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ABSTRACT

Individual treatment effect is of great importance for healthcare and beyond.
While most existing solutions focus on accurate treatment effect estimations, they
rely on non-interpretable black-box models that can hinder stakeholders from un-
derstanding the underlying factors driving the prediction. To address this issue, we
propose DISCRET, a self-interpretable framework that is inspired by how stake-
holders make critical decisions in practice. DISCRET identifies samples similar
to a target sample from a database by using interpretable rules and employs their
treatment effect as the estimated ITE for the target sample. We present a deep rein-
forcement learning-based rule learning algorithm in DISCRET to achieve accurate
ITE estimation. We conduct extensive experiments over tabular, natural language,
and image settings. Our evaluation shows that DISCRET not only achieves com-
parable performance as black-box models but also generates more faithful expla-
nations than state-of-the-art post-hoc methods and self-interpretable models.

1 INTRODUCTION

Individual treatment effect (ITE) quantifies the difference between one individual’s outcome with
and without receiving treatment. Estimating ITE is a significant problem not only in healthcare
but also in other domains (Basu et al., 2011; Pryzant et al., 2021; Feder et al., 2021; Jerzak et al.,
2023b;a). It serves as an important tool for tailoring interventions to the specific needs of each in-
dividual. A substantial body of literature has been dedicated to investigating various methodologies
for accurately estimating ITE by harnessing the potential of machine learning and deep learning
techniques (Shalit et al., 2017; Yoon et al., 2018; Zhang et al., 2022; Liu et al., 2022).

However, the estimation of ITE confronts a significant challenge with respect to interpretability
and explainability. Due to the black-box nature, machine learning models hinder stakeholders from
understanding the underlying factors and mechanisms driving treatment effect predictions. Efforts
to develop interpretable machine learning methods and frameworks are therefore essential to ensure
that ITE estimations are not only accurate but also trustworthy (Kim & Bastani, 2019; Crabbé et al.,
2022; Chen et al., 2022).

The state-of-the-art interpretable ITE estimation approaches, while making significant strides in en-
hancing explainability, often struggle to provide highly accurate ITE estimations (Athey & Imbens,
2016; Nie & Wager, 2021). Additionally, recent studies have made concerted efforts to elucidate
the inner workings of black-box models in estimating ITE through post-hoc explanations (Kim &
Bastani, 2019). However, post-hoc explanations have also been blamed for their potential lack of
faithfulness (Rudin, 2019; Bhalla et al., 2023), which is also empirically validated in Section 4.

To address the above issues, we propose a self-interpretable ITE estimation framework, DISCRET,
i.e., “DIScovering Comparable items with Rules to Explain Treatment Effect”, for estimating ITE.
In line with its nomenclature, DISCRET specializes in estimating ITE for a specific target sample,
leveraging the average treatment effect (ATE) estimated from a subgroup of similar samples obtained
through rule-based explanations from the database. Typically, this database comprises all training
samples. This process is visually elucidated in Figure 1 using an example from the Infant Health
and Development Program (IHDP) dataset (Hill, 2011). As depicted in the figure, when determining
the impact of high-quality child care (the treatment variable) on an individual subject, such as a pre-
mature infant, the initial step involves extracting a group of comparable premature infants from the
database using logical rules. Subsequently, the ITE for the target sample is assessed by applying the
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Figure 1: Illustrations of DISCRET using IHDP dataset. To estimate ITE for one sample, DISCRET
synthesizes a rule as one explanation, “weight > 1694, head circumference > 27.8, alcohol = 1”
which captures a pattern of infants with body weight over 1694 grams, the head circumference over
27.8 centimeters and their mothers taking alcohol during pregnancy. Evaluating this rule over the
database retrieves a subgroup of three similar infants. We then estimate the average treatment effect
(ATE) over those similar infants as the estimated ITE for the sample shown in the leftmost box.

ATE computed over these similar samples. This approach mirrors the clinical practice of treatment
recommendation for individual patients (Seymour et al., 2019), which relies heavily on evaluating
treatment effects in patients with analogous characteristics.

