
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OUT-OF-DISTRIBUTION ROBUST EXPLAINER FOR
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are powerful tools for analyzing graph-structured
data; however, their interpretability remains a challenge, leading to the growing
use of eXplainable AI (XAI) methods. Most existing XAI models assume that
GNNs are well-trained and that all nodes in the graph share similar data char-
acteristics to those used during GNN training. In real-world applications, new
nodes and edges are frequently added to the input graph during testing. This
dynamic environment can introduce out-of-distribution (OOD) nodes, potentially
undermining the reliability of XAI models. To address this issue, we propose
an OOD Robust Explainer (ORExplainer), a post-hoc, instance-level explana-
tion model specifically designed to provide robust and reliable explanations in
the presence of OOD nodes, noise, and outliers in graphs. ORExplainer incorpo-
rates Energy Scores to capture structural dependencies, allowing for prioritizing
in-distribution nodes while reducing the impact of OOD nodes. We conduct ex-
periments with varying types of OOD node inclusion. ORExplainer demonstrates
superior robustness of generated explanations across synthetic and real-world
datasets. Our code is available at https://anonymous.4open.science/
r/ORExplainer-C52C/.

1 INTRODUCTION
Graph Neural Networks (GNNs) have become essential for modeling graph-structured data in do-
mains such as social networks, biology, and recommendation systems (Feng et al., 2023; Wu et al.,
2022). As these models are increasingly used in critical applications (Longa et al., 2024; Yuan
et al., 2022), their interpretability has attracted growing attention. To address this need, post-hoc
instance-level explanation methods (Ying et al., 2019; Luo et al., 2020) aim to identify subgraphs
most influential to predictions, and recent studies (Zhang et al., 2023; Chen et al., 2024) further
improve their reliability in high-stakes domains.

While prior efforts have advanced our understanding of GNN decision-making, existing explanation
methods often fail to align with real-world scenarios. Most approaches implicitly assume that the
explainer model is trained on the same graph as the graph employed to train the underlying GNN
model to be explained, an unrealistic setting when applied beyond controlled benchmarks. In prac-
tice, real-world graphs can evolve with the addition of new nodes and edges, such as newly published
papers in citation networks or newly joined users in social networks. As a result, the graph avail-
able to the explainer model may differ from the one originally used to train the GNN. Since papers
from entirely new domains or injected unexpected users may constitute out-of-distribution (OOD)
instances, it is important to design explainer models that are robust to OOD scenarios.

To systematically analyze explanation robustness, we categorize OOD nodes into three representa-
tive types as shown in Figure 1. Structure-level OOD occurs when injected nodes alter the graph’s
connectivity significantly. Feature-level OOD arises when new nodes exhibit feature patterns un-
seen during training. Unseen-label OOD refers to nodes belonging to classes absent from the
training data. Together, these scenarios represent realistic challenges are useful for evaluating the
robustness of node-level explanations. For robust and trustworthy explanations, the explanatory sub-
graph should primarily rely on in-distribution (ID) evidence, while avoiding OOD instances that the
pre-trained GNN cannot reliably process.

In response to these OOD scenarios, we introduce ORExplainer, a robust post-hoc explainer tailored
for noisy graphs. ORExplainer extracts compact subgraphs that preserve predictive information

1

https://anonymous.4open.science/r/ORExplainer-C52C/
https://anonymous.4open.science/r/ORExplainer-C52C/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Structure-Level
(e.g., degree, connectivity pattern)

Feature-Level
(e.g., noisy features)

Unseen-Label

Degree=6

In-Distribution Graph

Figure 1: Illustration of different types of out-of-distribution (OOD) nodes in graphs, including
structure-level, feature-level, and unseen-label OOD cases.

while reducing the impact of OOD nodes. It quantifies the model’s confidence in each node via
energy scores (Ranzato et al., 2007; Liu et al., 2020) and introduces weighted energy propagation
to capture relational structure, enabling robustness against various type of OOD interference. By
focusing on ID nodes, ORExplainer provides reliable explanations even when ID and OOD nodes
coexist, distinguishing it from prior explainers. Through extensive experiments on both synthetic
benchmarks and real-world datasets under varying OOD conditions, we demonstrate that OREx-
plainer consistently delivers superior performance, underscoring its effectiveness in practical graph
scenarios.

Contributions. We summarize our contributions:
• Robust Explanation in Noisy Environments: We propose ORExplainer, a post-hoc explainer

designed for graphs with OOD or noisy nodes, providing robust explanations by suppressing un-
reliable information.

• Analysis of Baseline Vulnerabilities: We systematically evaluate existing explainers under OOD
settings and show that many fail to provide accurate explanations, while ORExplainer addresses
these vulnerabilities.

• Energy-Based OOD Handling: We introduce Weighted Energy Propagation (WEP), which
leverages energy scores to prioritize ID nodes and downweight OOD ones, enhancing robustness
and reliability across diverse graph environments.

2 RELATED WORK
Explainable AI models in the graph domain focus on identifying substructures that significantly im-
pact outputs from trained models. Primarily, GNNExplainer (Ying et al., 2019), a pioneering study
in this field, proposes a mask-based method to find important subgraphs that maximize the mutual
information with the predictive output. Furthermore, PGExplainer (Luo et al., 2020) advances this
concept by parameterizing explainers in a more generalized setting, approximating multiple impor-
tant subgraphs for various instances using a single explainer. Additionally, SubgraphX (Yuan et al.,
2021) employs Monte Carlo Tree Search to identify important subgraphs with the highest Shapley
value.

While various state-of-the-art explanation methods contribute to generating high-quality explana-
tions, another line of research questions have emerged regarding their generalization and robust-
ness. MixupExplainer (Zhang et al., 2023) and ProxyExplainer (Chen et al., 2024) address the issue
that explanatory subgraphs often suffer from a distribution shift relative to the input graphs, due
to differences in size or structural properties. Since a pretrained GNN model cannot properly pro-
cess such distribution-shifted graphs, the training of the explainer itself becomes problematic. To
mitigate this problem, MixupExplainer mixes input graphs with label-irrelevant graphs, whereas
ProxyExplainer employs a VGAE (Kipf & Welling, 2016) encoder to enforce in-distribution expla-
nations. In a different approach, HINT-G (Jung et al., 2025) leverages influence functions (Bae et al.,
2022; Wu et al., 2023a) to trace how training nodes affect the prediction of a target node, providing
explanations grounded in influence rather than subgraph generation.

Despite significant advancements in explainability, many existing methods often overlook the impact
of OOD nodes and edges that can arise within the input graph. V-InFoR (Wang et al., 2024),
unlike prior works, focuses on designing a robust explainer for structurally corrupted graphs. It
leverages variational inference to learn robust graph representations in order to address structural

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

corruption. However, its robustness mainly targets structural OOD and does not extend to other
types of corruption, such as feature noise. In addition, since it is originally developed for a graph
classification task, its applicability to node-level scenarios such as node injection remains limited.

Different Setting Compared to Existing Methods: Most existing explanation methods implicitly
assume that the explainer is trained on the same in-distribution graphs as the GNN model. However,
real-world graphs are inherently dynamic, continuously evolving through the addition of new nodes
and edges. These dynamics naturally introduce OOD components, which existing explainers are
not designed to handle. This underscores the necessity of developing explanation methods that are
explicitly designed for graphs with newly added OOD nodes or edges. More extensive related work
is provided in Appendix A.

3 PRELIMINARIES
3.1 NOTATION

Let G = {V, E} represent a graph, where V = {v1, v2, . . . , vN} is the set of nodes with N being the
number of nodes, and E ⊆ V ×V is the set of edges. Each node vi has a feature vector xi ∈ RD and
a label yi ∈ {1, 2, . . . , C}, where D is the feature dimension and C is the number of classes. The
adjacency matrix is defined as A = [aij]N×N , with aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise.

We denote the graph used to train GNN model f , as GGNN = {VGNN, EGNN}. The graph used for
explanation, Gexplain = {Vexplain, Eexplain}, may contain additional OOD nodes and their edges, such
that VGNN ⊆ Vexplain, EGNN ⊆ Eexplain.

The model f is a node classifier, where f(G, i) takes input as a graph G and a target node index
i. f consists of two parts: an encoder fenc and a classifier fcls. The encoder fenc(G) generates the
embedding set Z = {z1, z2, . . . , zN}, where each zi ∈ RH denotes the latent representation of
node vi, and H represents the dimensionality of the embedding vectors. The classifier fcls gen-
erates a C-dimensional vector representing the class probabilities for each node. The predicted
class label ŷi is then determined by applying the argmax function to the class probability vector:
ŷi = argmax(fcls(zi)).

3.2 POST-HOC EXPLAINERS FOR NODE CLASSIFICATION

Post-hoc explainers for node classification (Ying et al., 2019; Luo et al., 2020) aim to extract an
explanatory subgraph G∗

t that captures the most informative structure for a target node vt. This is
typically formulated by maximizing the mutual information between the model’s prediction ŷt and
the candidate explanatory subgraph G∗

t . Since direct optimization is infeasible, explanation methods
introduce relaxations and parameterizations to learn edge masks.

