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Abstract

Transformer models have consistently achieved remarkable results in various domains such
as natural language processing and computer vision. However, despite ongoing research
efforts to better understand these models, the field still lacks a comprehensive understand-
ing. This is particularly true for deep time series forecasting methods, where analysis and
understanding work is relatively limited. Time series data, unlike image and text informa-
tion, can be more challenging to interpret and analyze. To address this, we approach the
problem from a manifold learning perspective, assuming that the latent representations of
time series forecasting models lie next to a low-dimensional manifold. In our study, we focus
on analyzing the geometric features of these latent data manifolds, including intrinsic di-
mension and principal curvatures. Our findings reveal that deep transformer models exhibit
similar geometric behavior across layers, and these geometric features are correlated with
model performance. Additionally, we observe that untrained models initially have different
structures, but they rapidly converge during training. By leveraging our geometric analy-
sis and differentiable tools, we can potentially design new and improved deep forecasting
neural networks. This approach complements existing analysis studies and contributes to a
better understanding of transformer models in the context of time series forecasting. Code
is released at https://github.com/azencot-group/GATLM.

1 Introduction

Over the past decade, modern deep learning has shown remarkable results on multiple challenging tasks in
computer vision (Krizhevsky et al.l|2012)), natural language processing (NLP) (Pennington et al.l |2014]), and
speech recognition (Graves et all [2013), among other domains (Berman et al., 2023} Naiman et al., [2024;
Goodfellow et al}2016). Recently, the transformer (Vaswani et al.;|2017)) has revolutionized NLP by allowing
neural networks to capture long-range dependencies and contextual information effectively. In addition,
transformer-based architectures have been extended to non-NLP fields, and they are among the state-of-the-
art (SOTA) models for vision (Dosovitskiy et al., [2020) as well as time series forecasting (TSF) (Wu et al.l
2021; |Zhou et al.| [2022). Unfortunately, while previous works, e.g., Zeiler & Fergus| (2014)); Karpathy et al.
(2015)); 'Tsai et al. (2019) among others, attempted to explain the underlying mechanisms of neural networks,
deep transformer models are still considered not well understood.

The majority of approaches analyzing the inner workings of vision and NLP transformer models investigate
their attention modules (Bahdanau et al.,|2015|) and salient inputs (Wallace et al.,|2019). Unfortunately, time
series forecasting methods have received significantly less attention. This may be in part due to their relatively
recent appearance as strong contenders on TSF in comparison to non-deep and hybrid techniques (Oreshkin
et al., [2020). Further, while vision and NLP modalities may be “natural” to interpret and analyze (Naiman
& Azencotl 2023)), time series requires analysis tools which may be challenging to develop for deep models.
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For instance, N-BEATS (Oreshkin et all 2020) designed a method that promotes the learning of trend and
seasonality parts, however, their model often recovers latent variables whose relation to trend and seasonality
is unclear (Challu et al., 2022)). Moreover, there is already a significant body of work of SOTA TSF that
warrants analysis and understanding. Toward bridging this gap, we investigate in this work the geometric
properties of latent representations of transformer-based TSF techniques via manifold learning tools.

Manifold learning is the study of complex data encodings under the manifold hypothesis where high-
dimensional data is assumed to lie close to a low-dimensional manifold (Coifman & Lafon, 2006). This
assumption is underlying the development of numerous machine learning techniques, akin to considering
independent and identically distributed (i.i.d.) samples (Goodfellow et al., [2016]). Recent examples include
works on vision (Nguyen et al.,2019), NLP (Hashimoto et al.,|2016)), and time series forecasting (Papaioannou
et al.} 2022). However, to the best of our knowledge, there is no systematic work that analyzes transformer-
based TSF deep neural networks from a manifold learning perspective. In what follows, we advocate the
study of geometric features of Riemannian manifolds (Leel [2006]) including their intrinsic dimension (ID)
and mean absolute principal curvature (MAPC). The ID is the minimal degrees of freedom needed for a
lossless encoding of the data, and MAPC measures the deviation of a manifold from being flat.

Previously, geometric features of data manifolds were considered in the context of analyzing deep convo-
lutional neural networks (CNN) (Ansuini et al. [2019; |Kaufman & Azencot] [2023]). Motivated by these
recent works, we extend their analysis on image classification to the time series forecasting setting, focusing
on SOTA TSF models (Wu et al., [2021} [Zhou et all 2022) evaluated on several multivariate time series
datasets. We aim at characterizing the dimension and curvature profiles of latent representations along
layers of deep transformer models. Our study addresses the following questions: (i) how do dimensionality
and curvature change across layers? are the resulting profiles similar for different architectures and datasets?
(ii) is there a correlation between geometric features of the data manifold to the performance of the model?
(iii) how do untrained manifolds differ from trained ones? how do manifolds evolve during training?

Our results show that transformer forecasting manifolds undergo two phases: during encoding, curvature
and dimensionality either drop or stay fixed, and then, during the decoding part, both dimensionality and
curvature increase significantly. Further, this behavior is shared across several architectures, datasets and
forecast horizons. In addition, we find that the MAPC estimate is correlated with the test mean squared
error, allowing one to compare models without access to the test set. Moreover, this correlation is unlike
the one found in deep neural networks for classification. Finally, untrained models show somewhat random
dimension and curvature patterns, and moreover, geometric manifolds converge rapidly (within a few epochs)
to their final geometric profiles. This finding may be related to studies on the neural tangent kernel (Li &
Liang), |2018; |Jacot et al., 2018)) and linear models for forecasting (Zeng et al., [2023)). We believe that our
geometric insights, results and tools may be used to design new and improved deep forecasting tools.