To guarantee accurate ITE estimation, we further proposed to leverage Deep reinforcement learn-
ing with a novel and tailored reward function for rule learning, which can also overcome the non-
differentiability issue caused by the step of evaluating rules over the database. Furthermore, our
proposed framework excels in generating inherently more faithful explanations compared to the
current state of the art, as quantitatively evaluated through the faithfulness measures introduced by
Dasgupta et al. (2022).

We evaluate the capabilities of DISCRET through comprehensive experiments spanning various
data domains, including tabular data, text data, and image data, Notably, our approach not only
achieves performance levels comparable to black-box models but also excels in producing more
faithful explanations than the state of the art. Our contributions can be summarized as follows:

1. We introduce DISCRET, a novel self-interpretable ITE estimation framework that leverages the
estimated Average Treatment Effect (ATE) over similar samples retrieved through rule-based
explanations for ITE estimation.

2. We present a deep reinforcement learning algorithm tailored for generating explanations specifi-
cally designed for ITE estimation.

3. We conduct an extensive series of experiments across diverse data settings, encompassing tabular,
text, and image data, providing empirical evidence that DISCRET excels in generating faithful
explanations without compromising ITE estimation performance.

2 BACKGROUND AND PROBLEM STATEMENT

We first introduce our problem settings. Suppose each sample consists of (i) the pre-treatment co-
variate variable X , (ii) the treatment variable T , (iii) a dose variable S associated with T , and (iv)
observed outcome Y under treatment T and dose S. Note that we embrace a versatile framework
throughout this study, where T can take on either discrete or continuous values, S is inherently con-
tinuous but can be either present or absent, Y can be discrete or continuous, and X may incorporate
structured features as well as unstructured features, such as text or image data. In the remainder of
the paper, we primarily explore the setting where Y is a continuous variable. A generalization of
these settings can be found in the Appendix A.

Given the diversity inherent in treatment and dose variables, the range of treatment effects that need
estimation also exhibits significant variability. In this paper, we focus on addressing this diversity
by delving into three representative settings:

1. Tabular data with a binary treatment variable T and no dose variables. In this setting, T = 1
represents treated unit while T = 0 represents untreated unit, and the ITE is defined as the
difference of outcomes under the treatment and under the control, respectively (i.e., ITE(x) =
y1(x)− y0(x), where y1(x) and y0(x) represents the potential outcome with and without receiv-
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ing treatment for a sample x). The average treatment effect, ATE, is the sample average of ITE
across all samples (i.e., ATE = E[ITE]).

2. Tabular data with a continuous treatment variable T . Following Zhang et al. (2022), the average
dose-response function is defined as the treatment effect, i.e., E[Y |X, do(T = t)].

3. Tabular data with a discrete treatment variable T with one additional continuous dose variable
S. Following Zhang et al. (2022), the average treatment effect is defined as the average dose-
response function: E[Y |X, do(T = t, S = s)].

Furthermore, beyond the treatment effect definitions, the propensity score, represented as the prob-
ability of treatment assignment T conditioned on the observed covariates X , often plays a pivotal
role in regularizing the treatment effect estimation. This propensity score is denoted as π(T |X).

Unlike conventional prediction tasks, we are unable to directly observe the counterfactual outcomes
during the training phase, rendering the ground-truth treatment effect typically unavailable. To
address this challenge and ensure the causal interpretability of our estimated treatment effect, we
adhere to the following assumptions proposed by Rubin (1974):

Assumption 1. (Strong Ignorability/Unconfoundedness) Y (T = t) ⊥ T |X . In the binary treatment
case, Y (0), Y (1) ⊥ T |X.

Assumption 2. (Positivity/Overlap) 0 < π(T |X) < 1,∀X,∀T .

Assumption 3. (Consistency) For the binary treatment setting, Y = TY (1) + (1− T )Y (0).

For the covariate variable X , we assume that it is composed of m features, X1, X2, . . . , Xm, which
could be the categorical or numeric attributes from tabular data or pre-processed features extracted
from the text data or image data. We then build logic rule-based explanations upon those features
to construct our treatment effect estimator. Those logic rules are assumed to be in the form of K
disjunctions of multiple conjunctions, i.e., R :- R1∨R2∨· · ·∨RH where each Ri is a conjunction of
K literals: Ri :- li1∧li2∧li3∧· · ·∧liK , and :- means if. In the definition of Ri, each lij(j = 1, 2, . . . )
represents a literal taking the form of lij = (A op c), in which A ∈ {X1, X2, ..., Xm}, and op is
equality for categorical attributes while op ∈ {<,>,=} for numeric attributes.

