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A B S T R A C T

Contrastive learning has nearly closed the gap between supervised and self-supervised learning of image
representations, and has also been explored for videos. However, prior work on contrastive learning for video
data has not explored the effect of explicitly encouraging the features to be distinct across the temporal
dimension. We develop a new temporal contrastive learning framework consisting of two novel losses to
improve upon existing contrastive self-supervised video representation learning methods. The local–local
temporal contrastive loss adds the task of discriminating between non-overlapping clips from the same video,
whereas the global–local temporal contrastive aims to discriminate between timesteps of the feature map of an
input clip in order to increase the temporal diversity of the learned features. Our proposed temporal contrastive
learning framework achieves significant improvement over the state-of-the-art results in various downstream
video understanding tasks such as action recognition, limited-label action classification, and nearest-neighbor
video retrieval on multiple video datasets and backbones. We also demonstrate significant improvement in fine-
grained action classification for visually similar classes. With the commonly used 3D ResNet-18 architecture
with UCF101 pretraining, we achieve 82.4% (+5.1% increase over the previous best) top-1 accuracy on UCF101
and 52.9% (+5.4% increase) on HMDB51 action classification, and 56.2% (+11.7% increase) Top-1 Recall on
UCF101 nearest neighbor video retrieval. Code released at https://github.com/DAVEISHAN/TCLR.
. Introduction

Large-scale labeled datasets such as Kinetics (Carreira and Zis-
erman, 2017), LSHVU (Diba et al., 2020) etc have been crucial
or recent advances in video understanding tasks. Since training a
ideo encoder using existing supervised learning approaches is label-
nefficient (Kataoka et al., 2020), annotated video data is required at
large scale. This costs enormous human effort and time, much more

o than annotating images. At the same time, a tremendous amount
f unlabeled video data is easily available on the internet. Research in
elf-supervised video representation learning can unlock the corpus of
eadily available unlabeled video data and unshackle progress in video
nderstanding.

Recently, Contrastive Self-supervised Learning (CSL) based meth-
ds (Chen et al., 2020; He et al., 2020; Caron et al., 2020) have
emonstrated the ability to learn powerful image representations in a
elf-supervised manner, and have narrowed down the performance gap
etween unsupervised and supervised representation learning on various
mage understanding downstream tasks.

A simple yet effective extension of CSL to the video domain can
e obtained by using the InfoNCE instance discrimination objective,
here the model learns to distinguish clips of a given video from the

lips of other videos in the dataset (see Fig. 2a). Unlike images, videos
ave both time-invariant and the temporally varying properties. For

∗ Corresponding author.
E-mail address: ishandave@knights.ucf.edu (I. Dave).

example, in a LongJump video from UCF101 (See Fig. 1), running
and jumping represent two very different stages of the action. Usu-
ally, video understanding models utilize temporally varying features
by aggregating along the temporal dimension to obtain a video level
prediction. While the significant success can be achieved on many video
understanding tasks by only modeling the temporally invariant proper-
ties, it maybe possible that the temporally varying properties can also
play an important role in further improvements on these tasks. Whether
video representations should be invariant or distinct along the temporal
dimension is an open question in the literature. Instance contrastive
pre-training, however, encourages the model to learn similar features
to represent temporally distant clips from the video, i.e. it enforces
temporal invariance on the features. While instance level contrastive
learning lies on one end of the spectrum, some recent works have
tried to relax the invariance constraint through various means, such
as, using a weighted temporal sampling strategy to avoid enforcing
invariance between temporally distant clips (Qian et al., 2021a), cross-
modal mining of positive samples from across video instances (Han
et al., 2020b) or adding additional pretext tasks that require learning
temporal features (Wang et al., 2020; Shao et al., 2021; Yao et al., 2021;
Bai et al., 2020).

We take a different approach by explicitly encouraging the learning
of temporally distinct video representations. The challenge with video
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Fig. 1. Videos from standard action recognition datasets often have distinct temporal
stages. For example, in figure (a) we can see the two distinct stages (Running and
umping) of the LongJump action. Typically predictions across multiple short clips
re aggregated, as a single short clip may not capture both stages of the action. We
how the comparison of vanilla instance discrimination based contrastive (IC) self-
upervision and our proposed TCLR method on (b) Nearest neighbor retrieval and (c)

Linear classification tasks. We find that IC trained models do not benefit much from
using multiple clips during evaluation. This is a result of IC imposing within instance
temporal invariance. This motivates our proposed TCLR pre-training, which explicitly
encourages learning distinct features across time.

classification is modeling variable length videos with a fixed number
of parameters. 3D CNNs tackle this challenge by temporal aggregation
of features across two levels: averaging across distinct fixed length
temporal segments of a video (clips) and also temporal pooling across
the feature map of each clip. Based on this observation, we propose
two different temporal contrastive losses in order to learn temporally
distinct features across the video: one which acts across clips of the
same video, and another which acts across the timesteps of the feature
map of the same clip. Combined with the vanilla instance contrastive
loss, these novel losses result in an increase in the temporal diversity
of the learned features, and better accuracy on downstream tasks.