2 Related Work

Our research lies at the intersection of understanding deep transformer-based models, and manifold learning
for analysis and time series. We focus our discussion on these topics.

Analysis of transformers. Large transformer models have impacted the field of NLP and have led to
works such as [Vig| (2019) that analyze the multi-head attention patterns and found that specific attention
heads can be associated with various grammatical functions, such as co-reference and noun modifiers. Several
works (Clark et al.l |2019; Tenney et all, [2019; [Rogers et al., 2021)) study the BERT model (Devlin et al.
2019) and show that lower layers handle lexical and syntactic information such as part of speech, while the
upper layers handle increasingly complex information such as semantic roles and co-reference. In|Dosovitskiy
et al.| (2020), the authors inspect patch-based vision transformers (ViT) and find that the models globally
attend to image regions that are semantically relevant for classification. |Caron et al. (2021) show that
a self-supervised trained ViT produces explicit representations of the semantic location of objects within
natural images. [Chefer et al.|(2021) compute a relevancy score for self-attention layers that is propagated
throughout the network, yielding a visualization that highlights class-specific salient image regions. [Nie et al.
(2023) recently studied the effectiveness of transformer in TSF in terms of their ability to extract temporal
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relations, role of self-attention, temporal order preservation, embedding strategies, and their dependency on
train set size. While in general they question the effectivity of transformer for forecasting, new transformer-
based approaches continue to appear (Zeng et al. 2023)), consistently improving the state-of-the-art results
on common forecasting benchmarks.

Manifold learning analysis. Motivated by the ubiquitous manifold hypothesis, several existing ap-
proaches investigate geometric features of data representations across different layers. In [Hauser & Ray
(2017), the authors formalize a Riemannian geometry theory of deep neural networks (DNN) and show
that residual neural networks are finite difference approximations of dynamical systems. [Yu et al.| (2018))
compare two neural networks by inspecting the Riemann curvature of the learned representations in fully
connected layers. |Cohen et al.| (2020) examine the dimension, radius and capacity throughout the training
process, and they suggest that manifolds become linearly separable towards the end of the layer’s hierarchy.
Doimo et al.| (2020) analyzed DNNs trained on ImageNet and found that the probability density of neural
representations across different layers exhibits a hierarchical clustering pattern that aligns with the semantic
hierarchy of concepts. |Stephenson et al.| (2021]) conclude that data memorization primarily occurs in deeper
layers, due to decreasing object manifolds’ radius and dimension, and that generalization can be restored by
reverting the weights of the final layers to an earlier epoch. Perhaps closest to our approach are the works
by |Ansuini et al.| (2019)) and Kaufman & Azencot| (2023)), where the authors estimate the intrinsic dimension
and Riemannian curvature, respectively, of popular deep convolutional neural networks. Both works showed
characteristic profiles and a strong correlation between the estimated geometric measure and the general-
ization error. Recently, Valeriani et al.|(2023) investigated the intrinsic dimension and probability density
of large transformer models in the context of classification tasks on protein and genetic sequence datasets.
Complementary to previous works, our study focuses on the setting of regression time series forecasting
problems using multivariate real-world time series datasets.

Manifold learning in time series forecasting. Unfortunately, latent representations of deep TSF re-
ceived less attention in the literature, and thus we discuss works that generally investigate TSF from a
manifold learning perspective. |Papaioannou et al.| (2022) embed high-dimensional time series into a lower-
dimensional space using nonlinear manifold learning techniques to improve forecasting. Similarly, [Han et al.
(2018) proposed a novel framework, which performs nonuniform embedding, dynamical system revealing,
and time-series prediction. In [Li et al. (2021)), the authors exploit manifold learning to extract the low-
dimensional intrinsic patterns of electricity loads, to be used as input to recurrent modules for predicting
low-dimensional manifolds. |Lin et al.| (2006) employ a dynamic Bayesian network to learn the underlying
nonlinear manifold of time series data, whereas [Shnitzer et al| (2017) harness diffusion maps to recover the
states of dynamical systems. |[Kaufman & Azencot| (2024) approximate the data manifold to sample synthetic
examples for regression problems. Finally, manifold-based distance functions for time series were proposed
in |Rodrigues et al.| (2018)); |O’Reilly et al.| (2017).

3 Background and Method

Time series forecasting. Given a dataset of multivariate time series sequences D := {x{:T +h}§V=1 where
T1T+h = X1y, TT4h C RP, the goal in time series forecasting (TSF) is to accurately forecast the series
Tr41.7+h, based on the sequence x1.7, where we omit j for brevity. The values T" and h are typically referred
to as lookback and horizon, respectively. The forecast accuracy can be measured in several ways of which the
mean squared error (MSE) is the most common. We denote by Zr.y1.7+r = f(21.7) the output of a certain
forecast model, e.g., a neural network, then eysg = ZtT:;LH ||ws — 2¢]|2 is the forecast error. In our study,
we consider 7" = 96, and h = 96,192,336 and 720, and standard benchmark datasets including Electricity,
Traffic, ETTm1, ETTm2, ETThl, ETTh2, and weather (Wu et all,|2021)). In App. we provide a detailed

description of the datasets and their properties.

