
Under review as a conference paper at ICLR 2024

LEARNING MULTI-OBJECTIVE PROGRAM THROUGH
ONLINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the problem of learning the parameters (i.e., objective functions
or constraints) of a multi-objective decision making model, based on a set of se-
quentially arrived decisions. In particular, these decisions might not be exact and
possibly carry measurement noise or are generated with the bounded rationality of
decision makers. In this paper, we propose a general online learning framework
to deal with this learning problem using inverse multi-objective optimization, and
prove that this framework converges at a rate of O(1/

√
T) under certain regular-

ity conditions. More precisely, we develop two online learning algorithms with
implicit update rules which can handle noisy data. Numerical results with both
synthetic and real world datasets show that both algorithms can learn the parame-
ters of a multi-objective program with great accuracy and are robust to noise.

1 INTRODUCTION

In this paper, we aim to learn the parameters (i.e., constraints and a set of objective functions) of
a decision making problem with multiple objectives, instead of solving for its efficient (or Pareto)
optimal solutions, which is the typical scenario. More precisely, we seek to learn θ given {yi}i∈[N]

that are observations of the efficient solutions of the multi-objective optimization problem (MOP):

min
x

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}
s.t. x ∈ X(θ),

where θ is the true but unknown parameter of the MOP. In particular, we consider such learning
problems in online fashion, noting observations are unveiled sequentially in practical scenarios.
Specifically, we study such learning problem as an inverse multi-objective optimization problem
(IMOP) dealing with noisy data, develop online learning algorithms to derive parameters for each
objective function and constraint, and output an estimation of the distribution of weights (which,
together with objective functions, define individuals’ utility functions) among human subjects.

Learning human participants’ decision making scheme is critical for an organization in designing
and providing services or products. Nevertheless, as in most scenarios, we can only observe their
decisions or behaviors and cannot directly access decision making schemes. Indeed, participants
probably do not have exact information regarding their own decision making process (Keshavarz
et al., 2011). To bridge the discrepancy, we leverage the inverse optimization idea that has been
proposed and received significant attention in the optimization community, which is to infer the
missing information of the underlying decision models from observed data, assuming that human
decision makers are making optimal decisions (Ahuja & Orlin, 2001; Iyengar & Kang, 2005; Schae-
fer, 2009; Wang, 2009; Keshavarz et al., 2011; Chan et al., 2014; Bertsimas et al., 2015; Aswani
et al., 2018; Esfahani et al., 2018; Tan et al., 2020). This subject actually carries the data-driven
concept and becomes more applicable as large amounts of data are generated and become readily
available, especially those from digital devices and online transactions.

1.1 RELATED WORK

Our work draws inspiration from the inverse optimization problem with single objective. It seeks
particular values for those parameters such that the difference between the actual observation and the

1

Under review as a conference paper at ICLR 2024

expected solution to the optimization model (populated with those inferred values) is minimized. Al-
though complicated, an inverse optimization model can often be simplified for computation through
using KKT conditions or strong duality of the decision making model, provided that it is convex.
Nowadays, extending from its initial form that only considers a single observation Ahuja & Orlin
(2001); Iyengar & Kang (2005); Schaefer (2009); Wang (2009), inverse optimization has been fur-
ther developed and applied to handle many observations Keshavarz et al. (2011); Bertsimas et al.
(2015); Aswani et al. (2018); Esfahani et al. (2018). Nevertheless, a particular challenge, which is
almost unavoidable for any large data set, is that the data could be inconsistent due to measurement
errors or decision makers’ sub-optimality. To address this challenge, the assumption on the obser-
vations’ optimality is weakened to integrate those noisy data, and KKT conditions or strong duality
is relaxed to incorporate inexactness.

Our work is most related to the subject of inverse multi-objective optimization. The goal is to find
multiple objective functions or constraints that explain the observed efficient solutions well. There
are several recent studies related to the presented research. One is in Chan et al. (2014), which
considers a single observation that is assumed to be an exact optimal solution. Then, given a set of
well-defined linear functions, an inverse optimization is formulated to learn their weights. Another
one is Dong & Zeng (2020), which proposes the batch learning framework to infer utility functions
or constraints from multiple noisy decisions through inverse multi-objective optimization. This
work can be categorized as doing inverse multi-objective optimization in batch setting. Recently,
Dong & Zeng (2021) extends Dong & Zeng (2020) with distributionally robust optimization by
leveraging the prominent Wasserstein metric. In contrast, we do inverse multi-objective optimization
in online settings, and the proposed online learning algorithms significantly accelerate the learning
process with performance guarantees, allowing us to deal with more realistic and complex preference
inference problems.

Also related to our work is the line of research conducted by Bärmann et al. (2017) and Dong
et al. (2018), which develops online learning methods to infer the utility function or constraints
from sequentially arrived observations. However, their approach is only possible to handle inverse
optimization with a single objective. More specifically, their methods apply to situations where ob-
servations are generated by decision making problems with only one objective function. Differently,
our approach does not make the single-objective assumption and only requires the convexity of the
underlying decision making problem with multiple objectives. Hence, we believe that our work gen-
eralizes their methods and extends the applicability of online learning from learning single objective
program to multi-objective program.

1.2 OUR CONTRIBUTIONS

To the best of authors’ knowledge, we propose the first general framework of online learning for
inferring decision makers’ objective functions or constraints using inverse multi-objective optimiza-
tion. This framework can learn the parameters of any convex decision making problem, and can
explicitly handle noisy decisions. Moreover, we show that the online learning approach, which
adopts an implicit update rule, has anO(

√
T) regret under suitable regularity conditions when using

the ideal loss function. We finally illustrate the performance of two algorithms on both a multi-
objective quadratic programming problem and a portfolio optimization problem. Results show that
both algorithms can learn parameters with great accuracy and are robust to noise while the second
algorithm significantly accelerate the learning process over the first one.

2 PROBLEM SETTING

2.1 DECISION MAKING PROBLEM WITH MULTIPLE OBJECTIVES

We consider a family of parametrized multi-objective decision making problems of the form

min
x∈Rn

{
f1(x, θ), f2(x, θ), . . . , fp(x, θ)

}
s.t. x ∈ X(θ),

(DMP)

where p ≥ 2 and fl(x, θ) : Rn × Rnθ 7→ R for each l ∈ [p]. Assume parameter θ ∈ Θ ⊆ Rnθ . We
denote the vector of objective functions by f(x, θ) = (f1(x, θ), f2(x, θ), . . . , fp(x, θ))

T . Assume

2

Under review as a conference paper at ICLR 2024

X(θ) = {x ∈ Rn : g(x, θ) ≤ 0,x ∈ Rn
+}, where g(x, θ) = (g1(x, θ), . . . , gq(x, θ))

T is another
vector-valued function with gk(x, θ) : Rn × Rnθ 7→ R for each k ∈ [q].
Definition 2.1 (Efficiency). For fixed θ, a decision vector x∗ ∈ X(θ) is said to be efficient if
there exists no other decision vector x ∈ X(θ) such that fi(x, θ) ≤ fi(x

∗, θ) for all i ∈ [p], and
fk(x, θ) < fk(x

∗, θ) for at least one k ∈ [p].

