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ABSTRACT

The automated mining of predictive signals, or alphas, is a central challenge
in quantitative finance. While Reinforcement Learning (RL) has emerged as a
promising paradigm for generating formulaic alphas, existing frameworks are fun-
damentally hampered by a triad of interconnected issues. First, they suffer from
reward sparsity, where meaningful feedback is only available upon the comple-
tion of a full formula, leading to inefficient and unstable exploration. Second,
they rely on semantically inadequate sequential representations of mathematical
expressions, failing to capture the structure that determine an alpha’s behavior.
Third, the standard RL objective of maximizing expected returns inherently drives
policies towards a single optimal mode, directly contradicting the practical need
for a diverse portfolio of non-correlated alphas. To overcome these challenges,
we introduce AlphaSAGE (Structure-Aware Alpha Mining via Generative Flow
Networks for Robust Exploration), a novel framework is built upon three cor-
nerstone innovations: (1) a structure-aware encoder based on Relational Graph
Convolutional Network (RGCN); (2) a new framework with Generative Flow
Networks (GFlowNets); and (3) a dense, multi-faceted reward structure. Em-
pirical results demonstrate that AlphaSAGE outperforms existing baselines in
mining a more diverse, novel, and highly predictive portfolio of alphas, thereby
proposing a new paradigm for automated alpha mining. Our code is available at
https://anonymous.4open.science/r/AlphaSAGE-3BA9.

1 INTRODUCTION

The primary objective in quantitative trading is to identify and exploit market inefficiencies, a pur-
suit centered on the mining of “alphas”. These alphas are predictive signals, typically represented
as mathematical expressions, that aim to forecast asset returns and thus serve as the cornerstone of
systematic trading strategies.1 Therefore, alpha mining (efficient construction of high-quality al-
phas) constitutes the core of quantitative research: high-quality alphas enable more accurate return
forecasting, improved risk-adjusted portfolio construction, and ultimately superior excess returns.

Traditionally, alpha mining has been a manual, hypothesis-driven process. Researchers propose
financial or economic hypotheses, translate them into candidate alphas, and validate their predictive
power through statistical tests or backtesting. While this pipeline has led to influential discoveries
such as value, momentum, and quality alphas Kakushadze (2016), it suffers from limited scalability
and strong reliance on human intuition. With the increasing complexity of financial markets, the
hypothesis-driven paradigm struggles to cope with vast, non-linear interactions in high-dimensional
data, making it increasingly challenging to uncover novel and uncorrelated signals.

Recent advances have motivated the shift towards automated alpha mining, where machine learning
algorithms systematically search through the enormous combinatorial space of possible formulas.
Early efforts often relied on Genetic Algorithm (GA) Chen et al. (2021); Zhang et al. (2020); Cui
et al. (2021), which evolves candidate formulas using mutation and crossover operators. Despite pro-
ducing interpretable formulas, GA methods can be computationally inefficient and tend to converge
to local optimum if mutation rate is not carefully designed. More recently, Reinforcement Learning
(RL) Yu et al. (2023); Zhu & Zhu (2025); Zhao et al. (2024); Xu et al. (2024) has emerged as a

1An example of alpha is shown in Figure 1.
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powerful alternative, framing alpha construction as a sequential decision-making process in which
an agent incrementally builds formulas. RL-based methods promise higher efficiency and scalability
but also inherit several critical challenges, including reward sparsity, structural underrepresentation,
and limited diversity in generated alphas.
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(a) (b)
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Figure 1: Different forms of alpha: (a) For-
mulated alpha; (b) Alpha’s expression tree;
(c) Reverse Polish Notation (RPN) for alpha.

The direct application of RL to alpha mining is gen-
erally fraught with significant obstacles that limit
its efficacy. First, current methodologies often suf-
fer from a severe “cold-start” problem, as the re-
ward signal—typically based on an alpha’s Infor-
mation Coefficient (IC)—is extremely sparse Zhao
et al. (2025). Second, most existing approaches rep-
resent alpha expressions as simple sequences of to-
kens, often processed by sequential models such as
LSTMs. Such representations fail to capture the
logical and hierarchical structure inherent in formu-
las. Finally, the traditional RL, which is designed
to maximize a singular reward function, tends to
produce a relatively uniform path for alpha mining,
lacking the diversity essential for constructing robust
portfolios Tang et al. (2025).

To overcome these limitations, we propose AlphaSAGE (Structure-Aware Alpha Mining via
Generative Flow Networks for Robust Exploration), a comprehensive framework designed to ad-
dress the core problems of exploration, semantic understanding, and diversity in alpha mining. To
evaluate the effectiveness of the model, we conducted extensive experiments based on real historical
data from both the Chinese and U.S. stock markets. The experimental results demonstrate that the
model outperforms existing models across different markets.

In summary, our contributions are as follows:

• We introduce a structure-aware encoder based on Relational Graph Convolutional Net-
work (RGCN) Schlichtkrull et al. (2018) that operates on Abstract Syntax Tree (AST)
representations of alphas to capture their semantic and compositional nature.

• We propose a generative framework using Generative Flow Networks (GFlowNets) Ben-
gio et al. (2021); Malkin et al. (2022); Bengio et al. (2023) that learns to sample a diverse
set of candidates, directly addressing the need for a varied alpha portfolio.

• We present a dense, multi-faceted reward function that combines terminal perfor-
mance with intrinsic rewards for structural integrity and novelty to effectively guide the
GFlowNet’s exploration.

2 BACKGROUND AND RELATED WORK

2.1 ALPHA MINING AND COMBINATION

In quantitative finance, an alpha is a deterministic transformation of historical market data into a
signal that aims to forecast future returns. When expressed as a symbolic program (e.g., an abstract
syntax tree), an alpha remains interpretable and auditable. Alpha quality is commonly summarized
by correlation-based metrics (e.g., IC) computed between alpha outputs and subsequent returns.

Early discovery pipelines were manual and hypothesis-driven. More recent automation—most no-
tably genetic algorithm (GA) Chen et al. (2021); Zhang et al. (2020); Cui et al. (2021) and reinforce-
ment learning (RL) Yu et al. (2023); Zhu & Zhu (2025); Zhao et al. (2024); Xu et al. (2024)—ex-
panded the search space but introduced three recurring challenges: sparse and delayed rewards,
weak encoding of alpha structure, and mode collapse toward a few similar solutions. Because single
alphas are typically unstable across time and markets, practitioners assemble a library of alphas and
combine them into a portfolio-level signal. Simple linear combinations are prevalent in practice, yet
high correlations among alphas can make coefficient estimates unreliable and reduce both robustness
and interpretability.
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These observations motivate frameworks that jointly optimize for predictive power and diversity.
Our design follows this principle: it encourages structurally distinct alphas during generation and
combines them with a transparent, adaptively weighted scheme that emphasizes low cross-alpha
dependence. Additional details appear in Appendix B.1.