To facilitate ITE estimation, there are some desired properties for the rule R:

1. Local interpretability: We generate rule-based explanations for each individual sample rather
than for a population of samples. Thus, the explanations may differ in different patients. Given a
target sample with covariate x, we will use Rx to denote the generated rule for this sample. We
slightly abuse the notation below by referring to a sample with covariate x as sample x.

2. Satisfiability: For any rule Rx used for estimating ITE for the sample x, this sample’s covariates
should also satisfy this rule. This guarantees that the sample x and similar samples retrieved by
rules share the same characteristics.

3. Low-bias and Non-emptiness: We expect that Rx can retrieve a set of similar samples so that
the bias between the estimated treatment effect over them and the ground-truth ITE is as small
as possible, which is referred to as the Low-bias property. In addition, there should be at least
one sample from the database whose covariates satisfy these rules, which is the Non-emptiness
property.

Our objective is to estimate the ITE for a given sample x, even in the absence of knowledge regarding
its true treatment assignments and outcomes. To achieve this, we aim to develop a rule Rx, which
adheres to Local interpretability, Satisfiability, Low-bias, and Non-emptiness. Once we have
identified and established this rule, we proceed by selecting a subgroup of patients who exhibit
similarity according to this rule. Subsequently, we employ the estimated Average Treatment Effect
(ATE) computed over this subgroup as the estimated ITE for the sample x.

3 THE FRAMEWORK OF DISCRET

In this section, we provide a step-by-step solution to the rule learning problem as formally introduced
in Section 2. Initially, we assume a scenario where each target sample x corresponds to a single
disjunction in Rx. Thus, our representation of Rx takes the form of Rx :- l1∧l2∧l3∧· · ·∧lK . Within
this section, as outlined in Algorithm 1, we commence by elucidating the process of generating Rx

and estimating ITE during the inference phase. Subsequently, we delve into the utilization of deep
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Figure 2: Illustrative overview of the iterative inference forward pass of DISCRET. The model
begins at Step 0 by using an embedding of x to generate a single literal For any subsequent step k,
the model generates rule Lk by embedding all of the literals generated so far, concatenating it to the
embedding for x, generating the next literal, and appending that literal to the rule Lk−1.

Algorithm 1 Overview of inference and training phase
1: for each sample with covariate x do
2: Generate rule Rx for x
3: Retrieve similar patients Rx(D) by evaluating Rx on a database D
4: if Inference then
5: Estimating ATE of Rx(D) as the estimated ITE for x
6: else if Training then
7: Collecting rewards based on Rx(D) and performing Deep Reinforcement Learning
8: end if
9: end for

reinforcement learning techniques to effectively learn Rx while ensuring it adheres to the desired
properties outlined in Section 2.

3.1 RULE GENERATION AT INFERENCE PHASE

DISCRET generates Rx recursively by learning all of lk, k = 1, 2, · · · ,K one after the other in
multiple rounds. Since lk takes the form of (A op c), then at each round k, we determine which
feature A to select, which constant c to be compared against, and with which operator op.

Figure 2 depicts how a literal lk is generated at the kth round with one running example from
IHDP dataset. First, we encode the covariate x as Ex with one neural network parameterized by
Θ0, and also encode all the literals generated in the first k − 1 rounds, denoted by “L1:k−1 =
{l1, l2, · · · , lk−1}”, as EL. Due to space limit, we leave the details of how to encode L1:k−1 to the
Appendix A. Ex and EL are then fed into a feed-forward neural network (parameterized by Θ1) and
the most probable feature from {X1, X2, . . . , Xm} is selected as A for lk.

The selection of the constant c and the operator op for literal lk depends on the type of the selected
attribute A. If A is a categorical attribute, then we assign c as x[A], i.e., the value of attribute A in
x, and assign op as equality, which can guarantee the Satisfiability of Rx on x.