In the study of multi-objective optimization, the set of all efficient solutions is denoted by XE(θ)
and called the efficient set. The weighting method is commonly used to obtain an efficient solution
through computing the problem of weighted sum (PWS) Gass & Saaty (1955) as follows.

min wT f(x, θ)
s.t. x ∈ X(θ),

(PWS)

where w = (w1, . . . , wp)T . Without loss of generality, all possible weights are restricted to a
simplex, which is denoted by Wp = {w ∈ Rp

+ : 1Tw = 1}. Next, we denote the set of optimal
solutions for the (PWS) by

S(w, θ) = argmin
x

{
wT f(x, θ) : x ∈ X(θ)

}
.

Let W +
p = {w ∈ Rp

++ : 1Tw = 1}. Following from Theorem 3.1.2 of Miettinen (2012), we have:

Proposition 2.1. If x ∈ S(w, θ) and w ∈ W +
p , then x ∈ XE(θ).

The next result from Theorem 3.1.4 of Miettinen (2012) states that all the efficient solutions can be
found by the weighting method for convex MOP.
Proposition 2.2. Assume that MOP is convex. If x ∈ X is an efficient solution, then there exists a
weighting vector w ∈ Wp such that x is an optimal solution of (PWS).

By Propositions 2.1 - 2.2, we can summarize the relationship between S(w, θ) and XE(θ) as follows.
Corollary 2.2.1. For convex MOP,⋃

w∈W +
p

S(w, θ) ⊆ XE(θ) ⊆
⋃

w∈Wp

S(w, θ).

In the following, we make a few assumptions to simplify our understanding, which are actually mild
and appear often in the literature.
Assumption 2.1. Set Θ is a convex compact set. There exists D > 0 such that ∥θ∥2 ≤ D for all
θ ∈ Θ. In addition, for each θ ∈ Θ, both f(x, θ) and g(x, θ) are convex in x.

2.2 INVERSE MULTI-OBJECTIVE OPTIMIZATION

Consider a learner who has access to decision makers’ decisions, but does not know their objective
functions or constraints. In our model, the learner aims to learn decision makers’ multiple objective
functions or constraints from observed noisy decisions only. We denote y the observed noisy deci-
sion that might carry measurement error or is generated with a bounded rationality of the decision
maker. We emphasize that this noisy setting of y reflects the real world situation rather than for
analysis of regret, where the noises might be from multiple sources.

Throughout the paper we assume that y is a random variable distributed according to an unknown
distribution Py supported on Y . As y is a noisy observation, we note that y does not necessarily
belong to X(θ), i.e., it might be either feasible or infeasible with respect to X(θ).

We next discuss the construction of an appropriate loss function for the inverse multi-objective
optimization problem Dong & Zeng (2020; 2021). Ideally, given a noisy decision y and a hypothesis
θ, the loss function can be defined as the minimum distance between y and the efficient set XE(θ):

l(y, θ) = min
x∈XE(θ)

∥y − x∥22. (loss function)

For a general MOP, however, there might exist no explicit way to characterize the efficient set
XE(θ). Hence, an approximation approach to practically describe this is adopted. Following from

3

Under review as a conference paper at ICLR 2024

Corollary 2.2.1, a sampling approach is adopted to generate wk ∈ Wp for each k ∈ [K] and approx-
imate XE(θ) as

⋃
k∈[K] S(wk, θ). Then, the surrogate loss function is defined as

lK(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
∥y − x∥22. (surrogate loss)

By using binary variables, this surrogate loss can be converted into the Surrogate Loss Problem.

lK(y, θ) = min
zj∈{0,1}

∥y −
∑

k∈[K]

zkxk∥22

s.t.
∑

k∈[K]

zk = 1, xk ∈ S(wk, θ).
(1)

Constraint
∑

k∈[K] zk = 1 ensures that exactly one of the efficient solutions will be chosen to
measure the distance to y. Hence, solving this optimization problem identifies some wk with k ∈
[K] such that the corresponding efficient solution S(wk, θ) is closest to y.
Remark 2.1. It is guaranteed that no efficient solution will be excluded if all weight vectors in Wp

are enumerated. As it is practically infeasible due to computational intractability, we can control K
to balance the tradeoff between the approximation accuracy and computational efficacy. Certainly,
if the computational power is strong, we would suggest to draw a large number of weights evenly in
Wp to avoid any bias. In practice, for general convex MOP, we evenly sample {wk}k∈[K] from W +

p

to ensure that S(wk, θ) ∈ XE(θ). If f(x, θ) is known to be strictly convex, we can evenly sample
{wk}k∈[K] from Wp as S(wk, θ) ∈ XE(θ) by Proposition 2.1.

3 ONLINE LEARNING FOR IMOP
In our online learning setting, noisy decisions become available to the learner one by one. Hence, the
learning algorithm produces a sequence of hypotheses (θ1, . . . , θT+1). Here, T is the total number
of rounds, and θ1 is an arbitrary initial hypothesis and θt for t > 1 is the hypothesis chosen after
seeing the (t − 1)th decision. Let l(yt, θt) denote the loss the learning algorithm suffers when it
tries to predict yt based on the previous observed decisions {y1, . . . ,yt−1}. The goal of the learner
is to minimize the regret, which is the cumulative loss

∑T
t=1 l(yt, θt) against the best possible loss

when the whole batch of decisions are available. Formally, the regret is defined as

RT =

T∑
t=1

l(yt, θt)−min
θ∈Θ

T∑
t=1

l(yt, θ).

Unlike most online learning problems that assume the loss function to be smooth Shalev-Shwartz
(2011); Hazan (2016), l(y, θ) and lK(y, θ) are not necessarily smooth in our paper, due to the struc-
tures of XE(θ) and

⋃
k∈[K] S(wk, θ). Thus, the popular gradient based online learning algorithms

Bottou (1999); Kulis & Bartlett (2010) fail and our problem is significantly more difficult than most
of them. To address this challenge, two online learning algorithms are developed in the next section.

3.1 ONLINE IMPLICIT UPDATES

Once receiving the tth noisy decision yt, the ideal way to update θt+1 is by solving the following
optimization problem using the ideal loss function:

θt+1 = argmin
θ∈Θ

1

2
∥θ − θt∥22 + ηtl(yt, θ), (2)

where ηt is the learning rate in each round, and l(yt, θ) is defined in loss function.

As explained in the previous section, l(yt, θ) might not be computable due to the non-existence of
the closed form of the efficient set XE(θ). Thus, we seek to approximate the update 2 by:

θt+1 = argmin
θ∈Θ

1

2
∥θ − θt∥22 + ηtlK(yt, θ), (3)

where ηt is the learning rate in each round, and lK(yt, θ) is defined in surrogate loss.

