the model learns logical dependencies between
items rather than co-occurrence patterns. Second, the entropy-guided masking forces the model to
focus on the most informative and challenging positions in user history, precisely where latent in-
tent is obscured. Third, the curriculum learning bridges the gap between history understanding and
future prediction, ensuring a smooth transition from learning “why this path matters” to predicting
“what comes next”. These targeted learning mechanisms enable MHL to consistently outperform
baselines. The framework’s effectiveness is particularly evident on the complex dataset like Sports
and Outdoors, where logical item relationships are more nuanced and user intent is harder to infer.

Ablation Study. We conduct systematic ablation studies to understand each component’s contribu-
tion within MHL. We evaluate six model variants across three masking strategies: Direct Inference
(Inf) without masking, Random masking (R), and Entropy-guided masking (E). We also test three
curriculum learning strategies: R→Inf, E→Inf, and the complete R→E→Inf framework. Table 2
validates our framework design through three key findings. First, all masking variants significantly
outperform direct inference, demonstrating that reconstructing user history provides a richer learn-
ing signal. Second, entropy-guided masking consistently surpasses random masking, indicating
that targeting high-entropy predictions is more effective for guiding the model to understand user
intent. Finally, the complete R→E→Inf curriculum learning framework achieves optimal perfor-
mance. This validates our curriculum design: starting with basic pattern learning through random
masking, progressing to targeted understanding via entropy guidance, and finally fine-tuning for di-
rect prediction. This progression mirrors the learning objective of transitioning from “why this path
matters” to “what comes next”.

4.3 FURTHER ANALYSIS

Impact of Semantic ID Length. We investigate how semantic ID length affects performance by
varying codebook sizes from 4 to 64. As shown in Table 3, performance improves as codebook
size increases from 4 to 32, then plateaus or slightly declines at 64. A codebook size of 32 consis-
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Table 2: Ablation study comparing masking strategies and curriculum learning approaches with
codebook size 32 and mask ratio 0.15.

Mask
Strategy

Curriculum
Strategy

Beauty Toys and Games Sports and Outdoors

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

No Mask Direct Inference .0482 .0336 .0704 .0408 .0485 .0337 .0713 .0410 .0267 .0180 .0393 .0221

Token-level

Random .0547 .0330 .0815 .0417 .0605 .0356 .0886 .0446 .0307 .0173 .0461 .0222
Entropy-guided .0538 .0356 .0802 .0441 .0601 .0376 .0905 .0474 .0292 .0182 .0445 .0231
R→Inf .0533 .0367 .0793 .0451 .0609 .0400 .0895 .0489 .0332 .0225 .0478 .0272
E→Inf .0535 .0380 .0774 .0457 .0570 .0388 .0838 .0474 .0224 .0149 .0344 .0188
R→E→Inf .0568 .0411 .0814 .0490 .0634 .0458 .0880 .0538 .0191 .0123 .0296 .0156

Item-level

Random .0482 .0340 .0706 .0413 .0482 .0331 .0720 .0407 .0269 .0183 .0409 .0228
Entropy-guided .0491 .0338 .0726 .0414 .0490 .0337 .0719 .0410 .0251 .0171 .0372 .0210
R→Inf .0491 .0343 .0718 .0416 .0496 .0342 .0747 .0423 .0274 .0186 .0419 .0232
E→Inf .0516 .0359 .0748 .0433 .0513 .0358 .0749 .0433 .0266 .0182 .0400 .0225
R→E→Inf .0523 .0368 .0743 .0439 .0553 .0384 .0755 .0449 .0286 .0193 .0421 .0236

Mixed-level

Random .0521 .0350 .0805 .0441 .0539 .0347 .0825 .0440 .0321 .0195 .0481 .0247
Entropy-guided .0524 .0352 .0806 .0443 .0561 .0367 .0854 .0462 .0323 .0210 .0492 .0264
R→Inf .0535 .0374 .0803 .0461 .0556 .0384 .0815 .0468 .0329 .0218 .0490 .0269
E→Inf .0530 .0372 .0785 .0454 .0595 .0398 .0869 .0486 .0267 .0180 .0396 .0221
R→E→Inf .0537 .0383 .0784 .0463 .0613 .0434 .0855 .0511 .0327 .0223 .0484 .0274

tently achieves optimal performance across datasets, particularly for the mixed-level. Smaller code-
books (size 4) lack the capacity to capture rich semantic information, yielding suboptimal results.
Conversely, larger codebooks (size 64) may introduce sparsity or excessive complexity, leading to
marginal performance decline. These findings suggest that semantic ID length must balance expres-
siveness with learnability. Size 32 provides an optimal trade-off, enabling diverse and meaningful
semantic representations without overwhelming the model with unnecessary complexity.