Instead, if A is a numeric attribute, we first discretize the range of A with a list of µ evenly distributed
float numbers, {C1, C2, . . . , Cµ}. We then design a feed-forward neural network (parameterized by
Θ2) to produce the probability distribution of these µ numbers, which takes the encoding of the
covariates, Ex, the encoding of L1:k−1, EL, and the one-hot encoding of feature A as the model
input. The most probable Cj is then selected as c. We further present the extension of the above rule
generation process to multiple disjunctions in Appendix A.

4



Under review as a conference paper at ICLR 2024

Note that instead of outputting the float number c directly, generating the probability distribution of
|C| discrete numbers can facilitate the generation of Q value for deep Q learning. After the feature
A and the constant c are identified, the operator op is then determined by comparing the value x[A]
and c. If x[A] is greater than c, then op is assigned as ≥ and ≤ otherwise. This can again guarantee
the Satisfiability of the rule Rx on x.

To handle text and image data, one essential step is to extract features from them prior to the above
rule generation process, which then become parts of the covariate variables. For text data, we can
extract Bag-of-word (BoW) features; for image data, we may follow concept learning methods (Fel
et al., 2023; Tran et al., 2022) to extract concept features.

3.2 ITE ESTIMATION AT INFERENCE PHASE

Given a sample x (e.g., a patient) with (x, t, s, y), after generating a rule Rx for a sample x, the
next step is to evaluate this rule on a database D to retrieve a subgroup of similar samples, which
is denoted by Rx(D) = {(x∗

i , t
∗
i , s

∗
i , y

∗
i )}ni=1. The ITE of the sample x is then estimated with the

average treatment effect (ATE) estimated within this subgroup, which is formulated as below for
different types of treatment variables and dose variables:

1. With a binary treatment variable and no dose variable, we can estimate the ATE of Rx(D) via
arbitrary treatment effect estimation methods in the literature, such as the classical statistical
matching algorithm (Kline & Luo, 2022), or the state-of-the-art neural network models. In this
paper, we take the K-Nearest Neighbor Matching by default for estimating ATE of Rx(D): ITE =
y1(x)− y0(x). We can also obtain the estimated outcome by averaging the outcome of samples
from Rx(D) with the same treatment as the sample x, i.e.:

ŷ(t) =
1∑

I(t∗i = t)

∑
I(t∗i = t) · y∗

i (1)

2. With a continuous treatment variable T but without dose variables, according to Section 2, the
ITE is represented by the outcome conditioned on the observed treatment. One straightforward
way to estimate it is to employ the average outcome of samples within Rx(D) that receive similar
treatments to x, which is also the estimated outcome for this sample:

ŷ =

∑
I[(x∗

i , t
∗
i , y

∗
i ) ∈ topk(Rx(D))] · y∗

i∑
I[(x∗

i , t
∗
i , y

∗
i ) ∈ topk(Rx(D))]

, (2)

in which topk(Rx(D)) is constructed by finding the top-k samples from Rx(D) with the most
similar treatments to x. But again, any existing treatment effect estimation methods for continu-
ous treatment variables from the literature are applicable to estimate ÎTEx.

3. With a discrete treatment variable T and one associated continuous dose variable S, ITE is esti-
mated in a similar way to equation 2, which is included in Appendix A due to space limit.

Note that one implicit assumption that we made here is that the outcome variable is a continuous
variable. The generalization of the above formulas to discrete outcome variables is discussed in the
appendix. We can also estimate the propensity score for discrete treatment variables by simply calcu-
lating the frequency of every treatment within Rx(D): π̂(T = t|X = x) =

∑
I(t∗i = t)/|Rx(D)|:

3.3 TRAINING PHASE

To preserve low-bias property, we need to guide the generation of rules such that the estimated ITE
is as accurate as possible. We therefore need to optimize this objective by training the three models
(Θ0, Θ1 and Θ2) used in the rule generation process. One difficulty of learning Θ = [Θ0,Θ1,Θ2]
is the non-differentiability issue caused by the step of evaluating Rx over the database. We over-
come this issue by formulating this model training problem as a deep reinforcement learning (RL)
problem, and propose to adapt deep Q learning (DQL) algorithm to solve this problem.