GNNExplainer (Ying et al., 2019) directly assigns a soft edge mask a∗ij for each edge (vi, vj), op-
timizing it to minimize the uncertainty of predictions conditioned on the selected subgraph. In
contrast, PGExplainer (Luo et al., 2020) adopts a more general and scalable approach: it trains a
Multi-Layer Perceptron (MLP) g(·) that receives edge embeddings [zi; zj ; zt] as inputs and out-
puts mask logits ωij . These logits are reparameterized into probabilistic edge selections, enabling
explanation across multiple nodes.

Both methods apply constraints to enhance interpretability and sparsity. Specifically, an L1 penalty
on the edge mask encourages compact subgraphs, while entropy regularization pushes mask values
towards binary decisions.

3.3 ENERGY-BASED OOD SCORING

A softmax classifier can be equivalently expressed as an Energy-Based Model (EBM) (Ranzato
et al., 2007; Grathwohl et al., 2020; Du & Mordatch, 2019). For a GNN model f , the free energy of
a node vi is defined as

E(G, i; f) = − log
∑C

c=1
exp(f(G, i)[c]). (1)

This formulation allows the energy to be directly computed from model logits without additional
training, and it has been widely used as an OOD score. In this setting, ID nodes generally obtain
lower energy values, whereas OOD nodes yield higher energy (Liu et al., 2020; Wu et al., 2023b).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ORExplainer

GNN 𝑓

Classification
logits

WEP 		ℒ!"!

OOD
Node

ID
Node

Target
Node 𝑣!

Minimize	ℒ
= ℒ"# + 𝛼ℒsize + 𝛽ℒent + 𝛾ℒene

Energy Score
𝐄(")

Edge
weight 𝐀$∗

Weighted
Energy Propagation

Classification
logits

(b) Weighted Energy Propagation (WEP)(a) Overall ORExplainer Training Steps

Explantory
Graph 𝒢$∗ Low

High

𝐄 ' =
1
2 𝐄 '() + 𝐀!∗𝐃()𝐄 '()

𝐄 '

𝐃() = 	Degree	matrix	of	𝒢explain
𝑘 = 	The	number	of	layers	in GNN 𝑓

Edge
embeddings

Input Graph
𝒢explain

𝑣!, 𝑣"

𝑣
! ,𝑣

"

𝑣!, 𝑣"
𝑣#, 𝑣$

𝑣%, 𝑣&

ℒ"# = CE 𝑓 𝒢!∗ , 𝑓 𝒢+,-./01
ℒene = 𝑒!

'

	𝑒!
' = The value of 𝐄 ' at	𝑣2

ℒ%&

Figure 2: (a) illustrates the overall framework of ORExplainer and (b) details Weighted Energy
Propagation (WEP) to reduce the effect of OOD nodes (edges).

4 OUR PROPOSED METHOD

We propose Out-of-distribution Robust Explainer termed as ORExplainer, a post-hoc explanation
method for node classification in graphs where both ID and OOD nodes coexist at inference time,
though not during training. ORExplainer generates explantions for ID targe nodes whose predictions
remain stable under OOD contamination. Under this setting, ORExplainer provides explanations
that are faithful to the model’s decision while remaining robust to noise and the presence of OOD
nodes. An overview of the training framework of ORExplainer is illustrated in Figure 2-(a). We
next formalize the problem setting and describe how robust explanations are defined.

4.1 ROBUST EXPLANATION FOR NODE CLASSIFICATION

Given a pre-trained GNN f trained on GGNN and a target node vt, the goal of an explanation model
g is to identify a subgraph that accounts for the prediction of f on vt, where vt ∈ Vexplain. vt is an ID
node that is correctly classified. This condition suggests that the OOD components have a limited
effect on the model’s decision-making process. Consequently, incorporating OOD nodes into the
explanation subgraph can undermine its faithfulness.

Formally, the robust explainer g can be defined as

G∗
t = g(f,Gexplain, t). (2)

G∗
t denotes the explanation subgraph and t is the index of the target node vt. The key requirement

is that G∗
t should (i) preserve the predictive behavior of f for vt, while (ii) minimizing the impact of

OOD nodes that may affect vt.

To instantiate g, we adopt a parameterized framework based on an MLP that takes edge embeddings
as input. For each candidate edge (vi, vj) with respect to a target node vt, the edge embedding is
constructed by concatenating the node representations of vi, vj , and vt. Unlike prior methods (Luo
et al., 2020; Zhang et al., 2023) that only utilize the final-layer representation of the encoder fenc,
our model concatenates intermediate embeddings from all layers of fenc together with the raw fea-
tures of the nodes involved. This design provides the explainer with richer multi-scale information,
enabling more expressive and reliable explanations. The MLP outputs a scalar logit ωij for each
edge (vi, vj), which is mapped via a sigmoid to a probabilistic edge mask a∗ij ∈ [0, 1], forming the
weighted adjacency matrix A∗

t = [a∗ij]. During training, we employ the Gumbel-softmax reparam-
eterization (Jang et al., 2017) for sampling.

We optimize a cross-entropy loss LCE = CE
(
f(G∗

t), f(Gexplain)
)
, ensuring fidelity between the ex-

planatory subgraph and the original graph Gexplain. While LCE ensures fidelity and interpretability,
it does not consider the reliability of explanations under OOD interference. To complement it, we
introduce an energy-based scoring mechanism that accounts for OOD nodes.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 WEIGHTED ENERGY PROPAGATION

To enhance robustness against various types of OOD interference, we design Weighted Energy Prop-
agation (WEP), which restricts the impact of nodes with unreliable prediction logits. The objective
is to construct explanations that emphasize information from ID nodes while suppressing contribu-
tions from OOD nodes.

Let E(0) = [e
(0)
i]Ni=1 denote the initial energy scores of all nodes in Gexplain, where e

(0)
i =

E(Gexplain, i; f) is obtained from the pre-trained GNN. Energy scores are then propagated through
the explanatory subgraph according to

E(k) = 1
2

(
E(k−1) + A∗

tD
−1E(k−1)

)
, (3)

where A∗
t is the weighted adjacency matrix produced by the explainer for target node vt, and D−1 is

the inverse degree matrix of Gexplain. This formulation ensures that each node retains part of its own
energy while also aggregating energy from its neighbors. From the perspective of the target node,
connections to low-energy (ID) neighbors reduce its propagated energy, whereas connections to
high-energy (OOD) neighbors increase it. By enforcing the target node’s propagated energy score to
be minimized, the explainer is guided to prioritize information from ID neighbors while suppressing
that from OOD neighbors as shown in Figure 2-(b). This is achieved by introducing the robustness
term

Lene = e
(k)
t , (4)

which penalizes highly propagated energy at the target node vt. Importantly, because the energy
score quantifies how confidently the GNN processes each node, this mechanism is not restricted
to any single type of OOD (e.g., structural, featural, or unseen-label), but can adapt across diverse
scenarios. By explicitly aligning the explanation process with the GNN’s own confidence, WEP
ensures that the resulting subgraph highlights informative ID neighbors while systematically sup-
pressing spurious OOD effects. This robustness term is then incorporated into the overall explainer
objective, described in the next section.

4.3 EXPLAINER LOSS

The explainer is trained with a composite objective that combines LCE, with our robustness term
from Weighted Energy Propagation. To prevent trivial solutions, we additionally impose an L1 size
loss Lsize and an entropy loss Lent from Ying et al. (2019); Luo et al. (2020) on the explanation mask
A∗

t . The final objective is
L = LCE + αLsize + βLent + γLene, (5)

where α, β, γ are hyperparameters controlling the trade-off among size, entropy, and robustness
terms.

5 THEORETICAL ANALYSIS

We formalize how Weighted Energy Propagation (WEP) in Eq. 3 induces a lazy substochastic diffu-
sion on the explanatory graph and why minimizing the propagated energy at the target, Lene = e

(k)
t ,

suppresses OOD influence while preserving faithfulness under the composite loss in Eq. 4. We first
establish that the WEP operator Pt =

1
2 (I+A∗

tD
−1) is lazy and column-substochastic.

Lemma 5.1 (Column-substochastic laziness). Pt satisfies
∑

i(Pt)ij ≤ 1 for every j, with equality
iff

∑
i(A

∗
t)ij = dj , and (Pt)jj ≥ 1

2 for all j. Hence P⊤
t is aperiodic and row-substochastic; on

any closed communicating class with no leak (i.e., equality in the column sums), it is row-stochastic.

Its proof is provided in Appendix B. Having identified Pt as a lazy substochastic diffusion, we
unroll the recurrence to obtain an explicit representation of propagated energy. We denote that, for
all k ≥ 1, E(k) = Pk

tE
(0). Intuitively, the propagated energy at a node after k steps equals a

survival-weighted average of initial energies over k-step walks emanating from that node. Assume
that there exist aID≤ bID < aOOD≤ bOOD with δ := aOOD − bID > 0 such that e(0)i ∈ [aID, bID]

for ID nodes and e
(0)
j ∈ [aOOD, bOOD] for OOD nodes (consistent with Eq. 1 used as an OOD score.