Transformer-based TSF deep neural networks. State-of-the-art (SOTA) deep time series forecasting
models appeared only recently (Oreshkin et al., 2020]), enjoying a rapid development of transformer-based
architectures, e.g.,|Zhou et al.| (2021); [Wu et al|(2021); Liu et al.| (2021)); [Zhou et al.| (2022); Nie et al.| (2023),
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Figure 1: We study Transformer-based architectures (Wu et all, 2021} [Zhou et all, [2022)) that include two
encoders and one decoder, and an output linear layer. We sample geometric features in the output of
sequence decomposition layers, depicted as solid blue blocks.
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among many others. In what follows, we will focus on Autoformer (Wu et al. and FEDformer (Zhou
et all as they are established architectures that are still considered SOTA (Nochumsohn & Azencotl,
@D. In App. we also mention additional TSF models and their analysis. Please see Fig. || for a
schematic illustration of the architecture we investigate. The network is composed of two encoder blocks and
a single decoder block, where the encoder and decoder blocks include two and three sequence decomposition
layers, respectively. Both Autoformer and FEDformer utilize these decomposition layers to extract trend and
seasonality information. The network includes two inputs, the input signal X which is fed to the encoder and
the seasonality information X, of X that serves as the input to the decoder. Note that the cross-attention
module in the decoder receives two independent data streams, one is the output of the encoder while the
other is a function of Xs. Our goal is to analyze the geometrical features of the data propagation along the
layers of the network in a serial manner (with respect to depth), therefore, we focus on the path from the
encoder through the decoder to the output (shown in red in Fig. . Namely, we follow data along the red
trajectory, while ignoring the black trajectory. In particular, our analysis is based on sampling geometric
properties of the data manifold after every decomposition module and after the final linear layer of the
network. We chose the output of the decomposition blocks rather than the attention blocks since the Fourier
Cross-correlation layer of the FEDformer model outputs almost identical values for all samples in the series,
yielding zero curvature estimates.

Series decomposition. While modern data analysis considers disentangled representations
12023; |Berman et al.l 2024)), it is common in time series analysis to decompose signals to trend and seasonal
parts (Anderson & Kendall, (1976} |Cleveland et al [1990). This decomposition facilitates learning of complex
temporal patterns, allowing to better capture global properties. In the time series forecasting domain, prior
to Autoformer, time series decomposition was mainly used as a pre-processing tool, applied on the input data.
Both Autoformer and FEDformer utilize decomposition as a core component, enabling it to progressively
decompose the hidden time series throughout the entire forecasting process. This includes both historical
(input) data and the predicted (output) intermediate results. The series decomposition block (noted as
Decomposition in Fig. [1)) receives a time series signal as an input and outputs the seasonality (right arrow)
and the trend (bottom arrow) such that their summation results in the original signal.

Encoder and decoder. The encoder is utilized for modeling the seasonal parts as it discards the trend
output from the decomposition block. The encoder’s output, which includes past seasonal information, will
serve as cross-information to assist the decoder in refining the prediction results. The decoder serves two
purposes, it accumulates the trend components and propagates the seasonal component. The final prediction
is the sum of the seasonal and trend components.
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Figure 2: Intrinsic dimension and mean absolute principal curvature along the layers of Aut-
oformer and FEDformer on traffic dataset for multiple forecasting horizons. Top) intrinsic
dimension. Bottom) mean absolute principal curvature. For each model, both ID and MAPC share a similar
profile across different forecasting horizons.

Geometric properties of data manifolds. The fundamental assumption in our work is that data repre-
sentations computed across layers of transformer-based models lie on Riemannian manifolds (Lee, [2006). We
are interested in computing the intrinsic dimension (ID) and the mean absolute principal curvature (MAPC)
of the manifold, following recent work on deep CNNs (Ansuini et al., [2019; [Kaufman & Azencot|, |2023)).
We compute the ID using the TwoNN method (Facco et all [2017) that utilizes the Pareto distribution of
the ratio between the distances to the two closest neighbors to estimate the dimension. For the MAPC, we
employ the curvature aware manifold learning (CAML) technique (Li, 2018) that parametrizes the manifold
via its second-order Taylor expansion, allowing to estimate curvatures via the eigenvalues of local Hessian
matrices. More details related to ID and MAPC are provided in App.

Data collection. In this study, every architecture is trained on all datasets and horizons, using 10 different
seed numbers. For every combination of model, dataset, horizon and seed, we extract the latent data
representations across layers, and we compute the ID and MAPC. The intrinsic dimension is estimated on
500k point samples from D, resulting in a single scalar value d. The estimated ID is used as an input to the
CAML algorithm that uses 100k samples, and it returns d(D — d) principal curvatures per point, where D
is the extrinsic dimension. The MAPC of a manifold is calculated by computing the mean absolute value
for each point and taking the mean over all points.

4 Results

4.1 Data manifolds share similar geometric profiles

In our first empirical result, we compute the intrinsic dimension (ID) and mean absolute principal curvature
(MAPC) across the layers of Autoformer and FEDformer models on the traffic dataset. In Fig. [2| we plot
the ID (top row) and MAPC (bottom row) for Autoformer (left column) and FEDformer (right column)
on multiple forecast horizons = 96,192,336, 720. The z-labels refer to the layers we sample, where labels
1 to 4 refer to two sequence decomposition layers per encoder block (and thus four in total), labels 5 to 6
denote the decoder decomposition layers, and label 7 is the linear output layer, see Fig. [1| for the network
scheme. Our results indicate that during the encoding phase, the ID and the MAPC are relatively fixed for
Autoformer and decrease for FEDformer, and during the decoder module, these values generally increase
with depth. Specifically, the ID values change from min(ID) = 1.2 to max(ID) = 8.1, showing a relatively
small variation across layers. In comparison, the mean absolute principal curvature values present a larger
deviation as they range from min(MAPC) = 0.2 to max(MAPC) = 19.2.

