
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Model-Based Non-Independent Distortion Cost Design for JPEG
Steganography with Symmetric Embeeding

Anonymous Authors

ABSTRACT
Recent achievements have shown that model-based steganographic
schemes hold promise for better security than heuristic-based ones,
as they can provide theoretical guarantees on secure steganography
under a given statistical model. However, it remains a challenge
to exploit the correlations between DCT coefficients for secure
steganography in practical scenarios where only a single com-
pressed JPEG image is available. To cope with this, we propose
a novel model-based steganographic scheme using the Conditional
Random Field (CRF) model with four-element cross-neighborhood
to capture the dependencies among DCT coefficients for JPEG
steganography with symmetric embedding. Specifically, the pro-
posed CRF model is characterized by the delicately designed energy
function, which is defined as the weighted sum of a series of unary
and pairwise potentials, where the potentials associated with the
statistical detectability of steganography are formulated as the KL
divergence between the statistical distributions of cover and stego.
By optimizing the constructed energy function with the given pay-
load constraint, the non-independent distortion cost corresponding
to the least detectability can be accordingly obtained. Extensive
experimental results validate the effectiveness of our proposed
scheme, especially outperforming the previous independent art
J-MiPOD.

CCS CONCEPTS
• Security and privacy→ Security services; Social aspects of
security and privacy.

KEYWORDS
JPEG Image Steganography, GaussianMarkov RandomField (GMRF),
KL-divergence, statistical modeling

1 INTRODUCTION
Digital steganography [7] is an important branch of information
hiding that utilizes the data redundancy inherent in various types
of digital media, as well as the physiological and psychological
characteristics of human perception organs, to embed secret mes-
sages (a.k.a., payload) into the public digital media with certain
coding, and then transmit the digital media containing the secret
messages to achieve covert communication. As opposed to tradi-
tional encryption, steganography is concerned with concealing
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the communication behavior, making the communication process
imperceptible or even undetectable.

As one of the most commonly used digital media, digital image
has always been the popular cover choice for steganography, and
has yielded numerous impressive results in recent years [26, 31].
Leaving aside the current new paradigm of coverless generative
steganography, the content-adaptive steganography based on the
distortion minimization framework [5] has been the mainstream
steganographic paradigm. And with the advent of Syndrome-Trellis
Codes (STCs) that can closely achieve the rate-distortion bound [6],
the main effort in content-adaptive image steganography has fo-
cused on designing efficient distortion cost functions. To ensure the
security of covert communication, it is required that the distortion
cost function be designed to least possibly change the statistical
distributions of the cover source for a given payload.

For the time being, the design of distortion cost functions can
be divided into three categories, i.e., heuristic-based, deep learning
(DL)-based, and model-based. The first type relies on heuristic prin-
ciples, whose guideline is to assign high costs to smooth areas and
low costs to textured regions, based on the consensus that textured
regions are difficult to model while smooth areas are easy, typically
schemes are WOW [14], S-UNIWARD [16], HILL [22] in the spa-
tial domain and UERD [13], GUED [30], J-UNIWARD [16], DCDT
[29] in the JPEG domain. Despite the impressive achievements of
these empirical schemes, they are limited from the methodological
point of view, since they can not provide accurate explanations as
to why the given cost functions work. The second one, DL-based
approaches, which have achieved excellent security performance,
are generally designed as an automatic cost learning framework
via utilizing the architectures of generative adversarial networks
and reinforcement learning, typical schemes are UT-GAN [39], JS-
GAN [40], SPAR-RL [36], JEC-RL [37], PICO-RL [23], Steg-GMAN
[18]. These methods use dynamic feedback from the discriminator
(i.e., steganalyzer) to iteratively facilitate the generator to output
better distortion cost to defeat the given “adversary”. However,
such methods are end-to-end and lack mathematical explanation
as well. In addition, they rely heavily on well-designed networks
and require both parties to form a Nash equilibrium. What’s more,
they are computationally demanding and data-dependent. The last
type is the model-based, which builds the steganographic distortion
cost based on mathematical principles, including minimizing the
difference of model distribution between cover and stego (e.g., MG
[8], MVGG [25], GMRF [28]), and minimizing the power of optimal
detector (e.g., MiPOD [24], J-MiPOD [3]). Not only does this type
of scheme sound more mathematical, but they can provide a com-
plete mathematical explanation, and for this reason, this paper will
continue to explore such type in depth.

MG [8] is the first practical attempt to design the distortion func-
tion based on the mathematical principle. The distortion costs are
determined with the embedding change probabilities, which are

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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obtained by minimizing the Kullback-Leibler (KL) divergence be-
tween the statistical distributions of cover and stego images, when
the cover image is modeled as a sequence of independent multivari-
ate Gaussian random variables with heterogeneous local variances.
And the security performance is further improved in MVGG [25] by
incorporating an improved variance estimator and adopting the pen-
tanary symmetric embedding with a thicker-tail model. Developing
upon these two works, an alternative approach, i.e., Minimizing the
Power of Optimal Detector (MiPOD) [24], has been proposed subse-
quently, with a performance close to the state-of-the-art compared
to S-UNIWARD and HILL. In MiPOD, a closed-form expression
for statistical detectability is also provided, allowing the design of
so-called detectability-limited sender, i.e., controls the size of secure
payload for a given image to not exceed a target detectability level.
As for the acquisition of the embedding change probabilities associ-
ated with the distortion costs, it is derived by minimizing the power
of the optimal likelihood ratio test (LRT). In light of recent research
[9, 33] showing that DCT coefficients can be modeled individually,
Cogranne et al. follow MiPOD and build a heteroscedastic model
for the DCT coefficients, i.e., modeling DCT coefficients as indepen-
dent but not identically distributed multivariate Gaussians. This
extension of MiPOD for the JPEG images, which we referred to as
J-MiPOD [3], is also competitive as compared to the state-of-the-art
J-UNIWARD.

Despite the theoretical guarantees of security of the model-based
MiPOD and J-MiPOD, their assumption of independence of the
pixels/DCT coefficients is not very accurate. In this regard, some
works have focused on developing more accurate possible statistical
models of images by taking the correlations between pixels/DCT
coefficients carefully into account. For example, [28] introduces a
Gaussian Markov Random Field (GMRF) model with four-element
cross-neighborhood to capture the dependencies among spatially
adjacent (i.e., horizontal and vertical) pixels, and attains the em-
bedding change probability for each pixel by minimizing the KL
divergence in terms of a series of pairwise cliques between cover
and stego within the GMRF model, which achieves superior secu-
rity performance than the previous independent MiPOD. As for the
exploration of the correlations between DCT coefficients for JPEG
steganography, some recent works [11, 12] based on the complete
and exact knowledge of the acquisition and processing pipeline
(a.k.a., side-information in RAW image) build more accurate statis-
tical models for JPEG images. Although it can provide significant
performance improvements, it is too conditionally demanding and
often difficult to achieve in practice. Therefore, giving solutions in
the broader context of not providing side-information of images
and using only a single compressed JPEG image deserves further
investigation.