RL problem formulation We first map the notations from Section 3.1 to classical RL terminology.
An RL agent takes one action at one state, collects a reward from the environment, which is then
transitioned to a new state. In our rule learning setting, a state is composed of the covariates x and
the generated literals in the first k − 1 rounds, L1:k−1. With x and L1:k−1, the model Θ1 and Θ2
collectively determine the kth literal, lk, which is regarded as one action. Our goal is then to learn a
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policy parameterized by Θ, which models the probability distribution of all possible lk conditioned
on the state (x, L1:k−1), such that the value function calculated over all K rounds is maximized:

V1:K =
∑K

k=1
rkγ

k−1, (3)

in which γ is a discounting factor. Note that there are only K horizons/rounds in our settings since
the number of conjunctions in the generated rules is limited. To bias rule generation towards accurate
estimation of ITE, we expect that the value function V1:K reflects how small the ITE estimation error
is. However, since the counterfactual outcomes are not observed in the training phase, we therefore
use the errors of the observed outcomes as a surrogate of the ITE estimation error. Also, we give
a zero reward to the case where the retrieved subgroup, L1:K(D), is empty after evaluating L1:K
on the database D, which can thus guarantee the non-emptiness of the rules. As a result, V1:K is
formulated as

V1:K = e−α(y−ŷ1:K)2 · I(|L1:K(D)| > 0), (4)

in which ŷ1:K represents the estimated outcome by using the generated rule composed of literals
L1:K and α is a hyper-parameter. As a consequence, the reward collected at the kth round of
generating lk becomes rk = (V1:k − V1:k−1)/γ

k−1.

Deep Q learning for model training To maximize the value function V1:K , Deep Q learning
(DQL) (Mnih et al., 2013) is employed to learn the parameter Θ. To facilitate Q learning, we
estimate the Q value with the output logits of the models given a state (x, L1:k−1) and an action lk.
Further details on how to employ Deep Q learning for model training are included in Appendix A.

We further present some strategies to optimize the design of the cumulative reward function de-
fined in equation 4, which includes incorporating estimated propensity scores into this formula and
automatically fine-tuning its hyper-parameters.

Regularization by estimating propensity scores First of all, similar to prior studies on ITE es-
timation (Shi et al., 2019; Zhang et al., 2022), we regularize the reward function rk by integrating
the estimated propensity score, π̂(T = t|X = x). Specifically, for discrete treatment variables, we
reweight equation 5 with the propensity score as a regularized reward function, i.e.:

V reg
1:K = [e−α(y−ŷ1:K)2 + β · π̂1:k(T = t|X = x)] · I(|L1:K(D)| > 0), (5)

Automatic hyper-parameter fine-tuning We further studied how to automatically tune the hyper-
parameter α and β in equation 5. For α, at each training epoch, we identify the training sample
producing the median of (y − ŷ1:K)2 among the whole training set and then ensure that for this
sample, equation 4 is 0.5 through adjusting α. This can guarantee that for those training samples
with the smallest or largest outcome errors, equation 4 approaches 1 or 0 respectively.

We further design an annealing strategy to dynamically adjust β by setting it as 1 during the initial
training phase to focus more on treatment predictions, and switching it to 0 so that reducing outcome
error is prioritized in the subsequent training phase.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets The experiments are conducted across tabular, NLP, and image settings.

In the context of tabular data settings, we conduct comprehensive evaluations across the settings
with diverse categories of treatment variables. Specifically, we have selected the following datasets
for our evaluation: the IHDP dataset (Hill, 2011), featuring a binary treatment variable without dose
variables; the TCGA dataset (Weinstein et al., 2013), which includes multiple discrete treatment op-
tions and continuous dosage information; and two additional datasets, IHDP-C (a variant of IHDP)
and News, both containing continuous treatment variables but lacking dose-related information.

For text data, we conducted experiments on the Enriched Equity Evaluation Corpus dataset, abbre-
viated as EEEC designed to explore the impact of treatment variables, specifically changes in racial
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and gender-related nouns, on the predictions of five distinct mood states for individual sentences.
Within our experiments, we consider two variants of this dataset, each focusing on racial nouns and
gender-related nouns respectively, denoted as EEEC (Race) and EEEC (Gender) respectively.