Our first proposed loss is the local–local temporal contrastive loss
(Fig. 2b), which ensures that temporally non-overlapping clips from
the same video are mapped to distinct representations. This loss treats
randomly augmented versions of the same clip as positive pairs to
be brought together, and other non-overlapping clips from the same
video as negative matches to be pushed away. While the local–local
loss ensures that distinct clips have distinct representations, in order
to encourage temporal variation within each clip, we introduce a sec-
ond temporal contrastive loss, the global–local temporal contrastive loss
(Fig. 2c). This loss constrains the timesteps of the feature map of a
ong ‘‘global" video clip to match the representations of the temporally
ligned shorter ‘‘local" video clips.

Our complete framework is called Temporal Contrastive Learning of
ideo Representations (henceforth referred to as TCLR). TCLR retains the
bility of representations to successfully discriminate between video
nstances due to its instance contrastive loss. In addition, TCLR attempts
o capture the within-instance temporal variation. Through extensive
xperiments on various downstream video understanding tasks, we
emonstrate that both of our proposed Temporal Contrastive losses con-
ribute to the learning of powerful video representations, and provide
ignificant improvements.
he original contributions of this work can be summarized as below:

• TCLR is the first contrastive learning framework to explicitly
enforce within instance temporal feature variation for video un-
derstanding tasks.

• Novel local–local and global–local temporal contrastive losses, which
when combined with the standard instance contrastive loss sig-
nificantly outperform the state-of-the-art on various downstream
video understanding tasks like action recognition, nearest neigh-
bor video retrieval and action classification with limited labeled
data, while using 3 different 3D CNN architectures and 2 datasets
(UCF101 & HMDB51).
2

• We propose the use of the challenging Diving48 fine-grained
action classification task for evaluating the quality of learned
video representations.

. Related work

Recent approaches for self-supervised video representation learning
an be categorized into two major groups based on the self-supervised
earning objective: (1) Pretext task based methods, and (2) Contrastive
earning based methods.

Pretext task based approaches: Various pretext tasks have been
evised for self-supervised video representation learning based on
earning the correct temporal order of the data: verifying correct frame
rder (Misra et al., 2016), identifying the correctly ordered tuple from
set of shuffled orderings (Fernando et al., 2017; Suzuki et al., 2018),

orting frame order (Lee et al., 2017), and predicting clip order (Xu
t al., 2019). Some methods extend existing pretext tasks from the
mage domain to video domain, for example, solving spatio-temporal
igsaw puzzles (Ahsan et al., 2019; Kim et al., 2019; Huo et al., 2021)
nd identifying the rotation of transformed video clips (Jing et al.,
018). Many recent works rely on predicting video properties like
layback rate of the video (Cho et al., 2021; Yao et al., 2020a; Wang
t al., 2020; Shao et al., 2021), temporal transformation that has been
pplied from a given set (Jenni et al., 2020; Jenni and Jin, 2021),
peediness of moving objects (Benaim et al., 2020), and motion and
ppearance statistics of the video (Wang et al., 2019, 2021b).

Contrastive Self-supervised Learning (CSL) based approaches:
ollowing the success of contrastive learning approaches of
elf-supervised image representation learning such as SimCLR (Chen
t al., 2020) and MoCo (He et al., 2020), there have been many exten-
ions of contrastive learning to the video domain. For instance, various
ideo CSL methods (Wang et al., 2020; Pan et al., 2021; Bai et al., 2020;
ian et al., 2021a; Tao et al., 2020; Yao et al., 2021; Tokmakov et al.,
020; Shao et al., 2021; Yang et al., 2020; Feichtenhofer et al., 2021)
everage Instance level Discrimination objectives, and build their method

upon them, where clips from the same video are treated as positives
and clips from the different videos as negatives. CVRL (Qian et al.,
2021a) studies the importance of temporal augmentation and develops
a temporal sampler to avoid enforcing excessive temporal invariance in
learning video representation. VideoMoCo (Pan et al., 2021) improves
image-based MoCo framework for video representation by encouraging
temporal robustness of the encoder and modeling temporal decay of the
keys. VTHCL (Yang et al., 2020) employs SlowFast architecture (Feicht-
enhofer et al., 2019) and uses contrastive loss with the slow and fast
pathway representations as the positive pair. VIE (Zhuang et al., 2020)
is proposed as a deep neural embedding-based method to learn video
representation in an unsupervised manner, by combining both static
image representation from 2D CNN and dynamic motion representation
from 3D CNN. Generative contrastive learning-based approaches such
as predicting the dense representation of the next video block (Han
et al., 2019, 2020a), or Contrastive Predictive Coding (CPC) (Oord
et al., 2018) for videos (Lorre et al., 2020) have also been studied in
the literature.

