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Abstract

The recent success of large language models (LLMs) and the scaling law has led
to a widespread adoption of larger models. Particularly in the healthcare industry,
there is an increasing demand for locally operated LLMs due to security con-
cerns. However, the majority of high quality open-source LLMs have a size of
70B parameters, imposing significant financial burdens on users for GPU prepa-
ration and operation. To overcome these issues, we present a medical adaptation
based on the recent 7B models, which enables the operation in low computational
resources. We compare the performance on medical question-answering bench-
marks in two languages (Japanese and English), demonstrating that its scores
reach parity with or surpass those of currently existing medical LLMs that are ten
times larger. We find that fine-tuning an English-centric base model on Japanese
medical dataset improves the score in both language, supporting the effect of
cross-lingual knowledge transfer. We hope that this study will alleviate financial
challenges, serving as a stepping stone for clinical institutions to practically utilize
LLMs locally. Our trained model and evaluation code will both be available at
https://github.com/stardust-coder/japanese-lm-med-harness.

1 Introduction

In recent years, while the development of LLMs in the medical field has been progressing, there still
remains a significant gap between their development and practical application in clinical settings. One
of these gaps is the operational environment of LLMs. Current medical LLMs can broadly be divided
into two types: the large models developed in closed fashion by big tech companies [38, 39, 48, 30]
and the open-source models with fewer parameters. The former is said to have anywhere from tens of
billions to trillions of parameters or more and is not freely accessible, or is typically accessible only
via API services. This raises security concerns for clinical institutions dealing with patient’s personal
information, causing hesitation in implementing them in real clinical settings. On the other hand,
to improve customizability and accessibility, many other medical LLMs have been released, most
of which are based on the Llama series [46, 47], a series of open-source LLMs developed by Meta
Inc. The number of parameters in these model developments falls into two main categories: around
7 ∼ 8B and 70B. Generally, larger models outperform smaller ones, a phenomenon known as the
scaling law [22]. However, smaller models are computationally more efficient in pretraining, fine-
tuning, and inference. For each clinical institute, it is challenging to allocate sufficient computational
resources due to budget constraints and other factors. To enable the practical use of medical LLMs,
achieving substantial performance with smaller LLMs like 7 ∼ 8B models that can operate within
each institute’s realistic computational environments is essential.
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Since many existing medical LLMs are English-centric, it is believed that there is a strong push
in non-English-speaking countries to develop similar medical LLMs in the native languages of
users, such as patients and doctors, from a practical standpoint, as this would be more user-friendly.
This is done by integrating medical domain adaptation and language adaptation. Particularly in
Japan, although several studies have evaluated the capabilities of the commercial GPT models in
handling medical queries [23], the number of local model developments lags behind compared to
English-centric models [42, 43]. Details about the related works is deferred to Appendix A.

The aim of this study is to verify whether we can avoid operating LLMs as large as 70B-parameter
or more; i.e., we aim at achieving enhancement or extraction of Japanese medical intelligence only
using limited computational resources, thereby enabling the resulting model to be deployed across
numerous clinical institutes in Japan. We conduct the evaluation based on accuracy using the only
existing Japanese medical benchmark IgakuQA [23], which is essentially the NMLE (National
Medical Licensing Examination in Japan). However, instead of aiming to develop models specifically
to pass the medical licensing exam, our focus here is to achieve substantial performance with a 7B
medical LLM.

2 Method

We follow the standard way of developing domain-specialized LLMs. First, we prepare the medical
corpus from a medical journal and conducted the full-parameter training. We call this process MFPT
(Medical Full-Parameter Training) in this work. Subsequently, we conduct the LoRA (Low Rank
Adaptation) [17] fine-tuning using question-answering (Q&A) dataset. In this work, we refer to this
process as MPEFT (Medical Parameter-Efficient Fine-Tuning).

2.1 Models

For the English-centric base model, Llama3 [12] or Qwen2 [1] have recently been two choices due
to their superior performances (see e.g. [13]). We build upon the Qwen2 [1] as the base model
architecture for medical adaptation since Qwen2 generally performs better than Llama3 in solving
medical benchmark tasks as in Table 2 and Table 4.

We specifically focus on the 7B-parameter model of this series, which enables us to perform full-
parameter training even with limited computational resources. Moreover, the Qwen2 series [1] is
released under the Apache-2.0 license, which provides significant advantages for broader use.

2.2 Fine-tuning

2.2.1 Medical Full-Parameter Training (MFPT)

First, we conduct the full-parameter training using our own medical corpus, following the established
approach by previous researches suggesting that continual-pretraining or additional training before
instruction-tuning is effective [38]. Specifically, we used the naika-text corpus, which is composed of
6120 lines of Japanese sentences (3.5M letters) extracted from the Journal of the Japanese Society of
Internal Medicine. The model after MFPT for 5 epochs is referred to as Ours-MFPT in Table 1.

2.2.2 Medical Parameter-Efficient Fine-Tuning (MPEFT)

Following MFPT, MPEFT is performed using the training split of the USMLE (United States Medical
Licensing Examination), which includes 10178 training examples in a Q&A format. Since our
goal is to develop a Japanese LLM, this data — originally in English — is translated into Japanese
by a medical doctor manually1. On the other hand, we also use the original English USMLE for
comparative experiments. Note that we do not include any data in training dataset from IgakuQA
because the IgakuQA dataset is not large2.