In our exploration of image data, we utilized a satellite image dataset enriched with associated
covariates, originating from various regions of Uganda, succinctly referred to as Uganda (Jerzak
et al., 2023b;a). This dataset was used to investigate the potential impact of grant assignments,
considered as the treatment variable, on the aggregated summary of skilled labor in the respective
regions. The detailed description of these datasets is included in Appendix C.

Baseline methods We consider the following categories of baseline methods. For neural network
models, we used TransTEE (Zhang et al., 2022), Dragonnet (Shi et al., 2019), TARNet (Shalit et al.,
2017), Ganite (Yoon et al., 2018), DRNet (Schwab et al., 2020), and VCNet (Nie et al., 2020). Note
that Ganite and VCNet can only handle binary treatments without dose variables, which are thus not
applied to TCGA, IHDP-C, and News dataset.

We also consider self-interpretable models such as logistic regression (LR), decision tree (DT), and
random forests (RF) model, which are integrated into R-learner (Nie & Wager, 2021) for causal
inference. For tree-based models, we limit the complexity (e.g., the number of trees and tree depths)
to be the same as DISCRET for fair comparison. In addition, we adapted three self-interpretable
models designed for general prediction tasks to ITE estimations. These three models include ENRL
(Shi et al., 2022), ProtoVAE (Gautam et al., 2022)1 and Neural Additive Model (NAM) (Agarwal
et al., 2021), which generate rules, prototypes and feature attributes as explanations respectively.

We further compare DISCRET against post-hoc explainers, including Lore (Guidotti et al., 2018),
Anchor (Ribeiro et al., 2018), Lime (Ribeiro et al., 2016), Shapley values (Shrikumar et al., 2017)
and decision tree-based model distillation methods (Frosst & Hinton, 2017) (Model Distillation for
short). In the experiments, we apply these methods to the TransTEE model during test time.

Evaluation metrics The first type of metrics is for evaluating ITE estimation performance. For
the datasets with binary treatment variables, by following prior studies (Shi et al., 2019; Shalit
et al., 2017), the absolute error in average treatment effect, i.e.,: ϵATE = | 1n

∑n
i=1 ITE(xi) −

1
n

∑n
i=1 ÎTE(xi)|, is employed for evaluations. Both in-sample and out-of-sample ϵATE are re-

ported. For the datasets with either continuous dose variables or continuous treatment variables, we
follow (Zhang et al., 2022) to report the average mean square errors AMSE between the ground-
truth outcome and predicted outcome on the test set. The definition of AMSE is provided in
Appendix F. For the image dataset, Uganda, since there is no ground-truth ITE, we therefore only
report the average outcome errors between the ground-truth outcomes and the predicted outcomes
conditioned on observed treatments, i.e., ϵoutcome =

1
n

∑n
i=1 |yi − ŷi|.

We further compare the faithfulness of the explanations produced by DISCRET, the post-hoc ex-
plainers, and self-interpretable models. Specifically, we leverage two faithfulness metrics, consis-
tency and sufficiency, proposed by (Dasgupta et al., 2022). Roughly speaking, Consistency quantifies
how consistent the model predictions are between samples with the same explanations while suffi-
ciency generalizes this notion of consistency to arbitrary samples satisfying the same explanations
(but not necessarily producing the same explanations). The formal definition of these two metrics
and how to evaluate them are discussed in Appendix F.

Configurations for DISCRET We perform grid search on the number of conjunctions,K, and the
number of disjunctions, H . We incorporate the propensity score regularization and auto-tuning on
α and β. But we also performed an ablation study in Appendix D to study how these optimizations
on the reward functions influence the ITE estimation performance.

Extracting features from text and image data For text data, we employ the word frequency
features such as “Term Frequency-Inverse Document Frequency” (Baeza-Yates et al., 1999). For
image data, we follow (Fel et al., 2023) to extract interpretable concepts as the features, which is
discussed in Appendix E in detail.