We now quantify how OOD visitation controls this value as:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 5.2 (Energy–OOD linkage). Define the unnormalized OOD visitation ϕ
(k)
OOD(t) :=∑

j∈O(P
k
t)tj and the retained mass s(k)t :=

∑
i(P

k
t)ti. For all k ≥ 1,

aID s
(k)
t + δ ϕ

(k)
OOD(t) ≤ e

(k)
t ≤ bID s

(k)
t +

(
bOOD − bID

)
ϕ
(k)
OOD(t).

Equivalently, whenever s(k)t > 0, with the conditional OOD visitation π̂
(k)
OOD(t) := ϕ

(k)
OOD(t)/s

(k)
t ,

aID + δ π̂
(k)
OOD(t) ≤ e

(k)
t

s
(k)
t

≤ bID +
(
bOOD − bID

)
π̂
(k)
OOD(t).

The proof is provided in Appendix B. The lower bound increases with slope δ > 0 in the OOD
visitation ϕ

(k)
OOD (or π̂(k)

OOD in conditional form). Therefore, minimizing Lene = e
(k)
t necessarily

reduces OOD visitation along k-step walks from t. In practice, gradient descent on Lene suppresses
edges that route mass into high-energy (OOD) regions and retains edges into low-energy (ID) re-
gions, matching the empirical reduction in OOD-edge precision. Lastly, the time complexity of the
WEP is given as:

Lemma 5.3 (Time Complexity). With sparse matrix–vector multiplies, computing E(k) = Pk
tE

(0)

costs O(k|E|) per epoch; over T training epochs, WEP runs in O(Tk|E|) time and O(|E|) memory,
i.e., linear in the number of edges.

Proof. Each multiplication by Pt is a sparse matrix with A∗
t (plus a scaled identity), both O(|E|).

Repeating k times per epoch yields O(k|E|); with fixed T, k the total is O(Tk|E|).

6 EXPERIMENTAL SET-UP

6.1 DATASET CONSTRUCTION

We evaluate the proposed ORExplainer with four synthetic datasets and two real-world datasets.
The synthetic datasets (BA-Shapes, BA-Community, Tree-Cycles, Tree-Grids) (Ying et al., 2019)
are designed to evaluate GNN XAI tasks. For real-world evaluation, we use Cora and Citeseer (Sen
et al., 2008), two widely studied citation networks that serve as standard benchmarks for node clas-
sification tasks.

To evaluate the explainability methods under OOD conditions, we construct experimental settings
that introduce different types of OOD: structure-level OOD, feature-level OOD, unseen-label. Struc-
tural OOD involves adding new nodes and edges as noisy OOD instances. In the synthetic datasets,
we introduce 10 to 30 new nodes as OOD nodes to measure the impact of their presence. These
nodes are connected to the original graph through randomly generated edges, with each node hav-
ing approximately twice the average degree of the graph. Featural OOD refers to transforming the
features of certain nodes into noise. In the real-world datasets, we randomly select approximately
30% of the nodes to act as OOD nodes. The features of these nodes are replaced with noise that
contains roughly twice the information content of the original node features. Unseen-abel OOD
refers to the addition of nodes with labels that were not present during the GNN training process.
Following the setting proposed in Wu et al. (2023b), we simulate the appearance of new labels as
OOD instances. In a real-world dataset, the class with the largest number of nodes is designated as
the OOD class. We trained a GCN on a modified version of the dataset where all edges connected
to OOD nodes were removed, ensuring that no information from OOD nodes influenced the GCN
during training. For evaluating the explanations generated by the explainer, we used the graph with
OOD nodes restored, which includes the unseen nodes, edges, and labels.

6.2 BASELINES

We compare our method with six instance-level post-hoc explainers: GNNExplainer (Ying et al.,
2019), PGExplainer (Luo et al., 2020), MixupExplainer (Zhang et al., 2023), ProxyExplainer (Chen
et al., 2024), V-InFoR (Wang et al., 2024), HINT-G (Jung et al., 2025). While ProxyExplainer and
V-InFoR were originally proposed for graph classification, we adapt them to node classification by
extending their edge embedding inputs to include the representations of the two endpoint nodes and
the target node. For a fair comparison, we applied the same GNN architecture across all methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on synthetic datasets with 10 injected struture-level OOD nodes.
BA-Shapes BA-Community Tree-Cycle Tree-Grid

Method AUC (↑) OOD (↓) AUC (↑) OOD (↓) AUC (↑) OOD (↓) AUC (↑) OOD (↓)
GNNExplainer 0.755 ± 0.006 0.384 ± 0.014 0.911 ± 0.004 0.013 ± 0.003 0.583 ± 0.014 0.068 ± 0.011 0.707 ± 0.001 0.024 ± 0.001
PGExplainer 0.730 ± 0.062 0.170 ± 0.013 0.853 ± 0.028 0.039 ± 0.006 0.877 ± 0.013 0.018 ± 0.001 0.899 ± 0.014 0.006 ± 0.002
MixupExplainer 0.766 ± 0.055 0.151 ± 0.031 0.858 ± 0.024 0.035 ± 0.008 0.884 ± 0.005 0.019 ± 0.006 0.897 ± 0.013 0.006 ± 0.002
ProxyExplainer 0.732 ± 0.057 0.148 ± 0.029 0.851 ± 0.031 0.037 ± 0.008 0.884 ± 0.006 0.018 ± 0.001 0.897 ± 0.014 0.007 ± 0.002
V-InFoR 0.501 ± 0.009 0.034 ± 0.004 0.554 ± 0.044 0.040 ± 0.014 0.515 ± 0.027 0.066 ± 0.009 0.498 ± 0.017 0.071 ± 0.004
HINT-G 0.841 ± 0.000 0.034 ± 0.000 0.788 ± 0.000 0.080 ± 0.000 0.911 ± 0.000 0.060 ± 0.000 0.620 ± 0.000 0.097 ± 0.000
ORExplainer 0.995 ± 0.000 0.017 ± 0.003 0.993 ± 0.000 0.000 ± 0.000 0.954 ± 0.001 0.011 ± 0.000 0.962 ± 0.003 0.007 ± 0.000

Table 2: Performance comparison on the Real-world datasets with 10% of feature-level OOD nodes
assigned noisy features.

Cora Citeseer

Method Fid+ (↑) Fid− (↓) OOD (↓) Fid+ (↑) Fid− (↓) OOD (↓)
GNNExplainer 0.021 ± 0.002 0.117 ± 0.002 0.152 ± 0.006 -0.006 ± 0.001 0.031 ± 0.001 0.197 ± 0.009
PGExplainer 0.021 ± 0.001 0.114 ± 0.002 0.150 ± 0.011 0.003 ± 0.001 0.029 ± 0.002 0.165 ± 0.041
MixupExplainer 0.020 ± 0.001 0.118 ± 0.002 0.138 ± 0.002 0.004 ± 0.000 0.028 ± 0.001 0.147 ± 0.058
ProxyExplainer 0.018 ± 0.001 0.117 ± 0.001 0.201 ± 0.010 0.005 ± 0.001 0.026 ± 0.002 0.121 ± 0.037
V-InFoR 0.012 ± 0.003 0.116 ± 0.004 0.236 ± 0.022 0.005 ± 0.002 0.025 ± 0.004 0.125 ± 0.024
HINT-G 0.011 ± 0.000 0.166 ± 0.000 0.603 ± 0.000 0.010 ± 0.000 0.029 ± 0.000 0.372 ± 0.000
ORExplainer 0.038 ± 0.001 0.102 ± 0.002 0.037 ± 0.001 0.018 ± 0.001 0.016 ± 0.002 0.005 ± 0.004

6.3 EVALUATION METRICS

For synthetic datasets, where ground truth subgraph motifs are available, we report the Area Under
the ROC Curve (AUC) between the generated edge weights and the ground truth explanatory edges.
We additionally measure OOD Edge Precision (abbreviated as OOD), which calculates the fraction
of OOD edges contained in the explanatory subgraph. For real-world datasets, where ground truth
explanations are unavailable, we adopt Fidelity (Amara et al., 2022; Yuan et al., 2022), reported in
two complementary forms: Fid+ (sufficiency) and Fid− (necessity). Alongside fidelity, we also
report OOD to evaluate robustness against OOD nodes and edges.

6.4 IMPLEMENTATION DETAILS

We used a 3-layer GCN with a hidden dimension of 20 per layer on the synthetic datasets, and a
2-layer GCN with a hidden dimension of 16 on the real-world datasets. For evaluation, the contin-
uous edge mask is discretized via top-k, p samplings into an explanatory subgraph. In the synthetic
datasets, we select the top-k edges, where k matches the number of edges in the ground-truth motif.
In the real-world datasets, we instead take the top-p fraction of edges, with p = 10%. Other details
of the experimental settings are provided in Appendix C.

7 EXPERIMENTAL RESULTS

7.1 RESEARCH QUESTION (RQ) 1: QUANTITATIVE EVALUATION

We evaluate the explanations generated by ORExplainer and baseline methods across three repre-
sentative OOD scenarios: (i) Strucutre-level OOD, (ii) Feature-level OOD, and (iii) Unseen-label
OOD. Each scenario highlights a different robustness challenge, and the corresponding results are
summarized in Table 1, Table 2, and Table 3, respectively. The full results for all additional OOD
settings and datasets are reported in the Appendix D.