In this procedure, we apply LoRA (Low Rank Adaptation) [17], a parameter-efficient fine-tuning
method that can drastically save computational resources (especially GPU memory) without signifi-

1This translated dataset will not be made public.
2Otherwise, to avoid data leakage, we need to split the dataset into training and evaluation sets, further

reducing their sizes.
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cant performance loss compared to full-parameter training. To compare each contribution of MFPT
and MPEFT, we apply it to both the base Qwen2-7B-Instruct and Ours-MFPT model, respectively.
Ours-MFPT after MPEFT for 5 epochs is referred to as Ours-MPEFT in Table 1.

2.3 A unified evaluation method

In medical LLM research, numerous studies have reported benchmark scores derived from question-
answering tasks. These benchmarks facilitate comparative analysis. However, even when the
test datasets are identical across studies, variations in the experimental settings surrounding LLM
inference often preclude truly equitable comparisons. In our paper, we report unified evaluation
scores measured by our own experiments, instead of quoting those from previous studies. To facilitate
the evaluation method presented in this paper and in future works, and to further encourage the
development of medical LLMs, we will make our evaluation codes, which can be executed with a
single line of script, publicly available with customization options.

2.3.1 Benchmark dataset for evaluation

We curate four bilingual medical benchmarks in Japanese and English to assess model performance
and language tendencies. IgakuQA features five-choice questions, while the other benchmarks use
four-choice questions.

IgakuQA [23] is constructed based on the national medical license exam from 2018 to 2022
in Japan. Both the original Japanese dataset and the English-translated dataset are released at
https://github.com/jungokasai/IgakuQA, including 1450 five-choice questions and answers.

MedQA [20] is composed of the medical license exam in the US, USMLE for short. We only
include its evaluation split with 1273 samples in our benchmark. Since the original dataset is in
English, the Japanese-translated version was prepared by hand.

MedMCQA [33] (Multi-Subject Multi-Choice Dataset for Medical domain) is a four-choice
question-answering task designed to address real-world medical entrance exam questions. We only
include its evaluation split with 4183 samples in our benchmark. Since the original dataset is in
English, the Japanese-translated version was prepared by hand.

MMLU [15] (Massive Multi-task Language Understanding) is a four-choice Q&A dataset including
57 tasks covering various subjects. We extract five medical-related subjects, i.e., anatomy (135
samples), clinical knowledge (265 samples), college medicine (173 samples), medical genetics (100
samples), and professional medicine (272 samples).

JMMLU [58] is a Japanese-translation of a subset of MMLU, recently prepared as a counterpart of
MMLU in our own language. Our evaluation covers anatomy (132 samples), clinical knowledge (150
samples), college medicine (151 samples), medical genetics (99 samples), and professional medicine
(150 samples).

2.3.2 Task and evaluation metric

Experimental settings in the inference side generally include prompting, metric, and the hyperparam-
eter of the generation process.

Prompting Prompting mainly consists of the following three factors, which are not consistent at all
in the previous reports: (i) prompt template (ii) the number of few-shot examples (iii) other algorithmic
prompting techniques. For the template, while Alpaca [44] has been the defacto standard, MedPaLM-
2 [39] and Meditron [6] are evaluated with a slightly different prompt template, respectively. The
number of few-shot examples is still controversial. Basically, the larger the better but when the
prompt becomes too long, the model tends to ignore the former instructions. In addition, to improve
the benchmark scores, Chain-of-thought (CoT) prompting [54] is commonly used, followed by
self-consistency [52] in MedPaLM [38], and ensemble refinement in MedPaLM-2 [39]. In our
experiments, the standard CoT prompt is applied; see Appendix C for the detailed prompting strategy.
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model base model size license MFPT MPEFT en(%) ja(%) Ave.
Ours-LoRA(en) Qwen2 7B CC-BY-NC-SA-4.0 - USMLE(en) 47.7 41.5 44.6
Ours-LoRA(ja) Qwen2 7B CC-BY-NC-SA-4.0 - USMLE(ja) 51.1 48.6 49.8

Ours-MFPT Qwen2 7B CC-BY-NC-SA-4.0 naika-text(ja) - 47.3 46.6 46.9
Ours-MPEFT(en) Qwen2 7B CC-BY-NC-SA-4.0 naika-text(ja) USMLE(en) 46.2 44.2 45.2
Ours-MPEFT(ja) Qwen2 7B CC-BY-NC-SA-4.0 naika-text(ja) USMLE(ja) 50.6 52.3 51.4

Table 1: Benchmark accuracy of our models evaluated with IgakuQA in English(en) and Japanese(ja).

Metric In multiple-choices Q&A tasks, evaluations based on accuracy is common, i.e., we let the
model pick one choice as its response and compare it with the correct answer. The typical method
involves having models select each answer from five labels [“a”, “b”, “c”, “d”, “e”] and verifying by
exact match — an approach also used by Kasai et al. [23]— we instead instruct the model to output
the words or sentences from the alternatives directly, as the labels themselves do not provide essential
information in practice.

To calculate accuracy, Exact match has been the most objective and the easiest metric. Also, Gestalt
accuracy was proposed as an alternative by Sukeda et al. [42, 43], which is a more robust metric to
admit a slight mistake for LLMs. In our experiments, we employ the Gestalt accuracy.