To address this issue, in this paper, we propose a novel model-
based steganographic scheme, using the pairwise Conditional Ran-
dom Field (CRF) model with four-element cross-neighborhood
to capture the dependencies among DCT coefficients for JPEG
steganography, denoted as CRF. Note that for the sake of simplicity,
similarly to the previous art [28], only ternary symmetric embed-
ding is investigated in this paper, and the impact brought by the
direction of embedding modification is not considered for the time
being. Different from the construction of the previous art [28], our

proposed CRF model is not built on the spatially adjacent DCT coef-
ficients, but rather on the same DCT mode in adjacent DCT blocks,
since the correlation between spatially adjacent DCT coefficients
inside one DCT block can hardly be obtained for a single com-
pressed JPEG image. The proposed CRF model with four-element
cross-neighborhood is characterized by the delicately designed en-
ergy function, which is defined as the weighted sum of a series
of unary and pairwise potentials since the effects of each unary
and pairwise potential on steganographic security are different. In
our proposed scheme, the unary and pairwise potentials associated
with the statistical detectability of steganography are defined as
the KL divergence between the statistical distributions of cover and
stego. With the aid of the proposed CRF model, secure JPEG image
steganography is finally formulated as the minimization of the en-
ergy function, and the optimal embedding change probabilities of
each DCT coefficient are attained by minimizing the total potentials
(i.e., KL divergence) under the payload constraint. With the given
embedding change probability, the corresponding steganographic
distortion cost can be easily determined. Extensive experiments
are carried out to verify the effectiveness of the proposed scheme
(known as CRF) using CC-JRM [19], DCTR [15], GFR [27] and SCA-
GFR [4], on BOSSbase [1] and ALASKAv2 [2] database. Numerous
results show that the proposed method can not only surpass the
SOAT heuristic-based UERD and JUNIWARD, but also outperform
the advanced model-based J-MiPOD by a clear margin.

2 PRELIMINARIES
2.1 Notations and Basic Concepts
In this paper, matrixes and vectors are represented by capital and
lowercase boldface symbols, respectively, sets are denoted by the
calligraphic font, and elements within a matrix are indicated by
italic fonts with subscript indices. AT is the transpose of matrix A,
and Pr is the probability measure.

For ease of presentation, in this paper, the JPEG gray-scale cover

and stego images with size ℎ ×𝑤 are denoted as X =

(
𝑥
𝑘,𝑙
𝑚,𝑛

)ℎ×𝑤
and Y =

(
𝑦
𝑘,𝑙
𝑚,𝑛

)ℎ×𝑤
, respectively, where 1 ≤ 𝑚 ≤ ℎ/8, 1 ≤ 𝑛 ≤

𝑤/8, 0 ≤ 𝑘, 𝑙 ≤ 7, ℎ and 𝑤 are taken the integer multiples of 8.
𝑥
𝑘,𝑙
𝑚,𝑛 ∈ I = {−1024,−1023, . . . , 1023} (or 𝑦𝑘,𝑙𝑚,𝑛) indicates the DCT
coefficient with the (𝑘, 𝑙)-th DCT frequency mode in the (𝑚,𝑛)-
th DCT block of X (or Y), 𝛽𝑘,𝑙𝑚,𝑛 is the corresponding embedding
change probability. The DCT basis for the (𝑘, 𝑙)-th frequency mode

is defined as an 8 × 8 matrix f𝑘,𝑙 =
(
𝑓
𝑘,𝑙
𝑖, 𝑗

)8×8
, where

𝑓
𝑘,𝑙
𝑖, 𝑗

=
𝑤𝑘𝑤𝑙

4
cos

𝜋𝑘 (2𝑖 + 1)
16

cos
𝜋𝑙 (2 𝑗 + 1)

16
, (1)

𝑤0 = 1/
√

2, 𝑤𝑘 = 1 for 𝑘 > 0, 𝑖 and 𝑗 are the corresponding
spatial indexes inside a 8 × 8 block. By performing Inverse Discrete
Cosine Transform on the DCT coefficients in X, we can obtain the

corresponding decompressed spatial image Z =

(
𝑧
𝑖, 𝑗
𝑚,𝑛

)ℎ×𝑤
, where

𝑧
𝑖, 𝑗
𝑚,𝑛 =

7∑︁
𝑘=0

7∑︁
𝑙=0

𝑓
𝑘,𝑙
𝑖, 𝑗

𝑞𝑘,𝑙 𝑥
𝑘,𝑙
𝑚,𝑛, (2)
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𝑞𝑘,𝑙 is the (𝑘, 𝑙)-th quantization step in the JPEG luminance quanti-
zation matrix.

2.2 The CRF Model for JPEG Steganography
As stated above, this paper focuses on the broader context where
there is only a single JPEG image without any side-information
about the cover source. In exploring the correlations between DCT
coefficients for JPEG steganography, we will only consider the
correlations of DCT coefficients from the samemode in horizontally
or vertically adjacent blocks, since its correlations are the most
significant, as evidenced by [35]. In this way, as illustrated in Figure
1 (𝐵𝑚,𝑛 is the (𝑚,𝑛)-th 8 × 8 DCT block), the JPEG image with size
ℎ×𝑤 can be split into 64 sub-images with size ℎ

8 ×
𝑤
8 , depending on

the DCT modes. Due to the formulation of considered correlations
being identically constituted in each sub-image, the derivation
will be performed in this paper using only one arbitrary
sub-image for brevity.
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Figure 1: The illustration of splitting a JPEG image depending
on DCT modes. The DCT coefficients with the same mode
are regrouped into the same sub-image.

Without loss of generality, we denote the (𝑘, 𝑙)-th sub-image by
S, omitting the index (𝑘, 𝑙) in the subsequent theoretical derivation
for the sake of simplicity and readability. Specifically, to incorporate
the considered correlations, we first define a Conditional Random
Field (S, 𝜷) on an undirected graph S = (V, E). S is the observed
sub-image, 𝜷 is a set of embedding change probabilities, and each
𝛽𝑚,𝑛 ∈ 𝜷 corresponds to the one of (𝑚,𝑛)-th DCT coefficient 𝑥𝑚,𝑛

in S. As shown in Figure 1, S consists of numerous nodes and edges,
whereinV = {(𝑚,𝑛) |1≤𝑚≤ℎ/8, 1≤𝑛≤𝑤/8} is a set that collects
the node index for the grid-like structure of DCT coefficients, E is
a set that collects the edges connecting horizontally or vertically
adjacent nodes. Since only the correlations of horizontally or verti-
cally adjacent nodes are considered in this paper, thus we will use
the four-element cross-neighborhood N4 (see Figure 1) to charac-
terize S. Inside this four-element cross-neighborhood system, there
are two types of cliques, i.e., one-element (unary) cliques and two-
element (pairwise) cliques. Formally, according to the Hammersley
Clifford theorem [21], the posterior distribution Pr(𝜷 | S) of any

possible assignment to 𝜷 conditioned on S is a Gibbs distribution
and defined as:

Pr(𝜷 | S) = 1
Λ

exp

(
−

∑︁
𝑐∈C

𝜓𝑐 (𝜷𝑐 | S)
)
, (3)

where C is the set of all unary and pairwise cliques in S,𝜓𝑐 (𝜷𝑐 | S)
is the potential function defined on clique 𝑐 , and Λ is a normalizing
constant known as the partition function. In a CRF model, the
corresponding energy function 𝐸 (𝜷 | S) is defined as:

𝐸 (𝜷 | S) = − log Pr(𝜷 | S) − logΛ =
∑︁
𝑐∈C

𝜓𝑐 (𝜷𝑐 | S), (4)

and the optimal assignment 𝜷∗, i.e. the maximum posterior (MAP)
probability of the random field B, is given by:

𝜷∗ = arg max
𝜷

Pr(𝜷 | S) = arg min
𝜷

𝐸 (𝜷 | S). (5)

It manifests that the problem of finding the optimal embedding
probabilities for secure JPEG image steganography can be formu-
lated as the minimization of a well-designed energy function.