Table 3: Performance comparison across different codebook sizes with mask ratio 0.15.
Mask

Strategy
Codebook

Size
Beauty Toys and Games Sports and Outdoors

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Token-level

4 .0406 .0291 .0568 .0343 .0434 .0298 .0638 .0363 .0179 .0124 .0273 .0154
8 .0502 .0369 .0691 .0430 .0577 .0409 .0805 .0482 .0280 .0209 .0395 .0245

16 .0574 .0424 .0795 .0495 .0644 .0456 .0883 .0533 .0334 .0239 .0474 .0284
32 .0568 .0411 .0814 .0490 .0634 .0458 .0880 .0538 .0191 .0123 .0296 .0156
64 .0552 .0390 .0805 .0472 .0456 .0318 .0659 .0383 .0325 .0226 .0475 .0275

Item-level

4 .0344 .0253 .0516 .0308 .0385 .0259 .0576 .0320 .0151 .0107 .0242 .0136
8 .0458 .0329 .0646 .0390 .0503 .0359 .0716 .0427 .0249 .0180 .0366 .0218

16 .0501 .0363 .0704 .0429 .0553 .0390 .0802 .0470 .0265 .0184 .0403 .0227
32 .0523 .0368 .0743 .0439 .0553 .0384 .0755 .0449 .0286 .0193 .0421 .0236
64 .0509 .0358 .0731 .0429 .0494 .0347 .0678 .0406 .0273 .0179 .0417 .0226

Mixed-level

4 .0376 .0272 .0531 .0322 .0422 .0287 .0603 .0346 .0203 .0146 .0302 .0178
8 .0468 .0343 .0645 .0400 .0553 .0385 .0785 .0460 .0279 .0201 .0389 .0237

16 .0537 .0384 .0757 .0455 .0592 .0421 .0845 .0503 .0307 .0212 .0447 .0257
32 .0537 .0383 .0784 .0463 .0613 .0434 .0855 .0511 .0327 .0223 .0484 .0274
64 .0533 .0377 .0760 .0451 .0579 .0411 .0824 .0490 .0318 .0218 .0471 .0267

Sensitivity to Masking Ratio. Table 4 examines how different masking ratios (0.05 to 0.40) affect
performance when the Beauty dataset uses a codebook size of 32, while Toys and Games and Sports
and Outdoors use a 16-bit codebook. Results show that MHL is relatively stable across ratios, with
slight variations depending on the masking strategy and dataset. For token-level masking, ratios
between 0.10 and 0.25 yield consistently strong performance. Item-level masking shows similar
robustness, with 0.15 often achieving optimal results. Mixed-level masking maintains reasonable
performance across ratios but does not consistently outperform the specialized strategies, suggesting
that the combination approach provides a middle ground rather than universal superiority. This
stability indicates that MHL is robust to mask ratios, making it practical for real-world deployment.

Impact of Reconstruction Loss Weight. To evaluate the role of the reconstruction objective in
MHL, we vary the reconstruction loss weight from 0.2 to 1.0 while keeping the prediction loss
fixed at 1.0. Table 5 reports token-level performance on Beauty, Toys and Games, and Sports and
Outdoors datasets. The results show that higher reconstruction weights generally lead to better
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Table 4: Performance Sensitivity Analysis across Different Mask Ratios with Dataset-Specific Code-
book Sizes (32 for Beauty, 16 for Toys and Games / Sports and Outdoors).