Hyperparameter of the generation process Commonly, the trainer and the inference pipeline
of LLMs is implemented by huggingface transformers [55], which requires to specify several
hyperparameters for text generation, e.g., the sampling method, the number of beam for beam search,
the temperature for sampling, repetition penalty, and so on. Practically, high temperature and high
repetition penalty along with sophisticated sampling methods are recommended to achieve natural
and various text generation. On the other hand, in many studies, deterministic results are more
preferable for reproducability and thus beam search with one beam is typically employed but not in
every case. In our following experiments, we employ the deterministic setting.

2.3.3 Miscellaneous

Although several ad-hoc techniques to improve LLMs’ performance including few-shot prompting [5],
mixture of experts/agents [50], and model merging [2], have been developed recently, we do not
employ these techniques in our main study, as we expect their application can be independently
dissociated from the core potential of the LLM that we aim to examine. In other words, these
techniques can be readily integrated to one another in practical use cases.

3 Results

3.1 Our resulting model

Table 1 lists the five types we created, along with their training data and the accuracy of IgakuQA
in both English and Japanese. We performed fine-tuning of the model with five different settings
by varying the training steps. The Ours-LoRA models surpass MFPT (fine-tuning with low-rank
adaptation) on the base Qwen2 model [1] in both English and Japanese. In contrast, Ours-MFPT
involved full parameter tuning as described in Section 2.2.1. Additionally, Ours-MPEFT, which is
based on Ours-MFPT, further improves upon MPEFT in the same manner.

From the accuracy of IgakuQA, it is observed that both the MFPT and MPEFT processes have
steadily contributed to score improvement. Specifically, for Japanese IgakuQA, Ours-MPEFT(ja)
model achieved a 10.8% increase in accuracy compared to the base model, while it improved by 2.5%
in English, though the improvement was smaller. The score of this model exceeds 50% accuracy in
both English and Japanese, exhibiting substantial bilingual performance as a 7B model. Hereafter,
we will refer to our best model Ours-MPEFT(ja) as JMedLLM-v1-7B.

3.2 Comparison with other open-source LLMs

Setup All generation is performed in zero-shot, meaning no example input-output pairs are provided
to the LLM. The 7B models are used as-is, while all 70B models are loaded using 4-bit quantization
techniques by default to conserve computational resources. We did not conduct multiple runs or
observe deviations; instead, we employed deterministic inference without sampling.
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Models Our baseline includes all of the major medical LLMs from previous works. Each of these
models are developed by continual training or fine-tuning on each base model, mostly Llama series.
For English-centric models, Meditron [6] and Med42 [9] are Llama2-based while OpenBioLLM [32]
and Med42-v2 [8] is Llama3-based. For Japanese-centric models, Llama3-Preferred-MedSwallow-
70B is a recent Llama3-Swallow-based medical LLM reported to achieve better accuracy than
GPT-43 in solving NMLE under their experimental settings4. Different from the Llama2 series,
the Llama3 series is empirically known to have substantial multilingual ability [12], thus we also
evaluate both English and Japanese performance for the models derivedd from the Llama3 series.
In addition, we add to our baselines the base models for general purpose, which are used as the
backbone of each medical LLM. Specifically, Llama3 [12] is added as the English-centric baseline
while Llama3-Swallow [27] is added as the Japanese-centric baseline. Moreover, for the 7∼8B scale,
two Japanese-centric models — Youko [37] and Llama-3-ELYZA [16] — are added for comparison.
In our experiments, we utilize the instruct version whenever available. The link to each specific
model is listed in Appendix B.

Results In Table 2, we observe that at the 7∼8B scale, JMedLLM-v1 outperforms other baselines
including base models and medical LLMs on average in four Japanese medical benchmarks by more
than 10%. It is notable that even at the 70B scale, JMedLLM-v1 outperforms other baselines except
Llama3-Preferred-MedSwallow, surpassing 50% accuracy in IgakuQA, MedQA, and MedMCQA.
Specifically, JMedLLM-v1 outperforms 70B-parameter OpenBioLLM by as much as 7.5%. One
of the possible reasons of the improved performance is that JMedLLM-v1 is based on Qwen2 as
its backbone, which achieves superior performance to Llama3 series with the same size. However,
in Table 3, it is shown that additional training on medical dataset signifcantly contribute to the
score improvement despite the discrepancy between training data and evaluation benchmarks in
general. In fact, except the cases of solving Japanese medical benchmarks with OpenBioLLM, the
among four models show substantial improvement. Especially, JMedLLM-v1 is further improved
and outperforms the base Qwen2 by 13.9%.

On the other hand, in Table 4, we observe that JMedLLM-v1 outperforms other models of similar
size on average across four English medical benchmarks, being the only model to surpass 50%
accuracy. Despite being 10 times larger, the existing English-centric medical LLMs, Meditron [6] and
Med42 [9], do not outperform JMedLLM-v1. However, two 70B-parameter models, OpenBioLLM
and Llama3-Preferred-MedSwallow, achieve higher scores than JMedLLM-v1, surpassing 60% in
Gestalt accuracy on average. Table 5 further exhibits the score improvement of each LLM, where
we can see JMedLLM-v1 has improved by 13.3% in Gestalt accuracy on average also in English
medical benchmarks.

Overall, Llama3-Preferred-MedSwallow scores the highest among Japanese medical models, followed
by our JMedLLM-v1. OpenBioLLM [32] performs best in English medical tasks but performs worse
in Japanese. However, Llama3-Preferred-MedSwallow and JMedLLM-v1 also show strong bilingual
performance. Among 7B parameter models, our model stands out as the best performer .