Concretely, the energy function in Eq. (4) corresponding to the
proposed CRF model with four-element cross-neighborhood can be
formulated as the sum of two kinds of local potentials 𝜑𝑚,𝑛 and𝜓𝑐 :

𝐸 (𝜷 | S)=
∑︁

(𝑚,𝑛) ∈V
𝜑𝑚,𝑛 (𝛽𝑚,𝑛 |𝑥𝑚,𝑛) +

∑︁
𝑐∈E

𝜓𝑐 (𝜷𝑐 |𝒙𝑐 ). (6)

Herein, 𝜑𝑚,𝑛 is referred to as the unitary potential, employed to
characterize the detectability of embedding messages in individual
DCT coefficient 𝑥𝑚,𝑛 in V with embedding change probability
𝛽𝑚,𝑛 , and𝜓𝑐 is called the pairwise potential, used to characterize
the detectability of embedding messages in the correlated DCT
coefficient pair 𝒙𝑐 in E with embedding change probabilities 𝜷𝑐 . In
this way, maximizing the security of JPEG image steganography is
then formulated as minimizing the potentials in Eq. (6).

As for the characterization of steganographic detectability, there
is a well-recognized metric, supported by a rigorous mathematical
theory, namely KL divergence, which has already been used in
recent works [8, 10, 28]. It shows that the smaller the KL divergence
between the statistical distributions of cover and stego, the higher
the security of steganography, which is exactly consistent with the
relations between potentials in Eq. (6) and steganographic security.
Based on this observation, in this paper, we will formulate both the
unary and pairwise potentials in Eq. (6) as KL divergence between
the statistical distributions of cover and stego.

3 THE PROPOSED JPEG STEGANOGRAPHIC
DISTORTION COST DESIGN USING CRF
MODEL

3.1 Overview
For considering the correlations between DCT coefficients for JPEG
steganography with symmetric embedding, we propose a Condi-
tional Random Field (CRF) model with four-element cross-neighbor-
hood to capture the correlation between DCT coefficients for non-
independent steganographic distortion cost design, which has not
been considered in the prior art J-MiPOD [3]. With the aid of the
proposed model, the JPEG steganographic distortion cost design
is then formulated as minimizing the total potentials (all unary
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and pairwise) under the payload constraint. In this section, we
first develop the statistical models for both JPEG cover and stego
images, which are used to characterize the correlations between
DCT coefficients. Next, define the unary and pairwise potentials
using KL divergence between the statistical distributions of cover
and stego. Finally, formulate the distortion cost design as the mini-
mization of total potentials and provide an iterative optimization
approach to obtain the optimal embedding probabilities, associated
with distortion cost.

3.2 JPEG Cover and Stego Image Models
3.2.1 Cover model. As discussed above, a CRF model with four-
element cross-neighborhood system is utilized to model the cover
images in this paper, and only the correlations between DCT co-
efficients of the same DCT modes in horizontally and vertically
adjacent DCT blocks are considered. For this reason, we develop
the statistical model for pairwise DCT coefficients in JPEG cover
and stego images. For simplicity of the exposition and with-
out prejudice to generality, we take a pairwise DCT coeffi-
cient 𝒙𝑐 = [𝑥𝑚,𝑛, 𝑥𝑚,𝑛+1] in S as an instance in the subsequent
derivation.

As stated in [12, 32, 34, 35], the DCT coefficients in a JPEG image,
which are typically corrupted by Gaussian noise developed from
the RAW image acquisition up to the JPEG compression, are feasible
to be modeled as multivariate Gaussian random variables. Based
on this insight, we move one step forward by modeling pairwise
coefficients 𝒙𝑐 in a single compressed JPEG image as a bivariate
Gaussian random variable quantized to integer. Under the assump-
tion of fine quantization limit (refer to [8, 25, 28]), the Probability
Mass Function (PMF) of 𝒙𝑐 is defined as PΣ𝑐

= (𝑝 (𝑡1, 𝑡2))𝑡1,𝑡2∈I
with:

𝑝 (𝑡1, 𝑡2) = Pr(𝑥𝑚,𝑛 =𝑡1, 𝑥𝑚,𝑛+1=𝑡2)

∝ 1
2𝜋 |Σ𝑐 |1/2 exp

(
−1

2
(𝒕𝑐 − 𝝁𝑐 )Σ−1

𝑐 (𝒕𝑐 − 𝝁𝑐 )T
)
,

(7)

where 𝒕𝑐 = [𝑡1, 𝑡2] and 𝝁𝑐 = [𝜇𝑚,𝑛, 𝜇𝑚,𝑛+1] are the realization and
expectation of 𝒙𝑐 , respectively. Σ𝑐 and Σ−1

𝑐 are the corresponding
2 × 2 covariance matrix and its inverse matrix, respectively:

Σ𝑐 =

[
𝜎2
𝑚,𝑛 𝜚𝑐𝜎𝑚,𝑛𝜎𝑚,𝑛+1

𝜚𝑐𝜎𝑚,𝑛𝜎𝑚,𝑛+1 𝜎2
𝑚,𝑛+1

]
, (8)

Σ−1
𝑐 =


1

(1 − 𝜚2
𝑐 )𝜎2

𝑚,𝑛

−𝜚𝑐
(1 − 𝜚2

𝑐 )𝜎𝑚,𝑛𝜎𝑚,𝑛+1

−𝜚𝑐
(1 − 𝜚2

𝑐 )𝜎𝑚,𝑛𝜎𝑚,𝑛+1

1
(1 − 𝜚2

𝑐 )𝜎2
𝑚,𝑛+1


. (9)

Here, 𝜚𝑐 is the correlation coefficient between 𝑥𝑚,𝑛 and 𝑥𝑚,𝑛+1,
𝜎2
𝑚,𝑛 and 𝜎2

𝑚,𝑛+1 are the variance of 𝑥𝑚,𝑛 and 𝑥𝑚,𝑛+1, respectively.
Note that, all these parameters have to be estimated from a single
JPEG image, which will be described later in Section IV.

