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Abstract

Healthcare analytics, particularly binary diagnosis or prognosis problems, present1

unique challenges due to the inherent asymmetry between positive and negative2

samples. While positive samples, representing patients who develop a disease,3

are defined through rigorous medical criteria, negative samples are defined in an4

open-ended manner, resulting in a vast potential set. Despite this fundamental5

asymmetry, previous research has underexplored the role of negative samples,6

possibly due to the enormous challenge of investigating an infinitely large negative7

sample space. To bridge this gap, we propose an approach to facilitate cohort8

discovery within negative samples, which could yield valuable insights into the9

studied disease, as well as its comorbidity and complications. We measure each10

sample’s contribution using data Shapley values and construct the Negative Sample11

Shapley Field to model the distribution of all negative samples. Then we transform12

this field via manifold learning, preserving the data structure information while13

imposing an isotropy constraint in data Shapley values. Within this transformed14

space, we identify cohorts of medical interest through density-based clustering. We15

empirically evaluate the effectiveness of our approach on our hospital’s electronic16

medical records. The medical insights revealed in the discovered cohorts are17

validated by clinicians, which affirms the medical value of our proposal in unveiling18

meaningful insights consistent with existing domain knowledge, thereby bolstering19

medical research and well-informed clinical decision-making.20

1 Introduction21

Healthcare analytics leverages diverse healthcare data sources to perform many analytic tasks in-22

cluding diagnosis [28] and prognosis [35]. Electronic Medical Records (EMR) are perhaps the23

most important of these data sources, since they play a crucial role in recording patients’ essential24

information and providing a comprehensive view of their health conditions. The recently increasing25

availability of EMR data has spawned the development of healthcare analytics models for effective26

patient management and medical resource allocation.27

Without loss of generality, let us delve into a diagnosis or prognosis problem of predicting whether a28

patient has developed/will develop a certain disease based on the EMR data. This problem is a binary29

classification, where patients who develop the disease are “positive samples”, while those who do30

not are “negative samples”. Notably, we identify the unique nature of such binary classifications in31

healthcare analytics, as compared to traditional classification tasks. For instance, when classifying32

cats vs. dogs, both positive and negative samples are based on objective facts. However, in healthcare33

analytics, positive samples are defined according to rigorous medical criteria, based on medical34

theories and experience. Contrarily, negative samples are defined in an unrestricted manner, as the35

complementary set of the positive samples. Consequently, the set of negative samples may encompass36

a vast number of diverse individuals who are outside the scope of the studied disease or who are37

healthy. This leads to an inherent asymmetry between positive and negative samples, as positive38

samples are well-defined and bounded, while negative samples are diverse and open-ended.39
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Despite such fundamental asymmetry in healthcare analytics, previous research has not adequately40

addressed the role of negative samples. One potential reason for this research gap is the enormous41

challenge posed by investigating an infinitely large negative sample space, which cannot be easily42

addressed using existing approaches, e.g., it could be difficult to understand why general healthy43

individuals do not develop a disease. Nonetheless, it is crucial to probe into negative samples for a44

more comprehensive investigation of the studied disease. Although it may not have developed in45

these samples, some may exhibit similar symptoms or even develop related conditions such as its46

comorbidity or complications. Hence, these negative samples are in urgent need of close medical47

attention, as they provide an opportunity for clinicians to gain a deeper understanding of the studied48

disease, leading to more accurate and comprehensive diagnoses, prognoses, and treatment plans.49

In this paper, we aim to address the gap by exploring negative samples in healthcare analytics.50

Given the diversity of negative samples, it may not be meaningful to consider them all as one51

“group”. Instead, we examine the underlying distribution of negative samples to automatically identify52

medically insightful groups of patients with shared characteristics, referred to as “cohorts” [32, 49].53

Such cohort discovery among negative samples can provide fresh insights to clinicians on the54

studied disease, e.g., comprehending the factors contributing to the absence of the disease and the55

development of related conditions.56

As front-line clinicians and medical researchers, we bring a unique perspective to guide our method-57

ology design in effectively discovering cohorts among negative samples. In Sec. 3, we elaborate58

on our approach with three components. Firstly, we propose to quantify each sample’s contribution59

to the prediction task using data Shapley values [38, 12]. We then construct the Negative Sample60