3.3 Comparison with the state-of-the-art

Table 6 shows the gap between the top-3 open-source models from Table 4 and three closed models:
Med-Gemini [36], Med-PaLM2 [39], and GPT-4. Although these score comparisons are for reference
only, as the evaluation settings are not completely aligned and each score is taken from previous
reports, the closed models generally outperform the open-source models. Med-Gemini-L 1.0 [36]
is outstanding in MedQA, achieving 91.1% accuracy. Meanwhile, OpenBioLLM [32], with 70B
parameters, approaches GPT-4, particularly in the MedMCQA scores.

3.4 Low computational resources

Our MFPT phase took only 7.5 hours on 8 NVIDIA A100 GPUs. Our MPEFT phase took only 28.5
hours on 4 NVIDIA V100 GPUs. All experiments were conducted using ABCI, a Japanese domestic
cloud computing infrastructure. These computational burdens are significantly smaller than Meditron

3https://openai.com/index/gpt-4/
4https://tech.preferred.jp/ja/blog/llama3-preferred-medswallow-70b/
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model(-size) base language IgakuQA(ja) MedQA(ja) MedMCQA(ja) JMMLU Ave.(ja)

Llama3-70B[27] Llama3 en 43.1 40.9 37.2 45.3 41.6
Llama3-Swallow-70B[27] Llama3 ja 44.6 32.9 33.7 37.5 37.2

OpenBioLLM-70B[32] Llama3 en 35.6 35.4 39.9 54.6 41.4
Llama3-Preferred-MedSwallow-70B Llama3 ja 62.6 55.6 43.4 58.4 55.0

Llama3-8B[12] Llama3 en 23.8 28.7 31.7 30.8 28.8
Youko-8B[37] Llama3 ja 33.5 31.1 34.0 35.7 33.6
Llama3-Swallow-8B[27] Llama3 ja 28.5 26.9 31.3 30.4 29.3
Llama-3-ELYZA-JP-8B[16] Llama3 ja 38.0 33.4 34.1 42.9 37.1

MMedLlama3-8B[35] Llama3 en 31.5 34.3 33.9 40.1 35.0
Qwen2-7B[1] Qwen2 en 44.6 30.8 31.5 33.2 35.0

JMedLLM-v1-7B (Ours) Qwen2 ja 52.3 51.2 41.2 50.8 48.9

Table 2: JMedLLM-v1 against open-source baselines in Japanese medical benchmarks. This
table shows the main results of JMedLLM-v1’s medical task performance in Japanese against other
best-performing open-source medical LLMs measured by the Gestalt accuracy(%). Top 3 scores in
each row are marked in bold.

base LLM → Japanese LLM IgakuQA MedQA MedMCQA JMMLU
Llama3-70B [12] → Llama3-Swallow-70B [27] +1.5 −8.0 −3.5 −7.8

Llama3-8B [12] → Youko-8B [37] +9.3 +2.4 +2.3 +4.9

Llama3-8B [12] → Llama3-Swallow-8B [27] +4.7 −1.8 −0.4 −0.4

Llama3-8B [12] → Llama-3-ELYZA-JP-8B[16] +14.2 +4.7 +2.4 +12.1

base LLM → medical LLM IgakuQA MedQA MedMCQA JMMLU
Llama3-70B [12] → OpenBioLLM-70B [32] −7.5 −5.5 +2.7 +9.3

Llama3-Swallow-70B [27] → Llama3-Preferred-MedSwallow-70B +18.0 +22.7 +9.7 +20.9

Llama3-8B [12] → MMedLlama3-8B[35] +7.7 +5.6 +2.2 +9.3

Qwen2-7B[1] → JMedLLM-v1-7B (Ours) +7.7 +20.4 +9.7 +17.6

Table 3: Score improvements of LLMs compared to each base model in Japanese benchmarks.
This table shows the difference in scores between each medical LLM and its corresponding base
model, as presented in Table 2.

(332 hours on 128 A100 GPUs for training) and Med42 (the Condor Galaxy 1 supercomputer for
full-parameter fine-tuning). 5

On the other hand, all the evaluation experiments for 70B models with quantization were run on 4
NVIDIA V100 GPUs, whereas for 7B models were run on 1 NVIDIA V100 GPUs.

4 Discussion

Model performance and size from a practical use perspective Since LLMs generally perform
better as their size increases, a phenomenon known as the scaling law [22], it is inevitable to confront
this tradeoff in practice. The aim of our work is to develop 7B-parameter medical LLMs to the fullest
extent possible, so that clinical institutes do not necessarily have to rely on external API services or
the computationally burdensome 70B models.

In our work, we demonstrate that the 7B-parameter model, with a solid base model and fine-tuning
process using a domain-specific corpus, can potentially outperform 70B models in a medical question-
answering benchmarks both in Japanese and English. Although its performances shown in Table 2
and 4 are not totally sufficient, this result highlights the potential for the practical use of medical
LLMs in clinical institutions, as 7B-parameter models can operate relatively quickly with modest
resources, such as a single GPU in a standard environment.