Table 1 reports results on synthetic datasets with 10 injected structure-level OOD nodes. OREx-
plainer consistently achieves the best performance across most datasets, showing the highest AUC
while keeping OOD Edge Precision low. This demonstrates that ORExplainer not only identifies
the ground-truth explanatory motifs more accurately but also effectively suppresses spurious OOD
edges. For the Tree-Grid dataset, ORExplainer records slightly higher OOD values compared to
some baselines, but the absolute magnitude remains very small. In contrast, the improvement in
AUC is relatively large, indicating that ORExplainer can still capture the true explanatory structure
more reliably while being less affected by structural perturbations introduced by OOD nodes. V-
InFoR, in contrast, shows low performance since it is originally designed for graph classification
and struggles to scale to larger node classification graphs that require effective VGAE training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison on real-world datasets where all unseen-label nodes are restored.
Cora Citeseer

Method Fid+ (↑) Fid− (↓) OOD (↓) Fid+ (↑) Fid− (↓) OOD (↓)
GNNExplainer 0.005 ± 0.001 0.040 ± 0.001 0.141 ± 0.006 -0.003 ± 0.003 0.038 ± 0.002 0.026 ± 0.003
PGExplainer 0.010 ± 0.001 0.031 ± 0.001 0.078 ± 0.003 0.009 ± 0.001 0.018 ± 0.002 0.007 ± 0.001
MixupExplainer 0.010 ± 0.001 0.032 ± 0.001 0.079 ± 0.003 0.010 ± 0.001 0.018 ± 0.001 0.005 ± 0.002
ProxyExplainer 0.010 ± 0.001 0.033 ± 0.002 0.074 ± 0.004 0.009 ± 0.001 0.019 ± 0.000 0.008 ± 0.003
V-InFoR 0.001 ± 0.001 0.039 ± 0.002 0.174 ± 0.007 0.005 ± 0.002 0.032 ± 0.006 0.033 ± 0.005
HINT-G -0.002 ± 0.000 0.059 ± 0.000 0.174 ± 0.000 0.005 ± 0.000 0.049 ± 0.000 0.008 ± 0.000
ORExplainer 0.020 ± 0.001 0.029 ± 0.001 0.062 ± 0.005 0.026 ± 0.001 0.016 ± 0.002 0.007 ± 0.001

𝑭𝒊
𝒅 !

−
𝑭𝒊
𝒅 "
(↑
)	

𝑶
𝑶
𝑫
(↓
)	

𝑨𝑼
𝑪	
(↑
)	

𝑶
𝑶
𝑫
		(
↓)
	

BA-Community + Structural OOD	 Cora + Featural OOD	

The	number	of	OOD	nodes	 OOD	nodes	ratio	

Figure 3: Performance of different explanation methods under varying OOD level

Table 2 presents results on real-world datasets where approximately 10% of nodes have been cor-
rupted with noisy features. ORExplainer consistently outperforms the baselines, achieving the high-
est Fid+ and lowest Fid− while also maintaining significantly lower OOD edge precision. In
particular, on Citeseer, ORExplainer yields a substantial improvement in Fid+ while keeping the
OOD value close to zero, demonstrating that our method can provide stable and ID-focused ex-
planations. In contrast, baselines show higher sensitivity to noisy features, often suffering from
increased Fid− or unstable OOD precision. Since HINT-G solely relies on the trained GNN model
without reference to Gexplain, unseen OOD nodes or edges yield high influence scores, causing many
OOD edges to be included in the extracted explanation subgraph. As a result, edges connected to
OOD nodes are frequently selected, inflating OOD precision and undermining the reliability of the
resulting explanations.

Similarly, Table 3 reports results in the unseen-label OOD setting, where all previously removed
class nodes are restored. ORExplainer again achieves the best overall performance, with consistently
higher Fid+ and lower Fid− across both Cora and Citeseer. On Citeseer, ORExplainer achieves the
highest Fid+ among all methods, while keeping the OOD precision at a comparably low level. This
indicates that our approach can provide stable and ID-focused explanations even in the presence of
unseen-label nodes.

7.2 RQ 2: IS OREXPLAINER ROBUST ACROSS VARIOUS LEVELS OF OOD?

This research question investigates whether ORExplainer can maintain robustness under varying
levels of OOD across different datasets. Figure 3 presents results on BA-Community (left) and Cora
(right), using AUC , the combined fidelity metric (Fid+−Fid−), and OOD edge precision (OOD) for
evaluation. On both datasets, ORExplainer clearly outperforms all baselines in terms of AUC across
different OOD ratios. While PGExplainer, MixupExplainer, and ProxyExplainer exhibit moderate
performance at low OOD levels, their scores quickly decline as the ratio increases, showing limited
robustness. V-InFoR remains relatively flat, but at a consistently low level, indicating weak explana-
tory capacity. For the real world dataset Cora, GNNExplainer exhibits high fidelity with the addition
of OOD nodes, giving the impression of improved explanatory quality. However, many OOD con-
nected edges are included in the explanations. This compromises the reliability of its explanations,
since high fidelity achieved by relying on irrelevant or misleading edges cannot be regarded as trust-
worthy. By contrast, ORExplainer maintains both high AUC and stable behavior across all OOD
levels, demonstrating that it can reliably highlight informative structures without being distracted by
OOD nodes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ORExplainer	 GNNExplainer	 PGExplainer	 MixupExplainer	ProxyExplainer	

B
A

-S
ha

pe
s	

B
A

-S
ha

pe
s

+1
0

O
O

D
 n

od
es
	

: Explanation target node : Class 0

: OOD Node

: Class 1

: Class 2 : Class 3
: Ground Truth

Figure 4: Example explanations generated by different methods on BA-Shapes and BA-Shapes with
10 OOD nodes.

7.3 RQ 3: QUALITATIVE ANALYSIS

Figure 4 shows example subgraph explanations for BA-Shapes, comparing cases without and with
OOD nodes. The thick black edges indicate those assigned higher weights by each explanation
model. When OOD nodes are absent, most methods are able to capture the house motif struc-
ture around the target node. However, once OOD nodes and spurious connections are introduced,
the baselines frequently highlight irrelevant edges that are disconnected from the underlying motif,
reducing the reliability of their explanations. In contrast, ORExplainer consistently assigns high
weights to the house motif edges regardless of the presence of OOD nodes, demonstrating its ro-
bustness in producing faithful explanations under OOD conditions.

7.4 RQ 4: HYPERPARAMETER ANALYSIS

𝑨𝑼
𝑪	
(↑
)	

𝑶
𝑶
𝑫
		(
↓)
	

Figure 5: Effect of γ on BA-Shapes with 30 OOD
nodes. The markers indicate the mean across dif-
ferent random seeds, and the error bars represent
the standard deviations.

We further investigate the effect of γ on BA-
Shapes with 30 injected OOD nodes. As shown
in Figure5, when γ is small, the performance
fluctuates and the variance across runs is rel-
atively large. As γ increases, both AUC and
OOD precision stabilize, and the standard de-
viation becomes smaller, indicating that the
training process is more stable. This demon-
strates that assigning sufficient weight to the ro-
bustness term Lene allows the explainer to ef-
fectively suppress OOD influence and produce
consistent explanations.

8 CONCLUSION

In this paper, we introduced ORExplainer, a post-hoc, instance-level explanation model designed
to provide robust and reliable explanations in graph environments containing out-of-distribution,
noisy, and outlier nodes. By incorporating Energy Scores to quantify the GNN’s understanding of
each node and using the weighted energy score propagation to capture the structural dependencies
within the graph, ORExplainer effectively mitigates the impact of OOD nodes while maintaining
high explainability for ID nodes. Our extensive experiments demonstrated that existing baseline
models are highly sensitive to OOD nodes, resulting in a significant drop in explanation quality
and reliability. In contrast, ORExplainer exhibited superior robustness, with smaller performance
degradation even as the proportion of OOD nodes increased. These results highlight ORExplainer’s
ability to provide reliable explanations in real-world graph scenarios where ID and OOD nodes
coexist, making it a highly effective tool for GNN interpretability in challenging environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

We provide an anonymous GitHub repository containing the implementation and the datasets used
in our experiments: https://anonymous.4open.science/r/ORExplainer-C52C. The repository also in-
cludes all hyperparameter settings and training scripts. A detailed description of the hyperparameter
configurations is additionally provided in Appendix C to further facilitate reproducibility.

10 ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information. All experiments
are conducted on publicly available benchmark datasets (synthetic datasets and citation networks
such as Cora and Citeseer). Our study focuses on developing robust explainability methods for
graph neural networks under the presence of out-of-distribution nodes. We do not foresee direct
societal harm from the proposed methodology, but we acknowledge that explainability techniques
can potentially be misused if applied without consideration of fairness and bias in real-world data.
We encourage responsible use of our approach in line with the ICLR Code of Ethics.

REFERENCES

Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Brandes, Sebastian Schemm,
and Ce Zhang. Graphframex: Towards systematic evaluation of explainability methods for graph
neural networks. arXiv preprint arXiv:2206.09677, 2022.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
35:17953–17967, 2022.