The update 3 approximates 2, and seeks to balance the tradeoff between “conservativeness” and
“correctiveness”, where the first term characterizes how conservative we are to maintain the current

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Online Learning for IMOP

1: Input: noisy decisions {yt}t∈T , weights
{wk}k∈K

2: Initialize θ1 = 0
3: for t = 1 to T do
4: receive yt

5: suffer loss lK(yt, θt)
6: if lK(yt, θt) = 0 then
7: θt+1 ← θt
8: else
9: set learning rate ηt ∝ 1/

√
t

10: update θt+1 by solving 3 directly (or equiva-
lently solving K subproblems 4)

11: end if
12: end for

Algorithm 2 Accelerated Online Learning

1: Input: {yt}t∈T and {wk}k∈K

2: Initialize θ1 = 0
3: for t = 1 to T do
4: receive yt

5: suffer loss lK(yt, θt)
6: let k∗ = argmink∈[K]∥yt − xk∥22,

where xk ∈ S(wk, θt) for k ∈ [K]
7: if lK(yt, θt) = 0 then
8: θt+1 ← θt
9: else

10: set learning rate ηt ∝ 1/
√
t

11: update θt+1 by 4 with k = k∗

12: end if
13: end for

estimation, and the second term indicates how corrective we would like to modify with the new
estimation. As no closed form exists for θt+1 in general, this update method is an implicit approach.

To solve 3, we can replace xk ∈ S(wk, θ) by KKT conditions for each k ∈ [K]:

min
θ

1
2∥θ − θt∥22 + ηt

∑
k∈[K]

∥yt − ϑk∥22

s.t. θ ∈ Θ, g(xk) ≤ 0, uk ≥ 0,

uT
k g(xk) = 0,

∇xk
wT

k f(xk, θ) + uk · ∇xk
g(xk) = 0,

 , ∀k ∈ [K],

0 ≤ ϑk ≤Mkzk1n, ∀k ∈ [K],

xk −Mk(1− zk)1n ≤ ϑk ≤ xk, ∀k ∈ [K],∑
k∈[K]

zk = 1,

xk ∈ Rn, uk ∈ Rm
+ , zk ∈ {0, 1}, ∀k ∈ [K],

where uk is the dual variable for gk(x, θ) ≤ 0, and Mk is a big number to linearize zkxk (Asghari
et al., 2022).

Alternatively, solving 3 is equivalent to solving K independent programs defined in the following
and taking the one with the least optimal value (breaking ties arbitrarily).

min
θ∈Θ

1
2∥θ − θt∥22 + ηt∥yt − x∥22

s.t. x ∈ S(wk, θ).
(4)

Our application of the implicit update rule to learn an MOP proceeds as outlined in Algorithm 1.
Remark 3.1. (i) When choosing 4 to update θt+1, we can parallelly compute K independent prob-
lems of 4, which would dramatically improve the computational efficiency. (ii) After the completion
of Algorithm 1, we can allocate every yt to the wk that minimizes lK(yt, θT+1), which provides an
inference on the distribution of weights of component functions fl(x, θ) over human subjects.

Acceleration of Algorithm 1: Note that we update θ and the weight sample assigned to yt in 3
simultaneously, meaning both θ and the weight sample index k are variables when solving 3. In
other words, one needs to solve K subproblems 4 to get an optimal solution for 3. However, note
that the increment of θ by 3 is typically small for each update. Consequently, the weight sample
assigned to yt using θt+1 is roughly the same as using the previous guess of this parameter, i.e.,
θt. Hence, it is reasonable to approximate 3 by first assigning a weight sample to yt based on the
previous updating result. Then, instead of computing K problems of 4, we simply compute a single
one associated with the selected weight samples, which significantly eases the burden of solving 3.
Our application of the accelerated implicit update rule proceeds as outlined in Algorithm 2.

5

Under review as a conference paper at ICLR 2024

Mini-batches We enhance online learning by considering multiple observations per update Bottou
& Cun (2004). In online IMOP, this means that computing θt+1 using |Nt| > 1 decisions:

θt+1 = argmin
θ∈Θ

1

2
∥θ − θt∥22 +

ηt
|Nt|

∑
t∈Nt

lK(yt, θ), (5)

However, we should point out that applying Mini-batches might not be suitable here as the update 5
is drastically more difficult to compute even for |Nt| = 2 than the update 3 with a single observation.

3.2 ANALYSIS OF CONVERGENCE

Note that the proposed online learning algorithms are generally applicable to learn the parameter of
any convex MOP. In this section, we show that the average regret converges at a rate of O(1/

√
T)

under certain regularity conditions based on the ideal loss function l(y, θ). Namely, we consider the
regret bound when using the ideally implicit update rule 2. Next, we introduce a few assumptions
that are regular in literature Keshavarz et al. (2011); Bertsimas et al. (2015); Esfahani et al. (2018);
Aswani et al. (2018); Dong & Zeng (2018); Dong et al. (2018).
Assumption 3.1. (a) X(θ) is closed, and has a nonempty relative interior. X(θ) is also bounded.

Namely, there exists B > 0 such that ∥x∥2 ≤ B for all x ∈ X(θ). The support Y of the
noisy decisions y is contained within a ball of radius R almost surely, where R < ∞. In
other words, P(∥y∥2 ≤ R) = 1.

(b) Each function in f is strongly convex on Rn, that is for each l ∈ [p], ∃λl > 0, ∀x,y ∈ Rn(
∇fl(y, θl)−∇fl(x, θl)

)T

(y − x) ≥ λl∥x− y∥22.

Regarding Assumption 3.1.(a), assuming that the feasible region is closed and bounded is very
common in inverse optimization. The finite support of the observations is needed since we do
not hope outliers have too many impacts in our learning. Let λ = minl∈[p]{λl}. It follows that
wT f(x, θ) is strongly convex with parameter λ for w ∈ Wp. Therefore, Assumption 3.1.(b) ensures
that S(w, θ) is a single-valued set for each w.

The performance of the algorithm also depends on how the change of θ affects the objective values.
For ∀w ∈ Wp, θ1 ∈ Θ, θ2 ∈ Θ, we consider the following function

h(x, w, θ1, θ2) = wT f(x, θ1)− wT f(x, θ2).

Assumption 3.2. ∃κ > 0, ∀w ∈ Wp, h(·, w, θ1, θ2) is κ-Lipschitz continuous on Y . That is,

|h(x, w, θ1, θ2)− h(y, w, θ1, θ2)| ≤ κ∥θ1 − θ2∥2∥x− y∥2,∀x,y ∈ Y.

Basically, this assumption says that the objective functions will not change much when either the
parameter θ or the variable x is perturbed. It actually holds in many common situations, including
the multi-objective linear program and multi-objective quadratic program.

From now on, given any y ∈ Y, θ ∈ Θ, we denote x(θ) the efficient point in XE(θ) that is closest
to y. Namely, l(y, θ) = ∥y − x(θ)∥22.