2.2 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) Scarselli et al. (2008); Yao et al. (2019); Schlichtkrull et al. (2018)
update each node by gathering information from its neighbors and then refining the node’s repre-
sentation with that context. Stacking layers allows information to propagate over multiple hops, so
nodes capture both local attributes and broader structural relations. When factor candidates are rep-
resented as graphs—such as trees for formulaic alphas—GNNs can encode semantic similarity and
structural constraints more naturally than sequence models. This makes them attractive for learning
embeddings of factors, guiding search over symbolic expressions, and measuring diversity at the
representation level. Additional details appear in Appendix B.2.

2.3 GENERATIVE FLOW NETWORKS

Generative Flow Networks (GFlowNets) Bengio et al. (2021); Malkin et al. (2022); Bengio et al.
(2023) are generative learners that construct objects step by step and aim to sample a diverse set of
high-reward solutions rather than collapsing to a single optimum. They treat generation as moving
through a directed acyclic state space from an initial empty state to a terminal, valid object. By learn-
ing complementary forward and backward policies and matching “flow” through states, GFlowNets
approximate a sampling distribution that is shaped by the downstream reward. Practically, this yields
exploration that is both reward-aware and diversity-seeking, producing a portfolio of candidates with
varied structures and competitive quality—properties that are well aligned with the needs of alpha
discovery and combination. Additional details appear in Appendix B.3.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW AND PROBLEM FORMULATION

The primary objective of automated alpha discovery is to navigate a vast, combinatorial search space
X of potential mathematical expressions, or ”alphas”. Each alpha α ∈ X is a function that maps
historical market data for a universe of N assets with M features at day d, denoted as Xd ∈ RN×M ,
to a vector of predictive signals zd = α(Xd) ∈ RN . The quality of these signals is evaluated against
future asset returns yd ∈ RN .

Existing RL frameworks model this as a sequential decision-making problem to construct a syner-
gistic portfolio of alphas. In this paradigm, an agent iteratively generates new alphas to add to an
evolving pool, F . The reward for generating a new alpha, αnew, is its marginal contribution to the
performance of a combination model c(·) trained on the updated pool. The objective at each step is
to find a alpha that maximizes this improvement:

α∗
new = argmax

α∈X
E [R(α|F)] , (1)

where the reward is defined as R(α|F) = IC(c(X;F ∪ {α})) − IC(c(X;F)). This formulation
creates a non-stationary Markov Decision Process, as the reward for any given alpha changes when-
ever the pool Ft is updated. While this approach encourages synergy within the single, greedily
constructed portfolio, it does not learn a global distribution over all high-quality alphas.

We reformulate alpha discovery as a problem of learning a generative policy Pθ(α) that directly
models the distribution of high-quality alphas over the entire space X . The policy is trained such
that the probability of sampling any alpha is proportional to a carefully designed reward function
R(α), which reflects its intrinsic quality and novelty:

Pθ(α) ∝ R(α), ∀α ∈ X , (2)

By sampling from this learned global distribution, rather than following a single construction path,
we can generate a more diverse and robust portfolio of candidate alphas.

3
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Figure 2: An Overview of AlphaSAGE. (a) AlphaGenerator. Starting from an empty state, a
GNN encoder embeds the partial expression tree; a GFlowNet policy produces masked action logits
over valid edits. We sample the next token, apply early stopping via a forced SEP when triggered,
and continue until a terminal, valid alpha is formed. The resulting formula αn and its embedding en
are retained for evaluation. (b) AlphaEvaluator. Each αn is scored with RSA (embedding–behavior
alignment), RNOV (novelty vs. the existing alpha set), RIC (predictive correlation), and an entropy
regularizer LENT (from the action-logit buffer). These components, together with the trajectory-
balance term LTB, are aggregated into the final training objective.

3.2 ALPHA GENERATION VIA GENERATIVE FLOW NETWORKS

To address the need for a diverse portfolio, we propose a new framework with GFlowNets. A
GFlowNet is a probabilistic generative model designed to learn a stochastic policy for sampling
objects α from a space X with probability P (α) proportional to a given reward function R(α).

The construction of an alpha is modeled as a trajectory τ = (s0 → s1 → · · · → sn = α) in a state
space represented as a directed acyclic graph (DAG).

• States (s ∈ S): Partially constructed ASTs. The initial state s0 is an empty tree. Terminal
states are complete and valid ASTs, forming the space X ⊂ S.

• Actions (a ∈ A): Adding a new token (operator or feature) to an open leaf node of a
partial AST. According to the state s, invalid actions are masked and the next token is
sampled from the masked distribution.

• Complete Trajectories: A full trajectory corresponds to constructing a valid expression
tree. Only such trajectories are considered terminal and eligible for evaluation.

To prevent expressions from growing excessively long or from being forcefully terminated into
invalid states after exceeding the maximum token length, we incorporate an early stop mechanism.
Specifically, when the current stack already forms a valid expression, the generation process may
stop with a probability:

p =
Len(st)
MaxLen

, (3)

where Len(st) is the number of nodes in st, and MaxLen is the maximum allowed length. This
mechanism balances exploration of longer expressions with the efficiency of producing syntactically
valid formulas.

4
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A GFlowNet learns a forward policy PF (st+1|st; θ) for constructing objects and a backward pol-
icy PB(st|st+1; θ) for deconstruction. The training objective enforces a flow-matching condition
throughout the state space, ensuring that the probability of generating a complete alpha α matches
the target distribution:

P (α) =
∑

τ :sn=α

PF (τ) =
R(α)

Z
, (4)

where Z =
∑

α′∈X R(α′) is a learnable parameter representing the total flow or partition function.
While several loss functions exist, we use the Trajectory Balance (TB) loss, which is particularly
suitable for our scenario as it focuses on full trajectories. The TB loss for a given trajectory τ is:

LTB(τ) =

(
logZθ +

n∑
t=1

logPF (st|st−1; θ)− logR(sn)−
n∑

t=1

logPB(st−1|st; θ)

)2

, (5)

where Zθ is a learnable scalar approximating total flow. Minimizing this loss over sampled trajecto-
ries trains the policy, resulting in a model that produces a diverse set of high-reward alphas.

3.3 GNN EMBEDDING AND STRUCTURE-AWARE REWARD

A fundamental limitation of existing methods is their reliance on sequential encoders (e.g., LSTMs)
operating on flattened representations like Reverse Polish Notation. Such an approach fails to cap-
ture the hierarchical structure of mathematical expressions, treating logically equivalent formulas
(e.g., close+ open and open+ close) as different sequences. To overcome this, we first parse every
formulaic alpha α into its corresponding AST, denoted as Tα = (Vα, Eα), where Vα is the set of
nodes (operators and features) and Eα is the set of edges representing the computational hierarchy.
This representation is invariant to semantically inconsequential syntactic variations.