Shapley Field, an inherently existing scalar field describing the distribution and characteristics of all61

negative samples (Sec. 3.1). Secondly, to effectively discover cohorts, we transform the original field62

by manifold learning [3] while preserving the original data structure information and ensuring that63

changes in data Shapley values are isotropic in all orientations (Sec. 3.2). Thirdly, in the transformed64

manifold space, we identify densely-connected clusters among the negative samples with high data65

Shapley values through DBSCAN (Sec. 3.3). These clusters help us locate “hot zones”, which are our66

desired cohorts to discover, exhibiting similar medical characteristics with high data Shapley values.67

Our contributions are summarized below: (i) We bridge the research gap caused by the asymmetry68

between positive and negative samples in healthcare analytics by exploring negative samples for69

cohort discovery. (ii) We propose an innovative approach for effective cohort discovery: constructing70

the Negative Sample Shapley Field, transforming the field by manifold learning with structure71

preservation and isotropy constraint, and discovering cohorts in the manifold space via DBSCAN.72

(iii) We empirically evaluate the effectiveness of our approach using our hospital’s EMR (Sec. 4).73

The experimental results validate the efficacy of each component and demonstrate the capability of74

our approach for cohort discovery, unveiling meaningful insights that align with existing domain75

knowledge and have been verified by clinicians. These findings have the potential to benefit medical76

practitioners by facilitating medical research and clinical decision-making in healthcare delivery.77

2 Problem and Our Solution78

Distinctiveness of negative samples and the unbounded negative sample space. Let us take79

hospital-acquired acute kidney injury (AKI), a disease we strive to handle in practice, as an example.80

AKI is defined according to KDIGO criteria [19] based on a lab test, serum creatinine (sCr). The81

disease definition has two criteria: absolute AKI and relative AKI. Absolute AKI criterion is met82

when sCr exhibits a rise exceeding 26.5 umol/L within the last two days, whereas relative AKI is83

defined by a rise of sCr 1.5 times or higher over the lowest sCr value within 7 days. In this AKI84

prediction task, we aim to predict if a patient will develop AKI in the near future. A positive sample85

is a patient who meets the stringent criteria above, and hence, has a closed definition, whereas a86

negative sample has an open definition without restrictions. Hence, negative samples in nature form87

an unbounded space, demonstrating an asymmetry compared to positive samples.88

Construction of the Negative Sample Shapley Field for cohort discovery. To facilitate the analysis89

of negative samples, we need to investigate their distribution and identify those that are most relevant90

to the prediction task (e.g., AKI prediction task above) and hence worth exploring. In this regard,91

we propose to measure the valuation of each negative sample to the task by its data Shapley value.92

Based on such valuations, we construct a scalar field, the Negative Sample Shapley Field, in which93

each point is a negative sample, and the point’s value is its data Shapley value. This field depicts the94
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(b) Mis-discovered hot zones in the
Negative Sample Shapley Field

(a) Discovered hot zone in the Negative Sample Shapley
Field by clustering high-value negative samples

(c) Manifold space integrating data structure
information and isotropy constraint

Figure 1: Discovery of hot zones in the Negative Sample Shapley Field.

distribution and characteristics of negative samples (see Figure 1(a) for an example). We define “hot95

zones” in this field, identified by points with high data Shapley values, as “cohorts”. Our objective96

is to automatically detect these cohorts, revealing medically meaningful patterns.97

Cohort discovery via manifold learning and density-based clustering. We note that the vast98

number of negative samples renders an exhaustive search infeasible. Although the Negative Sample99

Shapley Field is continuously differentiable, the high computational overhead makes it intractable to100

find local optima via gradient descent. To overcome this obstacle, we make the assumption that a101

subset of negative samples collected in clinical practice carries significant medical value, e.g., patients102

who visit hospitals for examinations but do not develop the disease. We posit that these real-world103

negative samples should be proximate to our desired hot zones in the space and can effectively sample104

our hot zone boundaries, which are hence of medical interest.105

In Figure 1, we exemplify how to discover hot zones in the Negative Sample Shapley Field. Figure 1(a)106

and (b) demonstrate four points situated on the same contour line, indicating their inclusion in the107

same hot zone. However, only the former case yields the expected discovered cohort, while the latter108

leads to mis-discovery. This highlights that the originally constructed Negative Sample Shapley109