Lemma 3.1. Under Assumptions 3.1 - 3.2, the loss function l(y, θ) is uniformly 4(B+R)κ
λ -Lipschitz

continuous in θ. That is, ∀y ∈ Y,∀θ1, θ2 ∈ Θ, we have

|l(y, θ1)− l(y, θ2)| ≤
4(B +R)κ

λ
∥θ1 − θ2∥2.

The key point in proving Lemma 3.1 is the observation that the perturbation of S(w, θ) due to θ is
bounded by the perturbation of θ by applying Proposition 6.1 in Bonnans & Shapiro (1998). Details
of the proof are given in Appendix.
Assumption 3.3. For MOP, ∀y ∈ Y,∀θ1, θ2 ∈ Θ, ∀α, β ≥ 0 s.t. α+ β = 1, we have either of the
following:

(a) if x1 ∈ XE(θ1), and x2 ∈ XE(θ2), then αx1 + βx2 ∈ XE(αθ1 + βθ2).

6

Under review as a conference paper at ICLR 2024

(b) ∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2 ≤ αβ∥x(θ1)− x(θ2)∥2/(2(B +R)).

The definition of x(θ1),x(θ2) and x(αθ1 + βθ2) is given before Lemma 3.1. This assumption
requires the convex combination of x1 ∈ XE(θ1), and x2 ∈ XE(θ2) belongs to XE(αθ1 + βθ2).
Or there exists an efficient point in XE(αθ1 + βθ2) close to the convex combination of x(θ1) and
x(θ2). Examples are given in Appendix.

Let θ∗ be an optimal inference to minθ∈Θ

∑
t∈[T] l(yt, θ), i.e., an inference derived with the whole

batch of observations available. Then, the following theorem asserts that under the above assump-
tions, the regret RT =

∑
t∈[T](l(yt, θt)− l(yt, θ

∗)) of the online learning algorithm is of O(
√
T).

Theorem 3.2. Suppose Assumptions 3.1 - 3.3 hold. Then, choosing ηt =
Dλ

2
√
2(B+R)κ

1√
t
, we have

RT ≤
4
√
2(B +R)Dκ

λ

√
T .

We establish the above regret bound by extending Theorem 3.2 in Kulis & Bartlett (2010). Our ex-
tension involves several critical and complicated analyses for the structure of the optimal solution set
S(w, θ) as well as the loss function, which is essential to our theoretical understanding. Moreover,
we relax the requirement of smoothness of loss function to Lipschitz continuity through a similar
argument in Lemma 1 of Wang et al. (2017) and Duchi et al. (2011).

4 EXPERIMENTS

In this section, we will provide a multi-objective quadratic program (MQP) and a portfolio optimiza-
tion problem to illustrate the performance of the proposed online learning Algorithms 1 and 2. The
mixed integer second order conic problems (MISOCPs), which are derived from using KKT condi-
tions in 3, are solved by Gurobi Optimization (2016). All the algorithms are programmed with Julia
Bezanson et al. (2017). The experiments have been run on an Intel(R) Xeon(R) E5-1620 processor
that has a 3.60GHz CPU with 32 GB RAM.

4.1 SYNTHETIC DATA: LEARNING THE PREFERENCES AND RESTRICTIONS FOR AN MQP
Consider the following multi-objective quadratic optimization problem.

min
x∈R2

+

(
f1(x) =

1
2x

TQ1x+ cT1 x
f2(x) =

1
2x

TQ2x+ cT2 x

)
s.t. Ax ≤ b,

where parameters of the objective functions and constraints are provided in Appendix.

Suppose there are T decision makers. In each round, the learner would receive one noisy decision.
Her goal is to learn the objective functions or restrictions of these decision makers. In round t, we
suppose that the decision maker derives an efficient solution xt by solving (PWS) with weight wt,
which is uniformly chosen from W2. Next, the learner receives the noisy decision yt corrupted by
noise that has a jointly uniform distribution with support [−0.5, 0.5]2. Namely, yt = xt + ϵt, where
each element of ϵt ∼ U(−0.5, 0.5).
Learning the objective functions In the first set of experiments, the learner seeks to learn c1 and
c2. Please note that learning Q1 and Q2 requires mixed integer non-convex solver such as Baron.
We assume that c1 is within range [1, 6]2, c2 is within range [−6,−1]2, T = 1000 rounds of noisy
decisions are generated, and K = 41 weights from W2 are evenly sampled. The learning rate is set
to ηt = 5/

√
t. Then, we implement Algorithms 1 and 2. At each round t, we solve 4 using parallel

computing with 6 workers.

To illustrate the performance of the algorithms in a statistical way, we run 100 repetitions of the
experiments. Figure 1a shows the total estimation errors of c1 and c2 in each round over the 100
repetitions for the two algorithms. We also plot the average estimation error of the 100 repetitions.
As can be seen in this figure, convergence for both algorithms is pretty fast. Also, estimation errors
over rounds for different repetitions concentrate around the average, indicating that our algorithm is
pretty robust to noise. The estimation error in the last round is not zero because we use a finite K to
approximate the efficient set. We see in Figure 1b that Algorithm 2 is much faster than Algorithm
1 especially when K is large. To further illustrate the performance of algorithms, we randomly

7

Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
10-1

100

101

Alg 1: Estimation error

Alg 1: Average error

Alg 2: Estimation error

Alg 2: Average error

(a)

K=6 K=11 K=21 K=41
0

20

40

60

80

100

120

140

160

180

Ti
m

e(
s)

Alg 1
Alg 2

(b)

0 1 2 3

0

1

2

3

Nosiy decisions Real efficient set Estimated efficient set

(c)

T = 5 T = 10 T = 15

10
0

10
1

10
2

10
3

Batching setting

Online setting

(d)
Figure 1: Learning objective functions of an MQP over T = 1000 rounds. We run 100 repetitions of
experiments. Let c = [c1, c2]. (a) We plot estimation errors at each round t for all 100 experiments
and their average estimation errors with K = 41. (b) Blue and yellow bars indicate average running
time and standard deviations for each K using Algorithm 1 and 2, respectively. (c) We randomly
pick one repetition. The estimated efficient set after T = 1000 rounds is indicated by the red line.
The real efficient set is shown by the yellow line. (d) The dotted brown line is the error bar plot of
the running time over 10 repetitions in batch setting. The blue line is the error bar plot of the running
time over 100 repetitions in an online setting using Algorithm 1.

pick one repetition using Algorithm 1 and plot the estimated efficient set in Figure 1c. We can see
clearly that the estimated efficient set almost coincides with the real efficient set. Moreover, Figure
1d shows that IMOP in online settings is drastically faster than in batch setting. It is practically
impossible to apply the batch setting algorithms in real-world applications.

Learning the Right-hand Side In the second set of experiments, the learner seeks to learn b given
the noisy decisions that arrive sequentially in T rounds. We assume that b is within [−10, 10]2.
T = 1000 rounds of noisy decisions are generated. K = 81 weights from W2 are evenly sampled.
The learning rate is set to ηt = 5/

√
t. Then, we apply Algorithms 1 and 2. To illustrate the

performance of them, we run 100 repetitions of the experiments. Figure 2a shows the estimation
error of b in each round over the 100 repetitions for the two algorithms. We also plot the average
estimation error of the 100 repetitions. As can be seen in the figure, convergence for both algorithms
is pretty fast. In addition, we see in Figure 2b that Algorithm 2 is much faster than Algorithm 1.