5For example, Amazon Web Services (https://aws.amazon.com/?nc1=h_ls) provides these GPU in-
stances as cloud environment. The cost for training can be simulated as 32.77 × 7.5 + 12.24 × 28.5 = 595
USD.
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model(-size) base language IgakuQA(en) MedQA(en) MedMCQA(en) MMLU Ave.(en)

Meditron-70B [6] Llama2 en 29.9 44.7 32.8 49.6 39.3
Med42-70B [9] Llama2 en 45.0 56.2 48.2 60.9 52.6

Llama3-70B[12] Llama3 en 38.3 57.7 38.8 63.7 49.6
Llama3-Swallow-70B[27] Llama3 ja 52.8 39.0 43.0 51.2 46.5

OpenBioLLM-70B[32] Llama3 en 58.5 70.2 65.0 80.0 68.4
Llama3-Preferred-MedSwallow-70B Llama3 ja 55.0 61.3 52.9 68.1 59.3

Llama3-8B[12] Llama3 en 35.0 43.0 39.1 41.3 39.6
Youko-8B[37] Llama3 ja 38.1 34.1 29.4 44.6 36.6
Llama3-Swallow-8B[27] Llama3 ja 34.4 30.8 36.0 38.8 35.0
Llama-3-ELYZA-JP-8B[16] Llama3 ja 20.7 40.6 37.3 44.7 35.8

MMedLlama3-8B[35] Llama3 en 26.4 36.8 37.5 37.7 34.6
Qwen2-7B[1] Qwen2 en 46.4 36.9 34.7 43.1 40.3

JMedLLM-v1-7B (Ours) Qwen2 ja 50.6 54.6 46.1 63.0 53.6

Table 4: JMedLLM-v1 against open-source baselines in English medical benchmarks. This
table shows the main results of JMedLLM-v1’s medical task performance in English against other
best-performing open-source medical LLMs measured by the Gestalt accuracy(%). Top 3 scores in
each row are marked in bold.

base LLM → Japanese LLM IgakuQA MedQA MedMCQA JMMLU
Llama3-70B [12] → Llama3-Swallow-70B [27] +14.5 −18.7 +4.2 −12.5

Llama3-8B [12] → Youko-8B [37] +3.1 −8.9 −9.7 +3.3

Llama3-8B [12] → Llama3-Swallow-8B [27] −0.6 −12.2 −2.9 −2.5

Llama3-8B [12] → Llama-3-ELYZA-JP-8B[16] −14.3 −2.4 −1.8 +3.4

base LLM → medical LLM IgakuQA MedQA MedMCQA JMMLU
Llama3-70B [12] → OpenBioLLM-70B [32] +20.2 +12.5 +26.2 +16.3

Llama3-Swallow-70B [27] → Llama3-Preferred-MedSwallow-70B +2.2 +22.3 +9.9 +16.9

Llama3-8B [12] → MMedLlama3-8B[35] −8.6 −6.2 −1.6 −3.6

Qwen2-7B[1] → JMedLLM-v1-7B (Ours) +4.2 +17.7 +11.4 +19.9

Table 5: Score improvements of LLMs compared to each base model in English benchmarks.
This table shows the difference in scores between each medical LLM and its corresponding base
model, as presented in Table 4.

To implement medical LLMs in real clinical institutions, how far should we make progress? One way
to set the performance necessary for practical use is to compare it with large, closed-source LLMs
such as GPT-4, the MedPaLM series, and the recent top-performing Med-Gemini. Table 6 shows
that open-source medical LLMs still have a significant gap compared to closed-source models in
benchmark scores. However, for example, when compared to Med-PaLM2, JMedLLM-v1 with 7B
parameters achieves from 60 to 70% of the performance with only less than 2.5% parameters. 6

Score improvements resulting from fine-tuning in different languages By comparing Tables 3
and 5, it is observed that Japanese adaptation tends to result in only a small improvement in scores or
even a decline in performance. In contrast, medical adaptation generally leads to more significant
score improvements across medical benchmarks in both languages.

Individually, the fine-tuning of MMedLlama3 [35] in a multilingual context enhances performance in
Japanese while causing degration in English. Conversely, OpenBioLLM is English-centric, leading
to significant improvements in English benchmarks but sometimes causing a decline in performance

6Med-PaLM2 is a closed medical LLM based on PaLM2, which is also a closed
model. According to unofficial news sources (https://www.cnbc.com/2023/05/16/
googles-palm-2-uses-nearly-five-times-more-text-data-than-predecessor.html, accessed
2024/8/10), PaLM2 is reported to have 340B parameters based on internal documents. Official information is
not yet available.
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Model name IgakuQA(ja) MedQA(en) MedMCQA(en) MMLU

Med-Gemini-L 1.0 - 91.1(a) - -
Med-PaLM2 - 85.4(b) 72.3(b) 88.4(b)

GPT-4 78.2(c) 78.8(d) 69.5(d) 86.0(d)

Llama3-Preferred-MedSwallow 62.6 61.2 52.9 68.1
OpenBioLLM 35.6 70.2 65.0 80.0
JMedLLM-v1 52.3 54.6 46.1 63.0

Table 6: JMedLLM-v1 against the state-of-the-art LLMs. This table shows the scores cited from
previous studies. Note that each score differs in inference settings. (a) Cited from [36]. (b) : Cited or
calculated from [39], where the ensemble refinement method is used, which is computationally costly.
(c) : Calculated based on [23], where 3-shot in-context learning is used. (d) Cited or calculated from
zero-shot performances in [29].

in certain Japanese benchmarks. On the other hand, both Llama3-Preferred-MedSwallow and
JMedLLM-v1 are finetuned with Japanese dataset, yet they improve performance in both languages.