1note that ProtoVAE is designed for image data. We therefore only compare DISCRET against this method
in Uganda dataset
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Modality → Tabular Text Image

Dataset → IHDP TCGA IHDP-C EEEC (Race) Uganda

Method ↓ ϵATE
(In-sample)

ϵATE
(Out-of-sample)

ϵATE
(In-sample)

ϵATE
(Out-of-sample) AMSE ϵATE ϵoutcome

LR 3.366±2.189 2.497±1.814 31.737±0.001 57.541±0.001 36.640±16.455 0.014±0.016 1.796±0.021
DT 0.345±0.273 0.530±0.399 0.200±0.012 0.202±0.012 22.136±1.741 0.014±0.016 1,796±0.021
RF 0.739±0.284 0.737±0.383 0.263±0.057 0.264±0.058 21.348±1.222 0.525±0.573 1.820±0.013

NAM 0.225±0.221 0.519±0.512 4.201±0.232 4.211±0.152 24.706±0.756 0.152±0.041 1.710±0.098
ENRL 4.160±1.060 4.439±1.587 10.938±2.019 10.942±2.019 24.720±0.985 - 1.800±0.143

Dragonnet 0.177±0.139 0.219±0.143 - - - 0.011±0.018 1.709±0.127
TARNet 0.186±0.130 0.408±0.418 1.421±0.078 1.421±0.078 12.967±1.781 0.009±0.018 1.743±0.135
Ganite 1.127±0.481 1.144±0.352 - - - 1.998±0.016 1.766±0.024
DRNet 0.188±0.132 0.407±0.422 1.374±0.086 1.374±0.085 11.071±0.994 0.008±0.018 1.748±0.127
VCNet 4.205±0.569 4.434±0.851 0.292±0.074 0.292±0.074 - 0.011±0.017 1.890±0.110

TransTEE 0.128±0.103 0.203±0.130 0.055±0.014 0.056±0.013 0.488±0.288 0.003±0.017 1.707±0.158
DISCRET 0.274±0.253 0.344±0.303 0.076±0.019 0.077±0.020 0.801±0.165 0.000±0.017 1.662±0.136

Table 1: ITE estimation errors (lower is better). We bold the smallest estimation error for each
dataset and underline the smallest among the self-interpretable methods. DISCRET outperforms
existing self-interpretable methods on 6 out of the 7 benchmarks.

Figure 3: The comparison of the consistency scores between different explanation methods across
different datasets. Larger is better.

4.2 QUANTITATIVE ITE ESTIMATION PERFORMANCE

We include the ITE estimation results for tabular setting, NLP setting, and image setting in Table 1.
In this table, we bold and underline those performance numbers that are the smallest prediction errors
(or closest to the ground-truth ATE) among all the methods and all the self-interpretable methods
respectively. Due to the space limit, the results on News dataset and EEEC (Gender) dataset are not
reported in Table 1, which are included in Table 3 and 5 respectively in Appendix G.

As Table 1 shows, DISCRET outperforms all the self-interpretable methods most times, thus demon-
strating the performance advantage of DISCRET over these methods. By comparing against black-
box models, DISCRET only performs slightly worse than black-box models in most cases. DIS-
CRET can even outperform them on Uganda dataset, which is possibly caused by the overfitting
issue encountered by those black-box models due to the small size of Uganda.

4.3 QUANTITATIVE EXPLANATION QUALITY EVALUATIONS

We evaluate the consistency and sufficiency on the explanations produced by DISCRET, the state-
of-the-art self-interpretable models, and the post-hoc explainers. For those explainers producing
feature-based explanations, we also follow (Dasgupta et al., 2022) to discretize the feature impor-
tance scores, say, by selecting the Top-K most important features, for identifying samples with ex-
actly the same explanations. For fair comparison, we evaluate the explanations generated w.r.t. the
same set of features extracted from NLP and image data.

Due to the space limit, we only report the consistency scores of different explanation methods across
all the settings, in Figure 3. The full consistency scores are included in Table 4 in Appendix G. As
this figure indicates, DISCRET always achieves 100% consistency since the same explanations in
DISCRET always retrieve the same subgroup from the database, thus generating the same model
predictions. In contrast, the baseline explanation methods generally have extremely low consistency
scores in most cases. We also include the sufficiency score results in Table 7, which shows that
DISCRET can still obtain higher sufficiency scores in most cases than other explanation methods.
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a. Synthesizing a Query

weight 1727

head circumference 30.0

alcohol 0

... ...