To capture the heterogeneity of relations between different types of operators and features in the
Tα, we adopt RGCN as the encoder. Unlike standard GNNs that treat all edges uniformly, RGCNs
explicitly model multiple relation types, which is crucial for distinguishing, for example, the edge
between a temporal operator and a feature versus the edge between a temporal operator and its
window length.

Each node v ∈ Vα is initialized with a feature vector h(0)
v . At layer l, the hidden representation of

node v is updated as:

h(l)
v = ReLU

∑
r∈R

∑
u∈Nr(v)

1

cv,r
W (l)

r h(l−1)
u +W

(l)
0 h(l−1)

v

 , (6)

eα = MaxPooling
(
{h(L)

v }v∈Vα

)
, (7)

where R is the set of relation types, Nr(v) denotes the neighbors of node v connected via relation
r, cv,r is a normalization constant (e.g., |Nr(v)|), W (l)

r is the trainable weight matrix specific to
relation r, and W

(l)
0 is a self-loop transformation matrix. This embedding provides a relation-aware

and structure-aware representation of the alpha.

To ensure that the learned embedding is not just structurally aware but also predictive of the alpha’s
actual behavior, we introduce a Structure-Aware (SA) reward. The goal is to further ensure that
alphas with similar structural embeddings exhibit similar behavioral patterns.

Let Zi ∈ RD×N be the time-series vector of cross-sectionally normalized outputs for αi and Zi(d) ∈
RN is the output at day d. We define a behavioral distance based on the outputs of αi and αj :

dbehav(αi, αj) =
1

D

D∑
d=1

(Zi(d)− Zj(d))
2, (8)

wij =
exp(−∥eαi

− eαj
∥2)∑

k∈NK(αi)
exp(−∥eαi − eαk

∥2)
, j ∈ NK(αi), (9)

RSA(αi) = exp

− ∑
j∈NK(αi)

wij · dbehav(αi, αj)

 , (10)
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where NK(αi) is K-nearest neighbors of αi.

3.4 MULTI-FACETED REWARD FUNCTION AND TRAINING OBJECTIVE

The effectiveness of the GFlowNet is critically dependent on the design of the reward function
R(α). To address reward sparsity and guide exploration effectively, we design a dense, multi-faceted
reward function that dynamically combines several components.

The total reward for a completed α at training step T is a weighted sum of three components:

1. Terminal Performance Reward (RIC): The primary measure of an alpha’s predictive
power, defined as its Information Coefficient:

RIC(α) = IC(α, y) =

∣∣∣∣∣Ed

[
Cov(α(Xd), yd)√

Var(α(Xd)) · Var(yd)

]∣∣∣∣∣ . (11)

2. Structure-Aware Reward (RSA): As defined in Eq. 10, this reward provides a dense signal
for aligning the alpha’s structural embedding with its behavior.

3. Novelty Reward (RNOV): To encourage the discovery of novel alphas, we introduce a nov-
elty reward. It penalizes similarity to a dynamically updated library Fknown of previously
discovered high-quality alphas. The definition is:

RNOV(α) = 1− max
α′∈Fknown

|IC(α, α′)|. (12)

These reward components are combined using a time-dependent weighting scheme to balance dif-
ferent objectives throughout the training process. The final reward function is:

R(α, T ) = RIC(α) + λ(T )RSA(α) + η(T )RNOV(α), (13)

where λ(T ) = (1− T
Tanneal

) ·λmax is a scheduling function that gradually decreases the weight of the
structure-aware reward, and η(T ) = (1− t

Tanneal
) · ηmax is a weight for the novelty reward.

Furthermore, to prevent premature convergence and encourage fine-grained exploration at the action
level, we add a policy entropy bonus to our final training objective. The objective is to minimize the
expected Trajectory Balance loss regularized by the entropy of the forward policy:

LENT = −Eτ∼PF (τ ;θ)

[
n−1∑
t=0

H(πθ(·|st))

]
, (14)

Lfinal = Eτ∼PF (τ ;θ)[LTB(τ)] + β · LENT , (15)

where H(πθ(·|st)) is the entropy of the action selection policy at state st and β is a hyperparameter
controlling the strength of the entropy regularization. This comprehensive objective guides Al-
phaSAGE to learn a generative policy that produces a diverse, novel, and highly predictive portfolio
of alpha alphas.

3.5 ALPHA COMBINATION

For the combination stage, we follow the approach proposed in AlphaForge Shi et al. (2025a).
Specifically, instead of fixing a static set of alphas, the framework performs a dynamic re-selection
and linear combination of mined alphas. At each period, recently effective alphas are filtered and
re-weighted through simple linear regression, yielding a time-varying “Mega-Alpha.”

This design is advantageous because it adapts quickly to regime shifts while maintaining inter-
pretability: alpha contributions remain transparent, and the portfolio avoids overfitting by discard-
ing stale or redundant signals. Compared with complex non-linear combiners, this method offers a
balance between robustness, efficiency, and explanatory clarity.

6
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4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETTING

Evaluation Metrics. Based on prior work Yu et al. (2023); Tang et al. (2025) and real-world
trading scenarios, we employed two types of metrics for model evaluation.(1): Correlation Metrics,
including Information Coefficient (IC), IC Information Ratio (ICIR), Rank Information Coefficient
(RIC), RIC Information Ratio (RICIR); (2): Portfolio Metrics, including Annualized Return (AR),
Maximum Drawdown (MDD), Sharpe Ratio (SR). All metrics are better when higher. Detailed
definitions and backtest settings are provided in the Appendix C.1.

Datasets. We selected three important subsets from two major markets Yang et al. (2020): the
CSI300 and CSI500 in the Chinese market, and the S&P500 in the U.S. market. The split of the
training set/validation set/test set for the Chinese market is defined as follows: 2010-01-01 to 2020-
12-31 / 2021-01-01 to 2021-12-31 / 2022-01-01 to 2024-12-31. For the US market: 2010-01-01
to 2016-12-31 / 2017-01-01 to 2017-12-31 / 2018-01-01 to 2020-12-31.2 Detailed hyperparameter
settings are provided in Appendix C.2.

Baselines. We compare AlphaSAGE with several baseline approaches: (1) Traditional machine
learning methods include MLP Murtagh (1991), LightGBM Ke et al. (2017), and XGBoost Chen
& Guestrin (2016); (2) GA-based methods include GP Chen et al. (2021); (3) RL-based methods
include AlphaGen Yu et al. (2023) and AlphaQCM Zhu & Zhu (2025); (4) Generative adversarial
networks-based methods include AlphaForge Shi et al. (2025a). The details of baseline are available
at Appendix C.3.