Mask
Strategy

Mask
Ratio

Beauty Toys and Games Sports and Outdoors

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Token-level

0.05 .0571 .0408 .0811 .0485 .0522 .0357 .0730 .0424 .0245 .0170 .0365 .0209
0.10 .0567 .0404 .0817 .0484 .0656 .0471 .0885 .0544 .0139 .0093 .0230 .0122
0.15 .0568 .0411 .0814 .0490 .0644 .0456 .0883 .0533 .0334 .0239 .0474 .0284
0.20 .0550 .0398 .0781 .0472 .0610 .0437 .0861 .0518 .0342 .0243 .0484 .0289
0.25 .0562 .0402 .0803 .0479 .0611 .0436 .0870 .0519 .0347 .0244 .0474 .0285
0.30 .0554 .0397 .0796 .0475 .0623 .0442 .0874 .0522 .0339 .0235 .0478 .0280
0.35 .0558 .0394 .0791 .0470 .0603 .0422 .0858 .0504 .0341 .0241 .0485 .0287
0.40 .0546 .0389 .0785 .0466 .0596 .0421 .0851 .0503 .0325 .0236 .0452 .0276

Item-level

0.05 .0353 .0242 .0551 .0306 .0549 .0383 .0793 .0462 .0268 .0185 .0396 .0227
0.10 .0519 .0366 .0742 .0438 .0582 .0417 .0812 .0491 .0265 .0181 .0392 .0221
0.15 .0523 .0368 .0743 .0439 .0553 .0390 .0802 .0470 .0265 .0184 .0403 .0227
0.20 .0517 .0368 .0734 .0438 .0563 .0402 .0803 .0479 .0274 .0188 .0399 .0228
0.25 .0519 .0371 .0740 .0442 .0581 .0407 .0834 .0488 .0267 .0181 .0401 .0224
0.30 .0541 .0379 .0788 .0458 .0584 .0411 .0820 .0487 .0242 .0167 .0369 .0207
0.35 .0528 .0376 .0769 .0453 .0573 .0400 .0821 .0479 .0283 .0198 .0420 .0242
0.40 .0505 .0358 .0750 .0437 .0563 .0395 .0800 .0471 .0252 .0169 .0374 .0208

Mixed-level

0.05 .0525 .0373 .0766 .0450 .0571 .0406 .0856 .0497 .0316 .0222 .0462 .0269
0.10 .0539 .0378 .0782 .0456 .0599 .0423 .0834 .0499 .0334 .0232 .0469 .0276
0.15 .0537 .0383 .0784 .0463 .0592 .0421 .0845 .0503 .0307 .0212 .0447 .0257
0.20 .0537 .0380 .0781 .0459 .0580 .0414 .0835 .0496 .0331 .0230 .0468 .0274
0.25 .0544 .0383 .0797 .0464 .0609 .0426 .0858 .0507 .0300 .0206 .0451 .0255
0.30 .0529 .0372 .0767 .0449 .0610 .0422 .0873 .0506 .0317 .0223 .0468 .0271
0.35 .0530 .0375 .0776 .0454 .0591 .0418 .0840 .0498 .0313 .0222 .0454 .0267
0.40 .0524 .0369 .0759 .0445 .0568 .0395 .0825 .0478 .0315 .0219 .0470 .0269

Table 5: Token-level performance under varying reconstruction loss values (predict loss fixed at
1.0). Mask ratios: 0.15 for Beauty, 0.10 for Toys, 0.20 for Sports; codebook sizes: 32 for Beauty
and 16 for Toys/Sports.

Mask
Strategy

Reconstruction
Loss

Beauty Toys and Games Sports and Outdoors

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Token-level

1.0 .0574 .0424 .0795 .0495 .0656 .0471 .0885 .0544 .0342 .0243 .0484 .0289
0.8 .0554 .0404 .0793 .0481 .0628 .0454 .0865 .0530 .0342 .0246 .0480 .0290
0.6 .0549 .0401 .0790 .0479 .0614 .0438 .0856 .0515 .0314 .0222 .0456 .0269
0.4 .0533 .0382 .0768 .0458 .0593 .0423 .0849 .0506 .0321 .0225 .0462 .0270
0.2 .0526 .0376 .0758 .0450 .0587 .0413 .0834 .0493 .0327 .0226 .0461 .0269

recall and NDCG scores, with the best performance achieved at a weight of 1.0, indicating that the
reconstruction task provides effective self-supervised signals that complement the prediction loss.
Performance remains relatively stable in the 0.8–1.0 range but gradually declines when the weight
drops below 0.8, highlighting the importance of the reconstruction objective in learning meaningful
token representations. This suggests that improvements are not solely due to the prediction loss:
the masked reconstruction task itself significantly contributes to model performance, validating the
design choice of masking and reconstructing tokens during training and confirming the robustness
of MHL.