AMDIM (Bachman et al., 2019) is another CSL approach for image
representation learning, where a local view (spatial slice of the fea-
ture map taken from an intermediate layer) and a global view (full
feature map) of differently augmented versions of the same image are
considered as a positive pair, and global views of other images form
negative pair of the contrastive loss. The method is adapted for the
video domain Devon Hjelm and Bachman (2020), Xue et al. (2020)
by generating local views from the spatio-temporal features. Unlike
this class of methods, which try to maximize agreement across features
from different levels of the encoder, our Global–Local loss tries to learn
distinct features across temporal slices of the feature map instead.

Some recent works combine pretext tasks along with contrastive
learning in a multi-task setting to learn temporally varying features in
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Fig. 2. The proposed temporal contrastive learning framework (TCLR) for learning temporally distinct video representations consists of three different losses.
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the video representation. For example, using video clips with different
playback rates as positive pairs for contrastive loss along with predict-
ing the playback rate (Wang et al., 2020), or temporal transforms (Bai
et al., 2020). Other works propose frame-based contrastive learning,
along with existing pretext tasks of frame rotation prediction (Knights
et al., 2021) and frame-tuple order verification (Yao et al., 2021).
Unlike these works, TCLR takes a different approach by adding explicit
temporal contrastive losses that encourage temporal diversity in the
learned features, instead of utilizing a pretext task for this purpose.

Some works which try to capture intra-video variance using optical
flow, but are nevertheless interesting to compare with. IIC (Tao et al.,
2020) uses intra-instance negatives, but it relies on frame repeating
and shuffling to generate these ‘‘hard" negatives, and does not focus
on learning distinct features across the temporal axis. DSM (Wang
et al., 2021) tries to decouple scene and motion features by an intra-
instance triplet loss, which uses negatives generated by optical flow
scaling and spatial warping. Some recent works use extra supervisory
signals in addition to the RGB video data to learn video representation
in a self-supervised manner. However, these methods either require
additional cross-modal data (e.g. text narration (Miech et al., 2020a),
audio (Afouras et al., 2020)) or expensive and time-consuming compu-
tation of hand-crafted visual priors (e.g. optical flow (Tao et al., 2020;
Sun et al., 2019; Wei et al., 2018; Tian et al., 2020; Han et al., 2020b)
or dense trajectories (Tokmakov et al., 2020)). In this work we focus
only on learning from RGB data without using any auxiliary data from
any extra modality or additionally computed visual priors.

3. Method

The key idea in our proposed framework is to learn two levels of
contrastive discrimination: instance discrimination using the instance
contrastive loss and within-instance temporal level discrimination us-
ing our novel temporal contrastive losses. The two different temporal
contrastive losses which are applied within the same video instance:
Local–Local Loss and Global–Local loss. Each of these losses is explained
in the following sections.

3.1. Instance contrastive loss

We leverage the idea of instance discrimination using InfoNCE (Gut-

mann and Hyvärinen, 2010) based contrastive loss for learning video S

3

representations. In the video domain, in addition to leveraging image-
based spatial augmentations, temporal augmentations can also be ap-
plied to generate different transformed versions of a particular instance.
For a video instance, we extract various clips (starting from different
timestamps and/or having different frame sampling rates). We con-
sider a randomly sampled mini-batch of size 𝑁𝐵 from different video
instances, and from each instance we extract a pair of clips from
random timesteps resulting in a total of 2N clips. The extracted clips
are augmented using standard stochastic appearance and geometric
transformations.1 Each of the transformed clips is then passed through
a 3D-CNN based video encoder which is followed by a non-linear pro-
jection head (multi-layer perceptron) to project the encoded features on
the representation space. Hence, for each video-instance 𝑖 we get two
clip representations (𝐺𝑖, 𝐺′

𝑖 ). The instance contrastive loss is defined as
follows:

𝑖
𝐼𝐶 = − log

ℎ
(

𝐺𝑖, 𝐺′
𝑖
)

∑𝑁𝐵
𝑗=1[1[𝑗≠𝑖]ℎ(𝐺𝑖, 𝐺𝑗 ) + ℎ(𝐺𝑖, 𝐺′

𝑗 )]
, (1)

here, ℎ(𝑢, 𝑣) = exp
(

𝑢𝑇 𝑣∕(‖𝑢‖‖𝑣‖𝜃)
)

is used to compute the similarity
etween 𝑢 and 𝑣 vectors with an adjustable parameter temperature, 𝜃.
[𝑗≠𝑖] ∈ {0, 1} is an indicator function which equals 1 iff 𝑗 ≠ 𝑖.

.2. Temporal contrastive losses

For self-supervised training using the instance contrastive loss of
q. (1), the model is presented with multiple clips cropped from
andom spatio-temporal locations within a single video as positive
atches. This encourages the model to become invariant to the inher-

nt variation present within an instance. In order to enable contrastive
earning to represent within instance temporal variation, we introduce
wo novel temporal contrastive losses: local–local temporal contrastive
oss and global–local temporal contrastive loss.

.2.1. Local–local temporal contrastive loss
For this loss, we treat non-overlapping clips sampled from different

emporal segments of the same video instance as negative pairs, and
andomly transformed versions of the same clip as a positive pair.