Remarkably, it can be observed from Fig. [2] that both Autoformer and FEDformer feature similar ID and
MAPC profiles in terms of values. Further, a strong similarity in trend can be viewed across different
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Figure 3: ID profiles across layers of Autoformer and FEDformer on electricity, traffic, weather
and ETTm1 datasets for multiple forecasting horizons. Each panel includes ID profiles per dataset,
for several horizons (left to right) and architectures (top to bottom).

forecast horizons per method. Moreover, Autoformer and FEDformer differ during the encoding phase
(layers 1 to 4), but match quite well during the decoding and output phases (layers 5 to 7). Our intrinsic
dimension estimations stand in contrast to existing results on classification tasks with CNN and transformer
architectures that observed a “hunchback” ID profile (Ansuini et al., 2019; [Valeriani et al. [2023). That is,
prior work found the intrinsic dimension to increase significantly at the first few layers, and then, it presented
a sharp decrease with depth. This qualitative difference in ID can be attributed to the differences between
classification models as in |Ansuini et al.| (2019) in comparison to regression TSF networks we consider here.
In particular, deep classification neural networks essentially recover the related low-dimensional manifold,
to facilitate a linear separation of classes (Cohen et all [2020), and thus one may expect a low ID toward
the final layers of the network. On the other hand, forecast regression models aim to encode the statistical
distribution of input data, to facilitate forecast of the horizon windows and it is typically of a higher dimension
due to spurious variations. In particular, regression TSF models are expected to learn an underlying low-
dimensional and simple representation while encoding. Then, a more complex manifold that better reflects
the properties of the data is learned during decoding. Importantly, while our intrinsic dimension profiles
do not exhibit the “hunchback” shape identified in |Ansuini et al.| (2019), our estimated ID d is significantly
smaller than the extrinsic dimension D = 512, in correspondence with existing work. Finally, our MAPC
profiles attain a “step-like” appearance, similar to the results in [Kaufman & Azencot| (2023)), where they
identify a sharp increase in curvature in the final layer, and we observe such a jump in the decoder.

To extend our analysis, we present in Fig. [3] and [4] the ID and MAPC profiles, respectively, for Autoformer
(top) and FEDformer (bottom) for several horizons using multiple different datasets. For all Autoformer
configurations, the IDs in Fig. [3generally increase with depth, and the IDs of FEDformer present a “v”-shape
for electricity and traffic and a “step”-like behavior for weather and ETTml. Interestingly, ETTml (and
other ETT* datasets, please see Fig. [§]) shows a hunchback trend, however, the drop of ID in the final layer is
due to ETT* datasets consisting of a total of seven features, and thus we do not consider this behavior to be
characteristic to the network. As in Fig. 2] and existing work (Ansuini et al. [2019)), the intrinsic dimension
d is much lower than its extrinsic counterpart D. Our MAPC results in Fig. [4] indicate a shared step-like
behavior in general for all models, horizons, and datasets, where the main difference is where the curvature
increase occurs. For electricity and traffic, we observe a sharp increase at the beginning of the decoder block,
whereas for weather and ETTm1, the increase often appears at the final layer. Additionally, the maximal
curvature values for weather and ETTm]1 tend to be higher than those of electricity and traffic. Overall, our
results suggest that weather and ETTml are associated with manifolds whose geometric features match. This
observation can be justified by the known correlation between electricity transformer temperature (ETT)
and climate change (Hashmi et al., [2013; |Gao et al., [2018). Similarly, electricity consumption (electricity)
and road occupancy (traffic) attain a shared behavior that may be explained due to the strong seasonality
component in these datasets (Zeng et all [2023)).
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Figure 4: MAPC profiles across layers of Autoformer and FEDformer on electricity, traffic,
weather and ETTm1 for multiple horizons. Each panel includes MAPC profiles per dataset, for
several horizons (left to right) and architectures (top to bottom).

4.2 Final MAPC is correlated with performance

We further investigate whether geometric properties of the learned manifold are related to inherent features
of the model. For instance, previous works find a strong correlation between the ID (Ansuini et al., [2019) and
MAPC (Kaufman & Azencot| 2023) with model performance and generalization. Specifically, the intrinsic
dimension in the last hidden layer is correlated with the top-5 score on image classification, i.e., lower ID is
associated with lower error. Similarly, large normalized MAPC gap between the penultimate and final layers
of CNNs is related to high classification accuracy. These correlations are important as they allow developers
and practitioners to evaluate and compare deep neural networks based on statistics obtained directly from
the train set. This is crucial in scenarios where, e.g., the test set is unavailable during model design.

We show in Fig. [5| plots of the test mean squared error (epsg) vs. the MAPC in the final layer of Autoformer
and FEDformer models trained on ETTm1, ETTm2, ETThl, ETTh2, weather, and electricity. For each
dataset, we plot four colored circles corresponding to the four different horizons, where each circle is scaled
proportionally to the horizon length. The dashed graphs are generated by plotting the eysg with respect to
the MAPC, representing the best linear fit for each dataset. Due to different scales, an inlay of the electricity
dataset is added to the bottom right corner of each architecture. We find a positive slope in all Autoformer
and FEDformer models with an average correlation coefficient of 0.76 and 0.7, respectively (see full results
in Tab. . In all cases, we observe a correlation between the test MSE and final MAPC, namely, the model
performs better as curvature decreases, as shown in Fig. [
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Figure 5: MAPC is correlated with model performance. Each color represents a different dataset
while the size of the dot is determined by the forecast horizon (longer horizon results in a larger dot). The
test mean squared error is proportional to the MAPC on multiple datasets.
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Table 1: Correlation coefficients of test MSE vs. final MAPC for several datasets and architectures.