Generalizability to Text Sequences. To demonstrate MHL’s broader applicability, we apply our
framework to unstructured token sequences derived directly from item titles. Table 6 compares our
complete R→E→Inf strategy against RPG baseline on raw text tokens. MHL consistently outper-
forms RPG across all metrics on the Beauty dataset. This result is significant because it shows
that MHL’s core principle, reconstructing the past to predict the future, generalizes beyond discrete
semantic IDs to complex and noisy text sequences. The success on text sequences validates that
MHL captures fundamental learning dynamics rather than exploiting specific properties of seman-
tic ID representations. This generalizability highlights MHL’s potential for broader applications in
sequential modeling where understanding historical context is crucial for future prediction.

Case Study. As illustrated in Table 7, the baseline RPG model, trained solely on autoregressive
next-item prediction, often misinterprets a user’s intent by overemphasizing transient, noisy signals,
such as the mid-sequence clothing items. For example, its predictions for items like “Crew Sock”

9
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Table 6: Generalization study comparing MHL with RPG baseline on text-based token sequences
using mixed masking strategy.

Mask
Strategy

Training
Method

Beauty Toys and Games Sports and Outdoors

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Text w/o Mask RPG .0297 .0212 .0439 .0258 .0323 .0234 .0446 .0273 .0134 .0094 .0203 .0117

MHL (ours) R→E→Inf .0338 .0238 .0483 .0285 .0347 .0249 .0498 .0297 .0150 .0106 .0237 .0134

deviate from the user’s primary and recurring interest in athletic gear and accessories. In contrast,
the proposed MHL framework, by requiring the model to reconstruct a user’s historical trajectory,
encourages it to identify and prioritize the core underlying intent. As a result, MHL can look beyond
short-term deviations and accurately predict the next item “Youth Multi-Sport Helmet”, which aligns
logically with the user’s sustained interest in firearm-related products.

Table 7: Case study comparison between MHL and the RPG baseline.
Historical Purchase Sequence

Footwear Adhesive → Running Waist Pack → Cardio Trampoline → Heavyweight
T-Shirt → BMX Pads → ?

MHL Prediction (Top-5) RPG Prediction (Top-5)
Youth Multi-Sport Helmet ✓

NBA Street Basketball
Mini Basketball Hoop

Indoor/Outdoor Basketball
NBA Game Ball Mini

Crew Sock
Eco Open Bottom Pant

Training T-shirt
Jersey Pants

Long Sleeve Cotton T-Shirt

5 CONCLUSION

Existing generative recommenders focus on predicting “what comes next” but fail to understand
“why this path matters”. We introduce MHL, a simple and effective framework that learns from
masked history reconstruction alongside next-item prediction. MHL incorporates entropy-guided
masking to target informative historical positions and curriculum learning to transition from history
understanding to future prediction. Experiments on three datasets show state-of-the-art performance
and successful generalization to text-based Item IDs. Our findings confirm that understanding the
past is crucial for predicting the future. MHL represents a significant step toward recommendation
systems that comprehend user behavior patterns rather than merely statistical co-occurrence.
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A PILOT EXPERIMENT

To illustrate the motivation of this paper, we conduct a pilot experiment to examine whether models
trained with the standard next-item prediction paradigm overly rely on recent interactions, poten-
tially neglecting the user’s past behaviors. Specifically, on the Toys and Games dataset, for se-
quences longer than 20 in the test set, we remove the last 15 items and treat the truncated sequences
as a new test set, using the first item of each truncated sequence as the prediction target to evaluate
the models’ ability to capture both short-term and long-term dependencies.

The results of full-sequence and truncated-sequence evaluation are shown in Table 8. Under the
full sequence setting, MHL outperforms RPG across all metrics, achieving an 18.23% improvement
on N@10. In the truncated setting, which emphasizes longer-range dependencies, the improvement
is even larger, reaching 43.95%, indicating that MHL not only captures both short-term and long-
term user preferences, but also better understands the overall sequence context. This comparison
demonstrates that MHL more effectively models user behavior, whereas RPG tends to rely more
heavily on recent interactions.