1 More details about the augmentations are available in Section 4 and
ection C of the supplementary material.
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Fig. 3. Local–Local Temporal Contrastive Loss is applied to representations of non-
overlapping clips extracted from same video instance 𝑖. For the clip starting at timestep
𝑝, two randomly transformed versions are generated and their representations 𝐺𝑖,𝑝 and
𝐺′

𝑖,𝑝 serve as the positive pair for the loss, whereas the other non-overlapping clips
along with the anchor, 𝐺𝑖,𝑝, form the negative pairs. 𝑝 = 1 serves as anchor, further
details in Section 3.2.1. 𝜏𝐴, 𝜏𝐴′ , . . . , 𝜏𝐷′ are random set of augmentation sampled from
niversal set 𝑇 𝑟.

The local–local loss is defined by Eq. (2) and illustrated in Fig. 3.
given video instance 𝑖 is divided into 𝑁𝑐𝑙𝑖𝑝𝑠 non-overlapping clips.

or the anchor clip starting at timestep 𝑝, its representation 𝐺𝑖,𝑝, and
he representation of its transformed version form the positive pair
𝐺𝑖,𝑝, 𝐺′

𝑖,𝑝)) for this loss; whereas the other 𝑁𝑐𝑙𝑖𝑝𝑠 − 1 clips from the
ame video instance (and their transformed versions) form the negative
airs. Hence, for every positive pair, the local–local contrastive loss has
×𝑁𝑐𝑙𝑖𝑝𝑠 − 2 negative pairs as defined in the following loss:

𝑖
𝐿𝐿 = −

𝑁𝑐𝑙𝑖𝑝𝑠
∑

𝑝=1
log

ℎ
(

𝐺𝑖,𝑝, 𝐺′
𝑖,𝑝

)

∑𝑁𝑐𝑙𝑖𝑝𝑠
𝑞=1 [1[𝑞≠𝑝]ℎ(𝐺𝑖,𝑝, 𝐺𝑖,𝑞) + ℎ(𝐺𝑖,𝑝, 𝐺′

𝑖,𝑞)]
. (2)

The key difference between the Instance contrastive loss (Eq. (1))
and the proposed local–local Temporal contrastive loss (Eq. (2)) is that
for the local–local loss the negatives come from the same video instance
but from a different temporal segment (clips), whereas in Eq. (1), the
negative pairs come from different video instances.

3.2.2. Global–local temporal contrastive loss
The feature map in the higher layers of 3D CNNs are capable of

representing temporal variation in the input clip, which is temporally
pooled before being used for classification, or projected in the rep-
resentation space in the case of contrastive learning. The objective
of our proposed global–local temporal contrastive loss is to explicitly
encourage the model to learn feature maps that represent the temporal
locality of the input clip across temporal dimension of the feature map.

This loss is illustrated in Fig. 4. The notion of local and global is
used at two different levels: at the input clip level and the feature level.
Clip-E is a global clip and Clip A-D are local clips contained within Clip-
A. Features are referred to as global after the final pooling operation
and a temporal slice of the feature map before the pooling operation is
referred to as a local feature. In Fig. 4, 𝐿𝑖,1 is the local feature of the
global Clip-A and 𝐺𝑖,1 is the global feature of the local Clip-B.

For a video instance 𝑖, divided into 𝑁𝑐𝑙𝑖𝑝𝑠 clips, the local clip 𝑘 can
either be represented by a global (pooled) representation 𝐺 or a local
𝑖,𝑘 h

4

Fig. 4. Global–Local Temporal Contrastive Loss A global clip (Clip E) is extracted
from a video instance and divided into 4 equal length local clips (Clips A through
D). The global clip is temporally downsampled to have the same number of frames
as each local clip. The local representations 𝐿𝑖,1 through 𝐿𝑖,4 from the global clip are
obtained from the penultimate layer of the 3D-CNN (prior to temporal pooling). Global
representations of the local clips, 𝐺𝑖,1 through 𝐺𝑖,4 are obtained from the CNN (after
emporal pooling layer). This loss aims to maximize the similarity between the local
epresentation of the global clip and the global representations of the corresponding
ocal clip. Further details in Section 3.2.2.

epresentation 𝐿𝑖,𝑘 of the corresponding timestep in the feature map
f the global clip. This loss has two sets of reciprocal terms, with 𝐺𝑖,𝑘
nd 𝐿𝑖,𝑘 serving as the anchor for each term. The negative pairs are
upplied by matching the anchors with representations corresponding
o other non-overlapping local clips. Note that similar to our local–local
emporal contrastive loss we do not use negatives from other video
nstances for calculating this loss. The loss is defined by the following
quations:

𝑖
𝐺𝐿𝑘

= log
ℎ
(

𝐿𝑖,𝑘, 𝐺𝑖,𝑘
)

∑𝑁𝑐𝑙𝑖𝑝𝑠
𝑞=1 ℎ(𝐿𝑖,𝑘, 𝐺𝑖,𝑞)

+ log
ℎ
(

𝐺𝑖,𝑘, 𝐿𝑖,𝑘
)