Field is suboptimal for cohort discovery among negative samples, due to its anisotropy in data110

Shapley values. To overcome this issue, we propose a manifold learning approach. Specifically,111

we leverage manifold learning to reduce the dimensionality of the raw sparse EMR data to derive112

compact representations that not only preserve the underlying data structure information but also113

benefit subsequent spatial clustering analysis. Further, we introduce an isotropy constraint to ensure114

uniform changes in data Shapley values across all orientations, which prevents the mis-discovery115

as in Figure 1(b). This transformed space, integrating data structure information and the isotropy116

constraint, is more suitable for subsequent cohort discovery as illustrated in Figure 1(c).117

Our objective is then to identify medically meaningful cohorts, specifically dense regions formed by118

negative samples with high data Shapley values in the manifold space. We set a data Shapley value119

threshold to extract negative samples with high values and employ the DBSCAN algorithm to detect120

the hot zones among them. The derived cohorts could shed light on the studied disease, its related121

comorbidity, and complications, thereby empowering clinicians in practical healthcare delivery.122

3 Methodology123

3.1 Negative Sample Shapley Field Construction124

Given EMR data D = {di}, where di is a sample with i ∈ {0, . . . , N − 1} and N denotes the125

total sample number. We focus on binary classification, and each di consists of input features and a126

binary label. To investigate negative samples for cohort discovery, we divide D into D+ and D−,127

representing positive and negative samples. We denote D− = {d−i }, where d−i is a negative sample128

with i ∈ {0, . . . , N− − 1} and N− is the negative sample number.129

Each negative sample d−i = (xi, yi) comprises the input features xi and its corresponding binary130

label yi. Our objective is to measure the value of each negative sample by quantifying its contribution131

to the prediction performance, which we refer to as data valuation. Data Shapley value [12], stemming132

from Shapley value in cooperative game theory, has made significant advances in data valuation [38],133

which inspires our proposal to calculate the data Shapley value of each negative sample as its value.134

Specifically, let F denote the prediction model and suppose we are interested in evaluating F ’s135
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performance on a subset of negative samples Q ⊆ D−, along with all the positive samples D+. We136

define M as the performance metric function, and then M(D+ ∪ Q, F ) is the performance achieved137

on the combined set of D+ and Q. We define si as the data Shapley value for the negative sample138

d−i . si satisfies three properties of Shapley values: (i) null player, (ii) symmetry, and (iii) linearity,139

which are the essential properties of an equitable data valuation [12]. We calculate si as follows.140

Proposition 1 The data Shapley value si for a negative sample d−i is given by:141

si = H
∑

Q⊆D−−{d−
i }

M(D+ ∪Q ∪ {d−i }, F )−M(D+ ∪Q, F )(
N− − 1
|Q|

) (1)

where H is a constant and the summation is taken over all subsets of negative samples, except d−i .142

As the computation of data Shapley value for negative samples has exponential complexity, we143

further employ Monte Carlo permutation sampling for approximation [6]. Let Π represent a uniform144

distribution of all the permutations among D−, si can be approximated as the following expectation:145

si = Eπ∼Π[M(D+ ∪A
d−
i

π ∪ {d−i }, F )−M(D+ ∪A
d−
i

π , F )] (2)

where A
d−
i

π denotes all the negative samples before d−i in a permutation π. By repeating this146

approximation, we can derive the estimated data Shapley value si efficiently. After computing the147

data Shapley value of each negative sample, we define the Negative Sample Shapley Field below.148

Definition 1 (Negative Sample Shapley Field) We define the Negative Sample Shapley Field S as an149

inherently existing scalar field representing the distribution of data Shapley values across all negative150

samples in space. In this field, each point denotes a negative sample d−i and is associated with its151

data Shapley value si. Therefore, S is a mathematical function that maps the input of each negative152

sample to its corresponding data Shapley value: xi 7→ si.153

With this field S constructed, our goal of cohort discovery within negative samples can be reframed154

as the task of identifying “hot zones” - grouped regions within S exhibiting high data Shapley values.155