| | ETTm1 | ETTm2 | ETThl | ETTh2 | Weather | Electricity |

0.46 0.81 0.97 0.67 0.93 0.71
0.74 0.86 0.63 0.50 0.58 0.70

Autoformer
FEDformer

As in Sec. we identify different characteristics for TSF models with respect to classification neural
networks. While popular CNNs show better performance when the MAPC gap is high (Kaufman & Azencot,,
2023)), we report an opposite trend, namely, better models are associated with a lower MAPC. We believe this
behavior may be attributed to classification networks requiring final high curvatures to properly classify the
statistical distribution of the input information and its large variance. In addition, we note the relatively flat
slope profiles presented across all datasets and architectures. Essentially, these results indicate that while the
manifolds become more complex in terms of curvature, transformers yield a relatively fixed MSE, regardless
of the underlying MAPC. Thus, our results may hint that Autoformer and FEDformer are not expressive
enough. Indeed, the datasets we consider consist of many features (on the range of hundreds for electricity
and traffic). Therefore, while TSF approaches may need highly expressive networks to model these datasets
due to their complex statistics, it might be that current approaches can not achieve better representations
in these cases, and they tend to get “stuck” on a local minimum. We hypothesize that significantly deeper
and more expressive TSF models as in [Nie et al.| (2023) and is common in classification (He et all [2016)
may yield double descent forecasting architectures (Belkin et al., [2019).

4.3 Manifold dynamics during training

Our analysis above focuses on fully trained deep neural networks and the geometric properties of the learned
manifolds. In addition, we also investigate below the evolution of manifolds during training and their struc-
ture at initialization. In prior works, |Ansuini et al| (2019)) observed that randomly initialized architectures
exhibit a constant ID profile, and further, there is an opposite trend in ID in intermediate layers vs. final
layers of convolutional neural networks during training. Kaufman & Azencot| (2023)) find that untrained
models have different MAPC profiles than trained networks, and they observe that the normalized MAPC
gap consistently increases with model performance during training. Moreover, ID and MAPC profiles con-
verge consistently to their final configuration as training proceeds. Motivated by their analysis, we study
the general convergence and trend of ID and MAPC of TSF models during training evolution.

We show in Fig. 6] the ID and MAPC profiles for Autoformer and FEDformer during training, where each
plot is colored by its sampling epoch using the hot colormap. First, the untrained ID and MAPC profiles
(dashed black) are somewhat random in comparison to the other geometric profiles. Second, the overall
convergence to the final behavior is extremely fast, requiring approximately five epochs to converge in all
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Figure 6: Training dynamics of the ID and MAPC on traffic dataset. The plot shows how the ID
and MAPC change during training, colored by the training epoch.
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the configurations which is consistent with the results of |Bonheme & Grzes| (2022) where they show that
the ID does not change much after the first epoch. Moreover, the encoder in the Autoformer converges
within two epochs, whereas the FEDformer model needs more epochs for the encoder to converge. Third,
the decoder shows a slower convergence for both methods, suggesting that “most” learning takes place in the
decoder component of transformer-based forecasting models. The previous observation aligns with the works
of Bonheme & Grzes| (2023); |Raghu et al.| (2017)), showing that representations of layers closer to the input
tend to stabilize quicker. More specifically, Bonheme & Grzes| (2023) show that encoders’ representations
are generic while decoders’ are specific, resulting in a slight change of the encoders’ representations during
training. Finally, except for the untrained profiles, the ID and MAPC curves during training are generally
similar across different epochs. The latter observation may mean that Autoformer and FEDformer mainly
perform fine-tuning training as their underlying manifolds do not change much during training.

4.4 Distribution of principal curvatures

The CAML algorithm (Li, 2018) we employ for estimating the principal curvatures produces d(D — d)
values per point, yielding a massive amount of curvature information for analysis. Following [Kaufman &
Azencot| (2023]), we compute and plot in Fig. [7| the distribution of principal curvatures for every layer,
shown as a smooth histogram for Autoformer and FEDformer models on electricity and traffic datasets with
horizons = 192,336. The histogram plots are colored by the network depth using the hot colormap. These
distributions strengthen our analysis in Sec. [f.I] where we observe a “step”-like pattern in MAPC, where
the sharp jump in curvature occurs at the beginning of the decoder. Indeed, the curves in Fig. [7] related to
layers 1 to 4 span a smaller range in comparison to the curves in layers 5 to 7. Further, the histograms show
that the distribution of curvature is relatively fixed across the encoder blocks, and similarly, a different but
rather fixed profile appears in the decoder.

5 Discussion

Deep neural networks are composed of several computation layers. Each layer receives inputs from a preceding
layer, it applies a (nonlinear) transformation, and it feeds the outputs to a subsequent layer. The overarching
theme in this work is the investigation of data representations arising during the computation of deep models.
To study these latent representations, we adopt a ubiquitous ansatz, commonly known as the manifold
hypothesis (Coifman & Lafon| 2006): We assume that while such data may be given in a high-dimensional
and complex format, it lies on or next to a low-dimensional manifold. The implications of this inductive bias
are paramount; manifolds are rich mathematical objects that are actively studied in theory (Leel 2006]) and
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Figure 7: Principal curvature distribution of Autoformer and FEDformer. Each plot shows the
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practice (Chaudhry et al.,[2018), allowing one to harness the abundant classical tools and recent developments
to study deep representations.

Our study aligns with the line of works that aims at better understanding the inner mechanisms of deep neural
networks. Indeed, while modern machine learning has been dominating many scientific and engineering
disciplines since the appearance of AlexNet (Krizhevsky et all |2012)), neural net architectures are still
considered not well understood by many. In this context, the manifold ansatz is instrumental—existing
analysis works investigate geometric features of latent manifolds and their relation to the underlying task
and model performance. For instance, |Ansuini et al.| (2019) compute the intrinsic dimension of popular
convolutional neural networks. Following their work, Kaufman & Azencot|(2023) estimate the mean absolute
principal curvatures. However, while CNNs are relatively studied from the manifold viewpoint, impactful
sequential transformer models (Vaswani et al.,|2017)), received less attention (Valeriani et al.,|2023). The lack
of analysis is even more noticeable for the recent state-of-the-art transformer-based time series forecasting
works, e.g., [Wu et al.| (2021). The main objective of our work is to help bridge this gap and study deep
forecasting models trained on common challenging datasets from a manifold learning viewpoint.