∑𝑁𝑐𝑙𝑖𝑝𝑠
𝑞=1 ℎ(𝐺𝑖,𝑘, 𝐿𝑖,𝑞)

, (3)

𝑖
𝐺𝐿 = −

𝑁𝑐𝑙𝑖𝑝𝑠
∑

𝑘=1
𝑖
𝐺𝐿𝑘

. (4)

. Experiments

Datasets and Implementation: We use three action recognition
atasets: UCF101 (Soomro et al., 2012), Kinetics400 (Carreira and Zis-
erman, 2017), and HMDB51 (Kuehne et al., 2011) for our experiments.
e use the three most commonly used networks from the literature:

D-ResNet-18 (R3D-18) (Hara et al., 2018), R(2+1)D-18 (Tran et al.,
018), and C3D (Tran et al., 2015) for our experiments. For non-
inear projection head, we use a multi-layer perceptron with 1-hidden
ayer following experimental setting of Chen et al. (2020). We utilize

local clips per global clip for the global–local temporal contrastive
oss. For all reported results, we utilize commonly used random aug-
entations including appearance-based transforms such as grayscale,

hannel dropping, and color jittering and geometry-based transforms
ike random scaling, random cropping, random cut-out and random
orizontal-flip. Our results can be further improved by using more
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complex augmentations like Gaussian blurring, shearing and rotation,
however these are not used in the results reported in this paper. We
provide results with more complex augmentation in Section D of the
supplementary material. For self-supervised pretraining we use UCF101
training set (split-1) or Kinetics400 training set, without using any class
labels. For all self-supervised pretraining, supervised finetuning and
other downstream tasks, we use clips of 16 frames with a resolution
of 112 × 112. More implementation details can be found in Section C
of the supplementary material.

4.1. Evaluating self-supervised representations

We evaluate the learned video representation using different down-
stream video understanding tasks: (i) action recognition and (ii) near-
est neighbor video retrieval on UCF101 and HMDB51 datasets, and
(iii) limited label training on UCF101, following protocols from prior
works (Han et al., 2020a). We also evaluate our learned representations
on the challenging Diving-48 fine-grained action recognition task (Li
et al., 2018); to the best of our knowledge TCLR is the first work that
reports result on this challenging task. Our method is also employed
in Knights (Dave et al., 2021) to get first place in ICCV-21 Action
recognition challenge (Lengyel et al., 2022).

Action Recognition on UCF101 and HMDB51:
For the action recognition task on UCF101 and HMDB51, we first

pretrain different video encoders in self-supervised manner on UCF101
or Kinetics400, and then perform supervised fine-tuning. In order to
ensure fair comparison, we evaluate the method on the three most
commonly used 3D CNN backbones in the prior works, while also
listing details about the input clip resolution and number of frames used,
s it is known to affect the results significantly (Tran et al., 2018;
atrick et al., 2021). Comparison results are shown in Table 1. Previous
esults based on multi-modal approaches that utilize text, audio etc
re excluded (Patrick et al., 2021; Alwassel et al., 2020; Miech et al.,
020b). Results from prior works which do not utilize the three com-
on architectures or use optical flow as input are presented in gray.
e reproduce the results for CVRL (Qian et al., 2021a) using the R3D-

8 model and 112 resolution, and carefully implement their temporal
ampling and augmentation strategy. TCLR consistently outperforms
he state-of-art by wide margins for all comparable combinations of
ackbone, pre-training dataset and fine-tuning dataset. The best prior
esults are reported by TaCo (Bai et al., 2020), which relies on learning
emporal features using pretext tasks on top of instance discrimination.
ur consistent improvement over TaCo suggests that using temporal
ontrastive losses results in better features than using existing temporal
re-text tasks in a multi-task setting.

Nearest Neighbor Video Retrieval:
We evaluate the learned representation by performing nearest neigh-

or retrieval after self-supervised pretraining on UCF101 videos and
ithout any supervised finetuning. Videos from the test set are used
s the query and the training set as the search gallery, following the
rotocol used in prior work (Han et al., 2020a). Results for retrieval
re presented for both UCF101 and HMDB51 in Table 2. TCLR outper-
orms previous state-of-the-art in UCF101 Top-1 Retrieval by 12% to 30%
epending on the architecture

Label Efficiency/ Finetuning with limited data: We evaluate
ur pretrained model for action recognition task on UCF101 (split-1)
ith limited labeled training data following the protocols from prior
ork (Han et al., 2020a; Jing et al., 2018; Gavrilyuk et al., 2021). Our
ethod outperforms MotionFit (Gavrilyuk et al., 2021), MemDPC (Han

t al., 2020a) and RotNet3D (Jing et al., 2018) in all settings of limited
ercentage of training data as shown in Fig. 5. This result in addition
o NN results demonstrate that the learned representations from TCLR
re significantly better than other recent works, TCLR can achieve
ompetitive performance to MemDPC with only 10% of the labeled data.