3.2 Manifold Learning with Structure Preservation and Isotropy Constraint156

As in Figure 1(a) and (b), although we hope to detect a similarly clustered cohort in the Negative157

Sample Shapley Field in both scenarios, the anisotropic nature of the space, i.e., the non-uniform158

distribution of negative samples with similar data Shapley values, present significant challenges. To159

mitigate these challenges, we propose to employ manifold learning [3] to transform the original space160

S into a new geometric space S ′. As elaborated in Sec. 2, to avoid mis-discovery such as Figure 1(b),161

we should simultaneously preserve the underlying structural information in the data while imposing162

an isotropy constraint on the data Shapley values in S ′. The resulting S ′ will be more amenable to163

effective cohort discovery, enabling us to identify medically relevant cohorts more accurately.164

We employ a stacked denoising autoencoder (SDAE) [44] as the backbone model for manifold165

learning and integrate the isotropy constraint while preserving the data structure information in xi.166

Autoencoders (AE) [23, 22] are well-known for capturing data structures by reconstructing input data.167

Denoising autoencoders (DAE) [43] are further developed to enhance the learned representations168

with the capability of handling input data corruption. By stacking multiple layers of DAE, SDAE can169

abstract higher-level robust representations. The model architecture is illustrated in Figure 2.170

Consider an SDAE consisting of K DAEs. For the k-th DAE (k ∈ {0, . . . ,K−1}), the encoder takes171

h
(k)
i as input, where h

(0)
i = xi corresponds to the original input. We define h̃

(k)
i as the corrupted172

version of h(k)
i with masking noise generated by a stochastic mapping, h̃(k)

i ∼ gD(h̃
(k)
i |h(k)

i ), which173

randomly sets a fraction of the elements of h(k)
i to 0. The encoder transforms the corrupted h̃

(k)
i174

into an abstract representation ĥ
(k+1)
i , which is then used by the decoder to recover the uncorrupted175

h
(k)
i . This process equips the DAE with the capability of extracting useful information for denoising,176

which is crucial for healthcare analytics, due to missing data and noise in real-world EMR data [26].177

Encoder of the k-th DAE. The encoder of the k-th DAE transforms the corrupted representation178

using an affine transformation followed by a non-linear activation function:179

ĥ
(k+1)
i = f

(k+1)
θ (h̃

(k)
i ) = σ(W

(k+1)
θ h̃

(k)
i + b

(k+1)
θ ) (3)

4



𝐳!
""𝐡!

"

𝒈𝓓

%𝐡!
"$%

𝑓&
"$% 𝑓'

"$% ℒ()*
"

ℒ!+,
"

𝐡!
" 𝐡!

"

𝑓&
"$%

𝐡!
"$% 𝐡!

"

𝐡!
"$%

𝐱!

(a) 𝑘-th DAE (b) Trained encoder is applied on clean input (c) Repeated procedure

Figure 2: Model architecture of SDAE-based manifold learning.

where f
(k+1)
θ (·) is the encoder with W

(k+1)
θ and b

(k+1)
θ as the weight matrix and bias vector,180

respectively. The rectified linear unit (ReLU) activation function σ(·) is used for non-linearity.181

Decoder of the k-th DAE. The derived abstract representation ĥ
(k+1)
i is subsequently mapped back182

to the original space in the decoder, with the aim of recovering the uncorrupted representation:183

z
(k)
i = f

(k+1)
ϕ (ĥ

(k+1)
i ) = σ(W

(k+1)
ϕ ĥ

(k+1)
i + b

(k+1)
ϕ ) (4)

where f
(k+1)
ϕ (·) is the decoder of the k-th DAE, with W

(k+1)
ϕ , b(k+1)

ϕ and the ReLU activation.184

Structure Preservation. To attain a stable and robust abstract representation that is resilient to data185

corruption, it is crucial to recover the uncorrupted representation as accurately as possible. To achieve186

this, we adopt a reconstruction loss that preserves the data structure information. Given a batch of187

negative samples B, the reconstruction loss for this batch is:188

L(k)
rec =

∑
i∈B

∥h(k)
i − z

(k)
i ∥2 (5)