Zhuomin Chen, Jiaxing Zhang, Jingchao Ni, Xiaoting Li, Yuchen Bian, Md Mezbahul Islam,
Ananda Mohan Mondal, Hua Wei, and Dongsheng Luo. Generating in-distribution proxy graphs
for explaining graph neural networks. In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pp. 7712–7730. PMLR, 2024.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. Advances
in Neural Information Processing Systems, 32, 2019.

Zhiyuan Feng, Kai Qi, Bin Shi, Hao Mei, Qinghua Zheng, and Hua Wei. Deep evidential learning in
diffusion convolutional recurrent neural network. Electronic Research Archive, 31(4):2252–2264,
2023.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. In International Conference on Learning Representations, 2020.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In Proceedings of the International Conference on Learning Rep-
resentations, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proceedings of the International Conference on Learning Representations, 2017.

Heesoo Jung, Chanyong Kim, Geonhee Han, and Hogun Park. Harnessing influence function in
explaining graph neural networks. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 2, pp. 1106–1117, 2025.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the International Conference on Learning Representations, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Woohyun Lee and Hogun Park. Self-supervised adversarial purification for graph neural networks.
In Proceedings of the 42nd International Conference on Machine Learning, 2025.

Kuan Li, YiWen Chen, Yang Liu, Jin Wang, Qing He, Minhao Cheng, and Xiang Ao. Boosting the
adversarial robustness of graph neural networks: An ood perspective. In The Twelfth International
Conference on Learning Representations, 2024.

Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
learning and out-of-distribution detection on graphs. Advances in Neural Information Processing
Systems, 35:30277–30290, 2022.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in neural information processing systems, 33:21464–21475, 2020.

Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Liò, Bruno Lepri, and An-
drea Passerini. Explaining the explainers in graph neural networks: a comparative study. ACM
Computing Surveys, 2024.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information pro-
cessing systems, 33:19620–19631, 2020.

Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun. A unified energy-based
framework for unsupervised learning. In Artificial Intelligence and Statistics, pp. 371–379.
PMLR, 2007.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Yu Song and Donglin Wang. Learning on graphs with out-of-distribution nodes. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1635–1645,
2022.

Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann.
Graph posterior network: Bayesian predictive uncertainty for node classification. Advances in
Neural Information Processing Systems, 34:18033–18048, 2021.

Senzhang Wang, Jun Yin, Chaozhuo Li, Xing Xie, and Jianxin Wang. V-infor: a robust graph neural
networks explainer for structurally corrupted graphs. Advances in Neural Information Processing
Systems, 36, 2024.

Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan He. Gif: A general
graph unlearning strategy via influence function. In Proceedings of the ACM Web Conference
2023, pp. 651–661, 2023a.

Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
for graph neural networks. In International Conference on Learning Representations, 2023b.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Shenzhi Yang, Bin Liang, An Liu, Lin Gui, Xingkai Yao, and Xiaofang Zhang. Bounded and
uniform energy-based out-of-distribution detection for graphs. In Proceedings of the 41st Inter-
national Conference on Machine Learning, 2024.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):
5782–5799, 2022.

Jiaxing Zhang, Dongsheng Luo, and Hua Wei. Mixupexplainer: Generalizing explanations for graph
neural networks with data augmentation. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 3286–3296, 2023.

Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. Uncertainty aware semi-supervised learning
on graph data. Advances in Neural Information Processing Systems, 33:12827–12836, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

A.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017) have become fun-
damental tools for modeling graph-structured data and are widely applied to tasks such as node
classification, graph classification, and link prediction. Recent work has explored improving GNN
robustness through graph denoising and purification (Li et al., 2024; Lee & Park, 2025), which
mitigate the impact of noise, adversarial perturbations, and out-of-distribution (OOD) instances.

A.2 EXPLAINABILITY IN GRAPH NEURAL NETWORKS

Explainable AI models in the graph domain focus on identifying substructures that significantly im-
pact outputs from trained models. Primarily, GNNExplainer (Ying et al., 2019), a pioneering study
in this field, proposes a mask-based method to find important subgraphs that maximize the mutual
information with the predictive output. Furthermore, PGExplainer (Luo et al., 2020) advances this
concept by parameterizing explainers in a more generalized setting, approximating multiple impor-
tant subgraphs for various instances using a single explainer. Additionally, SubgraphX (Yuan et al.,
2021) employs Monte Carlo Tree Search to identify important subgraphs with the highest Shapley
value.

While various state-of-the-art explanation methods contribute to generating high-quality explana-
tions, another line of research questions have emerged regarding their generalization and robust-
ness. MixupExplainer (Zhang et al., 2023) and ProxyExplainer (Chen et al., 2024) address the issue
that explanatory subgraphs often suffer from a distribution shift relative to the input graphs, due
to differences in size or structural properties. Since a pretrained GNN model cannot properly pro-
cess such distribution-shifted graphs, the training of the explainer itself becomes problematic. To
mitigate this problem, MixupExplainer mixes input graphs with label-irrelevant graphs, whereas
ProxyExplainer employs a VGAE (Kipf & Welling, 2016) encoder to enforce in-distribution expla-
nations. In a different approach, HINT-G (Jung et al., 2025) leverages influence functions (Bae et al.,
2022; Wu et al., 2023a) to trace how training nodes affect the prediction of a target node, providing
explanations grounded in influence rather than subgraph generation.

Despite significant advancements in explainability, many existing methods often overlook the impact
of OOD nodes and edges that can arise within the input graph. V-InFoR (Wang et al., 2024),
unlike prior works, focuses on designing a robust explainer for structurally corrupted graphs. It
leverages variational inference to learn robust graph representations in order to address structural
corruption. However, its robustness mainly targets structure-level OOD and does not extend to other
types of corruption, such as feature noise. In addition, since it is originally developed for a graph
classification task, its applicability to node-level scenarios such as node injection remains limited.

Different Setting Compared to Existing Methods: Most existing explanation methods implicitly
assume that the explainer is trained on the same in-distribution graphs as the GNN model. However,
real-world graphs are inherently dynamic, continuously evolving through the addition of new nodes
and edges. These dynamics naturally introduce out-of-distribution (OOD) components, which exist-
ing explainers are not designed to handle. This underscores the necessity of developing explanation
methods that are explicitly designed for graphs with newly added OOD nodes or edges.

A.3 NODE-LEVEL OUT-OF-DISTRIBUTION DETECTION

Node-level OOD detection seeks to distinguish nodes that have a distribution different from the
In-Distribution (ID) training data. One popular approach is to train a model for OOD scoring.
GPN (Stadler et al., 2021) leverages the Bayesian posterior to train GNNs for uncertainty estima-
tion. OODGAT (Song & Wang, 2022) incorporates entropy regularization alongside GNN training
for classification, enabling the distinction between ID and OOD nodes. GraphDE (Li et al., 2022)
employs variational inference to identify distributional differences between ID and OOD data. How-
ever, these methods have limitations when it comes to scoring OOD nodes based on a pre-trained
GNN.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alternatively, post-hoc OOD detection methods can be applied on a pre-trained classifier. Maha-
lanobis distance (Lee et al., 2018) utilizes the latent space of a pre-trained classifier to measure
the distance between test samples and known in-distribution data, while Kernel Density Estima-
tion (Zhao et al., 2020) models the density of in-distribution samples in the latent space to assess
the likelihood of test samples belonging to the same distribution. However, these methods require
access to the ID data distribution, which may not always be feasible.

In contrast, logit-based scoring methods such as Maximum Softmax Probability (MSP) (Hendrycks
& Gimpel, 2017) and Energy Score (Liu et al., 2020; Wu et al., 2023b) are lightweight and do not
require retraining. In particular, prior studies (Wu et al., 2023b; Yang et al., 2024) have shown that
energy-based scoring is a simple yet effective baseline for OOD detection across domains, making it
especially appealing in settings where the graph to be explained may contain unknown distributions.

B EXTENDED THEORETICAL ANALYSIS

Setup. Let E(0) = [e
(0)
1 , . . . , e

(0)
N]⊤ be the initial node energies computed from the fixed GNN f

(Eq. 1). WEP (Eq. 3) updates

E(k) = 1
2

(
E(k−1) +A∗

tD
−1E(k−1)

)
= Pt E

(k−1) = Pk
tE

(0), Pt :=
1
2

(
I+A∗

tD
−1

)
,

where A∗
t ∈RN×N

≥0 is the explainer’s weighted adjacency for target t, and D = diag(d1, . . . , dN) is
the degree matrix of the explanation graph used in Eq. 3. Let Aexplain denote the (binary) adjacency
of Gexplain.

Assumptions.

• A1 (Support & boundedness). 0 ≤ (A∗
t)ij ≤ (Aexplain)ij element-wise.

• A2 (Energy gap). There exist aID≤ bID < aOOD≤ bOOD with δ := aOOD−bID > 0 such
that e(0)i ∈ [aID, bID] for ID nodes and e

(0)
j ∈ [aOOD, bOOD] for OOD nodes (consistent with

Eq. 1 used as an OOD score).
• A3 (Fixed degree scaling). D = diag(d1, . . . , dN) is formed from Gexplain and does not

depend on A∗
t (as in Eq. 3).