Experiments on Diving-48 Dataset: This task presents some addi-
ional challenges over and above the standard action recognition task:
5

Fig. 5. Evaluating Label Efficiency using Limited Label Learning on UCF101 (split-1)
action classification task.

action categories in Diving48 are defined by a combination of takeoff
(dive groups), movements in flight (somersaults and/or twists), and en-
try (dive positions) stages. Two otherwise identical categories may only
have fine grained differences limited to only one of the three stages.
This makes Diving48 useful for evaluating the fine-grained represen-
tation capabilities of the model, which are not well tested by action
recognition tasks on common benchmark datasets like UCF101 and
HMDB51. Our proposed evaluation protocol consists of self-supervised
pretraining followed by supervised finetuning on the Diving48-Train
set. We adopt the 3D ResNet-18 architecture, with input resolution and
clip length fixed at 112 × 112 and 16 frames, respectively.

Results are summarized in Table 3. TCLR pretraining on Diving48
without extra data outperforms random initialization and MiniKinet-
ics (Xie et al., 2018) supervised pretraining. The within-instance tem-
poral discrimination losses in TCLR help it outperform the instance
contrastive loss. This is due to TCLR learning features to represent
fine-grained differences between parts of diving video instances.

4.2. Ablation study

In order to study the impact of each contrastive loss used in TCLR,
we test R3D-18 models pre-trained on UCF101 videos with a subset of
the losses on each downstream task. The results for linear evaluation,
full fine-tuning, transfer learning to HMDB51 and nearest neighbor
retrieval are shown in Table 4. Addition of each temporal contrastive
loss (𝐿𝐿&𝐺𝐿) leads to significant gains over instance contrastive
and random initialization baselines, with the best results coming from
combined use of all losses. We verify the correctness of our baselines
by comparing them with similar results reported in prior work. De-
tails can be found in Section E of the supplementary material. One
interesting observation is that purely temporal contrastive learning,
without instance discrimination, does not learn strong features directly
(as can be seen from results on linear evaluation and NN-Retrieval),
but it provides an useful initialization prior for supervised finetuning
experiments.

4.3. Temporal diversity helps video understanding

To study the impact of temporal feature diversity directly, we utilize
self-supervised pre-trained models only to avoid influence of supervised
fine-tuning. As shown in Fig. 7, increasing from 1 clip to 10 clips per
video, we observe that the pretraining strategies using temporal con-
trastive losses get significant performance gains (about 7–8% for each
individual loss and 14.67% for TCLR) with increasing number of clips.
Instance Contrastive pretraining which enforces temporal invariance in
learned features of video, does not see a similar improvement. It is
also worth noting that each of the LL and GL losses help in learning
different types of temporal diversity which results in TCLR having bigger
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Table 1
Finetuning Results (average of 3 splits) for action classification on UCF101 and HMDB51. Self supervised pretraining was done on UCF101 (left)
and Kinetics (right).† indicates models that utilize optical flow. ∗ indicates Kinetics-600 self-supervised pretraining. ‡ indicates ImageNet+Kinetics
pre-training. Best and Second Best results are highlighted.

Method Venue Input Size UCF101 Pre-Training Kinetics400 Pre-Training

UCF101 HMDB51 UCF101 HMDB51

Backbone: R3D-18

ST-Puzzle (Kim et al., 2019) AAAI-19 16 × 112 – – 65.8 33.7
STS (Wang et al., 2021b) TPAMI-21 16 × 112 67.2 32.7 68.1 34.4
DPC (Han et al., 2019) ICCVw-19 40 × 128 60.6 – 68.2 34.5
VCOP (Xu et al., 2019) CVPR-20 16 × 112 64.9 29.5 – –
Pace Pred (Wang et al., 2020) ECCV-20 16 × 112 65.0 – – –
VCP (Luo et al., 2020) AAAI-20 16 × 112 66.0 31.5 – –
PRP (Yao et al., 2020a) CVPR-20 16 × 112 66.5 29.7 – –
Var. PSP (Cho et al., 2021) Access-21 16 × 112 69.0 33.7 – –
MemDPC (Han et al., 2020a) ECCV-20 40 × 224 69.2 – – –
TCP (Lorre et al., 2020) WACV-21 − × 224 64.8 34.7 70.5 41.1
VIE (Zhuang et al., 2020) CVPR-20 16 × 112 – – 72.3 44.8
UnsupIDT (Tokmakov et al., 2020) ECCVw-20 16 × 112 – – 73.0 41.6
CSJ (Huo et al., 2021) – 16 × 224 70.4 36.0 76.2 46.7
BFP (Behrmann et al., 2021) WACV-21 40 × 128 63.6 – 66.4 45.3
IIC (RGB) (Tao et al., 2020) ACMMM-20 16 × 112 61.6 – – –
CVRL (Reproduced) (Qian et al., 2021a) CVPR-21 16 × 112 75.77 44.6 – –
SSTL (Shao et al., 2021) – 16 × 112 – – 79.1 49.7
VTHCL (Yang et al., 2020) – 8 × 224 – – 80.6 48.6
VideoMoCo (Pan et al., 2021) CVPR-21 16 × 112 – – 74.1 43.6
RSPNet (Chen et al., 2021) AAAI-21 16 × 112 – – 74.3 41.8
Temp Trans (Jenni et al., 2020) ECCV-20 16 × 112 77.3 47.5 79.3* 49.8*
TaCo (Bai et al., 2020) – 16 × 224 – – 81.4 45.4
MFO (Qian et al., 2021b) ICCV-21 16 × 112 – – 79.1 47.6