Isotropy Constraint. In addition to the reconstruction loss, it is essential to enforce an isotropy189

constraint to ensure that data Shapley value changes are uniform across orientations. To achieve this,190

we introduce a penalty that accounts for the change in data Shapley values relative to the Euclidean191

distance between two samples:192

L(k)
iso =

∑
i,j∈B

(
sj − si
µij

)2 (6)

where i, j are two samples with si, sj as their data Shapley values, µij as the distance between ĥ
(k+1)
i193

and ĥ(k+1)
j derived from the encoder. The overall loss is then a weighted sum of the reconstruction loss194

and the isotropy penalty, jointly integrating the structural information and the isotropy information:195

L(k) = − 1

|B|
(ωrecL(k)

rec + ωisoL(k)
iso) (7)

The weights ωrec and ωiso are introduced to address the issue of the two loss terms being on different196

scales. This ensures that both losses are decreased at similar rates, leading to a better balance197

between the optimization objectives [14, 29]. Specifically, the weights are set to the ratio between the198

respective loss in the current iteration (t) and the loss in the previous iteration (t− 1):199

ωrec = L(k)
rec(t)/L(k)

rec(t− 1), ωiso = L(k)
iso(t)/L

(k)
iso(t− 1) (8)

We have introduced how to learn the k-th DAE using the loss function in Equation 7, as shown200

in Figure 2(a). The corrupted input is only used during the initial training to learn robust feature201

extractors. After the encoder f (k+1)
θ (·) is trained, it will be applied to the clean input as in Figure 2(b):202

h
(k+1)
i = f

(k+1)
θ (h

(k)
i ) = σ(W

(k+1)
θ h

(k)
i + b

(k+1)
θ ) (9)

h
(k+1)
i will be used as input for the (k+1)-th DAE, as in Figure 2(c), to continue the repeated training203

process. When the last DAE, i.e., (K − 1)-th DAE, is trained, we obtain the encoded representation204

h
(K)
i in the manifold space S ′, which preserves the data structure information in xi and integrates205

the desired isotropy constraint. h(K)
i will serve as input for subsequent medical cohort discovery.206
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3.3 Cohort Discovery Among High Data Shapley Value Negative Samples207

We proceed to perform cohort discovery in the encoded manifold space S ′, where each negative208

sample’s input xi is transformed into h
(K)
i . We begin by setting a threshold value τ to filter out209

negative samples with data Shapley values below τ , which focuses our analysis on negative samples210

with high data Shapley values, i.e., high contributions to the prediction task. Among the remaining211

negative samples with high data Shapley values, we target to detect the hot zones in S ′, which may212

represent medically meaningful cohorts of arbitrary shape.213

To achieve this, we employ DBSCAN, short for density-based spatial clustering of applications with214

noise [9, 10, 39] on such samples. The core idea of DBSCAN is to group samples that are close215

to each other in the manifold space S ′ into clusters, which could locate potential cohorts, whereas216

treating the remaining samples as noise or outliers. DBSCAN has three main steps: (i) identify the217

points within each point’s ε- neighborhood and determine the “core points” with over Pmin neighbors;218

(ii) detect the connected components of the core points in the neighbor graph, disregarding any non-219

core points; (iii) assign each non-core point to the clusters which are the ε-neighborhood of the point;220

otherwise, label the point as noise. This process results in a set of clusters {C1, C2, . . . , CR} and a221

set of noisy samples Ψ. Given the clusters, we define cohorts as follows.222

Definition 2 (Cohorts) For a dense cluster Cr identified by the DBSCAN algorithm, we consider223

each of its core points and define a spherical space with the core point as its center and ε as its224

radius. The joint space of all such spherical spaces is the cohort we aim to discover from this cluster.225

These discovered cohorts provide a promising avenue for further exploration of medically meaningful226

patterns in EMR data analytics, potentially revealing important insights.227

4 Experimental Evaluation228

We evaluate our proposal using our hospital’s EMR data, on which we utilize 709 lab tests to predict229

whether a patient will develop AKI in each admission in two days (as defined in Section 2). In total,230

we receive 20,732 admissions, of which 911 develop AKI. We partition the dataset into training231

data (90%) and testing data (10%). We employ the logistic regression model to compute the data232