4.2 OVERALL PERFORMANCE

Table 1 summarizes results across CSI300/500 and S&P500: AlphaSAGE ranks first on all cor-
relation metrics, with notably higher ICIR/RICIR, and these gains translate into the best portfolio
outcomes (highest annualized return, lowest drawdown, highest Sharpe).

Figure 3 further shows that on CSI300 (2022–2024) AlphaSAGE maintains a persistent lead in
cumulative returns, with smoother drawdowns, faster recoveries, and stronger rebound capture; the
CSI300 index lags throughout, underscoring the value of active factor discovery and combination.

Figure 3: Cumulative return on CSI300 (2022–2024). Comparison among AlphaSAGE (ours), all
baselines, and CSI300 Index benchmark.

2Due to limitations in the data source, the US market data used in this study concludes on 2020-12-31.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison of Different Methods on CSI 300, CSI 500 (China) and S&P500
(U.S.). Bold and underlined numbers represent the best and second-best performance across all
compared approaches, respectively.

Dataset Method
Correlation Metrics Portfolio Metrics

IC ICIR RIC RICIR AR MDD SR

CSI300

MLP 0.020 0.158 0.019 0.142 3.54% -20.9% 0.68
LightGBM 0.011 0.124 0.006 0.064 2.61% -18.5% 0.53
XGBoost 0.031 0.243 0.033 0.248 5.40% -17.5% 1.26

GP 0.026 0.215 0.028 0.216 6.80% -17.6% 1.55
AlphaGen 0.058 0.414 0.057 0.360 4.00% -22.6% 0.76

AlphaQCM 0.043 0.262 0.042 0.246 1.95% -24.8% 0.36
AlphaForge 0.041 0.259 0.052 0.306 3.90% -21.9% 0.88

AlphaSAGE(ours) 0.079 0.496 0.094 0.583 7.62% -17.3% 1.71

CSI500

MLP 0.017 0.185 0.020 0.233 1.56% -24.3% 0.27
LightGBM 0.024 0.305 0.021 0.264 4.61% -17.5% 0.89
XGBoost 0.039 0.365 0.052 0.528 5.50% -17.1% 1.15

GP 0.014 0.238 0.022 0.233 3.04% -19.4% 0.56
AlphaGen 0.032 0.270 0.031 0.230 1.15% -32.4% 0.19

AlphaQCM 0.048 0.378 0.073 0.546 4.06% -24.0% 0.75
AlphaForge 0.053 0.345 0.083 0.600 4.18% -16.7% 0.93

AlphaSAGE(ours) 0.054 0.379 0.084 0.637 5.53% -16.0% 1.20

S&P500

MLP 0.035 0.287 0.020 0.143 12.85% -5.6% 3.35
LightGBM 0.023 0.196 0.018 0.165 11.11% -5.1% 4.22
XGBoost 0.016 0.159 0.026 0.168 13.25% -8.3% 3.61

GP 0.032 0.308 0.002 0.016 13.39% -13.0% 3.15
AlphaGen 0.044 0.396 0.013 0.127 10.31% -5.5% 3.96

AlphaQCM 0.038 0.262 0.010 0.071 13.86% -13.0% 3.30
AlphaForge 0.039 0.422 0.031 0.324 17.24% -5.0% 6.30

AlphaSAGE(ours) 0.052 0.493 0.038 0.382 19.47% -4.2% 6.32

4.3 ABLATION STUDY

Table 2 shows that the plain GFlowNet baseline is weakest; adding only early stopping (ES) further
hurts, implying ES needs a stronger encoder. Replacing the sequence encoder with a GNN provides
the largest single lift across correlation and risk metrics, underscoring the value of structure-aware
representations. Adding the structure-aware reward (SA) improves ranking stability (ICIR/RICIR)
and tightens drawdowns. Introducing the novelty reward (NOV) raises both signal quality and trad-
ability by reducing redundancy among factors. Finally, the entropy regularizer (ENT) yields the
best overall results—higher IC/RIC, AR, and Sharpe with controlled MDD—indicating improved
exploration without brittleness and supporting the method’s robustness to component choices.

Table 2: Ablation study on CSI300. The base model is GflowNets, where ES denotes Early Stop-
ping, GNN indicates whether a GNN or LSTM is used as the encoder, SA stands for Structure-Aware
Reward, NOV represents Novelty Reward, and ENT denotes Entropy Loss.

Included Components Correlation Metrics Portfolio Metrics
ES GNN SA NOV ENT IC ICIR RIC RICIR AR MDD SR
✗ ✗ ✗ ✗ ✗ 0.048 0.393 0.057 0.437 3.63% -22.9% 0.72
✓ ✗ ✗ ✗ ✗ 0.046 0.313 0.060 0.397 -0.47% -24.8% -0.11
✓ ✓ ✗ ✗ ✗ 0.070 0.495 0.088 0.554 5.58% -19.4% 1.25
✓ ✓ ✓ ✗ ✗ 0.071 0.453 0.088 0.566 4.68% -17.6% 1.14
✓ ✓ ✓ ✓ ✗ 0.075 0.494 0.092 0.614 6.77% -17.8% 1.53
✓ ✓ ✓ ✓ ✓ 0.079 0.496 0.094 0.583 7.62% -17.3% 1.71

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Sensitivity analysis of the weights for RNOV and RSA on CSI300. For the y-axis, IC,
RIC, AR, and MDD refer to the axis on the left; ICIR, RICIR, and SR refer to the axis on the right.

4.4 SENSITIVITY ANALYSIS

We vary the weights of novelty reward (RNOV) and structure-aware reward (RSA) on CSI300 (Fig. 4).
For RNOV, correlation and portfolio metrics improve at small–moderate levels and remain on a
broad plateau before tapering when novelty dominates. For RSA, improvements are largely mono-
tonic across correlation and portfolio metrics with stable drawdowns. Overall, AlphaSAGE exhibits
smooth responses without abrupt performance drops, indicating robustness to a wide range of hy-
perparameter choices and low sensitivity around the operating region.

5 CONCLUSION

We introduced AlphaSAGE, a structure-aware, diversity-seeking framework for formulaic alpha
discovery and combination. The approach unifies a GNN encoder for symbolic expressions, a
GFlowNet generator that explores multiple high-reward modes, and a multi-signal training objective
coupling predictive quality, representation–behavior alignment, novelty pressure, and entropy-based
regularization. A transparent, dynamic linear combiner then translates candidate alphas into a trad-
able portfolio signal while maintaining interpretability.

Empirically, AlphaSAGE delivers first-rank correlation metrics across CSI300/500 and S&P500
and consistently converts these gains into superior portfolio outcomes. On CSI300 (2022–2024),
its cumulative return curve maintains a persistent lead with smoother drawdowns, faster recoveries,
and stronger rebound capture, underscoring robust generalization across market regimes. Ablations
attribute the largest single lift to structure-aware encoding (GNN), with self-supervised alignment
improving rank stability and risk control, novelty rewarding useful diversity that lifts both signal
quality and tradability, and entropy regularization sharpening exploration without brittleness. Sen-
sitivity studies show smooth responses over broad ranges of the novelty and alignment weights,
indicating low tuning burden and practical robustness.