In addition, according to [38], for amultivariate Gaussian random
variable, its marginal variables are also Gaussian distributed, i.e.,
𝑥𝑚,𝑛 still follows a Gaussian distribution. Thereby, the PMF of 𝑥𝑚,𝑛

can be given by P𝜎𝑚,𝑛
= (𝑝 (𝑡1))𝑡1∈I with

𝑝 (𝑡1) = Pr(𝑥𝑚,𝑛 =𝑡1) ∝
1

√
2𝜋𝜎𝑚,𝑛

exp

(
−
(𝑡1−𝜇𝑚,𝑛)2

2𝜎2
𝑚,𝑛

)
. (10)

3.2.2 Stego model. Note that for the sake of brevity, we only con-
sider ternary symmetric embedding in our proposed scheme for the
time being, under which the statistical model for the stego image Y
can be easily derived from the corresponding cover image model.
Specifically, under ternary symmetric embedding, with the given
payload constraint, each 𝑥𝑚,𝑛 in S will be modified by {+1, 0,−1}
with embedding change probabilities {𝛽𝑚,𝑛, 1−2𝛽𝑚,𝑛, 𝛽𝑚,𝑛}, respec-
tively. Therefore, given a pairwise cover coefficient 𝒙𝑐 = [𝑥𝑚,𝑛, 𝑥𝑚,𝑛+1]
and the relevant embedding change probabilities 𝜷𝑐 = [𝛽𝑚,𝑛, 𝛽𝑚,𝑛+1],
the corresponding pairwise stego coefficient pair𝒚𝑐 = [𝑦𝑚,𝑛, 𝑦𝑚,𝑛+1]
can be obtained via applying the following probabilistic rules:

Pr
(
𝑦𝑚,𝑛=𝑥𝑚,𝑛, 𝑦𝑚,𝑛+1=𝑥𝑚,𝑛+1

)
=

(
1−2𝛽𝑚,𝑛

) (
1−2𝛽𝑚,𝑛+1

)
,

Pr
(
𝑦𝑚,𝑛=𝑥𝑚,𝑛 ± 1, 𝑦𝑚,𝑛+1=𝑥𝑚,𝑛+1

)
=𝛽𝑚,𝑛

(
1−2𝛽𝑚,𝑛+1

)
,

Pr
(
𝑦𝑚,𝑛=𝑥𝑚,𝑛, 𝑦𝑚,𝑛+1=𝑥𝑚,𝑛+1 ± 1

)
=

(
1−2𝛽𝑚,𝑛

)
𝛽𝑚,𝑛+1,

Pr
(
𝑦𝑚,𝑛=𝑥𝑚,𝑛 ± 1, 𝑦𝑚,𝑛+1=𝑥𝑚,𝑛+1 ± 1

)
=𝛽𝑚,𝑛𝛽𝑚,𝑛+1 .

(11)

Then, the PMF of𝒚𝑐 , i.e., QΣ𝑐 ,𝜷𝑐 =
(
𝑞𝜷𝑐 (𝑡1, 𝑡2)

)
𝑡1,𝑡2∈I can be accord-

ingly attained with
𝑞𝜷𝑐 (𝑡1, 𝑡2) = Pr(𝑦𝑚,𝑛 =𝑡1, 𝑦𝑚,𝑛+1=𝑡2)

=
(
1−2𝛽𝑚,𝑛

) (
1−2𝛽𝑚,𝑛+1

)
𝑝 (𝑡1, 𝑡2)

+ 𝛽𝑚,𝑛

(
1−2𝛽𝑚,𝑛+1

)
[𝑝 (𝑡1+1, 𝑡2) + 𝑝 (𝑡1−1, 𝑡2)]

+
(
1−2𝛽𝑚,𝑛

)
𝛽𝑚,𝑛+1 [𝑝 (𝑡1, 𝑡2+1) + 𝑝 (𝑡1, 𝑡2−1)]

+ 𝛽𝑚,𝑛𝛽𝑚,𝑛+1 [𝑝 (𝑡1+1, 𝑡2+1) + 𝑝 (𝑡1−1, 𝑡2+1)]
+ 𝛽𝑚,𝑛𝛽𝑚,𝑛+1 [𝑝 (𝑡1+1, 𝑡2−1) + 𝑝 (𝑡1−1, 𝑡2−1)] .

(12)

Similarly, the PMF of the corresponding stego coefficient 𝑦𝑚,𝑛 , i.e.,
𝛽𝑚,𝑛 =

(
𝑞𝛽𝑚,𝑛 (𝑡1)

)
𝑡1∈I can be obtained with

𝑞𝛽𝑚,𝑛 (𝑡1) = Pr(𝑦𝑚,𝑛 =𝑡1)

= (1−2𝛽𝑚,𝑛)𝑝 (𝑡1) + 𝛽𝑚,𝑛 [𝑝 (𝑡1+1) + 𝑝 (𝑡1−1)] .
(13)

3.3 Unary and Pairwise Potential Formulation
3.3.1 Unary Potential. As stated in Sec. 2.2, the potential func-
tions are formulated by KL divergence in our proposed scheme,
and the statistical distributions P𝜎𝑚,𝑛

and Q𝜎𝑚,𝑛,𝛽𝑚,𝑛
of cover and

stego images associated with the calculation of KL divergence have
been obtained, then the unary potential 𝜑𝑚,𝑛 (𝛽𝑚,𝑛 | 𝑥𝑚,𝑛) can be
derived by

𝜑𝑚,𝑛 (𝛽𝑚,𝑛 |𝑥𝑚,𝑛) = 𝐷KL
(
P𝜎𝑚,𝑛

∥Q𝜎𝑚,𝑛,𝛽𝑚,𝑛

)
≈ 1

2
𝛽2
𝑚,𝑛𝐼𝑚,𝑛,

(14)
where

𝐼𝑚,𝑛 =
∑︁
𝑡1

1
𝑝 (𝑡1)

(
𝜕𝑞𝛽𝑚,𝑛 (𝑡1)
𝜕𝛽𝑚,𝑛

)2
≈ 2

𝜎4
𝑚,𝑛

(15)

is the steganographic Fisher information, indicating the impact of
information hiding on the cover model.

The derivation of Eq. (14) is based on the conclusion that for
small embedding change probabilities, the KL divergence is well-
approximated by its leading quadratic term of Taylor expansion,
the detailed derivation process can refer to the prior arts [8, 28].
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Eventually, in conjunction with Eq. (14) and Eq. (15), the unary
potential 𝜑𝑚,𝑛 (𝛽𝑚,𝑛 |𝑥𝑚,𝑛) is formulated as

𝜑𝑚,𝑛 (𝛽𝑚,𝑛 |𝑥𝑚,𝑛) =
𝛽2
𝑚,𝑛

𝜎4
𝑚,𝑛

. (16)

3.3.2 Pairwise Potential. As for the pairwise potential𝜓𝑐 (𝜷𝑐 |𝒙𝑐 )
in Eq. (6), it plays a prominent part in capturing the correlation
between DCT coefficients for the measure of statistical detectability,
leading to the non-independent steganographic distortion cost de-
sign attain. Similar to the derivation of𝜑𝑚,𝑛 (𝛽𝑚,𝑛 |𝑥𝑚,𝑛),𝜓𝑐 (𝜷𝑐 |𝒙𝑐 )
can be formalized as the KL divergence between the statistical dis-
tributions PΣ𝑐

of 𝒙𝑐 and QΣ𝑐 ,𝜷𝑐 of 𝒚𝑐 , and obtained by the leading
quadratic term of Taylor expansion of the KL divergence, i.e.,