Shapley value for each negative sample as detailed in Section 3.1, using the area under the ROC233

curve (AUC) as the evaluation metric, and perform Monte Carlo permutation sampling 100,000 times234

with early stopping. For the manifold learning step, we utilize an SDAE comprising 3 DAEs. The235

709-dimension inputs are transformed using encoders with dimensions 256, 128, and 64, respectively.236

4.1 Cohort Discovery in Clinical Validation237

We present the cohort discovery results on our dataset in Figure 3, where we first display the data238

Shapley value histogram among all the negative samples in Figure 3(a). It is noteworthy that this239

histogram can be well fitted by a Gaussian mixture model, consisting of three distinct and interesting240

components. We next examine each component in detail. The first component on the left represents241

the negative samples with negative data Shapley values. These samples have a negative impact on242

the prediction task, meaning that they are detrimental to predicting the AKI occurrence. In prior243

studies, one generally plausible explanation for the presence of such samples is the existence of244

mislabeled data [12]. However, for a representative acute disease like AKI, these negative samples245

are highly likely to be positive samples in the future but have not yet exhibited symptoms of AKI246

within the monitored time duration. Moving on to the second component in the middle, we observe247

that its data Shapley values are centered around a mean value close to zero. This implies that these248

negative samples are generally healthy without any apparent AKI-related symptoms. Notably, these249

healthy samples constitute a relatively significant portion of the data, which is commonly observed in250

clinical practice and aligns with our initial expectations. The third component on the right represents251

negative samples that are particularly valuable for the prediction task and merit special attention in252

our study. To further investigate these samples, we introduce a separation line between the second253

and third components, i.e., a threshold 60% to exclude the lower 60% negative samples based on254

their data Shapley values while retaining the remaining 40% for further analysis. Our focus is on255

these remaining 40% samples for identifying the hot zones, as illustrated in Figure 1.256

The distribution of all negative samples, in terms of their data Shapley values in the manifold space,257

is presented in Figure 3(b). Upon performing DBSCAN on the extracted 40% samples with high258

data Shapley values (points brighter than dark blue), we identify seven distinct cohorts of interest,259
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(a) Data Shapley value histogram
among all negative samples

(b) Data Shapley value distribution among all negative 
samples in the manifold space

(c) Discovered cohorts among high data 
Shapley value negative samples

Figure 3: Cohort discovery on our dataset.

(a) Cohort 2 (b) Cohort 4 (c) Cohort 6

Figure 4: Lab test patterns of discovered Cohorts 2, 4, and 6. In each cohort, the colored region (blue,
green, and yellow) represents the lab test value probability density of the samples in the cohort, while
the grey region denotes that of all the other samples outside the cohort.

which are visually displayed using t-SNE plots in Figure 3(c), in which grey points are either with260

low data Shapley values or labeled as noise by DBSCAN. We observe that these discovered cohorts261

are distinguishable from one another, potentially corresponding to medically meaningful patterns.262

4.2 In-depth Analysis of Discovered Cohorts263

Cohort 2: inflammatory cohort. Figure 4(a) indicates a pronounced neutrophil-to-lymphocyte264

ratio (NLR) [48] in this patient group, marked by an increase in neutrophils (FNM) and a decrease265

in lymphocytes (FLM). This pattern, often tied to infectious, inflammatory, and stress conditions,266

suggests an overactive immune response leading to reduced lymphocyte counts [36, 8]. An elevated267

NLR, a reliable inflammatory marker, indicates a propensity for invasive infections [16]. Meanwhile,268

the levels of Cotrimoxazole (SXT2) and Vancomycin (VAN), both administered to treat infections269

including those associated with methicillin-resistant staphylococcus [15], are found to be elevated in270

the bodies of these patients. The findings suggest that this patient cohort comprises individuals expe-271

riencing infections and acute inflammation, and receiving antibiotic treatment. Severe infections can272

cause systemic inflammatory response syndrome and kidney injury. Antibiotics like vancomycin can273

worsen kidney stress and have nephrotoxic properties [47], potentially leading to kidney dysfunction274

during treatment. However, modern medical practice can effectively manage these cases. Infections275

are promptly treated with broad-spectrum antibiotics and at appropriate doses within safety limits;276