A significant improvement in Table 3 for JMedLLM-v1 on MedQA and for Llama3-Preferred-
MedSwallow on IgakuQA can be attributed to the alignment between their evaluation benchmarks
and training datasets, although the details for the latter are not fully disclosed.7 However, the
significant improvement in MMLU/JMMLU is impressive, whereas IgakuQA and MedMCQA show
more variable results, which may be related to task difficulty: MMLU/JMMLU covers high school
to university levels, MedMCQA targets graduate school level, and IgakuQA and MedQA focus on
national exam level.

Knowledge extraction by fine-tuning As mentioned in the previous paragraph, it is well-known
that alignment between fine-tuning and evaluation tasks generally leads to significant improvements
in model performance. However, our experiments indicate that improvements can occur even in the
absence of such alignment. Although USMLE and NMLE (or other benchmark tasks) are situated
within the same medical domain, their questions and answer choices are not perfectly identical.
The observed enhancements in our MPEFT model suggest that the base model already possesses a
foundational level of medical knowledge. Rather than introducing new medical knowledge through
fine-tuning with USMLE data, this process appears to activate latent capabilities within the model.
These findings imply that training on tasks that are similar but not identical to the target task can still
contribute to improved model performance. To further investigate or quantify this phenomenon, it
would be necessary to identify the specific information required for accurately answering a specific
target question, which currently appears to be technically infeasible.

Cross-lingual knowledge transfer When adapting English-centric LLMs to local languages, is
there a trade-off in performance for English while learning a new language? In our English-translated
IgakuQA evaluations, as shown in Table 1, an unexpected observation is that our models demonstrated
improvements of +1.4% for MFPT and +2.9% for MPEFT, despite the fine-tuning training data
consisting solely of Japanese texts. This phenomenon is also evident in Table 5 for JMedLLM-v1
and Llama3-Preferred-MedSwallow. Although these improvements are smaller compared to those
observed in Japanese benchmarks listed in Table 3, they are still noteworthy. A similar phenomenon
is observed in our comparative LoRA experiments without the MFPT step, where accuracy improved
by 1.8% in English and by 5.2% in Japanese compared to the base model (Qwen2-Instruct [1]).
Overall, our results suggest that cross-lingual training on English-centric models can be effective not
only for acquiring local languages but also for enhancing their performance in English.

7According to a tech blog by the developers of Llama3-Preferred-MedSwallow, the fine-tuning
dataset includes past NMLE data up to 2017. URL: https://tech.preferred.jp/ja/blog/
llama3-preferred-medswallow-70b/
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5 Limitations

5.1 Insufficient data resources

The amount and variation of medical corpus have been insufficient for training LLMs, particularly in
Japanese. In our study, we utilized medical examinations from the US as a data resource; however,
this may introduce a risk of reflecting biases inherent to US medicine. Not only should the selection
and preparation of the training dataset be further improved, but bias correction methods across
different countries, cultures, and contexts also need to be studied further to ensure practical use.

5.2 Exploration on evaluation method

Question on multiple-choice question-answering as benchmarks This work does not explore
the validity of the evaluation method in depth; instead, we prioritize unification. However, in the
study of LLMs, the development of a fair evaluation method is eagerly anticipated. Evaluating the
performance of medical LLMs with question-answering task, which is often based on the medical
licensing exam, is questioned [28] in terms of the risk reproducing social biases in clinical decision
making.

Mismatch prompt formatting in training and evaluation Some LLMs are designed to adhere to
specific prompt formatting, especially when instruction-tuning [53] is involved. Empirically, 70B
models are sufficiently generalized and capable of handling variations in prompt formatting, whereas
7B models tend to perform worse in this regard. Nonetheless, LLMs are expected to perform optimally
when the prompt format during inference is specified correctly. For instance, Meditron [6] follows
the ChatML format [31], whereas our prompting strategies differ significantly (see Appendix C). This
discrepancy may contribute to the poorer performance of Meditron observed in Table 4.

Tokenizer specification We also point out that our models employ the Byte-Pair Encoding tok-
enization [49] as well as the backbone Qwen series. The use of it for LLMs has been argued [4], and
may not be optimal especially for Japanese LLMs.

5.3 Data contamination

Typically, the amount of training corpus for base models is extensive and not entirely publicly avail-
able. Therefore, although many reports assert that the fine-tuning process does not explicitly allow for
contamination, it is not possible to guarantee that the evaluation datasets used for benchmarking (such
as IgakuQA, MedQA, MedMCQA, and MMLU/JMMLU in our case) are free from contamination.
Once the contamination occurs, it causes data leakage, which artificially inflates benchmark scores.
For instance, Sukeda et al.[41] demonstrate in an ablation study that fine-tuning an LLM on USMLE
and then evaluating it with the same data can easily lead to accuracy surpassing 80%. Therefore, it
should be noted that a significant leap in accuracy shown in Table3 or 5 might be at risk of being
caused by data leakage unless the data usage is clearly specified.

5.4 Model quantization

We regret that we used 4-bit quantization for evaluating all the 70B-parameter models due to
limited computational resources. While quantization is generally known to speed up inference and
potentially degrade performance, it is sometimes argued that 4-bit quantization can still maintain
good performance in practice. Quantitatively evaluating the degradation caused by quantization will
be a focus of future work.

6 Conclusion

In this work, we develop the leading 7B medical LLM and demonstrate that it achieves performance
comparable to or better than existing 4-bit-quantized 70B-parameter medical LLMs on Japanese
medical Q&A benchmarks. Moreover, our model also performs well on English counterparts even
without additional training on English data. Our 7B model can be trained and operated in environments
with limited GPU resources, addressing financial and security concerns for clinical institutes seeking
to adopt practical, medical-specific LLMs.
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A Related works

The relevant models and their training dataset are curated in Table 7 as a reference.