We compute the ID and MAPC of data representations from several different deep architectures, forecasting
tasks and datasets. To this end, we employ differentiable tools (Facco et al.| |2017; |Li, [2018) that produce a
single scalar ID and many principle curvatures combined to a single scalar MAPC, per manifold. Our results
raise several intriguing observations, many of them are in correspondence with existing work. First, the ID
is much smaller than the extrinsic dimension, reflecting that learned manifolds are indeed low-dimensional.
Second, the ID and MAPC profiles across layers are similar for many different architectures, tasks, and
datasets. In particular, we identify two phases, where in the encoder, ID and MAPC are decreasing or stay
fixed, and in the decoder, both geometric features increase with depth. Third, the MAPC in the final layer
is strongly correlated with model performance, presenting a correlation, i.e., error is lower when MAPC is
lower. Fourth, we observe that related but different datasets attain similar manifolds, whereas unrelated
datasets are associated to manifolds with different characteristics. Finally, untrained models present random
ID and MAPC profiles that converge to their final configuration within a few epochs.

Our analysis and observations lie at the heart of the differences between classification and regression tasks;
a research avenue that only recently had started to be addressed more frequently (Muthukumar et al., [2021}
Yao et al., 2022). Our results indicate a fundamental difference between image classification and time series
forecasting regression models: while the former networks shrink the ID significantly to extract a meaningful
representation that is amenable for linear separation, TSF models behave differently. Indeed, the ID generally
increases with depth, perhaps to properly capture the large variance of the input domain where regression
networks predict. Moreover, while a high MAPC gap seems to be important for classification, we find an
opposite trend in TSF regression problems. In conclusion, we believe that our work sets the stage for a
deeper investigation of classification vs. regression from a manifold learning and other perspectives. We
believe that fundamental advancements on this front will lead to powerful machine learning models, better
suited for solving the task at hand.
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A TSF datasets

Blow we provide a detailed description of the datasets used in the paper. A summery of the datasets can be
found in Tab. 2

Electricity Transformer Temperature (ETT) Zhou et al. (2021): The ETT contains electricity
power load (six features) and oil temperature collected over a period of two years from two countries in
China. The dataset is versatile and exhibits short-term periodical patterns, long-term periodical patterns,
long-term trends, and irregular patterns. The dataset is further divided to two granularity levels: ETTh1,
ETTh2 for one hour level and ETTm1, ETTm?2 for 15 minutes level.

WeathetE]: The dataset contains 21 meteorological sensors for a range of 1 year in Germany.
Electricity Consuming Load (ECL)E]: It contains the hourly electricity consumption (Kwh) of 321 clients.

’I‘rafﬁ(ﬂ The dataset consists of hourly data spanning 24 months (2016-2018) obtained from the California
Department of Transportation. This data provides information on road occupancy rates, measured by 862
sensors on freeways in the San Francisco Bay area, ranging between 0 and 1.

Table 2: We detail several statistics regarding the datasets considered in this work.

Dataset Number of features | Number of train samples | Granularity
ETTm1, ETTm2 7 34369 15 minutes
ETThl, ETTh2 7 34369 1 hour

Weather 21 36696 1 hour

ECL 321 18221 1 hour

Traffic 862 12089 1 hour

B Additional results

B.1 ETT?* datasets analysis

To complement the results in the main article we add a comparison of the ID and MAPC of three different
ETT datasets: ETTm1, ETTh]l and ETTh2. We notice that ETTm1, ETTh1 and ETTh2 show a hunchback
trend for Autoformer while for FEDformer the hunchback trend appears for larger forecast horizons as shown
in Fig.[§] Our MAPC results in Fig. [9] show that MAPC are relatively fixed and start to rise at the decoder.

C TSF models

Here we will provide a supplementary analysis of additional TSF models: vanilla Transformer (Vaswani
et al., 2017)), Informer (Zhou et al., 2021)) and PatchTST (Nie et al., 2023).

Transformer and Infromer: These models have a similar architecture to the Autoformer and FEDformer
as shown in Fig.[Il The models are composed of two encoder layers and one decoder layer, however, in contrast
to Autoformer and FEDformer, Transformer and Infromer do not contain series decomposition layers. The
analysis of Transformer and Infromer inspects the output of the encoder layers, decoder layer and the last
linear layer. In Fig. [I0] we observe trends similar to ones shown for the Autoformer and FEDformer. When
comparing different datasets, we see similar trends, a monotonic increase in ID for the Transformer and
a saw-like behaviour for Informer (see Figlll)). The MAPC across datasets for the Transformer exhibits a
monotonic increase trend while the Informer has a “v”-shape (see Fig

Thttps://www.bgc-jena.mpg.de/wetter/
?https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
Shttps://pems.dot.ca.gov/
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Figure 8: ID profiles across layers of Autoformer and FEDformer on ETT datasets for multiple
forecasting horizons. Each panel includes separate ID profiles per dataset, for several horizons (left to
right) and architectures (top to bottom).
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Figure 9: MAPC profiles across layers of Autoformer and FEDformer on ETT datasets for
multiple forecasting horizons. Each panel includes separate MAPC profiles per dataset, for several
horizons (left to right) and architectures (top to bottom).