TCLR 16 × 112 82.4 52.9 84.1 53.6

TCLR (Best Ablation) 16 × 112 83.9 53.5 85.4 55.4

Backbone: R(2+1)D-18

VCP (Luo et al., 2020) AAAI-20 16 × 112 66.3 32.2 – –
PRP (Yao et al., 2020a) CVPR-20 16 × 112 72.1 35.0 – –
VCOP (Xu et al., 2019) CVPR-20 16 × 112 72.4 30.9 – –
Pace Pred (Wang et al., 2020) ECCV-20 16 × 112 75.9 35.9 77.1 36.6
STS (Wang et al., 2021b) TPAMI-21 16 × 112 73.6 34.1 77.8 40.5
VideoMoCo (Pan et al., 2021) CVPR-21 16 × 112 – – 78.7 49.2
VideoDIM (Devon Hjelm and Bachman, 2020) – 32 × 128 – – 79.7* 49.2*
RSPNet (Chen et al., 2021) AAAI-21 16 × 112 – – 81.1 44.6
Temp Trans (Jenni et al., 2020) ECCV-20 16 × 112 81.6 46.4 – –
TaCo (Bai et al., 2020) – 16 × 224 – – 81.8 46.0

TCLR 16 × 112 82.8 53.6 88.2 60.0

Backbone: C3D

MA Stats-1 (Wang et al., 2019) CVPR-19 16 × 112 58.8 32.6 61.2 33.4
Temp Trans (Jenni et al., 2020) ECCV-20 16 × 112 68.3 38.4 69.9* 39.6*
PRP (Yao et al., 2020a) CVPR-20 16 × 112 69.1 34.5 – –
VCP (Luo et al., 2020) AAAI-20 16 × 112 68.5 32.5 – –
VCOP (Xu et al., 2019) CVPR-20 16 × 112 65.6 28.4 – –
Pace Pred (Wang et al., 2020) ECCV-20 16 × 112 68.0 – – –
STS (Wang et al., 2021b) TPAMI-21 16 × 112 69.3 34.2 71.8 37.8
Var. PSP (Cho et al., 2021) Access-21 16 × 112 70.4 34.3 – –
DSM (Wang et al., 2021) AAAI-21 16 × 112 70.3 40.5 – –

TCLR 16 × 112 76.1 48.6 – –

Other Configurations

CVRL (R3D-50) (Qian et al., 2021a) CVPR-21 32 × 224 – – 92.2 66.7
RSPNet (S3D-G) (Chen et al., 2021) AAAI-21 64 × 224 – – 93.7 64.7
CoCLR† (S3D-23) (Han et al., 2020b) NeurIPS-20 16 × 112 87.3 58.7 90.6 62.9
SpeedNet (S3D-G) (Benaim et al., 2020) CVPR-20 16 × 224 – – 81.1 48.8
𝜌SimCLR (R50) (Feichtenhofer et al., 2021) CVPR-21 8 × 224 - - 85.6 -

SeCO (R50+TSN) (Yao et al., 2021) AAAI-21 50 × 224 – – 88.3‡ 55.6‡
improvements relative to either of the temporal contrastive losses.
Performance gains of a similar nature can also be observed in other
downstream tasks as well, which are reported in Section F of the
supplementary material.

4.4. Distinguishing confusing class pairs

To examine the ability of TCLR to distinguish confusing classes,
we looked at the most confused action class pairs for UCF101 action
6

recognition models trained from scratch. We observe that the these
pairs mostly consist of fine-grained variants of action classes, for exam-
ple the swimming actions BreastStroke and FrontCrawl. Some
such pairs of classes are visualized in Fig. 6d. We can see that these
classes are confusing because the corresponding frames are visually
similar. In this study we considered a model without pretraining as
a baseline, and tried to see the impact of instance contrastive and
TCLR pretraining on it. We observe that despite a significant overall
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Table 2
Nearest neighbor video retrieval results on UCF101 and HMDB51, after self-supervised pretraining on UCF101. * marks models pretrained on Kinetics-400. Best and second best
results highlighted. Methods based on optical flow and audio modalities are excluded.