𝜓𝑐 (𝜷𝑐 |𝒙𝑐 ) = 𝐷KL
(
PΣ𝑐

∥QΣ𝑐 ,𝜷𝑐

)
≈ 1

2
𝜷𝑐 I𝑐𝜷T

𝑐 , (17)

where I𝑐 is the 2 × 2 Fisher information matrix (FIM):

I𝑐 =

[
𝐼
(𝑐 )
11 𝐼

(𝑐 )
12

𝐼
(𝑐 )
21 𝐼

(𝑐 )
22

]
, (18)

in which

𝐼
(𝑐 )
11 =

∑︁
𝑡1,𝑡2

1
𝑝 (𝑡1, 𝑡2)

(
𝜕𝑞𝜷𝑐 (𝑡1, 𝑡2)

𝜕𝛽𝑚,𝑛

)2
≈ 2

𝜎4
𝑚,𝑛

(
1 − 𝜚2

𝑐

)2 , (19)

𝐼
(𝑐 )
22 =

∑︁
𝑡1,𝑡2

1
𝑝 (𝑡1, 𝑡2)

(
𝜕𝑞𝜷𝑐 (𝑡1, 𝑡2)
𝜕𝛽𝑚,𝑛+1

)2
≈ 2

𝜎4
𝑚,𝑛+1

(
1 − 𝜚2

𝑐

)2 , (20)

𝐼
(𝑐 )
12 = 𝐼

(𝑐 )
21 =

∑︁
𝑡1,𝑡2

1
𝑝 (𝑡1, 𝑡2)

(
𝜕𝑞𝜷𝑐 (𝑡1, 𝑡2)

𝜕𝛽𝑚,𝑛

)(
𝜕𝑞𝜷𝑐 (𝑘1, 𝑡2)
𝜕𝛽𝑚,𝑛+1

)
≈ 2𝜚2

𝑐

𝜎2
𝑚,𝑛𝜎

2
𝑚,𝑛+1

(
1 − 𝜚2

𝑐

)2 .

(21)

One can refer to the prior art [28] for the detailed derivations of
FIM, which is dedicated to spatial image steganography. Finally,
combining Eq. (17) - Eq. (21), the pairwise potential 𝜓𝑐 (𝜷𝑐 |𝒙𝑐 ) is
formulated as

𝜓𝑐 (𝜷𝑐 |𝒙𝑐 ) =
𝛽2
𝑚,𝑛

𝜎4
𝑚,𝑛

(
1−𝜚2

𝑐

)2 +
𝛽2
𝑚,𝑛+1

𝜎4
𝑚,𝑛+1

(
1−𝜚2

𝑐

)2 +
2𝜚2

𝑐 𝛽𝑚,𝑛 𝛽𝑚,𝑛+1

𝜎2
𝑚,𝑛𝜎

2
𝑚,𝑛+1

(
1−𝜚2

𝑐

)2 .

(22)
Referring to Eq. (22), it can be seen that the correlation between

DCT coefficients 𝑥𝑚,𝑛 and 𝑥𝑚,𝑛+1 has been taken into account by the
introduction of correlation coefficient 𝜚𝑐 . In addition, a closer look
at Eq. (16) and Eq. (22) reveals that both unary and pairwise poten-
tials are inversely proportional to the variance of DCT coefficient,
implying that modifying the DCT coefficients with small variances
are more detectable than in those with large variances. On the other
hand, we know that the DCT coefficients with small variances are
generally located in the smooth regions or high-frequency modes
of JPEG images, and these DCT coefficients have been confirmed
by previous studies [3, 13, 16, 29, 30] to be really unsuitable for
embedding modifications. In this reagrd, we can claim that the
construction of potentials in both Eq. (16) and Eq. (22) for secure
JPEG steganography is theoretically feasible.

3.4 Optimization Problem Formulation and
Solving for Distortion Cost Design

Once the detailed expression of unary and pairwise potentials are
determined (see Eq. (16) and Eq. (22)), the energy 𝐸 (𝜷 | S) can
be accordingly obtained by summing all the unary and pairwise
potentials in the sub-image S. Note that S is only one of the 64
mutually independent sub-images, then we expand the derived
results to the entire image X, and have

𝐸 (𝜷 | X) =
7∑︁

𝑘=0

7∑︁
𝑙=0

𝐸𝑘,𝑙 (𝜷 | S), (23)

where 𝜷 =

(
𝛽
𝑘,𝑙
𝑚,𝑛

)ℎ×𝑤
are the embedding change probabilities,

𝐸𝑘,𝑙 (𝜷 | S) is the energy of the (𝑘, 𝑙)-th subimage S and rewritten
as:

𝐸𝑘,𝑙 (𝜷 | S)=
∑︁

(𝑚,𝑛) ∈V
𝜑
𝑘,𝑙
𝑚,𝑛 (𝛽𝑚,𝑛 |𝑥𝑚,𝑛) +

∑︁
𝑐∈E

𝜓
𝑘,𝑙
𝑐 (𝜷𝑐 |𝒙𝑐 )

=

ℎ/8∑︁
𝑚=1

𝑤/8∑︁
𝑛=1

1
2

(
𝛽
𝑘,𝑙
𝑚,𝑛

)2
𝐼
𝑘,𝑙
𝑚,𝑛 +

∑︁
𝑐∈E𝑘,𝑙

1
2
𝜷𝑘,𝑙𝑐 I𝑘,𝑙𝑐

(
𝜷𝑘,𝑙𝑐

)T
.

(24)
However, a closer look at Eq. (23) and Eq. (24) reveals that all the

DCT coefficients are treated indistinguishably, which is inconsistent
with domain knowledge in steganography. Previous arts [17, 29, 30]
have shown that image regions with different complexity, as well
as different frequency modes, can afford different levels of anti-
detectability. Given this, we further modify Eq. (23) and Eq. (24) by
incorporating the domain knowledge in steganography as follows:

𝐸 (𝜷 | S) =
7∑

𝑘=0

7∑
𝑙=0

𝑤𝑘,𝑙 · 𝐸𝑘,𝑙 (𝜷 | S),

𝐸𝑘,𝑙 (𝜷 | S) =
ℎ/8∑
𝑚=1

𝑤/8∑
𝑛=1

𝑤𝑚,𝑛 · 𝜑𝑘,𝑙𝑚,𝑛 + ∑
𝑐∈E𝑘,𝑙

𝑤𝑐 · 𝜓𝑘,𝑙
𝑐 .