Together, these results demonstrate that coupling structure-aware representation, diversity-seeking
generation, and principled multi-signal supervision yields reliable improvements in both signal qual-
ity and its conversion to realized returns, while preserving transparency in how factors are generated
and combined.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that the use of large language models (LLMs) during the drafting of this manuscript was
confined to language-related assistance, such as sentence refinement and grammatical corrections.
All substantive content was independently authored by the authors and underwent rigorous review
and verification following any modifications based on LLM assistance. This research did not involve
any other processes reliant upon large language models.

B SUPPLEMENTARY BACKGROUND ON RELATED WORK

B.1 ALPHA MINING AND COMBINATION

Search paradigms. Early work emphasized manual, hypothesis-driven construction of formulaic
alphas; automated search later expanded with genetic algorithms (mutation/crossover over expres-
sion trees) Chen et al. (2021); Zhang et al. (2020); Cui et al. (2021) and reinforcement learning
(sequential decision-making over token spaces) Yu et al. (2023); Zhu & Zhu (2025); Zhao et al.
(2024); Xu et al. (2024). In addition, there are also approaches based on Large Language Models
(LLMs) Cao et al. (2025); Shi et al. (2025b); Tang et al. (2025); Li et al. (2024); Chen (2023); Ren
et al. (2025) that generate alphas using LLMs or refine existing alphas .

Combination and multicollinearity. Given a library {z(k)i,t }Kk=1, linear combination remains
prevalent for transparency:

si,t =

K∑
k=1

wk z
(k)
i,t , w ∈ RK . (16)

However, high cross-alpha correlation inflates estimator variance. Regularization and constraints
mitigate this:

min
w

∑
t

∥∥∥yt+∆ − Ztw
∥∥∥2
2
+ λ2∥w∥22 + λ1∥w∥1 s.t. 1⊤w = 1, ∥w∥0 ≤ s, (17)

where Zt = [z
(1)
·,t , . . . , z

(K)
·,t ] stacks alpha columns, and optional constraints control turnover or

exposure. Diagnostics such as condition number or VIF help monitor collinearity. Beyond static
weights, practice often uses rolling or regime-conditioned reweighting.

B.2 GRAPH NEURAL NETWORKS (GNNS)

Message passing view. A broad class of GNNs can be written as

m(ℓ)
u→v = ϕ(ℓ)

msg

(
h(ℓ)
u , h(ℓ)

v , euv
)
, a(ℓ)v = □u∈N (v)m

(ℓ)
u→v, h(ℓ+1)

v = ϕ
(ℓ)
upd

(
h(ℓ)
v , a(ℓ)v

)
,

(18)
where □ is a permutation-invariant aggregator (sum/mean/max or attention). Classical instances
include GCN Yao et al. (2019), GraphSAGE Hamilton et al. (2017), GAT Veličković et al. (2017),
GIN Xu et al., the MPNN family Gilmer et al. (2017), and relational/heterogeneous variants (R-
GCN) Schlichtkrull et al. (2018).

Spectral perspective (GCN). Let Â = A+I and D̂ = diag(
∑

j Âij). The layerwise propagation
is

H(ℓ+1) = σ
(
D̂−1/2ÂD̂−1/2H(ℓ)W (ℓ)

)
, (19)

interpretable as a low-pass filter on the graph. Repeated smoothing risks over-smoothing, where
node embeddings become indistinguishable; residual connections, normalization, and careful depth
mitigate this Bronstein et al. (2021).

Attention and heterogeneity. GAT computes attention weights αuv over neighbors:

αuv =
exp
(
LeakyReLU

(
a⊤[Whu ∥Whv]

))∑
w∈N (v) exp

(
LeakyReLU

(
a⊤[Whw ∥Whv]

)) , h′
v = σ

( ∑
u∈N (v)

αuv Whu

)
.

(20)
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R-GCN introduces relation-specific parameters:

h(ℓ+1)
v = σ

(∑
r∈R

∑
u∈Nr(v)

1

cv,r
W (ℓ)

r h(ℓ)
u + W

(ℓ)
0 h(ℓ)

v

)
. (21)

Expressivity and readout. GIN links message passing to Weisfeiler–Lehman tests and uses a
sum-aggregation MLP to approach maximal discriminative power in the 1-WL regime Xu et al..
Graph-level outputs use readouts

hG = READOUT
(
{h(L)

v }v∈G

)
, e.g., sum/mean/max. (22)

Positional or structural encodings (e.g., Laplacian eigenvectors, distance encodings) can further en-
hance global awareness Li et al. (2020). Practical training relies on sampling and partitioning for
scale Chiang et al. (2019); Zheng et al. (2020), with OGB benchmarks standardizing evaluation Hu
et al. (2020).

Over-smoothing and over-squashing. Deep stacks may over-smooth; curvature-inspired
rewiring, residuals, and normalization layers are common responses. Over-squashing—the com-
pression of exponentially many distant signals into fixed-size messages—can be alleviated by atten-
tion/edge weighting, graph rewiring, and subgraph-based encoders Bronstein et al. (2021).

B.3 GENERATIVE FLOW NETWORKS (GFLOWNETS)

Objective: sampling proportional to reward. Given a set of terminal objects X and a non-
negative reward R : X →R≥0, GFlowNets seek a policy that samples x∈X with

Pθ(x) ∝ R(x), Pθ(x) =
∑

τ∈T (x)

Pθ(τ), (23)

where τ = (s0→· · ·→x) is a trajectory in a DAG of states and T (x) is the set of trajectories ending
at x Bengio et al. (2021; 2023).

Detailed-balance (DB) and trajectory-balance (TB). Let Fθ(s) > 0 denote a learnable flow
through state s. DB enforces local conservation:

Fθ(s)Pθ(s
′ | s) = Fθ(s

′)Pθ(s | s′) for edges s↔s′. (24)

TB provides a path-wise condition linking forward/backward policies and a scalar Zθ (partition
function):

LTB = Eτ

[(
logPθ(τ) + logZθ − logR(x)

)2]
, (25)

encouraging Pθ(x)∝R(x) when minimized Malkin et al. (2022). Subtrajectory balance (SubTB)
generalizes TB to partial paths for credit assignment Madan et al. (2023).

Forward/backward policies and partition function. A typical parameterization factors
Pθ(τ) =

∏T−1
t=0 Pθ(st+1 | st), Pθ(st | st+1) learned for DB/SubTB, and treats Zθ as a learn-

able scalar (or function) estimating
∑

x R(x). Estimation stability can be improved via baselines,
variance reduction, and regularization.