Method Venue UCF101 HMDB51

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

Backbone: R3D-18

VCOP (Xu et al., 2019) CVPR-20 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8
VCP (Luo et al., 2020) AAAI-20 18.6 33.6 42.5 53.5 7.6 24.4 36.6 53.6
Pace Pred (Wang et al., 2020) ECCV-20 23.8 38.1 46.4 56.6 9.6 26.9 41.1 56.1
Var. PSP (Cho et al., 2021) Access-21 24.6 41.9 51.3 62.7 10.3 26.6 38.8 51.6
Temp Trans (Jenni et al., 2020) ECCV-20 26.1 48.5 59.1 69.6 – – – –
STS* (Wang et al., 2021b) TPAMI-21 38.3 59.9 68.9 77.2 18.0 37.2 50.7 64.8
SSTL* (Shao et al., 2021) – 44.5 57.4 63.5 70.0 21.8 35.7 44.2 57.7
CSJ* (Huo et al., 2021) – 21.5 40.5 53.2 64.9 – – – –
MemDPC (Han et al., 2020a) ECCV-20 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
RSPNet (Chen et al., 2021) AAAI-21 41.1 59.4 68.4 77.8 – – – –
MFO (Qian et al., 2021b) ICCV-21 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7

TCLR – 56.2 72.2 79.0 85.3 22.8 45.4 57.8 73.1

Backbone: C3D

VCOP (Xu et al., 2019) CVPR-20 12.5 29.0 39.0 50.6 5.7 19.5 30.7 45.8
VCP (Luo et al., 2020) AAAI-20 17.3 31.5 42.0 52.6 7.8 23.8 35.3 49.3
Pace Pred (Wang et al., 2020) ECCV-20 31.9 49.7 59.2 68.9 12.5 32.2 45.4 61.0
DSM (Wang et al., 2020) AAAI-21 16.8 33.4 43.4 54.6 8.2 25.9 38.1 52.0
STS* (Wang et al., 2021b) TPAMI-21 39.1 59.2 68.8 77.6 16.4 36.9 49.9 64.9
RSPNet (Chen et al., 2021) AAAI-21 36.0 56.7 66.5 76.3 – – – –

TCLR – 48.6 67.6 75.5 82.5 19.3 43.3 57.6 70.1

Backbone: R(2+1)D-18

VCOP (Xu et al., 2019) CVPR-20 10.7 25.9 35.4 47.3 7.4 22.6 34.4 48.5
VCP (Luo et al., 2020) AAAI-20 19.9 33.7 42.0 50.5 6.7 21.3 32.7 49.2
Pace Pred (Wang et al., 2020) ECCV-20 25.6 42.7 51.3 61.3 12.9 31.6 43.2 58.0
STS* (Wang et al., 2021b) TPAMI-21 38.1 58.9 68.1 77.0 16.4 36.9 50.5 65.4
TCLR – 56.9 72.2 79.0 84.6 24.1 45.8 58.3 75.3
Fig. 6. Confusion matrices for 4 highly confused class-pairs from UCF101 classification models with (a) no pretraining, (b) IC pretraining, and (c) TCLR pretraining. (d) Classes
illustrated with a sample frame. TCLR significantly improves over IC in distinguishing visually similar classes. .
Table 3
Diving48 fine-grained action classification results.
Pre-Training Accuracy

None (Random Initialization) 13.4
MiniKinetics Supervised (Choi et al., 2019) 18.0
Instance Contrastive 15.8
VCOP (Xu et al., 2019) 14.7
CVRL (Qian et al., 2021a) 17.6

TCLR 22.9

improvement in accuracy, instance contrastive pre-training does not
provide any significant gain in distinguishing these confused class pairs
over the scratch baseline. On the other hand, TCLR pre-training helps
7

remarkably with the confused classes. Average recall for these 8 classes
is 42.5% for the scratch model, 44.9% for the IC model and 74.8% for
the TCLR model. Since the classes are visually similar, distinguishing
them requires learning the temporal variation in videos.

5. Conclusion

In this work, we propose two novel Temporal Contrastive losses
to improve the quality of learned self-supervised video representa-
tions over standard instance discrimination contrastive learning. We
provide extensive experimental evidence on three diverse datasets
and obtain state-of-the-art results across various downstream video
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Table 4
Ablation study of the impact of temporal contrastive losses on downstream tasks. Green indicates improvements over
instance contrastive baseline.
Contrastive Losses Classification Top1 Acc. Retrieval

Linear Eval Finetune Transfer R@1
𝐼𝐶 𝐿𝐿 𝐺𝐿 UCF101 UCF101 HMDB51 UCF101

Random Init. 17.15 62.39 26.95 8.21
✗ ✓ ✗ 21.58 68.42 – 13.66
✗ ✗ ✓ 20.61 70.19 – 12.83
✗ ✓ ✓ 23.39 74.29 47.35 14.17

✓ ✗ ✗ 54.58 71.31 38.32 40.76
✓ ✓ ✗ 62.70+8% 77.70+6% 49.77+11% 51.10+10%
✓ ✗ ✓ 64.55+10% 76.30+5% 47.87+10% 47.32+7%
✓ ✓ ✓ 𝟔𝟗.𝟗𝟏+15% 𝟖𝟐.𝟒𝟎+11% 𝟓𝟐.𝟖𝟎+14% 𝟓𝟔.𝟏𝟕+15%
Fig. 7. Temporally distinct features learned by TCLR result in a significant im-
provement in NN-Retrieval on UCF101 (split-1) with increasing number of clips per
video.

understanding tasks. The success of our approach underscores the
benefits of contrastive learning beyond instance discrimination.
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