We first establish that the WEP operator Pt is lazy and column-substochastic.

Lemma 5.1 (Column-substochastic laziness). Pt satisfies
∑

i(Pt)ij ≤ 1 for every j, with equal-
ity iff

∑
i(A

∗
t)ij = dj , and (Pt)jj ≥ 1

2 for all j. Hence P⊤
t is aperiodic and row-substochastic; on

any closed communicating class with no leak (i.e., equality in the column sums), it is row-stochastic.

Proof. By definition,∑
i

(Pt)ij =
1
2

(∑
i

δij +
∑
i

(A∗
tD

−1)ij

)
= 1

2

(
1 + 1

dj

∑
i

(A∗
t)ij

)
≤ 1,

where the inequality uses A1 and that dj =
∑

i(Aexplain)ij . Also (Pt)jj = 1
2

(
1 + (A∗

tD
−1)jj

)
=

1
2

(
1 +

(A∗
t)jj
dj

)
≥ 1

2 . The diagonal self-loop probability ≥ 1
2 implies aperiodicity for P⊤

t . Equality
in the column-sum holds iff

∑
i(A

∗
t)ij = dj .

Based on the P⊤
t above, Diffusion representation could be defined as:

Lemma B.1 (Diffusion representation). For all k ≥ 1, E(k) = Pk
tE

(0) and, in particular,

e
(k)
t =

∑
i

(Pk
t)ti e

(0)
i .

Proof. Unroll E(k) = PtE
(k−1) to obtain E(k) = Pk

tE
(0). Taking the t-th coordinate yields the

identity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Theorem 5.2 (Energy–OOD linkage). Define the unnormalized OOD visitation ϕ
(k)
OOD(t) :=∑

j∈O(P
k
t)tj and the retained mass s(k)t :=

∑
i(P

k
t)ti. For all k ≥ 1,

aID s
(k)
t + δ ϕ

(k)
OOD(t) ≤ e

(k)
t ≤ bID s

(k)
t +

(
bOOD − bID

)
ϕ
(k)
OOD(t).

Equivalently, whenever s(k)t > 0, with the conditional OOD visitation π̂
(k)
OOD(t) := ϕ

(k)
OOD(t)/s

(k)
t ,

aID + δ π̂
(k)
OOD(t) ≤ e

(k)
t

s
(k)
t

≤ bID +
(
bOOD − bID

)
π̂
(k)
OOD(t).

Proof. By Lemma B.1,
e
(k)
t =

∑
i∈I

(Pk
t)ti e

(0)
i +

∑
j∈O

(Pk
t)tj e

(0)
j .

(1) Bound the ID part. For all i ∈ I, aID ≤ e
(0)
i ≤ bID, hence

aID
∑
i∈I

(Pk
t)ti ≤

∑
i∈I

(Pk
t)tie

(0)
i ≤ bID

∑
i∈I

(Pk
t)ti.

Since
∑

i∈I(P
k
t)ti = s

(k)
t − ϕ

(k)
OOD(t), this becomes

aID
(
s
(k)
t − ϕ

(k)
OOD(t)

)
≤

∑
i∈I

(Pk
t)tie

(0)
i ≤ bID

(
s
(k)
t − ϕ

(k)
OOD(t)

)
.

(2) Bound the OOD part. For all j ∈ O, aOOD ≤ e
(0)
j ≤ bOOD, hence

aOOD ϕ
(k)
OOD(t) ≤

∑
j∈O

(Pk
t)tje

(0)
j ≤ bOOD ϕ

(k)
OOD(t).

(3) Add the bounds. Summing yields

aID
(
s
(k)
t − ϕ

(k)
OOD

)
+ aOODϕ

(k)
OOD ≤ e

(k)
t ≤ bID

(
s
(k)
t − ϕ

(k)
OOD

)
+ bOODϕ

(k)
OOD,

where we abbreviate ϕ
(k)
OOD = ϕ

(k)
OOD(t). Rearranging and substituting aOOD = bID + δ gives the

first display; dividing by s
(k)
t (when s

(k)
t > 0) yields the conditional statement.

Theorem 5.2 above yields an explicit upper bound on the OOD visitation in terms of the propagated
energy. Rearranging the lower bound gives

ϕ
(k)
OOD(t) ≤ e

(k)
t − aID s

(k)
t

δ
. (6)

Consequently, if during training we enforce e
(k)
t ≤ τ for some threshold τ > 0, then

ϕ
(k)
OOD(t) ≤ τ − aID s

(k)
t

δ
. (7)

For fixed retained mass s(k)t and energy gap δ, the WEP regularizer Lene directly upper-bounds the
total probability mass of k-step walks from t that ever visit OOD nodes. In this sense, Lene is a
quantitative surrogate for constraining path-based OOD exposure, which is empirically reflected in
the reduced OOD edge precision reported in Section 7.

So far we have established how Lene controls robustness to OOD nodes. We next clarify how the
cross-entropy term in Eq. 4 formalizes faithfulness of the explanation. Let pt := f(Gexplain, t) and
qt := f(G∗

t , t) denote the predictive class distributions (after softmax) of the pre-trained GNN on
the full graph Gexplain and on the explanatory subgraph G∗

t , respectively. The cross-entropy loss can
be written as

LCE = CE(pt, qt) = H(pt) + KL
(
pt ∥ qt

)
, (8)

where H(·) is the Shannon entropy and KL(·∥·) is the Kullback–Leibler divergence. Since pt is
fixed by the pre-trained GNN and the input graph, H(pt) is constant with respect to the explainer

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

parameters, so minimizing LCE is equivalent to minimizing KL
(
pt∥qt

)
. Thus, the cross-entropy

term encourages the explanatory subgraph to preserve the original predictive distribution on the
target node up to small KL divergence, providing an information-theoretic notion of faithfulness
that complements the robustness control offered by Lene. Together, the composite objective in Eq. 4
couples a surrogate control of OOD exposure with a distributional matching term for faithfulness.

In summary, under A1–A3, WEP forms a lazy substochastic diffusion whose propagated energy
equals a k-step survival-weighted average of initial energies (Lemmas 5.1–B.1). Moreover, the
target energy is tightly bounded by OOD visitation, so minimizing Lene suppresses OOD exposure
(Theorem 5.2).

C EXPERIMENTAL SETTINGS

C.1 EVALUATION METRICS

We evaluated it using Fidelity Amara et al. (2022); Yuan et al. (2022), a commonly used metric in the
XAI field. Fidelity (Fid) is a metric that evaluates the quality of an explanation by measuring how
well the explanatory subgraph supports the model’s prediction. It consists of two complementary
components: Fid+ and Fid−. A higher Fid+ indicates that the explanatory subgraph contains
sufficient information to retain the model’s prediction for the class ŷt. In contrast, a lower Fid−
suggests that the explanatory subgraph contains necessary information for the model’s prediction,
meaning that removing the explanatory subgraph significantly impacts the prediction. Fidelities
are defined as follows:

Fid+ = f(Gexplain,, t)[ŷt] − f((Gexplain − G∗
t), t)[ŷt], (9)

Fid− = f(Gexplain, t)[ŷt] − f(G∗
t , t)[ŷt], (10)

where ŷt = argmaxc f(Gexplain, t)[c]. f(Gexplain, t)[ŷt] denotes the predicted probability assigned by
the pre-trained GNN f to class ŷt on the target node vt. The explanatory subgraph G∗

t is generated by
the explainer for vt within Gexplain. Since the adjacency matrix of G∗

t is continuous, it is discretized
via top-k or top-p sampling as described above. Gexplain−G∗

t denotes the graph obtained by removing
all edges of the explanatory subgraph G∗

t from the input graph Gexplain.

C.2 GNN TRAINING

Table 4: GNN model and training parameters
Dataset Synthetic Cora, Citeseer

Layer 3 2
Hidden dimension 20 16
Epochs 1000 200
Learning rate 0.001 0.01
Weight decay 5× 10−3 5× 10−4

Dropout 0 0.05
Embedding concat Yes No

Table 4 shows the hyperparameters when we train the GNN model. We utilize the Adam optimizer.
The term Embedding concat refers to constructing node representations by concatenating the inter-
mediate embeddings from all GNN layers together. For synthetic datasets, we adopt an 8:1:1 split
ratio for training, validation, and test sets, respectively. For real-world datasets, we follow the stan-
dard semi-supervised setting. The GNN model is trained on graphs where all OOD nodes have been
removed. For a given dataset, the same GNN model is explained regardless of the OOD level.

In Table 5, the OOD level corresponds to the number of structure-level OOD nodes for the synthetic
datasets, While for Cora and Citeseer, it refers to the ratio of feature-level OOD nodes. For all
experiments, we ensure that explanations are generated only for nodes whose predictions by the
GNN remained correct after OOD nodes were added.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

OOD Level BA-Shapes BA-Comm. Tree-Cycle Tree-Grid Cora Citeseer

0 0.986 0.786 0.977 0.984 0.766 0.680
10 0.957 0.793 0.943 0.976 0.763 0.677
20 0.943 0.764 0.966 0.976 0.766 0.673
30 0.886 0.771 0.955 0.952 0.763 0.669

Unseen-label OOD Cora Citeseer

without 0.746 0.784
with 0.741 0.780

Table 5: GNN test accuracy under different OOD settings.