𝑥  =

DISCRET

𝑄: weight < 1894, head circumference > 27.8, alcohol = 0

b. Evaluating 𝑄 over a labeled database

c. Calculating Treatement Effect

ITE ≈ ATE𝑄  = (outcomei+outcomej)

a. Synthesizing a Query

weight 17

head_len 30

alcohol 0

... ...

𝑥  =

DISCRET

𝑄: weight < 18, head_len > 27, alcohol = 0

c. Calculating Individual Treatment Effect

a. Synthesizing a Query

... ...

𝑥  =

DISCRET

𝑄: weight < 1894, head circumference > 27.8, alcohol = 0

b. Evaluating 𝑄 over a labeled database

a. Synthesizing a Query

𝑥  =

DISCRET

𝑄: count(              ) >= 1, count(              ) < 1

b. Evaluating 𝑄 over a labeled database

covariate

 weight: 16,
 head_len: 28,

 alcohol: 0,
         .... 

 weight: 17,
 head_len: 29,

 alcohol: 0,
         ....

 weight: 16.5,
 head_len: 30,

 alcohol: 0,
           ....

treatment 1 1 0

outcome 22.4 23.4 13.8

0 1 1

0.1 0.8 0.7

   

a. Synthesizing a Query

b. Evaluating 𝑄 over a labeled database

𝑥  = Betsy made me feel irritated
whenever I came near.

DISCRET

𝑄: freq(irritated) > 0.6, freq(sad) < 0.38

I have no idea how
or why, but I made
Alan feel irritated.

I made her feel
irritated, and plan

to continue.

As she nears, my
son feels irritated.

0 1 1

1 (Anger) 1 1

c. Calculating Treatement Effect

ITE ≈ ATE𝑄  = (outcomei+outcomej)
c. Calculating Individual Treatment Effect c. Calculating Treatement Effect

ITE ≈ ATE𝑄  = (outcomei+outcomej)
c. Calculating Individual Treatment Effect

Figure 4: Qualitative examples from IHDP, EEEC and Uganda dataset.

4.4 QUALITATIVE ANALYSIS

We perform qualitative studies on some representative examples from tabular setting (IHDP dataset),
NLP setting (EEEC dataset), and image setting (Uganda dataset) (shown in Figure 4) to explore
whether the learned rules are reasonable or not. For the example from EEEC dataset, “Betsy made
me feel irritated whenever I came near” shown in Figure 4, DISCRET generated the following
rule constructed over the word frequency features, “freq(irritated) > 0.06, freq(sad) < 0.38”. This
indicates that sentences following this rule should have non-zero occurrence of the word “irritated”
and not too many occurrences of “sad”. The evaluation of this rule thus returns three sentences from
the database, which all contain the word “irritated”. Since the word “irritate” is highly correlated
with the mood “Anger”, the change of the “Gender” or “Race” nouns won’t actually affect the mood
of the whole sentence, which matches the ground-truth labels. As a result, the estimated ATE over
the subgroup and thus the estimated ITE for this example sentence is 0. For the example from
Uganda dataset shown in Figure 4, we leave the analysis to Appendix H due to space limit.

5 RELATED WORK

Treatment effect estimation A substantial body of research has been dedicated to the estimation
of treatment effects through machine learning. For instance, Shalit et al. (2017) introduced a novel
theoretical analysis and a comprehensive family of algorithms to predict ITE from observational
data. Additionally, Wager & Athey (2018) pioneered the introduction of a non-parametric causal
forest approach tailored for the estimation of heterogeneous treatment effects. Moreover, bridging
the gap between the predictive power of machine learning models and the need for interpretable
decisions remains a pivotal challenge. To address the issue, Kim & Bastani (2019) proposed a
framework for learning interpretable models from observational data for predicting ITE.

Due to space limit, we further discuss related work on Model interpretability in Appendix B.

6 CONCLUSION

In this work, we introduce a self-interpretable framework, DISCRET, for ITE estimation. Within the
DISCRET framework, we not only focus on accurate ITE estimation but also prioritize the genera-
tion of faithful explanations. To achieve this, we have developed a specialized deep reinforcement
learning algorithm that is tailored to the task of generating these explanations. Extensive experi-
ments across different data modalities demonstrate that DISCRET can balance the ITE estimation
performance and the failthfulness in explanations.
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