0 200 400 600 800 1000

10-1

100

101

Alg 1: Estimation error

Alg 1: Average error

Alg 2: Estimation error

Alg 2: Average error

(a)

K=6 K=11 K=21 K=41
0

20

40

60

80

100

120

140

160

Ti
m

e(
s)

Alg 1
Alg 2

(b)
Figure 2: Learning the right-hand side of an MQP over T = 1000 rounds. We run 100 repetitions
of the experiments. (a) We plot estimation errors at each round t for all 100 experiments and their
average estimation errors of all repetitions with K = 41. (b) Blue and yellow bars indicate the
average running times and standard deviations for each K using Algorithm 1 and 2, respectively.
4.2 REAL-WORLD CASE: LEARNING EXPECTED RETURNS IN PORTFOLIO OPTIMIZATION

We next consider noisy decisions arising from different investors in a stock market. More precisely,
we consider a portfolio selection problem, where investors need to determine the fraction of their
wealth to invest in each security to maximize the total return and minimize the total risk. The process
typically involves the cooperation between an investor and a portfolio analyst, where the analyst
provides an efficient frontier on a certain set of securities to the investor and then the investor selects
a portfolio according to her preference to the returns and risks. The classical Markovitz mean-
variance portfolio selection Markowitz (1952) in the following is used by analysts.

min

(
f1(x) = −rTx
f2(x) = xTQx

)
s.t. 0 ≤ xi ≤ bi, ∀i ∈ [n],

n∑
i=1

xi = 1,

8

Under review as a conference paper at ICLR 2024

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Standard Deviation of Portfolio Returns (Annualized)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
e
a
n

 o
f

P
o

rt
fo

li
o

 R
e
tu

rn
s
 (

A
n

n
u

a
li
z
e
d

)

Efficient Frontier and Estimated Efficient Frontier

Real Efficient Frontier

Estimated Efficient Frontier

(a) (b)
Figure 3: Learning the expected return of a Portfolio optimization problem over T = 1000 rounds
with K = 41. (a) The red line indicates the real efficient frontier. The blue dots indicate the
estimated efficient frontier using the estimated expected return for K = 41. (b) Each bar represents
the proportion of the 1000 decision makers that has the corresponding weight for f1(x).

where r ∈ Rn
+ is a vector of individual security expected returns, Q ∈ Rn×n is the covariance

matrix of securities returns, x is a portfolio specifying the proportions of capital to be invested in
the different securities, and bi is an upper bound on the proportion of security i, ∀i ∈ [n].

Dataset: The dataset is derived from monthly total returns of 30 stocks from a blue-chip index which
tracks the performance of top 30 stocks in the market when the total investment universe consists
of thousands of assets. The true expected returns and true return covariance matrix for the first 8
securities are given in the Appendix.

Details for generating the portfolios are provided in Appendix. The portfolios on the efficient fron-
tier are plot in Figure 3a. The learning rate is set to ηt = 5/

√
t. At each round t, we solve 4

using parallel computing. In Table 1 we list the estimation error and estimated expected returns for
different K. The estimation error becomes smaller when K increases, indicating that we have a
better approximation accuracy of the efficient set when using a larger K. We also plot the estimated
efficient frontier using the estimated r̂ for K = 41 in Figure 3a. We can see that the estimated effi-
cient frontier is very close to the real one, showing that our algorithm works quite well in learning
expected returns in portfolio optimization. We also plot our estimation on the distribution of the
weight of f1(x) among the 1000 decision makers. As shown in Figure 3b, the distribution follows
roughly normal distribution. We apply Chi-square goodness-of-fit tests to support our hypotheses.

Table 1: Estimation Error for Different K

K 6 11 21 41

∥r̂− rtrue∥2 0.1270 0.1270 0.0420 0.0091

5 CONCLUSION AND FUTURE WORK

In this paper, an online learning method to learn the parameters of the multi-objective optimization
problems from noisy observations is developed and implemented. We prove that this framework
converges at a rate of O(1/

√
T) under suitable conditions. Nonetheless, as shown in multiple ex-

periments using both synthetic and real world datasets, even if these conditions are not satisfied, we
still observe a fast convergence rate and a strong robustness to noisy observations. Thus, it would be
interesting to analyze to what extent these conditions can be relaxed.

Also, we note that our model naturally follows the contextual bandit setting. We can view the
decision yt observed at time t as the context. The learner then takes the action θt and the loss
is jointly determined by the context and the action. Compared to the vast majority of literature
surveyed in Zhou (2015), the main technical difficulty in our model is how to set an appropriate
reward (loss) given the context (yt) and the action (θt). Intuitively, we set the loss as the difference
between the context (yt) and another context generated by the action. Motivated by this observation,
one future work is to integrate classical contextual bandits algorithms into our model. Particularly,
we think that algorithms without the Linear Realizability Assumption (the reward is linear with
respect to the context), such as KernelUCB, might fit well in our problem.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ravindra K Ahuja and James B Orlin. Inverse optimization. Operations Research, 49(5):771–783,
2001.

Mohammad Asghari, Amir M Fathollahi-Fard, SMJ Mirzapour Al-e hashem, and Maxim A
Dulebenets. Transformation and linearization techniques in optimization: A state-of-the-art sur-
vey. Mathematics, 2022.

Anil Aswani, Zuo-Jun Shen, and Auyon Siddiq. Inverse optimization with noisy data. Operations
Research, 2018.

Andreas Bärmann, Sebastian Pokutta, and Oskar Schneider. Emulating the expert: Inverse optimiza-
tion through online learning. In ICML, 2017.

Dimitris Bertsimas, Vishal Gupta, and Ioannis Ch Paschalidis. Data-driven estimation in equilibrium
using inverse optimization. Mathematical Programming, 153(2):595–633, 2015.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017.

J Frédéric Bonnans and Alexander Shapiro. Optimization problems with perturbations: A guided
tour. SIAM Review, 40(2):228–264, 1998.

Léon Bottou. On-line learning and stochastic approximations. In On-line Learning in Neural Net-
works, pp. 9–42. Cambridge University Press, 1999.

Léon Bottou and Yann L Cun. Large scale online learning. In NIPS, 2004.

Timothy CY Chan, Tim Craig, Taewoo Lee, and Michael B Sharpe. Generalized inverse multi-
objective optimization with application to cancer therapy. Operations Research, 62(3):680–695,
2014.

Chaosheng Dong and Bo Zeng. Inferring parameters through inverse multiobjective optimization.
arXiv preprint arXiv:1808.00935, 2018.

Chaosheng Dong and Bo Zeng. Expert learning through generalized inverse multiobjective opti-
mization: Models, insights, and algorithms. In ICML, 2020.