(25)

In the revised Eq. (25), we introduce three types of weights,
i.e., the mode weight 𝑤𝑘,𝑙 , the block weight 𝑤𝑚,𝑛 and the pair-
wise weight𝑤𝑐 . The mode weight𝑤𝑘,𝑙 possesses a larger value on
high-frequency modes than low ones, thus widening the difference
between the corresponding energies of different frequency modes
associated with the steganography detectability. As for the setting
of𝑤𝑘,𝑙 , we first scan the DCT modes with Zig-Zag order and then
set the last 𝑝 DCT modes with 𝑤𝑘,𝑙 = 5 and 𝑤𝑘,𝑙 = 1 for the other
ones. For QF= 75 and QF= 95, 𝑝 are 16 and 3, respectively. The
block weight𝑤𝑚,𝑛 assigns smaller values to the unary potentials
in the DCT blocks of more complex regions. To achieve this, the
classic spatial steganographic scheme S-UNIWARD [16] is applied
to obtain the costs 𝝆′ = (𝜌′𝑖, 𝑗𝑚,𝑛)ℎ×𝑤 of the decompressed spatial
image Z, and then summed 𝝆′ over blocks and make it as the block
weight𝑤𝑚,𝑛 , i.e.,

𝑤𝑚,𝑛 =

7∑︁
𝑖=0

7∑︁
𝑗=0

𝜌′𝑖, 𝑗𝑚,𝑛 . (26)

where 𝜌′𝑖, 𝑗𝑚,𝑛 is the distortion cost of the (𝑖, 𝑗)-th pixel in the (𝑚,𝑛)-
th decompressed spatial block. As for the pairwise weight 𝑤𝑐 , it
is dedicated to pairwise potentials w.r.t. two adjacent DCT blocks,
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which allows us to simply compute𝑤𝑐 by merging the two involved
block weights, e.g.,𝑤𝑐 = (𝑤𝑚,𝑛 +𝑤𝑚,𝑛+1)/2.

To this end, the energy of the entire image X associated with the
statistical detectability has been eventually determined so that we
can obtain the optimal embedding probabilities 𝜷∗ with the given
payload constraint by minimizing the 𝐸 (𝜷 | X), corresponding to
the minimum detectability, i.e.,

min
𝜷

𝐸 (𝜷 | X)) =
7∑

𝑘=0

7∑
𝑙=0

𝐸𝑘,𝑙 (𝜷 | S)

s.t.
7∑

𝑘=0

7∑
𝑙=0

ℎ/8∑
𝑚=1

𝑤/8∑
𝑛=1

𝐻

(
𝛽
𝑘,𝑙
𝑚,𝑛

)
= 𝐿

, (27)

where 𝐻 (𝑥) is the information entropy that 𝐻 (𝑥) = −𝑥𝑙𝑜𝑔(𝑥) −
(1 − 2𝑥)𝑙𝑜𝑔(1 − 2𝑥), 𝐿 is the given embedding payload.

Notably, the optimization of Eq. (27) is convex and consequently
has a global minimum since all its 𝐸𝑘,𝑙 (𝜷 | S) terms are convex
functions regarding 𝛽

𝑘,𝑙
𝑚,𝑛 . To deal with this optimization, the clas-

sical Lagrange multiplier method is employed on the Eq. (27), and
have

𝜕

𝜕𝛽
𝑘,𝑙
𝑚,𝑛

(
𝐹 (𝜷) − 1

𝛾

(
𝛷

(
𝛽
𝑘,𝑙
𝑚,𝑛

)
− 𝐿

))
= 0, (28)

where 𝛾 > 0 is the Lagrange multiplier. After some simple arith-
metic, we can obtain:

𝛾

(
U𝑘,𝑙
𝑚,𝑛 + V𝑘,𝑙

𝑚,𝑛

)
=

1

𝛽
𝑘,𝑙
𝑚,𝑛

log

(
1

𝛽
𝑘,𝑙
𝑚,𝑛

− 2

)
, (29)

where

U𝑘,𝑙
𝑚,𝑛 =

2

(𝜎𝑘,𝑙𝑚,𝑛)4
+

∑︁
(𝑎,𝑏 ) ∈N𝑘,𝑙

𝑚,𝑛

2

(𝜎𝑘,𝑙𝑚,𝑛)4 (1−(𝜚𝑎,𝑏𝑚,𝑛)2)2
, (30)

V𝑘,𝑙
𝑚,𝑛 =

∑︁
(𝑎,𝑏 ) ∈N𝑘,𝑙

𝑚,𝑛

2 (𝜚𝑎,𝑏𝑚,𝑛)2

(𝜎𝑘,𝑙𝑚,𝑛)2 (𝜎𝑘,𝑙
𝑎,𝑏

)2 (1−(𝜚𝑎,𝑏𝑚,𝑛)2)2

𝛽
𝑘,𝑙

𝑎,𝑏

𝛽
𝑘,𝑙
𝑚,𝑛

, (31)

and N𝑘,𝑙
𝑚,𝑛 = {(𝑚−1, 𝑛), (𝑚+1, 𝑛), (𝑚,𝑛−1), (𝑚,𝑛+1)} is the set

of the indexes of the four-element cross-neighborhood of 𝑥𝑘,𝑙𝑚,𝑛 ,
(𝜎𝑘,𝑙𝑚,𝑛)2 is the variance of 𝑥𝑘,𝑙𝑚,𝑛 , 𝜚

𝑎,𝑏
𝑚,𝑛 is the correlation coefficient

between 𝑥𝑘,𝑙𝑚,𝑛 and its neighbor 𝑥𝑘,𝑙
𝑎,𝑏

. Once (𝜎𝑘,𝑙𝑚,𝑛)2 and 𝜚𝑎,𝑏𝑚,𝑛 for each
of the DCT coefficients are given, the embedding probabilities can
be easily determined by numerically solving the equation (29).

To quickly solve Eq. (29) for all DCT coefficients, the inverse
function to 𝑓 (𝑥) = 𝑥 log(𝑥−2) was tabulated, and a binary search is
applied to find the corresponding Lagrange multiplier 𝛾 . Note that
there is a quantity, i.e., 𝛽𝑘,𝑙

𝑎,𝑏
/𝛽𝑘,𝑙𝑚,𝑛 , in Eq. (31) that will hinder the

rapid implementation of a lookup table in the solving process. To
cope with this, an iterative optimization approach is developed for
solving Eq. (29) until it converges. Specifically, in each new iteration,
the quantity 𝛽

𝑘,𝑙

𝑎,𝑏
/𝛽𝑘,𝑙𝑚,𝑛 is firstly calculated by the 𝜷 obtained in the

last iteration. As for the first iteration, the quantity can be set to
1 for brevity. In addition, a trick is also used for fast solving the
Eq. (29) that dynamically adjusts the search range of the Lagrange
multiplier according to the results obtained in the last iteration. In
this way, our scheme converges in only three iterations, and the 𝛽∗
corresponding to the least detectability can be accordingly obtained.

Subsequently, it can be converted to the steganographic distortion
cost by

𝜌
𝑘,𝑙
𝑚,𝑛 = log

(
1/𝛽𝑘,𝑙𝑚,𝑛 − 2

)
. (32)

4 PARAMETER ESTIMATION
Recall Eq. (30) and Eq. (31), determining the (𝜎𝑘,𝑙𝑚,𝑛)2 and 𝜚

𝑎,𝑏
𝑚,𝑛 is

the key to solving Eq. (27). To estimate the variances of DCT co-
efficients, in J-MiPOD [3], Rémi et al. extended the pixel variance
estimator proposed in MiPOD to JPEG images with effective modi-
fications, achieving low computational complexity and respectable
empirical security. Given these benefits, we adopt this improved
estimator to compute the DCT coefficient variance (𝜎𝑘,𝑙𝑚,𝑛)2, which
is briefly summarised as follows:
step 1: Decompress the JPEG image X to the corresponding spatial
image Z using Eq. (2).
step 2: Subtract the estimated pixel expectations, which are ob-
tained by using a Wiener filter with a window size 2 × 2, from Z to
acquire image residuals.
step 3: Fit the local residuals of block size 𝑝 × 𝑝 via a linear para-
metric model with two-dimensional trigonometric polynomials of
size 𝑝2 × 𝑞, and consequently obtain the estimated noise 𝜉𝑖, 𝑗𝑚,𝑛 and
pixel variance (𝜁 𝑖, 𝑗𝑚,𝑛)2 through the maximum likelihood estimation.
We set set 𝑝 = 5 and 𝑞 = 6 in our scheme.
step 4: Compute the variance of each DCT coefficient by leveraging
the linearity of DCT:

(𝜎𝑘,𝑙𝑚,𝑛)2 =

7∑︁
𝑖=0

7∑︁
𝑗=0

(𝑓 𝑘,𝑙
𝑖, 𝑗

)2 (𝜁 𝑖, 𝑗𝑚,𝑛)2/𝑞2
𝑘,𝑙

. (33)

As for the estimation of the correlation coefficients between the
DCT coefficients from the same mode over the adjacent blocks,
we propose a simple yet efficient estimation method. Overall, we
foremost compute a block-level correlation coefficient between two
adjacent blocks and then assign this block-level estimation to the 64
pairs of DCT coefficients with the same mode in these two adjacent
blocks to serve as their respective correlation coefficients. Formally,
the block-level correlation coefficients are efficiently computed
by applying the Pearson product-moment correlation coefficient
formula to the estimated noises obtained in the variance estima-
tion. To this end, the correlation coefficient 𝜚𝑎,𝑏𝑚,𝑛 in (30) and (31) is
formulated as:

𝜚
𝑎,𝑏
𝑚,𝑛 =

7∑
𝑖=0

7∑
𝑗=0

(
𝜉
𝑖, 𝑗
𝑚,𝑛 − 𝜉

𝑖, 𝑗
𝑚,𝑛

) (
𝜉
𝑖, 𝑗

𝑎,𝑏
− 𝜉

𝑖, 𝑗

𝑎,𝑏

)
√︄

7∑
𝑖=0

7∑
𝑗=0

(
𝜉
𝑖, 𝑗
𝑚,𝑛 − 𝜉

𝑖, 𝑗
𝑚,𝑛

)2
√︄

7∑
𝑖=0

7∑
𝑗=0

(
𝜉
𝑖, 𝑗

𝑎,𝑏
− 𝜉

𝑖, 𝑗

𝑎,𝑏

)2
, (34)

where 𝜉𝑖, 𝑗𝑚,𝑛 and 𝜉𝑖, 𝑗
𝑎,𝑏

are the mean values of the estimated noises in
the (𝑚,𝑛)-th block and the (𝑎, 𝑏)-th block, respectively. For numer-
ical stability, we further set (𝜎𝑘,𝑙𝑚,𝑛)2 = 𝑚𝑎𝑥 ((𝜎𝑘,𝑙𝑚,𝑛)2, 10−10) and
|𝜚𝑎,𝑏𝑚,𝑛 | =𝑚𝑖𝑛( |𝜚𝑎,𝑏𝑚,𝑛 |, 0.99).
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5 EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Experimental Settings
5.1.1 Image datasets. In this paper, we adopt two databases: (1)
BOSSBase v1.01 [1]. It consists of 10,000 grayscale images with size
of 512× 512. All images are compressed into the JPEG domain with
quality factors (QF) of 75 and 95 separately to generate two cover
datasets for experiments. (2) ALASKAv2 [2]. It provides different
datasets with various sizes, formats, and QFs. We selectively down-
load and use two datasets with QF=75 and 95, both of which contain
80,000 grayscale JPEG images with the size of 512×512. For simplic-
ity, we separately select 10,000 images from these two JPEG image
datasets for experiments. Note that all images in ALASKAv2 have
been processed randomly using different development pipelines,
which are more diverse and realistic than BOSSBase.

5.1.2 Steganographic schemes. To evaluate the security perfor-
mance of our proposed CRF, we choose three SOTA JPEG stegano-
graphic schemes for comparison, including two heuristic-based
schemes J-UNIWARD [16] and UERD [13], and one model-based
scheme J-MiPOD [3]. For simplicity, all the involved schemes are
simulated are their distortion boundwith payload𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
bpnzac (bit per non-zero AC DCT coefficient).

5.1.3 Steganalyzers. Five SOTA steganalysis features, CC-JRM
[19], DCTR [15], GFR [27] and SCA-GFR [4], are employed to com-
prehensively assess the security performance. The steganalyzers
are trained as binary classifiers using the steganalysis features with
the FLD (Fisher Linear Discriminant) ensemble [20]. Typically, half
of the cover and stego images are used for the training ensemble
classifier, and the remaining are used for testing. The ultimate secu-
rity performance is quantified by detection error rate 𝑃E averaged
over ten times of classification testing, and larger 𝑃E indicates better
empirical security.

5.2 Comparison to Prior Arts
To verify the advantages of our proposed CRF, we compare the
CRF with three SOTA competitors, i.e., J-MiPOD, J-UNIWARD and
UERD, under various payloads and QFs in resisting the detection of
CC-JRM, DCTR, GFR, and SCA-GFR. The corresponding security
performance on BOSSBase is summarized in Table I. It shows that
for all the payloads and QFs, our CRF consistently achieves the best
empirical security among the involved tested schemes. In specific,
for CC-JRM, although CRF is slightly superior to the J-UNIWARD,
it can outperform J-MiPOD and UERD by a significant margin, espe-
cially UERD, which can achieve a performance gain of up to 4.27%
and 6.40% at QF=75 and QF=95 under 0.5 bpnzac, respectively. For
DCTR and GFR, which are dedicated to detecting the decompressed
spatial embedding change after modifying the DCT coefficients,
the CRF consistently outperforms all competitors by a clear margin
and is particularly resistant to more advanced GFR detection. As for
SCA-GFR, which is currently the most advanced steganalysis fea-
ture, our CRF still shows consistent superiority, especially at QF=95.
A close look at the comparison between the non-independent CRF
and independent J-MiPOD, for all the involved steganalysis features,
our CRF can outperform the J-MiPOD across the board, confirming
that taking into account the correlation between the DCT coeffi-
cients by CRF model does indeed improve JPEG steganographic

security. Figure 2 illustrates the comparison of embedding change
probability 𝜷 for J-MiPOD and CRF at QF=95 under 0.4 bpnzac.
Compared to J-MiPOD, our proposed CRF favors centralized em-
bedding, where some large regions containing a few texture DCT
blocks as well as the boundaries between smoothed and textured
regions are hardly used, and the payload is more evenly spread over
the image.

In addition, we further verify the generalization of our proposed
CRF on ALASKAv2 datasets, the results are collected in Table II.
Note that the images in ALASKAv2 are more realistic and much
more diverse than those from BOSSBase, due to the much more
complex, realistic, and randomized development processes as well
as the larger set of cameras. Table II shows similar trends in that the
proposed CRF consistently outperforms its competitors, especially
under larger payloads, indicating that our CRF is indeed general
across different datasets.