A.1 Before LLMs

The Japanese language model has been developed following precedents set by English research,
particularly in the medical domain. Recently, Japanese medical language model research was ignited
by UTH-BERT [24], which was developed by pretraining BERT [11] with approximately 120M
clinical texts stored at UTokyo Hospital as the first medical language model in Japanese. Afterwards,
JMedRoBERTa [40] was developed based on RoBERTa model using the abstract and main text of the
non-public medical papers.

A.2 Medical LLMs in English

In open source community, two lines of family have been developed: the Llama family [46, 47]
and the Mistral family [18, 19]. Generally, the Llama family tends to be a single model while the
Mistral family has evolved in the direction of the Mixture-of-Experts. Specifically in biomedical
areas, several medical LLMs have been built upon 70B-parameter Llama2 or Llama3 [42, 6, 9, 32, 7],
while 7B-parameter Biomistral [26] and BiMediX [34] have been derived from Mistral 7B [18] and
Mixtral-8x7B [19], respectively.

A.3 Medical LLMs in Japanese

Compared to English-centric models, the Japanese medical LLMs lack its number. Instead of
developing the model from scratch, these models are developed based on powerful English-centric
models. The first attempt in this domain was JMedLoRA [42], which conducted the QLoRA [10]
instruction-tuning on Llama2-70B [39]. After the Japanese general LLM named Swallow [14]
was released, Sukeda et al. [41] performed the similar fine-tuning on Llama2 [39], Xwin [57], and
Swallow [14], suggesting the potential of Japanese base model to be improved largely in medical
question-answering by instruction-tuning. Furthermore, after the release of Llama3-Swallow [27],
which is based on Llama3 [12], Preferred Network Inc. performed the continual training via
QLoRA [10] using their non-public medical training data, which is released as Llama3-Preferred-
MedSwallow.

A.4 Medical benchmarks

To develop the domain-specific LLMs, the evaluation benchmarks are of great importance. Here, we
review the existing medical evaluation benchmarks here.

MultiMedBench [48] is an open source multimodal medical benchmark developed for assessing
the multimodal medical model named MedPaLM-M, including three of the MultiMedQA tasks used
to evaluate MedPaLM [39], and radiology report summarization.
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Model name Training dataset #Data
Llama2 [47] See [47]. 2T tokens

Meditron [6]

Clinical Guidelines,
PubMed Abstracts,

PubMed Papers,
Experience Replay

0.107B tokens
5.48B tokens
40.7B tokens

0.420B tokens

Med42 [9] See [9]. 411064 medical samples
295649 general domain samples

Swallow [14]

Swallow corpus,
Japanese Wikipedia,

the RefinedWeb
The Pile

312.1B characters

104.9B tokens

MedSwallow [41] Japanese-translated USMLE 12723 samples

Llama3 [12] Web-curated multilingual data
covering 176 languages 15T tokens

Youko [35]

Japanese CC-100,
Japanese C4,

Japanese OSCAR,
The Pile, Wikipedia,

rinna curated Japanese dataset

22B tokens

Qwen2 [1] Multilingual data
supporting 30 languages 7T tokens

OpenBioLLM [32] Custom Medical Instruct dataset
DPO dataset unknown

Llama3-Preferred-MedSwallow-70B own medical corpus unknown
JMedLLM-v1 (Ours) naika dataset, USMLE 3.5M characters + 10178 samples

Table 7: Training dataset of existing LLMs. The number of tokens is presented for each dataset if
available. Otherwise, the number of samples is presented.

MIRAGE [56] is a benchmark for medical LLMs and retrieval augmented generation(RAG), which
includes MedQA [20], MedMCQA [33], PubMedQA [21], MMLU Subsets (Medicine) [15] and
BioASQ-QA [25].

The Open Medical-LLM Leaderboard [3] is a standarized platform that provides a setup
specifically designed for the medical domain, which includes MedQA [20], MedMCQA [33], Pub-
MedQA [21], and MMLU Subsets (Medicine and Biology) [15].

CMB [51] is a comprehensive medical benchmark in Chinese, which comprises multiple-choice
questions from qualification exams, and complex clinical diagnostic questions derived from real case
studies.

MMedBench [35] is a comprehensive multilingual medical benchmark including six languages,
English, Japanese, Chinese, French, Spanish, and Russian.

B Instruct models

For base models in our experiments, we utilize the instruct version whenever available. Specifically
for non-medical base models, we use Meta-Llama-3-70B-Instruct8, Llama-3-Swallow-70B-Instruct-
v0.19, Meta-Llama-3-8B-Instruct10, llama-3-youko-8b11, and Qwen2-7B-Instruct12.

8https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
9https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1

10https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
11https://huggingface.co/rinna/llama-3-youko-8b
12https://huggingface.co/Qwen/Qwen2-7B-Instruct
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For medical models, we use Meditron-70B13, Med42-70B14, Llama3-OpenBioLLM-70B15,
MMedLlama3-8B16, and Llama3-Preferred-MedSwallow-70B17.

C Prompting strategies in inference

For the prompt template, we follow the Chain-of-Thought (CoT) prompt [54] used in Med-PaLM
2 [39] by default. Japanese templates are prepared as well through translation by ChatGPT18. To let
the model solve the given question-answering tasks, the question sentence is input into {{instruction}}
and four or five candidate choices are input into {{input}}.