Chaosheng Dong and Bo Zeng. Wasserstein distributionally robust inverse multiobjective optimiza-
tion. In AAAI, 2021.

Chaosheng Dong, Yiran Chen, and Bo Zeng. Generalized inverse optimization through online learn-
ing. In NeurIPS, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Peyman Mohajerin Esfahani, Soroosh Shafieezadeh-Abadeh, Grani A Hanasusanto, and Daniel
Kuhn. Data-driven inverse optimization with imperfect information. Mathematical Program-
ming, 167(1):191–234, 2018.

Saul Gass and Thomas Saaty. The computational algorithm for the parametric objective function.
Naval Research Logistics, 2(1-2):39–45, 1955.

Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016. URL http://www.
gurobi.com.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer, 2001.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3-4):157–325, 2016.

Garud Iyengar and Wanmo Kang. Inverse conic programming with applications. Operations Re-
search Letters, 33(3):319–330, 2005.

10

http://www.gurobi.com
http://www.gurobi.com

Under review as a conference paper at ICLR 2024

Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective function. In
Intelligent Control (ISIC), 2011 IEEE International Symposium on, pp. 613–619. IEEE, 2011.

Brian Kulis and Peter L Bartlett. Implicit online learning. In ICML, 2010.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science & Business
Media, 2012.

Andrew J. Schaefer. Inverse integer programming. Optimization Letters, 3(4):483–489, 2009.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2011.

Yingcong Tan, Daria Terekhov, and Andrew Delong. Learning linear programs from optimal deci-
sions. arXiv preprint arXiv:2006.08923, 2020.

Jialei Wang, Weiran Wang, and Nathan Srebro. Memory and communication efficient distributed
stochastic optimization with minibatch prox. In Proceedings of the 2017 Conference on Learning
Theory, volume 65, pp. 1882–1919, 2017.

Lizhi Wang. Cutting plane algorithms for the inverse mixed integer linear programming problem.
Operations Research Letters, 37(2):114–116, 2009.

Li Zhou. A survey on contextual multi-armed bandits. arXiv preprint arXiv:1508.03326, 2015.

A APPENDIX

A.1 OMITTED MATHEMATICAL REFORMULATIONS

Before giving the reformulations, we first make some discussions about the surrogate loss functions.

lK(y, θ) = min
zk∈{0,1}

∥y −
∑

k∈[K]

zkxk∥22

= min
zk∈{0,1}

∑
k∈[K]

∥y − zkxk∥22 − (K − 1)∥y∥22

where xk ∈ S(wk, θ) and
∑

k∈[K] zk = 1.

Since (K − 1)∥y∥22 is a constant, we can safely drop it and use the following as the surrogate loss
function when solving the optimization program in the implicit update,

lK(y, θ) = min
zk∈{0,1}

∑
k∈[K]

∥y − zkxk∥22

where xk ∈ S(wk, θ) and
∑

k∈[K] zk = 1.

A.1.1 SINGLE LEVEL REFORMULATION FOR THE INVERSE MULTI-OBJECTIVE
OPTIMIZATION PROBLEM

The parametrized mulobjective optimization problem is

min
x∈Rn

f(x, θ)

s.t. g(x) ≤ 0
MOP

where

f(x, θ) = (f1(x, θ), f2(x, θ), . . . , fp(x, θ))
T

g(x) = (g1(x), . . . , gq(x))
T

11

Under review as a conference paper at ICLR 2024

Then, the single level reformulation for the Implicit update in the paper is given in the following

min
b

1
2∥θ − θt∥22 + ηt

∑
k∈[K]

∥yt − ϑk∥22

s.t. θ ∈ Θ g(xk) ≤ 0, uk ≥ 0

uT
k g(xk) = 0

∇xk
wT

k f(xk, θ) + uk · ∇xk
g(xk) = 0

 ∀k ∈ [K]

0 ≤ ϑk ≤Mkzk ∀k ∈ [K]

xk −Mk(1− zk) ≤ ϑk ≤ xk ∀k ∈ [K]∑
k∈[K]

zk = 1

xk ∈ Rn, uk ∈ Rm
+ , tk ∈ {0, 1}m, zk ∈ {0, 1} ∀k ∈ [K]

A.1.2 SINGLE LEVEL REFORMULATION FOR THE INVERSE MULTI-OBJECTIVE QUADRATIC
PROBLEM

When the objective functions are quadratic and the feasible region is a polyhedron, the multi-
objective optimization has the following form

min
x∈Rn

1
2x

TQ1x+ cT1 x
...

1
2x

TQpx+ cTp x

s.t. Ax ≥ b

MQP

where Ql ∈ Sn
+ (the set of symmetric positive semidefinite matrices) for all l ∈ [p]..

When trying to learn {cl}l∈[p], the single level reformulation for the Implicit update in the paper is
given in the following

min
cl

1
2

∑
l∈[p]

∥cl − ctl∥22 + ηt
∑

k∈[K]

∥yt − ϑk∥22

s.t. cl ∈ C̃l ∀l ∈ [p]
Axk ≥ b, uk ≥ 0

uk ≤Mtk
Axk − b ≤M(1− tk)

(w1
kQ1 + · · ·+ wp

kQp)xi + w1
kc1 + · · ·+ wp

kcp −ATuk = 0

 ∀k ∈ [K]

0 ≤ ϑk ≤Mkzk ∀k ∈ [K]

xk −Mk(1− zk) ≤ ϑk ≤ xk ∀k ∈ [K]∑
k∈[K]

zk = 1

xk ∈ Rn, uk ∈ Rm
+ , tk ∈ {0, 1}m, zk ∈ {0, 1} ∀l ∈ [p] ∀k ∈ [K]

where ctl is the estimation of cl at the tth round, and C̃l is a convex set for each l ∈ [p].

We have a similar single level reformulation when learning the Right-hand side b. Clearly, this is a
Mixed Integer Second Order Cone program(MISOCP) when learning either cl or b.

12

Under review as a conference paper at ICLR 2024

A.2 OMITTED PROOFS

A.2.1 STRONGLY CONVEX OF wT f(x, θ) AS STATED UNDER ASSUMPTION 3.1

Proof. By the definition of λ,(
∇wT f(y, θ)−∇wT f(x, θ)

)T

(y − x) =

(
∇

p∑
l=1

wlfl(y, θ)−∇
p∑

l=1

wlfl(x, θl)

)T

(y − x)

=
p∑

l=1

wl

(
∇fl(y, θl)−∇fl(x, θl)

)T

(y − x)

≥
p∑

l=1

wlλl∥x− y∥22 ≥ η∥x− y∥22
p∑

l=1

wl

= λ∥x− y∥22

Thus, wT f(x, θ) is strongly convex for x ∈ Rn.