Mode coverage vs. RL/EBM/MCMC. Unlike standard RL objectives that often favor a single
high-return mode under sparse rewards, GFlowNets learn a distribution covering multiple modes.
Compared to energy-based models (EBMs) and MCMC, GFlowNets amortize sampling via learned
policies, reducing the need for long chains while retaining a reward-shaped target LeCun et al.
(2006); Salimans et al. (2015); Bengio et al. (2023). Empirical applications span molecular design,
program synthesis, and discrete structure generation Zhang et al. (2023); Jain et al. (2022), with
ongoing work on offline training, replay buffers, and credit assignment Lahlou et al. (2023).
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C EXPERIMENT DETAILS

C.1 METRIC DETAILS

For all evaluation metrics, we provide definitions and brief interpretations. Let

ρd =
Cov(α(Xd), yd)√
Var(α(Xd)) Var(yd)

(cross-sectional correlation on day d), (26)

and let Rd denote the portfolio return constructed from α on day d, K the number of periods per
year (e.g., K=252 for daily), rf,d the risk-free rate, and

Wt =
∑
u≤t

(
1 +Ru

)
(cumulative wealth). (27)

• Information Coefficient (IC): See Eq. 11. Interpretation. Cross-sectional predictive
power of the factor—how well α(Xd) aligns with next-period outcomes yd. Using the
absolute value isolates magnitude rather than sign (long/short direction can be flipped).
Higher IC indicates more informative date-wise rankings and is a prerequisite for con-
structing profitable long–short portfolios.

• Information Ratio of IC (ICIR):

ICIR =
Ed[ρd]√
Vard(ρd)

. (28)

Interpretation. Time-series consistency of cross-sectional predictability: mean IC relative
to its volatility. Under weak dependence, ICIR approximates a signal-to-noise measure
(akin to a t-statistic for E[ρd]), favoring factors that work consistently rather than sporadi-
cally.

• Rank Information Coefficient (RankIC):

RankIC =
∣∣Ed

[
ρrank
d

] ∣∣ , ρrank
d =

Cov(rank(α(Xd)), rank(yd))√
Var(rank(α(Xd)))Var(rank(yd))

. (29)

Interpretation. Spearman-style counterpart to IC that evaluates whether higher-ranked sig-
nals correspond to higher-ranked outcomes. RankIC is robust to outliers and monotone
transforms of α, aligning with rank-based portfolio constructions.

• Information Ratio of RankIC (RankICIR):

RankICIR =
Ed

[
ρrank
d

]√
Vard

(
ρrank
d

) . (30)

Interpretation. Time-series stability of rank-based predictive power, prioritizing factors
whose cross-sectional ordering remains reliable across time.

• Annualized Return (AR):
AR = K · Ed[Rd] . (31)

Interpretation. Economic value produced by the portfolio rule induced by α. When com-
pounding is material, geometric annualization via Wt is preferred.

• Maximum Drawdown (MDD):

MDD = −max
t

(
1− Wt

maxu≤t Wu

)
. (32)

Interpretation. Worst peak-to-trough loss of the wealth process; a trajectory- and tail-risk
metric not captured by variance alone. It is critical for leverage, risk limits, and investor
experience.

• Sharpe Ratio (SR) (annualized, excess over risk-free):

SR =

√
K Ed[Rd − rf,d]√
Vard(Rd − rf,d)

. (33)

Interpretation. Risk-adjusted return per unit of volatility for the α-induced portfolio, en-
abling fair comparison across methods, universes, and rebalancing frequencies.
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Reporting conventions. (i) We report IC/RankIC in absolute value (cf. Eq. 11, Eq. 29) because
factor signs are arbitrary up to inversion. (ii) For SR, we use excess returns Rd − rf,d; To ensure
fair comparison while simplifying the process, we set rf,d=0 for comparability and state this choice
explicitly. (iii) Due to differing rules between the CSI300/500 indices and the S&P500, when back-
testing on the CSI300/500, we purchase the top 20% of stocks each trading day and sell them after
20 days (long positions only); For the S&P500, we purchase the top 10% of stocks each trading day
and sell them after 20 days, while simultaneously selling the bottom 10% of stocks and repurchasing
them after 20 days (long-short combination).

C.2 HYPERPARAMETER SETTING

The hyperparameter settings of AlphaSAGE are listed in Table 3.

Table 3: The hyperparameter settings of AlphaSAGE.
Name Description Value

Max Length The maximum number of tokens in the st 20
Hidden Dim The dimension of hidden state 128

Encoder Layer The number of layers in RGCN encoder 2
Entropy Coef The weight of LENT 0.01
Learning Rate The learning rate to optimize θ 0.0001

SA Weight The weight of RSA 1.0
NOV Weight The weight of RNOV 0.3
Pool Capacity The maximum number of alphas in alpha pool 50

Episodes The number of trajectory sampling instances 10000/200003

C.3 BASELINE DETAILS

We selected seven methods as the baseline:

• MLP Murtagh (1991): A feedforward neural network that maps tabular features to return
targets, capturing nonlinear interactions. It is a strong generic baseline but can overfit
without careful regularization and offers limited interpretability.

• LightGBM Ke et al. (2017): A gradient-boosted decision tree learner with histogram-based
splits and leaf-wise growth, well suited to large, sparse, or heterogeneous financial features.
It trains fast and handles missing values natively, though leaf-wise growth can overfit small
samples without constraints.

• XGBoost Chen & Guestrin (2016): Boosted trees optimized with second-order informa-
tion, shrinkage, column subsampling, and explicit regularization. Reliable on tabular alpha
features, but the ensemble remains hard to interpret structurally and can be sensitive to label
leakage or distribution shift.

• GP Chen et al. (2021): Genetic programming performs symbolic regression by evolving
expression trees via mutation and crossover, yielding human-readable formulas. It explores
large search spaces but is prone to bloat and may converge slowly under sparse, delayed
rewards.

• AlphaGen Yu et al. (2023): Proposes mining synergistic sets of formulaic alphas by di-
rectly optimizing the downstream combination model’s performance. Uses reinforcement
learning to explore the expression search space, assigning the improvement in portfo-
lio/combiner performance as the RL return so the generator preferentially discovers alphas
that work well together.

• AlphaQCM Zhu & Zhu (2025): Frames synergistic alpha discovery as a non-stationary,
reward-sparse MDP and adopts a distributional RL approach. Learns both a Q-function
and quantiles, then applies a quantiled conditional moment method to obtain an unbiased
variance estimate; the learned value and variance jointly guide exploration under non-
stationarity, improving search efficiency on large universes.
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• AlphaForge Shi et al. (2025a): Introduces a two-stage framework that couples a genera-
tive–predictive neural module for factor proposal (encouraging broad, diverse exploration)
with a dynamic combination stage. The combiner selects by recent performance and adapts
weights over time, addressing inconsistency and rigidity of fixed-weight ensembles and
yielding stronger portfolio results in empirical tests.