(a) Cover image (b) 𝜷 : J-MiPOD (c) 𝜷 : CRF

Figure 2: (a) is a cover image, (b) and (c) are the embed-
ding change probabilities of J-MiPOD and CRF, respectively,
where the brighter points indicate larger probabilities.

5.3 Time Complexity
For time complexity evaluation, we randomly selected 1000 512 ×
512 images from BOSSBase to measure the average time-consuming
in embedding distortion cost acquisition under QF=75 and QF=95
at 0.4 bpnzac. Not only the proposed CRF is evaluated, but also the
other competitors are involved for comparison. The time complex-
ity evaluation is performed with Matlab 2015b on a 3.20 GHz Intel
CPU Xeon E-2836 with 64GB of memory running a 64-bit Win-
dows 10 without parallel computing. As shown in Table 3, UERD
owns the minimum time-consuming, and J-UNIWARD consumes
far more time than the other three methods. Numerically, the time
complexity of J-UNIWARD is nearly 180 times of UERD and about
3 times of CRF. Although the time complexity of our CRF is 3 times
of J-MiPOD, it is still affordable.

6 CONCLUSION
In this paper, we propose a novel model-based JPEG steganographic
scheme called CRF, wherein the Conditional Random Field (CRF)
model with four-element cross-neighborhood is built to capture the
mutual impact of embedding change probabilities by leveraging the
correlation of DCT coefficients of the same mode in horizontally
or vertically adjacent blocks. Overall, the CRF model is character-
ized by energy function defined as the weighted sum of a series
of unary and pairwise potentials. Both kinds of potentials, in our
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Table 1: Average Detection Error 𝑃E (in %) Comparison of the Proposed CRF with J-MiPOD, J-UNIWARD and UERD against
Different Steganalyzers on BOSSBase Dataset with QF=75 and 95.

Feature Method Payload (bpnzac) for QF=75 Payload (bpnzac) for QF=95
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

CC-JRM
CRF 47.03 41.33 34.84 27.78 21.01 49.71 48.12 45.34 41.07 35.65

J-MiPOD 46.01 39.44 31.96 24.62 17.65 49.19 47.27 44.04 39.44 33.39
J-UNIWARD 47.01 41.19 33.88 26.52 19.36 49.52 48.08 45.22 40.88 35.07

UERD 45.87 38.81 31.12 23.43 16.74 49.13 46.56 41.87 35.83 29.25

DCTR
CRF 44.07 35.50 26.41 18.13 11.53 48.72 45.55 40.80 35.13 28.23

J-MiPOD 42.02 31.57 21.22 13.16 7.55 48.17 44.12 38.76 32.56 25.52
J-UNIWARD 43.85 34.24 24.15 15.44 9.04 48.70 45.44 40.02 33.50 26.21

UERD 42.97 32.91 22.96 14.72 8.72 47.84 43.32 37.23 30.31 22.43

GFR
CRF 42.57 32.22 22.82 14.31 8.33 47.76 43.58 38.14 31.13 24.24

J-MiPOD 41.23 29.64 19.27 11.18 6.36 47.01 41.38 35.15 27.73 20.45
J-UNIWARD 41.07 28.64 18.18 10.22 5.56 47.49 42.65 35.63 27.84 20.19

UERD 39.78 27.53 17.81 10.32 6.01 45.98 39.45 32.13 24.68 17.73

SCA-GFR
CRF 39.27 27.58 17.74 11.16 6.54 46.73 41.02 34.87 28.51 22.50

J-MiPOD 38.51 26.19 16.64 10.14 5.85 45.56 38.76 32.21 25.46 19.54
J-UNIWARD 35.94 23.25 14.15 8.03 4.45 46.23 40.32 33.64 26.70 20.41

UERD 29.83 18.18 11.01 6.74 4.05 40.91 32.52 25.87 19.91 14.94

Table 2: Average Detection Error 𝑃E (in %) Comparison of the Proposed CRF with J-MiPOD, J-UNIWARD and UERD against
Different Steganalyzers on ALASKAv2 Dataset with QF=75 and 95.

Feature Method Payload (bpnzac) for QF=75 Payload (bpnzac) for QF=95
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

CC-JRM
CRF 46.50 40.48 33.79 27.18 20.45 47.30 42.07 36.24 30.48 24.60

J-MiPOD 45.81 39.36 32.15 24.85 18.55 46.80 41.14 35.08 28.97 23.06
J-UNIWARD 46.11 39.31 32.37 25.10 18.90 46.36 40.65 34.81 28.11 22.64

UERD 45.84 39.22 31.53 24.75 17.88 47.43 42.54 37.53 32.16 27.05

DCTR
CRF 43.97 35.12 26.02 18.41 12.53 48.30 44.55 39.17 33.82 27.70

J-MiPOD 42.58 32.69 23.23 15.62 10.62 47.82 43.42 38.52 32.50 25.89
J-UNIWARD 43.08 33.41 24.39 16.96 11.27 48.02 43.69 38.24 31.71 25.72

UERD 42.75 32.87 23.36 16.02 10.39 48.05 44.03 38.74 33.26 26.58

GFR
CRF 43.72 35.35 26.52 18.91 13.14 48.45 45.62 41.60 36.81 31.61

J-MiPOD 43.03 33.99 24.53 17.08 11.64 48.37 44.87 40.96 35.90 30.15
J-UNIWARD 41.58 30.87 21.22 13.83 8.66 48.28 44.55 39.75 34.01 28.12

UERD 41.70 31.77 22.44 15.37 10.31 47.71 43.42 38.48 33.04 27.02

SCA-GFR
CRF 42.17 32.36 23.72 16.48 11.14 48.06 44.26 39.85 35.02 30.16

J-MiPOD 42.01 32.04 23.06 15.58 10.57 47.85 43.99 39.57 34.49 29.12
J-UNIWARD 39.34 28.10 19.08 12.43 7.89 47.84 43.72 39.05 33.71 28.26

UERD 35.86 25.57 17.52 12.06 8.07 45.66 40.29 35.10 29.83 25.19

Table 3: Average Time-Consuming (in Seconds) in Embed-
ding Distortion Cost Acquisition on Randomly Selected 1000
Images fromBOSSBase under QF=75 and QF=95 at 0.4 bpnzac.

QF UERD J-UNIWARD J-MiPOD CRF(CPU)
75 0.0401 6.7765 0.6061 1.0441
95 0.0425 6.7527 0.5739 1.0608

scheme, are formulated as the KL divergence between the statis-
tical distributions of cover and stego. Following this way, secure
JPEG steganography is then formulated as the optimization prob-
lem of minimizing that energy function. The optimal embedding
change probabilities corresponding to the least detectability can be

eventually obtained by optimizing the constructed energy function
with the given payload constraint after some necessary parame-
ter estimation, based on which, the steganographic distortion cost
can be converted accordingly. Numerous results show that the pro-
posed CRF can not only surpass the SOAT heuristic-based UERD
and J-UNIWARD, but also outperform currently the most advanced
model-based J-MiPOD by a clear margin with affordable time com-
plexity.

In the current work, we built a CRF model to capture the mutual
impact of embedding change probabilities, in the future, we will
go a step further to directly capture the mutual impact of embed-
ding changes to further improve JPEG steganography, which will
lead us to investigate the model-based asymmetric steganography
embedding.
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