PatchTST: PatchTST is a transformer-based model composed of vanilla Transformer encoders and a linear
layer as a decoder. PatchTST differs from all other architecture mentioned in the paper by dividing a
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Figure 10: Intrinsic dimension and mean absolute principal curvature along the layers of Trans-
former and Informer on traffic dataset for multiple forecasting horizons. Top) intrinsic dimension.
Bottom) mean absolute principal curvature. For each model, both ID and MAPC share a similar profile
across different forecasting horizons.
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Figure 11: ID profiles across layers of Transformer and Informer on electricity, traffic, weather
and ETTm1 datasets for multiple forecasting horizons. Each panel includes separate MAPC profiles
per dataset, for several horizons (left to right) and architectures (top to bottom).

sequence into patches and using them as inputs to the network. Each patch is then embedded, and from
that point on, all sequential information becomes inaccessible, i.e., we cannot manually extract temporal
information for each time stamp in the patch. Our analysis focuses on time series manifolds, where each
element represents a single point in time, while the latent representation of the PatchTST model lie on
product manifolds where each element is a sequence of points in time. Similar to the analysis performed on
the Transformer and Informer, we inspect the output of the encoder layers and the decoder layer which is the
last linear layer. We notice that the ID remains relatively stable during the encoding phase and increases in
the last layer, a behavior consistent across datasets and horizons. A similar trend is observed for the MAPC
during the encoding phase where on some datasets the MAPC increases on the last layer and on other it

decreases. See Figs. [I3]and

D Intrinsic dimension and mean absolute principal curvature

D.1 Intrinsic dimension

To estimate the ID of data representations in TSF neural networks, we use the TwoNN (Facco et al., 2017)
global id estimator. The ID-estimator utilizes the distances only to the first two nearest neighbors of each
point. This minimal selection helps reduce the impact of inconsistencies in the dataset during the estimation
process.
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Figure 12: MAPC profiles across layers of Transformer and Informer on electricity, traffic,
weather and ETTm1 datasets for multiple forecasting horizons. FEach panel includes separate
MAPC profiles per dataset, for several horizons (left to right) and architectures (top to bottom).
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Figure 13: ID and MAPC along the layers of PatchTST on weather dataset for multiple fore-
casting horizons. Left) intrinsic dimension. Right) mean absolute principal curvature. ID and MAPC
share a similar profile across different forecasting horizons.

Method Let X = {x1,x9, - ,zn} aset of points uniformly sampled on a manifold with intrinsic dimension
d. For each point z;, we find the two shortest distances r1, 79 from elements in X \ {z;} and compute the
ratio u; = :—f It can be shown that u;,1 < i < N follow a Pareto distribution with parameter d + 1 on

[1,00), that is f (u; | d) = du;(dﬂ). While d can be estimated by maximizing the likelihood:

N
—(d
P(ps iz, | d) = dV [ g @Y (1)
=1

we follow the method proposed by |[Facco et al|(2017) based on the cumulative distribution F(u) =1—pu~9.
The idea is to estimate d by a linear regression on the empirical estimate of F (). This is done by sorting
the values of 4 in ascending order and defining F*™? (u;) = . A straight line is then fitted on the points

of the plane {(log y;, —log (1 — Fiemp))}ijil. The slope of the line is the estimated ID.
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Figure 14: ID and MAPC profiles across layers of PatchTST on ETT*, electricity and weather
datasets for multiple forecasting horizons. Each panel includes separate ID (top) and MAPC (bottom)
profiles per dataset, for several horizons (left to right).
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Figure 15: Comparison of several ID estimation tools. Most estimators agree with the trend observed
by the TwoNN ID estimator.

D.2 Comparison of intrinsic dimension estimators

ID estimators operate based on a variety of principles. They are developed using specific features such as the
number of data points within a fixed-radius sphere, linear separability, or the expected normalized distance
to the nearest neighbor. Consequently, different ID estimation methods yield varying ID values. In Fig.
we proivde a comparison of several ID estimators from Scikit-dimension (Bac et al., 2021)). The results
indicate that the ID profile obtained by the TwoNN estimator used in this work is simillar to other ID
estimation tools. We observe a different trend from the LPCA estimator which we attribute to the linear
nature of the algorithm. LPCA is grounded in the observation that for data situated within a linear subspace,
the dimensionality corresponds to the count of non-zero eigenvalues of the covariance matrix. We note that
the inconsistency appears in the layers where the curvature increases and thus the manifold deviates from a
flat (linear) surface.

D.3 Data density

In comparison to the intrinsic dimension, which is a characteristic of the entire manifold, curvature in-
formation is local. Moreover, curvatures are calculated using second-order derivatives of the manifold.
Consequently, our study assumes that the data is dense enough to compute curvatures. However, the la-
tent representations of data, are both high-dimensional and sparse, which presents significant difficulties in
calculating local differentiable values on such as curvature.

The typical characteristics of data used in machine learning require a large number of nearby points to
create a stable neighborhood. One commonly used tool for this is k-Nearest-Neighbours (KNN). However,
KNN can sometimes generate non-local and sparse neighborhoods, where the "neighbors" are effectively far
apart in a Euclidean sense. Another approach is to use domain-specific augmentations, such as window
cropping, window warping or slicing. However, this approach only explores a specific aspect of the data
manifold and may overlook other important parts. A more effective approach, regardless of the domain, is to
compute the Singular Value Decomposition (SVD) for each time series. This generates a close neighborhood
by filtering out small amounts of noise in the data. This approach is well-motivated from a differential
geometry standpoint, as it approximates the manifold at a point and samples the neighborhood.