D IMPLEMENTATION DETAILS

D.1 PSEUDO CODE

The pseudo code of AlphaSAGE (core of mining framework) is shown in Algorithm 1. And the
code is available at https://anonymous.4open.science/r/AlphaSAGE-3BA9.

Algorithm 1: AlphaSAGE
Input: Stock features X , stock trend labels y, action set A
Output: Final alpha pool F

1 Initialize: GFN parameters θ; probability buffer Bprob←∅; embedding buffer Bemb←∅; alpha
pool F←∅;

2 for step t = 1, 2, . . . , Tmax do
3 Parse current state st→astt;
4 Compute state embedding et ← fGNN(astt); // Eq. 7
5 Output action distribution πθ(· |astt); append to Bprob;
6 if rand()≥ pes(st) then
7 at ← SEP;
8 else
9 Sample or select at ∈ A from πθ(· |astt);

10 if at = SEP then
11 Build expression α← BuildExpr(st);
12 Compute alpha z ← ComputeAlpha(α,X);
13 Compute correlation reward RIC ← IC(z, y); // Eq. 11
14 Compute novelty to pool members RNOV ← Novelty(z,F); // Eq. 12
15 Run KNN on terminal embedding et against pool embeddings:

N←KNN(et,Emb(F), k);
16 Build distance-weight matrix W ← Dist2Weight(N ) and performance similarity

sim←PerfSim(s,N ,W );
17 SA reward RSA ← SAReward(sim); // Eq. 10
18 Total reward R← Combine(RIC, RNOV, RSA, t); // Eq. 13
19 if PassThreshold(R) then
20 F ← F ∪ {α};
21 Append et to Bemb;
22 Trajectory Balance loss LTB ← TrajectoryBalance(Bprob, R); // Eq. 5
23 Entropy regularizer Lent ← EntropyReg(Bprob); clear Bprob; // Eq. 14
24 Total loss Lfinal ← LTB + λentLent; // Eq. 15
25 Update θ ← θ − η∇θLfinal;
26 Reset St+1←InitState(); clear Bprob;
27 else
28 State transition St+1 ← Transition(St, at);

29 return F ;

D.2 RELATION TYPE OF RGCN

To denote combinations between different operators and features, we have defined the follow-
ing relationships: ➀ Unary operator with operand; ➁ Commutative operator with operands; ➂
Non-commutative operator with left operand; ➃ Non-commutative operator with right operand; ➄
Rolling operator with feature operand; ➅ Rolling operator with time operand.
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Table 4: Raw features and operators. F: base market features; U/B: unary/binary operators; CS:
cross-sectional operation (within-day across assets); TS: time-series operation (rolling window).
The lookback length d denotes the past d trading days, and the ϵ is used only for numerical stability.

Name Type Description
Open F Opening price
Close F Closing price
High F Daily highest price
Low F Daily lowest price

Vwap F Daily average price, weighted by the volume of trades at each price
Volume F Trading volume (number of shares)

Abs U Absolute value of the input
Slog1p U Signed log transform: sign(input) times log of (1 plus the absolute value)

Inv U Reciprocal of the input; add ϵ to avoid division by zero
Sign U Sign of the input, returning -1, 0, or 1
Log U Natural logarithm of the input; add ϵ for numerical stability
Rank U-CS Cross-sectional rank normalization within a day, mapped to the range [0, 1]
Add B Element-wise addition of two inputs
Sub B Element-wise subtraction: first minus second
Mul B Element-wise multiplication
Div B Element-wise division; add a small constant to the denominator for stability
Pow B Element-wise power: raise the first input to the power of the second

Greater B Element-wise comparison: 1 if first input is greater than second, else 0
Less B Element-wise comparison: 1 if first input is less than second, else 0
Ref U-TS Lag operator: the value from d days ago

TsMean U-TS Rolling mean over the past d days
TsSum U-TS Rolling sum over the past d days
TsStd U-TS Rolling standard deviation over the past d days
TsIr U-TS Rolling information ratio over the past d days

TsMinMaxDiff U-TS Rolling range over the past d days (rolling max minus rolling min)
TsMaxDiff U-TS Current value minus the rolling max over the past d days
TsMinDiff U-TS Current value minus the rolling min over the past d days

TsVar U-TS Rolling variance over the past d days
TsSkew U-TS Rolling skewness over the past d days
TsKurt U-TS Rolling kurtosis over the past d days
TsMax U-TS Rolling maximum over the past d days
TsMin U-TS Rolling minimum over the past d days
TsMed U-TS Rolling median over the past d days
TsMad U-TS Rolling median absolute deviation over the past d days
TsRank U-TS Rolling rank of the current value within the past d days, mapped to [0, 1]
TsDelta U-TS Change over d days: current value minus the value d days ago
TsDiv U-TS Ratio over d days: current value divided by the value d days ago

TsPctChange U-TS Percentage change over the past d days
TsWMA U-TS Linearly decaying weighted moving average over the past d days
TsEMA U-TS Exponential moving average with a decay over the past d days
TsCov B-TS Rolling covariance between two inputs over the past d days
TsCorr B-TS Rolling Pearson correlation between two inputs over the past d days

D.3 FEATURES AND OPERATORS

All operators and features available during alpha mining are listed in the Table 4.
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E PROOF

Proposition E.1 (Alpha Diversity Stabilizes Estimation and Prediction). Let F = [α1, . . . , αN ] ∈
RT×N collect N standardized alphas (each column has mean 0 and variance 1), and let y ∈ RT be
the target return. Define

Σ =
1

T
F⊤F ∈ RN×N , g =

1

T
F⊤y ∈ RN . (34)

The OLS estimator is β̂ = Σ−1g. Suppose ϵ = y − Fβ⋆ satisfies E[ϵ] = 0 and Var(ϵ) = σ2IT .
Then:

1. (Estimator variance decomposition) Writing the eigendecomposition Σ = QΛQ⊤ with
eigenvalues 1 ≥ λ1 ≥ · · · ≥ λN > 0, we have

Var(β̂) =
σ2

T
Σ−1 ⇒ tr Var(β̂) =

σ2

T

N∑
i=1

1

λi
. (35)

Consequently, as pairwise correlations increase and the spectrum becomes more ill-
conditioned (small λmin), the total estimation variance inflates.

2. (Prediction risk amplification) The in-sample prediction variance satisfies

E
[
∥F (β̂ − β⋆)∥22

]
= tr

(
F Var(β̂)F⊤) = σ2

T
tr
(
FΣ−1F⊤) = σ2 tr

(
ΣΣ−1

)
= σ2N,

(36)

but the out-of-sample risk for a new design with the same second moments equals

Rpred = σ2 + E
[
(α⊤(β̂ − β⋆))2

]
= σ2 +

σ2

T
tr(ΣΣ−1) = σ2

(
1 +

N

T

)
, (37)

while the uncertainty allocation across coordinates is governed by Σ−1: higher multi-
collinearity (smaller λmin) yields larger coordinate-wise dispersion of β̂ and hence less
interpretability.