hence, the patients do not develop significant AKI [13].277

Cohort 4: hepatic and hematological disorders cohort. As delineated in Figure 3(c), Cohort 4278

exhibits an augmented region and an increased quantity of sampling points, indicative of a more279

expansive patient population. A comprehensive analysis of the lab test indicator distribution for280

this cohort, portrayed in Figure 4(b), reveals differences in levels of serum proteins. Specifically,281

derangements in levels of albumin (ALB) and the albumin-globulin ratio (AGR) signify aberrant282

protein synthesis in patients. These may be associated with hepatic dysfunction or hematological283

diseases such as myeloma [41, 27]. Hepatic diseases can lead to impaired production of other284

proteins such as antithrombin III (AT3) [21]; AT3 may also be lost excessively in nephrotic syndrome285
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Figure 6: Data Shapley value histogram of the
samples within our discovered cohorts.

which is a kidney disorder [18], or undergo accelerated consumption in disseminated intravascular286

coagulation [34]. Diminished reticulocyte hemoglobin (RETH) is associated with iron deficiency287

anemia [2], and could either be linked to hematological disorders or nutritional deficiency. In288

addition, imbalances in albumin and globulin may also be associated with dehydration. Therefore,289

our observation derived from Cohort 4 may support the pathophysiological relationship that exists290

between disorders of the hematological and hepatic systems, which increases the propensity for291

kidney disease. Clinicians should exercise vigilance in care when managing these cases.292

Cohort 6: respiratory failure and metabolic acidosis cohort. Figure 4(c) reveals significant293

metabolic imbalances in patients, leading to an acid-base imbalance. Specifically, increased carbon294

dioxide pressure (PCO2), reduced oxygen pressure (PO2), and insufficient blood oxygen saturation295

(SAT) suggest respiratory failure [5]. Concurrently, reduced base excess (BE), bicarbonate ion (HCO3)296

levels, and blood pH values hint at metabolic acidosis, indicating possible acute illnesses causing297

lactic or ketoacidosis [24]. These results suggest potential severe respiratory complications, such298

as advanced pneumonia, heart failure-induced pulmonary edema, or chronic obstructive pulmonary299

disease (COPD)[20]. Alternatively, acute conditions like hypoxia, shock, or severe infection could300

disrupt aerobic metabolism, leading to anaerobic glucose conversion to lactate, which accumulates in301

the bloodstream and causes acidosis. This puts significant strain on the kidneys, potentially resulting302

in renal disease symptoms[25]. This cohort of patients under examination does not advance to AKI,303

leading to the inference that renal dysfunction may not constitute an end-organ complication Rather,304

this patient cohort appears to exhibit a heightened disposition to respiratory failure.305

4.3 Validation of Effectiveness for Each Component306

We validate the effectiveness of each component in our approach for AKI prediction. Specifically,307

we evaluate three settings of the negative sample usage in the training data (with positive samples308

the same): (i) all d−i : use all negative samples; (ii) d−i with si > 0: only use the negative samples309

with positive data Shapley values; (iii) z(0)i of all d−i : use the decoded representations from the310

SDAE-based manifold learning. z(0)i is in the same dimension as the raw input but is in the decoding311

space after transformation by SDAE. To ensure the credibility of our conclusions across different312

settings, we evaluate several widely adopted classifiers: logistic regression (LR), gradient-boosting313

decision tree (GBDT), adaptive boosting (AdaBoost), random forest (RF), and multilayer perceptron314

(MLP). The experimental results in AUC (mean ± std) from five repeats are illustrated in Figure 5.315

Effectiveness of the Negative Sample Shapley Field. By comparing settings (i) and (ii), we explore316

the effectiveness of our constructed Negative Sample Shapley Field. The results clearly demonstrate317

that by removing negative samples with data Shapley values smaller than 0, all the classifiers318

exhibit an improvement in AUC. This finding supports the rationale behind our approach of linking319

samples of great medical concern with their data Shapley values. Additionally, the effectiveness of320

approximating data Shapley values through Monte Carlo permutation sampling is further validated.321

Thus, this confirms the efficacy of our constructed Negative Sample Shapley Field.322