Chain-of-Thought (CoT) prompt

### Instruction:
The following are multiple choice questions about medical knowledge. Solve
them in a step-by-step fashion, starting by summarizing the available information.
Output a single option from the five options as the final answer.
### Input:
{{instruction}}
{{input}}
### Response:

Although prompt template selection tends to be ad-hoc since we cannot know which one is better
than the other in advance, we choose this one as our experimental setting because it seemed to be
slightly superior in Sukeda et al.[41]. Few-shot inference has known to be effective strategy, however
we do not apply it as our standard experimental setting since the number of shots is always arbitrary.
Moreover, providing more examples in a prompt tends to lead to better performance; however, it
entails a token limit issue. Therefore, we align the experimental settings in each run by evaluating
zero-shot performance.

As comparative studies, we additionally evaluate our best model with different prompting strategies.
First we attempt the following standard prompt:

Alpaca [44] prompt

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.
### Instruction:
{{instruction}}
### Input:
{{input}}
### Response:

As a result, Table 8 shows that using the Alpaca prompt template led to slightly worse performances
both in English and Japanese. However, in theory, there should be no superiority or inferiority
since the meaning of given instruction is almost identical. In experiments by Sukeda et al. [42], the
superiority of these two types of prompts reversed depending on the experimental settings, making it
difficult to conclude. Hence, a difference in accuracy of a few percentage points may be considered
negligible.

Subsequently, we observe a few-shot performance using the following prompt:

Few-shot inference with CoT
13https://huggingface.co/epfl-llm/meditron-70b
14https://huggingface.co/m42-health/med42-70b
15https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B
16https://huggingface.co/Henrychur/MMed-Llama-3-8B
17https://huggingface.co/pfnet/Llama3-Preferred-MedSwallow-70B
18https://chatgpt.com/
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Template en(%) ja(%)
CoT 50.2 52.5

Alpaca 49.7 49.7
Table 8: Differences by prompt templates

en(%) ja(%)
0-shot with CoT 50.2 52.5
1-shot with CoT 45.8 45.7
3-shot with CoT 46.7 47.8

Table 9: Difference by the number of few-
shot examples

### Instruction:
The following are multiple choice questions about medical knowledge. Solve
them in a step-by-step fashion, starting by summarizing the available information.
Output a single option from the five options as the final answer.
### Input:
Which of the following is not a mandatory explanation to be provided to partici-
pants in human genomegene analysis research?
The purpose of the research, The freedom to consent, Methods for anonymity,
Disadvantages of participation, Assurance of research results sharing
### Response:
Assurance of research results sharing
### Input:
A 57-year-old man lost consciousness and collapsed while working to remove
sludge from a manhole at a sewage treatment plant. A colleague who entered to
assist also suddenly lost consciousness and collapsed. Which of the following is
the most likely cause? Select two.
Oxygen deficiency, Hydrogen sulfide poisoning, Carbon monoxide poisoning, Car-
bon dioxide poisoning, Nitrogen dioxide poisoning
### Response:
Oxygen deficiency, Hydrogen sulfide poisoning
### Input:
A 28-year-old woman at 30 weeks of gestation has a fundal height of 22 cm and
almost no amniotic fluid is detected on abdominal ultrasound examination. What
is the most likely condition in the fetus?
Esophageal atresia, Ventricular septal defect, Renal hypoplasia, Anorectal malfor-
mation, Fetal hydrops
### Response:
Renal hypoplasia
### Input:
{{instruction}}
{{input}}
### Response:

In 1-shot experiments, only the first example was included, while the whole prompt was applied
for 3-shot experiments. As shown in Table 9, few-shot prompting technique did not contribute to
the score improvement. While few-shot examples are believed to instruct the model via in-context
learning, our model already has the ability to follow the instruction to choose one option from five
alternatives. Thus, the given few-shot examples may function as noisy information unrelated to the
target question.

D Licenses

D.1 Data

The naika-text corpus19 is licensed free. IgakuQA is released without license currently. MedQA,
MedMCQA, and MMLU are made public under MIT license. JMMLU (the subset we used) is
licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

19https://www.jstage.jst.go.jp/browse/naika/-char/ja
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D.2 Models

Llama2 and its variants follow the LLAMA 2 COMMUNITY LICENSE AGREE-
MENT (https://github.com/meta-llama/llama/blob/main/LICENSE). Llama3 and its
variants follow the META LLAMA 3 COMMUNITY LICENSE AGREEMENT
(https://llama.meta.com/llama3/license/). Qwen2 series is released under Apache License
2.0. Our developed models will be licensed later.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contribution and scope, involving the development of medical LLMs under
low resources from a practical viewpoint, are reflected both in abstract and introduction
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The trained model is open-sourced and will be disclosed after acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: No, but partly yes. All the experimental settings are mentioned in the paper
for reproducibility. Our training data cannot be made open access. Our evaluation data is
publicly available from the previous studies and we have provided sufficient instructions in
the paper. Our evaluation codes will be provided open access after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: They are provided in Section 3.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since the performance of the models in the field discussed in the work is not
sufficient yet to be practically useful, we do not discuss any societal impacts but solely focus
on the model performance based on technological perspectives. However, the motivation of
this study is driven by the privacy and considerations in clinical institutes.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our trained language model will be released with a model card notifying such
risks to the users.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All information about the license is listed in Appendix D. We ensure that these
licenses are properly respected in our use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The trained model is the only new assets introduced in the paper. The
documentation is provided in its model card alongside the publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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