3. (Sensitivity to perturbations) For perturbations (∆Σ,∆g), the linear system Σβ̂ = g obeys
the classical bound

∥∆β̂∥2
∥β̂∥2

≲ κ2(Σ)

(
∥∆g∥2
∥g∥2

+
∥∆Σ∥2
∥Σ∥2

)
, (38)

where κ2(Σ) = ∥Σ∥2 ∥Σ−1∥2 = λmax/λmin. Thus, near-collinearity (large κ2) makes β̂
highly unstable under small data noise or distributional drift.

4. (Two-alpha closed form) For two standardized alphas with correlation ρ,

Σ =

[
1 ρ

ρ 1

]
, Σ−1 =

1

1− ρ2

[
1 −ρ
−ρ 1

]
, (39)

so Var(β̂) = σ2

T (1−ρ2)

[
1 −ρ
−ρ 1

]
and κ2(Σ) =

1+ρ
1−ρ . As ρ→ 1, both the variance and the

condition number blow up.

5. (Equicorrelated family) If Σ has equicorrelation ρ off-diagonal, then
λ1 = 1 + (N − 1)ρ, λ2 = · · · = λN = 1− ρ, (40)

and hence

tr Var(β̂) =
σ2

T

(
1

1 + (N − 1)ρ
+

N − 1

1− ρ

)
, κ2(Σ) =

1 + (N − 1)ρ

1− ρ
. (41)

Even modest ρ > 0 causes variance inflation linear in N through the (N − 1)/(1 − ρ)
term; promoting diversity (smaller ρ) sharply reduces this inflation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. (1) Since β̂ = (F⊤F )−1F⊤y = Σ−1g and y = Fβ⋆ + ϵ with Var(ϵ) = σ2IT , we have

Var(β̂) = Σ−1

(
1

T 2
F⊤ Var(y)F

)
Σ−1 = Σ−1

(
σ2

T 2
F⊤F

)
Σ−1 =

σ2

T
Σ−1. (42)

Using Σ = QΛQ⊤ yields tr Var(β̂) = σ2

T

∑
i λ

−1
i .

(2) For in-sample variance,

E∥F (β̂ − β⋆)∥22 = tr
(
F Var(β̂)F⊤) = σ2

T
tr(FΣ−1F⊤). (43)

Since FΣ−1F⊤ and ΣΣ−1 share the same trace (tr(AB) = tr(BA)), this equals σ2 tr(IN ) =
σ2N . For a new draw α̃ with the same second moments, E[α̃α̃⊤] = Σ, so the added generalization
variance is σ2

T tr(ΣΣ−1) = σ2N
T , giving Rpred = σ2(1 + N/T ); however the distribution of this

uncertainty over coordinates is governed by Σ−1, worsening with ill-conditioning, which harms
interpretability of individual β̂i.

(3) The stated perturbation bound follows from standard linear system sensitivity: for Σβ̂ =

g, first-order analysis (or the Bauer–Fike–type arguments) gives ∥∆β̂∥2 ≲ ∥Σ−1∥2
(
∥∆g∥2 +

∥∆Σ∥2∥β̂∥2
)
; normalizing by ∥β̂∥2 and noting ∥Σ−1∥2 ∥Σ∥2 = κ2(Σ) yields the claim.

(4)–(5) The two-alpha and equicorrelation calculations follow from direct inversion and the known
eigenstructure: for equicorrelation, the all-ones vector is the top eigenvector with eigenvalue 1 +
(N − 1)ρ and the orthogonal complement has eigenvalue 1 − ρ. Plugging these into part (1) gives
the trace formula and condition number.

Collectively, (1)–(5) show that reducing off-diagonal correlations increases the eigenvalues of Σ, de-
creases κ2(Σ), shrinks Var(β̂), and improves stability and interpretability—formally substantiating
the need for diverse, weakly correlated alphas.

Corollary E.2 (Regularization as a proxy for diversity). For ridge with penalty λ > 0, β̂λ =
(Σ + λI)−1g and

Var(β̂λ) =
σ2

T
(Σ + λI)−1 ⇒ tr Var(β̂λ) =

σ2

T

N∑
i=1

1

λi + λ
. (44)

Either increasing diversity (raising the λi) or increasing λ reduces variance; explicit diversity con-
trol targets the spectrum directly, often achieving lower variance without the shrinkage bias inherent
in ridge.

F ADDITIONAL RESULTS

F.1 BACKTESTING RESULTS

Figure 5 shows that on CSI500 (2022–2024) AlphaSAGE delivers the strongest end-period wealth
and sustains a clear lead for most of the horizon. It experiences smoother drawdowns around mid-
2023, recovers earlier from late-2024 stress, and retains more of the subsequent rally; all baselines
trail, while the CSI500 index lags markedly throughout.

Figure 6 shows that on S&P500 (2018–2021) AlphaSAGE tracks near the top during calm phases,
then recovers faster and compounds higher after the 2020 drawdown, finishing with the best cu-
mulative return. Several baselines (e.g., AlphaForge) are competitive early but fail to match the
late-period acceleration; the market index remains below AlphaSAGE by the end.

F.2 PARAMETER ANALYSIS

This appendix reports two practical knobs: training steps and candidate-pool size. We track corre-
lation metrics (IC/RIC, ICIR/RICIR) and portfolio metrics (AR, MDD, SR).
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Figure 5: Cumulative return on CSI500 (2022–2024). Comparison among AlphaSAGE (ours), all
baselines, and CSI500 Index benchmark.

Figure 6: Cumulative return on S&P500 (2018–2020). Comparison among AlphaSAGE (ours), all
baselines, and S&P500 Index benchmark.

Training steps. As shown in Fig. 7, GFlowNets converge faster and train more efficiently than
PPO in the alpha-mining setting. IC/RIC and ICIR/RICIR rise sharply in early iterations and reach a
high, stable plateau with lower variance; PPO improves more slowly and exhibits larger oscillations
throughout.

Candidate-pool size. Figure 8 shows that increasing the factor pool yields rapid gains fol-
lowed by saturation. All correlation metrics (IC/RIC, ICIR/RICIR) and portfolio metrics (AR, SR)
improve markedly when moving from very small to moderate pool sizes, then flatten into broad
plateaus; MDD improves monotonically with no instability.
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Figure 7: Learning dynamics vs. training steps. GFlowNets (GFN) achieve higher plateaus earlier
and with less volatility than PPO across IC/RIC and ICIR/RICIR.

Figure 8: Effect of candidate-pool size. Metrics increase quickly at small–moderate pool sizes and
then stabilize, indicating diminishing returns beyond a modest pool.
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