Effectiveness of Manifold Learning. By changing the input data from the raw space to the decoder’s323

output space after our proposed SDAE-based manifold learning (settings (i) vs. (iii)), we observe324

a moderate decrease in AUC, approximately 5% in most classifiers. This decrease aligns with our325

expectations, as the transformation in SDAE introduces a certain level of information loss. However,326
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the performance degradation remains within an acceptable range. These findings demonstrate that327

our proposed manifold learning manages to preserve the original data structure information and328

effectively model the original raw data space, despite a significant reduction in data dimension from329

709 to 64. Thus, this corroborates our design rationale of employing SDAE for manifold learning330

with structure preservation and isotropy constraint.331

Effectiveness of Cohort Discovery. We further validate our method’s ability to decompose high332

data Shapley value samples into distinct, medically relevant cohorts. Figure 6 presents the data333

Shapley value histogram of our identified cohorts, with the upper part aligned with Figure 3(a)334

but color-coded by cohort proportion. The lower part shows each cohort’s data Shapley value335

distribution. We note seven cohorts effectively partition Figure 3(a)’s third component into Gaussian336

distributions, implying consistent data Shapley values within each cohort. Cohort 2, identified as337

the inflammatory group, exhibits relatively lower data Shapley values, as immune abnormalities338

cannot serve as specific features for kidney injury. Conversely, Cohorts 4 and 6, involving critical339

metabolic systems, display higher data Shapley values, which indicates their significant medical340

relevance to AKI prediction. These observations confirm the homogeneity within each cohort due341

to DBSCAN’s detection capability, and similarity in data Shapley values, further substantiating our342

proposed isotropy constraint in manifold learning. In essence, our approach effectively identifies343

proximate cohorts with similar data Shapley values, providing valuable medical insights for the344

prediction task.345

5 Related Work346

Shapley value, originally introduced in cooperative game theory [40], offers a solution for the equi-347

table distribution of a team’s collective value among its individual members [7]. Notable applications348

of the Shapley value in machine learning encompass data valuation, feature selection, explainable ma-349

chine learning, etc [38, 12, 46, 31, 31, 30]. Among these applications, data valuation holds particular350

significance in quantifying the contributions of individual data samples toward predictive models. In351

this research line, the data Shapley value [12] presents an equitable valuation framework for data value352

quantification with subsequent research focusing on enhancing computational efficiency [17, 11].353

Representation learning is a crucial research area contributing to the success of many machine354

learning algorithms [3]. Among the representation learning methods, manifold learning stands out355

due to its capability of reducing the dimensionality and visualizing the underlying structure of the356

data. Traditional manifold learning methods include Isomap [42], locally linear embedding [37], and357

multi-dimensional scaling [4]. In recent years, AEs have gained significant attention in representation358

learning, offering efficient and effective representations of unlabeled data. Researchers develop359

various AE variants for specific application scenarios, e.g., regularized AEs [1], sparse AEs [33],360

DAEs (denoising AEs) [43]. Specifically, DAEs and their advanced stacked variant SDAEs [44] are361

highly suitable to tackle EMR data, in which missing and noisy data remains a notorious issue [26].362

DBSCAN, short for density-based spatial clustering of applications with noise, is introduced to363

alleviate the burden of parameter selection for users, facilitate the discovery of arbitrarily-shaped364

clusters, and demonstrate satisfactory efficiency when dealing with large datasets [9, 10, 39].365

6 Conclusion366

This paper proposes to examine negative samples for cohort discovery in healthcare analytics, which367

has not been explored in prior research. In particular, we propose to measure each negative sample’s368

contribution to the prediction task via its data Shapley value and construct the Negative Sample369

Shapley Field to model the distribution of all negative samples. To enhance the cohort discovery370

quality, we transform this original field into an embedded space using manifold learning, incorporating371

the original data structure information and isotropy constraint. In the transformed space, we manage372

to identify medically meaningful cohorts within negative samples by DBSCAN. The experiments on373

our hospital’s EMR data empirically demonstrate the effectiveness of our proposal, and the medical374

insights derived from our discovered cohorts are validated by clinicians, highlighting the medical375

value of our approach. Future work includes conducting a long-term validation to further verify the376

conclusions drawn from cohort discovery. Additionally, more detailed analyses and fine-grained377

clinical validation are required to explore the detected cohorts that exhibit a hierarchical structure.378
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