A.2.2 PROOF OF LEMMA 3.1

Proof. By Assumption 3.1(b), we know that S(w, θ) is a single-valued set for each w ∈ Wp. Thus,
∀y ∈ Y , ∀θ1, θ2 ∈ Θ, ∃w1, w2 ∈ Wp, s.t.

x(θ1) = S(w1, θ1), x(θ2) = S(w2, θ2)

Without of loss of generality, let lK(y, θ1) ≥ lK(y, θ2). Then,

|lK(y, θ1)− lK(y, θ2)| = lK(y, θ1)− lK(y, θ2)

= ∥y − x(θ1)∥22 − ∥y − x(θ2)∥22
= ∥y − S(w1, θ1)∥22 − ∥y − S(w2, θ2)∥22
≤ ∥y − S(w2, θ1)∥22 − ∥y − S(w2, θ2)∥22
= ⟨S(w2, θ2)− S(w2, θ1), 2y − S(w2, θ1)− S(w2, θ2)⟩
≤ 2(B +R)∥S(w2, θ2)− S(w2, θ1)∥2

(6)

The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 3.1(a), that is

∥2y − S(w2, θ1)− S(w2, θ2)∥2 ≤ 2(B +R) (7)

Next, we will apply Proposition 6.1 in Bonnans & Shapiro (1998) to bound ∥S(w2, θ2) −
S(w2, θ1)∥2.

Under Assumptions 3.1 - 3.2, the conditions of Proposition 6.1 in Bonnans & Shapiro (1998) are
satisfied. Therefore,

∥S(w2, θ2)− S(w2, θ1)∥2 ≤
2κ

λ
∥θ1 − θ2∥2 (8)

Plugging equation 7 and equation 8 in equation 6 yields the claim.

A.2.3 PROOF OF THEOREM 3.2

Proof. We will extend Theorem 3.2 in Kulis & Bartlett (2010) to prove our theorem.

Let Gt(θ) =
1
2∥θ − θt∥22 + ηtl(yt, θ).

We will now show the loss function is convex. The first step is to show that if Assumption 3.3 holds,
then the loss function l(y, θ) is convex in θ.

13

Under review as a conference paper at ICLR 2024

First, suppose Assumption 3.3(a) hold. Then,

αl(y, θ1) + βl(y, θ2)− l(y, αθ1 + βθ2)

= α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
≥ α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − αx(θ1)− βx(θ2)∥22 (By Assumption 3.3(a))
= αβ∥x(θ1)− x(θ2)∥22
≥ 0

(9)

Second, suppose Assumption 3.3(b) holds. Then,

αl(y, θ1) + βl(y, θ2)− l(y, αθ1 + βθ2)

= α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
= α∥y − x(θ1)∥22 + β∥y − x(θ2)∥22 − ∥y − αx(θ1)− βx(θ2)∥22

+∥y − αx(θ1)− βx(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
= αβ∥x(θ1)− x(θ2)∥22 + ∥y − αx(θ1)− βx(θ2)∥22 − ∥y − x(αθ1 + βθ2)∥22
= αβ∥x(θ1)− x(θ2)∥22 − ⟨αx(θ1) + βx(θ2)− x(αθ1 + βθ2), 2y − x(αθ1 + βθ2)− αx(θ1)− βx(θ2)⟩
≥ αβ∥x(θ1)− x(θ2)∥22 − ∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2∥2y − x(αθ1 + βθ2)− αx(θ1)− βx(θ2)∥2

(10)

The last inequality is by Cauchy-Schwartz inequality. Note that

∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2∥2y − x(αθ1 + βθ2)− αx(θ1)− βx(θ2)∥2
≤ 2(B +R)∥αx(θ1) + βx(θ2)− x(αθ1 + βθ2)∥2
≤ αβ∥x(θ1)− x(θ2)∥2 (By Assumption 3.3(b))

(11)

Plugging equation 11 in equation 10 yields the result.

Using Theorem 3.2. in Kulis & Bartlett (2010), for αt ≤ Gt(θt+1)
Gt(θt)

, we have

RT ≤
∑T

t=1
1
ηt
(1− αt)ηtl(yt, θt)

+ 1
2ηt

(∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22)
(12)

Notice that
Gt(θt)−Gt(θt+1)

= ηt(l(yt, θt)− l(yt, θt+1))− 1
2∥θt − θt+1∥22

≤ 4(B+R)κηt

λ ∥θt − θt+1∥2 − 1
2∥θt − θt+1∥22

≤ 8(B+R)2κ2η2
t

λ2

(13)

The first inequality follows by applying Lemma 3.1.

Let αt =
Rt(θt+1)
Rt(θt)

. Using equation 13, we have

(1− αt)ηtl(yt, θt) = (1− αt)Gt(θt)
= Gt(θt)−Gt(θt+1)

≤ 8(B+R)2κ2η2
t

λ2

(14)

Plug equation 14 in equation 12, and note the telescoping sum,

RT ≤
T∑

t=1

8(B +R)2κ2ηt
λ2

+

T∑
t=1

1

2ηt
(∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22)

14

Under review as a conference paper at ICLR 2024

Setting ηt = Dλ
2(B+R)κ

√
2t

, we can simplify the second summation to D(B+R)κ
√
2

λ since the sum

telescopes and θ1 = 0, ∥θ∗∥2 ≤ D. The first sum simplifies using
∑T

t=1
1√
t
≤ 2
√
T − 1 to obtain

the result

RT ≤
4
√
2(B +R)Dκ

λ

√
T .

A.3 OMITTED EXAMPLES

A.3.1 EXAMPLES FOR WHICH ASSUMPTION 3.3 HOLDS

Consider for example the following quadratic program

min
x∈Rn

(
xTx− 2θT1 x
xTx− 2θT2 x

)
s.t. 0 ≤ x ≤ 10

One can check that Assumption 3.3 (a) is indeed satisfied. For example, let n = 1. Then, W.L.O.G,
let θ1 ≤ θ2. Then, XE(θ) = [θ1, θ2]. Consider two parameters that θ1 = (θ11, θ

1
2), θ

2 = (θ21, θ
2
2) ∈

[0, 10]2. For all α ∈ [0, 1],

XE(αθ
1 + (1− α)θ2) = [αθ11 + (1− α)θ21, αθ

1
2 + (1− α)θ22]

Although tedious, one can check that one can check that Assumption 3.3 (a) is indeed satisfied.

A.4 DATA FOR THE PORTFOLIO OPTIMIZATION PROBLEM

Table 2: True Expected Return

Security 1 2 3 4 5 6 7 8
Expected Return 0.1791 0.1143 0.1357 0.0837 0.1653 0.1808 0.0352 0.0368

Table 3: True Return Covariances Matrix

Security 1 2 3 4 5 6 7 8
1 0.1641 0.0299 0.0478 0.0491 0.058 0.0871 0.0603 0.0492
2 0.0299 0.0720 0.0511 0.0287 0.0527 0.0297 0.0291 0.0326
3 0.0478 0.0511 0.0794 0.0498 0.0664 0.0479 0.0395 0.0523
4 0.0491 0.0287 0.0498 0.1148 0.0336 0.0503 0.0326 0.0447
5 0.0580 0.0527 0.0664 0.0336 0.1073 0.0483 0.0402 0.0533
6 0.0871 0.0297 0.0479 0.0503 0.0483 0.1134 0.0591 0.0387
7 0.0603 0.0291 0.0395 0.0326 0.0402 0.0591 0.0704 0.0244
8 0.0492 0.0326 0.0523 0.0447 0.0533 0.0387 0.0244 0.1028

A.5 APPROXIMATION ERROR

Theorem A.1. Under Assumption 3.1, we have that ∀y ∈ Y,∀θ ∈ Θ,

0 ≤ lK(y, θ)− l(y, θ) ≤ 4(B +R)ζ

λ
·
√
2p

Λ− 1
,

where

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
, ζ = max

l∈[p],x∈X(θ),θ∈Θ
|fl(x, θ)|.