To further validate MHL’s ability to capture long-term user intent, we conduct a length-stratified
analysis, reported in Table 9. We bucket the test sequences by length and compute N@10 for both
RPG and MHL. RPG exhibits an inverted-U performance curve: it performs reasonably well on
medium-length sequences but struggles on very short or very long sequences. For instance, se-
quences longer than 50 items see RPG’s N@10 drop to 0.0375, while MHL boosts it to 0.0577,
corresponding to a 53.33% relative improvement. Overall, MHL consistently outperforms RPG
across all length buckets, and the relative improvement is most pronounced for the extremely long
sequences. These results confirm that MHL effectively captures long-term user preferences rather
than relying primarily on recent interactions, further supporting the motivation for our proposed
approach.

B STATISTICS OF THE DATASET

The detailed statistics of Amazon Reviews 2014 datasets is shown in Table 10.

C DETAILED IMPLEMENTAL DETAILS

We encode item metadata (title, brand, price, features, categories, description) using Sentence-T5
and reduce 768-dimensional embeddings to 128 dimensions with PCA. Following RPG (Hou et al.,
2025a), we discretize continuous representations into generative semantic IDs using FAISS-based
OPQ. Each item is represented as a sequence of 32 tokens (32 codebooks with 256 codewords each).

13



Under review as a conference paper at ICLR 2026

Table 8: Comparison of RPG and MHL on the Toys dataset. “Full” denotes evaluation on complete
sequences, while “Truncated” denotes evaluation on the prefixes of long sequences. The last column
reports relative N@10 improvement from Full to Truncated.

Setting Model
Toys and Games N@10

↑ (%)R@5 N@5 R@10 N@10

Full RPG .0550 .0386 .0778 .0460 –
Full MHL (ours) .0656 .0471 .0885 .0544 18.23%

Truncated RPG .6355 .4823 .7454 .5176 –
Truncated MHL (ours) .8460 .7208 .9199 .7451 43.95 %

Table 9: Length-stratified N@10 performance of RPG and MHL on the Toys and Games test set.
The last column shows the relative improvement of MHL over RPG.

Test Set Toys and Games Rel. Improvement (%)
RPG N@10 MHL N@10

Full 0.0460 0.0544 18.23
≤ 10 0.0475 0.0548 15.37

(10,20] 0.0377 0.0515 36.61
(20,30] 0.0332 0.0426 28.31
(30,40] 0.0621 0.0680 9.49
(40,50] 0.0653 0.0912 39.60
> 50 0.0375 0.0577 53.33

Our backbone is a Transformer decoder with the same parameter size as RPG (Hou et al., 2025a):
hidden size 448, 2 layers, 4 attention heads, feed-forward dimension 1024, and GELU activation.
Maximum sequence length is 50 with dropout 0.3 for embeddings and attention modules.

For training, we jointly optimize next-item prediction and masked token reconstruction with equal
weights. We use entropy-guided curriculum masking: training starts with random masking, then
switches to entropy-based masking; if validation does not improve for 5 consecutive evaluations,
mask ratio decays linearly by 0.1× r0 (with r0 = 0.15) until reaching 0. After this, the model trains
purely on prediction with early stopping patience of 20. Entropy forward propagation stabilizes
masking decisions using window size 3, decay factor 2.0, and residual mixing coefficient 0.2 across
item-level and token-level entropies.

During inference, we follow RPG (Hou et al., 2025a) and apply graph-constrained beam search with
beam size 50, each node keeping 50 edges, and 3 propagation steps. Optimization uses AdamW
with learning rate 5e-4, batch size 64, weight decay 0.0, gradient clipping 1.0, 10k warmup steps,
and cosine learning rate scheduling. We train for up to 300 epochs with early stopping patience of
20. All experiments use NVIDIA RTX A6000 GPUs with distributed training and mixed precision.
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Table 10: Statistics of the Amazon Reviews 2014 datasets. “Avg. t” denotes the average number of
interactions per input sequence.

Datasets #Users #Items #Interactions Avg. t

Beauty 22,363 12,101 176,139 8.87
Toys and Games 19,412 11,924 148,185 8.63
Sports and Outdoors 18,357 35,598 260,739 8.32
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