C.3 BASELINE TRAINING

For synthetic datasets, we applied the same hyperparameter settings as reported in the official im-
plementations of each baseline explainer. For real-world datasets, we tune hyperparameters within
the following search space.

Table 6: Hyperparameter search ranges for baselines
Method Learning rate Epochs Size Entropy Others

GNNExplainer [0.01, 0.1] [10, 100] [0.001, 0.01] [0.1, 1.0]
PGExplainer [0.001, 0.01] [10, 100] [0.001, 1.0] [10−4, 1.0]
MixupExplainer [0.001, 0.01] [10, 100] [0.001, 1.0] [10−4, 1.0]
ProxyExplainer [0.001, 0.01] [10, 100] [0.001, 1.0] [10−4, 1.0]

V-InFoR [0.001, 0.01] [10, 100]
β ∈ [0.1, 1.0], π ∈ [0.1, 1.0],
τ ∈ [0.1, 0.5]

Table 6 shows the hyperparameter search space of the baselines. Here, Size and Entropy correspond
to the ℓ1 size regularizer and the entropy term used to control the explanation mask, respectively.
V-InFoR involves different hyperparameters, which are listed separately. HINT-G is a training-free
model, and thus, no additional hyperparameter search is conducted.

C.4 OREXPLAINER TRAINING

Table 7 summarizes the hyperparameter settings used for the experiments of ORExplainer. For
the synthetic datasets, the learning rate, number of epochs, α, and β were set according to the
PGExplainer implementation1, since ORExplainer employs an MLP architecture similar to that of
PGExplainer, which ensures a fair comparison with other mask-based methods.

Table 7: Hyperparameter search ranges (in brackets) and the selected values (in bold) for OREx-
plainer across different datasets and OOD types.

OOD type Dataset Learning rate Epochs α β γ

Structural

BA-Shapes 0.003 10 0.05 1.0 [0.1, 5.0], 5.0
BA-Community 0.003 20 0.05 1.0 [0.1, 5.0], 5.0
Tree-Cycle 0.003 20 0.1 1.0 [0.1, 5.0], 5.0
Tree-Grid 0.003 30 1.0 1.0 [0.1, 10.0], 10.0

Featural Cora [0.001, 0.1], 0.005 [10, 100], 20 [0.1, 1.0], 1.0 [10−4, 0.1], 5× 10−4 [10−3, 0.5], 0.1
Citeseer [0.001, 0.1], 0.005 [10, 100], 20 [0.1, 1.0], 1.0 [10−4, 0.1], 5× 10−4 [10−3, 0.5], 0.1

Unseen Cora [0.001, 0.1], 0.005 [10, 100], 20 [0.1, 1.0], 1.0 [10−4, 0.1], 5× 10−4 [10−3, 0.5], 0.1
Citeseer [0.001, 0.1], 0.005 [10, 100], 20 [0.1, 1.0], 1.0 [10−4, 0.1], 5× 10−4 [10−3, 0.5], 0.05

1https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks

17

https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D EXTENDED EXPERIMENTAL RESULTS

Table 8, Table 9, and Table 10 present additional results under varying levels of structure-level,
feature-level, and unseen-label OOD settings, respectively. Across all scenarios, ORExplainer con-
sistently outperforms baselines in terms of both AUC and fidelity, while also selecting fewer OOD
edges. These results demonstrate that ORExplainer produces more reliable explanations by focusing
on in-distribution structure even under different OOD levels.

Table 8: Performance comparison on synthetic datasets (BA-Shapes, BA-Community, Tree-Cycle,
Tree-Grid) with different numbers of OOD nodes (0, 10, 20, 30). Reported are the mean ± standard
deviation for AUC and OOD ratio.

BA-Shapes BA-Community Tree-Cycle Tree-Grid
OOD Method AUC (↑) OOD (↓) AUC (↑) OOD (↓) AUC (↑) OOD (↓) AUC (↑) OOD (↓)

0

GNNExplainer 0.785 ± 0.010 0.000 ± 0.000 0.900 ± 0.004 0.000 ± 0.000 0.559 ± 0.010 0.000 ± 0.000 0.661 ± 0.002 0.000 ± 0.000
PGExplainer 0.956 ± 0.016 0.000 ± 0.000 0.906 ± 0.020 0.000 ± 0.000 0.896 ± 0.009 0.000 ± 0.000 0.900 ± 0.030 0.000 ± 0.000
MixupExplainer 0.913 ± 0.093 0.000 ± 0.000 0.907 ± 0.016 0.000 ± 0.000 0.909 ± 0.004 0.000 ± 0.000 0.900 ± 0.030 0.000 ± 0.000
ProxyExplainer 0.961 ± 0.013 0.000 ± 0.000 0.906 ± 0.020 0.000 ± 0.000 0.906 ± 0.004 0.000 ± 0.000 0.899 ± 0.030 0.000 ± 0.000
V-InFoR 0.502 ± 0.017 0.000 ± 0.000 0.550 ± 0.035 0.000 ± 0.000 0.514 ± 0.020 0.000 ± 0.000 0.492 ± 0.010 0.000 ± 0.000
HINT-G 0.910 ± 0.000 0.000 ± 0.000 0.804 ± 0.000 0.000 ± 0.000 0.976 ± 0.000 0.000 ± 0.000 0.819 ± 0.000 0.000 ± 0.000
ORExplainer 0.999 ± 0.000 0.000 ± 0.000 0.995 ± 0.000 0.000 ± 0.000 0.950 ± 0.027 0.000 ± 0.000 0.990 ± 0.000 0.000 ± 0.000

10

GNNExplainer 0.755 ± 0.012 0.384 ± 0.014 0.911 ± 0.004 0.014 ± 0.003 0.583 ± 0.014 0.068 ± 0.011 0.707 ± 0.001 0.024 ± 0.001
PGExplainer 0.730 ± 0.062 0.151 ± 0.031 0.853 ± 0.028 0.035 ± 0.008 0.877 ± 0.013 0.019 ± 0.006 0.899 ± 0.014 0.006 ± 0.002
MixupExplainer 0.766 ± 0.055 0.170 ± 0.013 0.858 ± 0.024 0.039 ± 0.006 0.884 ± 0.005 0.018 ± 0.001 0.897 ± 0.013 0.007 ± 0.002
ProxyExplainer 0.732 ± 0.057 0.148 ± 0.029 0.851 ± 0.031 0.037 ± 0.008 0.884 ± 0.006 0.018 ± 0.001 0.897 ± 0.014 0.006 ± 0.002
V-InFoR 0.501 ± 0.009 0.034 ± 0.004 0.554 ± 0.044 0.040 ± 0.014 0.515 ± 0.027 0.066 ± 0.009 0.498 ± 0.017 0.071 ± 0.004
HINT-G 0.841 ± 0.000 0.134 ± 0.000 0.788 ± 0.000 0.080 ± 0.000 0.911 ± 0.000 0.060 ± 0.000 0.620 ± 0.000 0.097 ± 0.000
ORExplainer 0.995 ± 0.000 0.017 ± 0.003 0.993 ± 0.000 0.000 ± 0.000 0.954 ± 0.001 0.011 ± 0.000 0.962 ± 0.003 0.007 ± 0.000

20

GNNExplainer 0.680 ± 0.012 0.607 ± 0.008 0.876 ± 0.006 0.040 ± 0.006 0.602 ± 0.007 0.098 ± 0.007 0.728 ± 0.001 0.039 ± 0.001
PGExplainer 0.490 ± 0.085 0.197 ± 0.074 0.777 ± 0.030 0.064 ± 0.017 0.870 ± 0.011 0.041 ± 0.010 0.888 ± 0.010 0.015 ± 0.003
MixupExplainer 0.509 ± 0.079 0.215 ± 0.077 0.770 ± 0.029 0.072 ± 0.013 0.877 ± 0.006 0.035 ± 0.003 0.887 ± 0.010 0.016 ± 0.002
ProxyExplainer 0.493 ± 0.085 0.197 ± 0.073 0.774 ± 0.033 0.065 ± 0.018 0.877 ± 0.005 0.034 ± 0.003 0.887 ± 0.010 0.015 ± 0.003
V-InFoR 0.497 ± 0.014 0.068 ± 0.014 0.565 ± 0.034 0.072 ± 0.030 0.511 ± 0.021 0.124 ± 0.008 0.502 ± 0.016 0.123 ± 0.006
HINT-G 0.791 ± 0.000 0.131 ± 0.000 0.759 ± 0.000 0.091 ± 0.000 0.885 ± 0.000 0.103 ± 0.000 0.617 ± 0.000 0.135 ± 0.000
ORExplainer 0.989 ± 0.000 0.018 ± 0.000 0.989 ± 0.000 0.005 ± 0.001 0.947 ± 0.005 0.015 ± 0.000 0.934 ± 0.002 0.011 ± 0.001