Furthermore,

0 ≤ lK(y, θ)− l(y, θ) ≤ 16e(B +R)ζ

λ
· 1

K
1

p−1

.

15

Under review as a conference paper at ICLR 2024

Thus, the surrogate loss function uniformly converges to the loss function at the rate ofO(1/K
1

p−1).
Note that this rate exhibits a dependence on the number of objective functions p. As p increases,
we might require (approximately) exponentially more weight samples {wK}k∈[K] to achieve an
approximation accuracy. In fact, this phenomenon is a reflection of curse of dimensionality Hastie
et al. (2001), a principle that estimation becomes exponentially harder as the number of dimension
increases. In particular, the dimension here is the number of objective functions p. Naturally, one
way to deal with the curse of dimensionality is to employ dimension reduction techniques in statistics
to find a low-dimensional representation of the objective functions.
Example A.1. When p = 2, MOP is a bi-objective decision making problem. Then, Theorem A.1
shows that lK(y, θ) − l(y, θ) is of O(1/K). That is, lK(y, θ) asymptotically converges to l(y, θ)
sublinearly.

Proof. By definition,

lK(y, θ)− l(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
∥y − x∥22 − min

x∈XE(θ)
∥y − x∥22 ≥ 0.

Let ∥y − S(wy
k , θ)∥22 = min

x∈
⋃

k∈[K]

S(wk,θ)
∥y − x∥22, and ∥y − S(wy, θ)∥22 = min

x∈XE(θ)
∥y − x∥22. Let

wy
k′ be the closest weight sample among {wk}k∈[K] to wy. Then,

lK(y, θ)− l(y, θ) = ∥y − S(wy
k , θ)∥22 − ∥y − S(wy, θ)∥22

≤ ∥y − S(wy
k′ , θ)∥22 − ∥y − S(wy, θ)∥22

= (2y − S(wy
k′ , θ)− S(wy, θ))

T
(S(wy, θ)− S(wy

k′ , θ))

≤ ∥2y − S(wy
k′ , θ)− S(wy, θ)∥2∥S(wy, θ)− S(wy

k′ , θ)∥2
≤ 2(B +R)∥S(wy, θ)− S(wy

k′ , θ)∥2
≤ 4(B+R)ζ

√
p

λ · ∥wy − wy
k′∥2,

(15)

where ζ = max
l∈[p],x∈X(θ),θ∈Θ

|fl(x, θ)|. The third inequality is due to Cauchy Schwarz inequality.

Under Assumption 3.1, we can apply Lemma 4 in Dong & Zeng (2018) to yield the last inequality.

Next, we will show that ∀w ∈ Wp, the distance between w and its closest weight sample among
{wk}k∈[K] is upper bounded by the function of K and p and nothing else. More precisely, we will
show that

sup
w∈Wp

min
k∈[K]

∥w − wk∥2 ≤
√
2

Λ− 1
. (16)

Here, Λ is the number of evenly spaced weight samples between any two extreme points of Wp.

Note that {wk}k∈[K] are evenly sampled from Wp, and that the distance between any two extreme
points of Wp equals to

√
2. Hence, the distances between any two neighboring weight samples are

equal and can be calculated as the distance between any two extreme points of Wp divided by Λ− 1.
Proof of equation 16 can be done by further noticing that the distance between any w and {wk}k∈[K]

is upper bounded by the distances between any two neighboring weight samples.

Combining equation 15 and equation 16 yields that

0 ≤ lK(y, θ)− l(y, θ) ≤ 4(B +R)ζ

λ
·
√
2p

Λ− 1
, (17)

Then, we can prove that the total number of weight samples K and Λ has the following relationship:

K =
(
Λ + p− 2
p− 1

)
(18)

Proof of equation 18 can be done by induction with respect to p. Obviously, equation 18 holds when
p = 2 as K = Λ. Assume equation 18 holds for the ≤ p− 1 cases. For ease of notation, denote

KΛ
p =

(
Λ + p− 2
p− 1

)
.

16

Under review as a conference paper at ICLR 2024

Then, for the p case, we note that the weight samples can be classified into two categories: wp =
0;wp > 0. For wp = 0, the number of weight samples is simply KΛ

p−1. For wp > 0, the number of
weight samples is KΛ−1

p . Thus,

K = KΛ
p−1 +KΛ−1

p . (19)

Iteratively expanding KΛ−1
p through the same argument as equation 18 and using the fact that(

n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
,

we have

K = KΛ
p−1 +KΛ−1

p = KΛ
p−1 +KΛ−1

p−1 +KΛ−2
p

...
= KΛ

p−1 +KΛ−1
p−1 + · · ·+K2

p−1 +K1
p

=
(
Λ + p− 3
p− 2

)
+
(
Λ + p− 4
p− 2

)
+ · · ·+

(
p− 1
p− 2

)
+
(
p− 1
p− 1

)
= (Λ+p−2)!

(Λ−1)!(p−1)!

(20)

To this end, we complete the proof of equation 18.

Furthermore, we notice that

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
≤ (Λ + p− 2)p−1

(p− 1)!
<

(
Λ + p− 2

p− 1

)p−1

· ep−1.

Then, when Λ ≥ p(K ≥ 2p−1), through simple algebraic calculation we have

e

K
1

p−1

>
p− 1

Λ + p− 2
>

1

4
· p

Λ− 1
(21)

We complete the proof by combining equation 17 and equation 21 and noticing that
√
2p ≤ p.

17

	Introduction
	Related work
	Our contributions

	Problem setting
	Decision making problem with multiple objectives
	Inverse multi-objective optimization

	Online learning for IMOP
	Online implicit updates
	Analysis of convergence

	Experiments
	Synthetic data: learning the preferences and restrictions for an MQP
	Real-world case: learning expected returns in portfolio optimization

	Conclusion and future work
	Appendix
	Omitted mathematical reformulations
	Single level reformulation for the Inverse multi-objective optimization problem
	Single level reformulation for the Inverse multi-objective quadratic problem

	Omitted Proofs
	Strongly Convex of wTf(x,) as stated under Assumption 3.1
	Proof of Lemma 3.1
	Proof of Theorem 3.2

	Omitted Examples
	Examples for which Assumption 3.3 holds

	Data for the Portfolio optimization problem
	Approximation error