Neighborhood generation. To improve the local density of time sereis samples, we use a proce-
dure similar to [Yu et al. (2018) to generate artificial new samples by reducing the “noise” levels of the
original data. Specifically, given a d dimensional time series z1.p € RT*4 let z1.p = UXVT be its
SVD, where U € RT*T,| V € R¥™? and ¥ € RT*? a rectangular diagonal matrix with singular values
{01,029, ,04} on the diagonal in descending order such that r is the rank of z1.,7. Let m be the smallest

2

index such that the explained varince 2377"”2 of the m’th mode is less than or equal to le™3. We define
i J

Y={01,09," ,U1Om, U20m+1, " " Ud—m+104} Such that u; g U(0,1) and construct o}, = US'VT. this

process is repeated 64 times for each time series, generating 64 new time series.
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D.4 Curvature estimation

There are several methods available for estimating curvature quantities of data representations, as discussed
in papers such as |Brahma et al.| (2015]); Shao et al| (2018]). For our purposes, we have chosen to use the
algorithm described in [Li| (2018)), which is called Curvature Aware Manifold Learning (CAML). We opted
for this algorithm because it is supported by theoretical foundations and is relatively efficient. In order to
use CAML, we need to provide the neighborhood information of a sample and an estimate of the unknown
ID. The ID is estimated using the TwoNN algorithm, as described in similarly to |Ansuini et al.| (2019));
Kaufman & Azencot| (2023).

In order to estimate the curvature of data Y = {y1,y2,--- ,yn} C RP, we make the assumption that the
data lies on a d-dimensional manifold M embedded in R”, where d is much smaller than D. Consequently,
M can be considered as a sub-manifold of R”. The main concept behind CAML is to compute a local
approximation of the embedding map using second-order information.

f:Rd%RD ,yl:f(acl)—&—e“ ’i:l,...,N, (2)

where X = {z1,72,---, 25} C R? are low-dimensional representations of Y, and {e1, ez, --ex} are the
noises. In the context of this paper, the embedding map f is the transformation that maps the low-
dimensional dynamics to the sampled features for each time stamp ¢ that might hold redundant information.

In order to estimate curvature information at a point y; € Y, we follow the procedure described above to
define its neighborhood. This results in a set of nearby points {y;,, ..., ¥i, }, where K represents the number
of neighbors. Using this set along with the point y;, we utilize SVD to construct a local natural orthonormal

: 1o} 0 0 o)
coordinate frame {w, ) 9zl Byl » PyD—d

space (first d elements) and a basis for the normal space. To be precise, we denote the projection of y; and
y;, for j =1,..., K onto the tangent space spanned by 9/0z,...,0/0z as z; and u;; respectively. It is
important to note that the neighborhood of y; must have a rank of r > d. If the rank is less than d, then
SVD cannot accurately encode the normal component at x;, leading to poor approximations of f at ;.
Therefore, we verify that {y;,,..., ¥, } has a rank of d + 1 or higher.

. This coordinate frame consists of a basis for the tangent

The map f can be expressed in the alternative coordinate frame as f(z!,...,2%) = [z!,..., 24 f1,..., fP~9].
The second-order Taylor expansion of f® at u;, with respect to x;, with an error of O(Juy,|3), is represented
by

1
(i) & f* () + ALV + gAiHani , (3)

where a = 1,...,D —d, A, = (u;; — ;) and u;;, is an elemnt in the neighborhood of x;. The gradient of
f¢ is denoted by Vf<, and H* = (%) is its Hessian. We have a neighborhood {y;,,...,¥ix } of v,

and their corresponding tangent representations {u,, }. Using equation (3, we can form a system of linear
equations, as explained in The principal curvatures are the eigenvalues of H%, so estimating curvature
information involves solving a linear regression problem followed by an eigendecomposition. Each Hessian has
d eigenvalues, so each sample will have (D — d) x d principal curvatures. Additionally, one can compute the
Riemannian curvature tensor using the principal curvatures, but this requires high computational resources
due to its large number of elements. Moreover, as the Riemannian curvature tensor is fully determined by
the principal curvatures, we focus our analysis on the eigenvalues of the Hessian. To evaluate the curvature
of manifolds, we estimate the mean absolute principal curvature (MAPC) by taking the mean of the absolute
values of the eigenvalues of the estimated Hessian matrices.

D.5 Estimating the Hessian Matrix

In order to estimate the Hessian of the embedding mapping f* where a = 1,...,D — d, we build a set of
linear equations that solves Eq. We approximate f¢ by solving the system f¢ = WX;, where X; holds
the unknown elements of the gradient Vf® and the hessian H®. We define f* = [f (ug, ), -, f* (ui)]",

where u;; are points in the neighborhood of z;, in the local natural orthogonal coordinates. The local natural
orthogonal coordinates are a set of coordinates that are defined at a specific point p of the manifold. They
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are constructed by finding a basis for the tangent space and normal space at a point p by applying Principal
Component Analysis, such that the first d coordinates (associated with the most significant modes, i.e.,
largest singular values) represent the tangent space, and the rest represent the normal space. We define
U= [V, -,V ], where U, is given via

2 2
_ |1 d 1 d 1 2 d—1 d
v, = [uij,-~- s Ui s (uij) o ,(uiJ) ,(uij X uij) yo ,(uij X uij)]

The set of linear equations f® = WX is solved by using the least square estimation resulting in X; = W' fo,
where Xz = |:vf'0417 T vfad’ Hal,la U 7Had7d7 Ha1727 T 7Had_1’d:| . In praCtiCe7 we estimate Only the

upper triangular part of H® since it is a symmetric matrix. The gradient values V f¢ are ignored since
they are not required for the CAML algorithm. We refer the reader for a more comprehensive and detailed
analysis in (Lil |2018).
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