30

GNNExplainer 0.646 ± 0.011 0.682 ± 0.010 0.823 ± 0.005 0.077 ± 0.006 0.620 ± 0.013 0.087 ± 0.010 0.728 ± 0.001 0.055 ± 0.001
PGExplainer 0.444 ± 0.077 0.319 ± 0.102 0.622 ± 0.035 0.086 ± 0.011 0.852 ± 0.006 0.041 ± 0.002 0.887 ± 0.009 0.021 ± 0.005
MixupExplainer 0.457 ± 0.079 0.319 ± 0.102 0.622 ± 0.035 0.086 ± 0.011 0.852 ± 0.006 0.041 ± 0.002 0.886 ± 0.009 0.021 ± 0.005
ProxyExplainer 0.447 ± 0.080 0.304 ± 0.104 0.659 ± 0.047 0.069 ± 0.008 0.852 ± 0.007 0.042 ± 0.003 0.886 ± 0.009 0.019 ± 0.004
V-InFoR 0.519 ± 0.023 0.080 ± 0.021 0.559 ± 0.031 0.099 ± 0.033 0.496 ± 0.018 0.129 ± 0.023 0.502 ± 0.012 0.148 ± 0.008
HINT-G 0.712 ± 0.000 0.224 ± 0.000 0.738 ± 0.000 0.095 ± 0.000 0.882 ± 0.000 0.104 ± 0.000 0.614 ± 0.000 0.172 ± 0.000
ORExplainer 0.978 ± 0.000 0.054 ± 0.013 0.982 ± 0.003 0.019 ± 0.004 0.934 ± 0.001 0.034 ± 0.000 0.906 ± 0.004 0.015 ± 0.002

Table 9: Performance comparison across different OOD ratios (0%, 10%, 20%, 30%) on Cora and
Citeseer. Reported are mean ± standard deviation for Fidelity (Fid+, Fid−) and OOD ratio.

Cora Citeseer
OOD Ratio Method Fid+ (↑) Fid− (↓) OOD (↓) Fid+ (↑) Fid− (↓) OOD (↓)

0%

GNNExplainer 0.010 ± 0.003 0.129 ± 0.006 0.000 ± 0.000 -0.005 ± 0.001 0.036 ± 0.002 0.000 ± 0.000
PGExplainer 0.018 ± 0.001 0.122 ± 0.002 0.000 ± 0.000 0.002 ± 0.001 0.035 ± 0.001 0.000 ± 0.000
MixupExplainer 0.018 ± 0.001 0.123 ± 0.001 0.000 ± 0.000 0.002 ± 0.001 0.034 ± 0.001 0.000 ± 0.000
ProxyExplainer 0.019 ± 0.002 0.121 ± 0.002 0.000 ± 0.000 0.002 ± 0.001 0.036 ± 0.001 0.000 ± 0.000
V-InFoR 0.012 ± 0.003 0.114 ± 0.009 0.000 ± 0.000 0.005 ± 0.003 0.029 ± 0.005 0.000 ± 0.000
HINT-G 0.007 ± 0.000 0.144 ± 0.000 0.000 ± 0.000 0.002 ± 0.000 0.028 ± 0.000 0.000 ± 0.000
ORExplainer 0.038 ± 0.001 0.103 ± 0.003 0.000 ± 0.000 0.016 ± 0.002 0.024 ± 0.002 0.000 ± 0.000

10%

GNNExplainer 0.021 ± 0.002 0.117 ± 0.002 0.152 ± 0.006 -0.006 ± 0.001 0.031 ± 0.001 0.197 ± 0.005
PGExplainer 0.021 ± 0.001 0.114 ± 0.002 0.150 ± 0.011 0.003 ± 0.001 0.029 ± 0.002 0.165 ± 0.041
MixupExplainer 0.020 ± 0.001 0.118 ± 0.002 0.138 ± 0.007 0.004 ± 0.000 0.028 ± 0.001 0.147 ± 0.056
ProxyExplainer 0.018 ± 0.001 0.117 ± 0.001 0.201 ± 0.010 0.005 ± 0.001 0.026 ± 0.002 0.121 ± 0.033
V-InFoR 0.012 ± 0.003 0.116 ± 0.004 0.236 ± 0.022 0.005 ± 0.002 0.025 ± 0.004 0.125 ± 0.024
HINT-G 0.011 ± 0.000 0.166 ± 0.000 0.603 ± 0.000 0.010 ± 0.000 0.029 ± 0.000 0.372 ± 0.000
ORExplainer 0.038 ± 0.001 0.102 ± 0.002 0.037 ± 0.001 0.018 ± 0.001 0.016 ± 0.002 0.005 ± 0.000

20%

GNNExplainer 0.024 ± 0.004 0.104 ± 0.004 0.206 ± 0.005 -0.006 ± 0.001 0.026 ± 0.002 0.287 ± 0.011
PGExplainer 0.027 ± 0.000 0.103 ± 0.001 0.191 ± 0.001 0.002 ± 0.001 0.025 ± 0.001 0.231 ± 0.033
MixupExplainer 0.025 ± 0.001 0.106 ± 0.001 0.178 ± 0.003 0.001 ± 0.001 0.026 ± 0.001 0.272 ± 0.003
ProxyExplainer 0.022 ± 0.002 0.104 ± 0.003 0.247 ± 0.013 0.006 ± 0.002 0.022 ± 0.003 0.161 ± 0.022
V-InFoR 0.010 ± 0.004 0.111 ± 0.006 0.331 ± 0.010 0.005 ± 0.002 0.021 ± 0.003 0.230 ± 0.017
HINT-G 0.019 ± 0.000 0.190 ± 0.000 0.727 ± 0.000 0.008 ± 0.000 0.025 ± 0.000 0.540 ± 0.000
ORExplainer 0.040 ± 0.002 0.097 ± 0.001 0.034 ± 0.003 0.019 ± 0.001 0.011 ± 0.001 0.007 ± 0.001

30%

GNNExplainer 0.034 ± 0.003 0.089 ± 0.003 0.332 ± 0.004 -0.006 ± 0.001 0.024 ± 0.001 0.422 ± 0.010
PGExplainer 0.022 ± 0.001 0.101 ± 0.001 0.339 ± 0.011 0.003 ± 0.001 0.020 ± 0.001 0.347 ± 0.038
MixupExplainer 0.025 ± 0.001 0.101 ± 0.002 0.344 ± 0.003 0.003 ± 0.001 0.020 ± 0.000 0.348 ± 0.029
ProxyExplainer 0.020 ± 0.001 0.096 ± 0.002 0.381 ± 0.005 0.005 ± 0.002 0.018 ± 0.002 0.229 ± 0.007
V-InFoR 0.010 ± 0.003 0.111 ± 0.011 0.435 ± 0.007 0.004 ± 0.000 0.018 ± 0.004 0.315 ± 0.027
HINT-G 0.010 ± 0.000 0.195 ± 0.000 0.811 ± 0.000 0.012 ± 0.000 0.046 ± 0.000 0.576 ± 0.000
ORExplainer 0.037 ± 0.001 0.092 ± 0.002 0.030 ± 0.001 0.019 ± 0.001 0.005 ± 0.001 0.007 ± 0.000

D.1 RUNTIME ANALYSIS

The results in Table 11 are obtained on BA-Community with 30 structure-level OOD nodes and on
Citeseer with a 30% feature-level OOD ratio. The runtime is reported in seconds per node. Among

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison on Cora and Citeseer with and without unseen label nodes.
Reported are mean ± standard deviation for Fidelity (Fid+, Fid−) and OOD ratio across different
explainers.

Cora Citeseer
Method Fid+ (↑) Fid− (↓) OOD (↓) Fid+ (↑) Fid− (↓) OOD (↓)

witout unseen
label nodes

GNNExplainer 0.001 ± 0.002 0.048 ± 0.001 0.000 ± 0.000 -0.003 ± 0.002 0.047 ± 0.002 0.000 ± 0.000
PGExplainer 0.007 ± 0.001 0.034 ± 0.001 0.000 ± 0.000 0.018 ± 0.001 0.031 ± 0.003 0.000 ± 0.000
MixupExplainer 0.006 ± 0.001 0.035 ± 0.000 0.000 ± 0.000 0.010 ± 0.001 0.026 ± 0.002 0.000 ± 0.000
ProxyExplainer 0.007 ± 0.001 0.037 ± 0.002 0.000 ± 0.000 0.009 ± 0.001 0.027 ± 0.001 0.000 ± 0.000
V-InFoR 0.001 ± 0.002 0.046 ± 0.003 0.000 ± 0.000 0.006 ± 0.003 0.040 ± 0.003 0.000 ± 0.000
HINT-G 0.003 ± 0.000 0.043 ± 0.000 0.000 ± 0.000 0.009 ± 0.000 0.047 ± 0.000 0.000 ± 0.000
ORExplainer 0.018 ± 0.002 0.034 ± 0.001 0.000 ± 0.000 0.023 ± 0.002 0.022 ± 0.002 0.000 ± 0.000

with unseen
label nodes

GNNExplainer 0.005 ± 0.001 0.040 ± 0.001 0.141 ± 0.006 -0.003 ± 0.002 0.038 ± 0.002 0.026 ± 0.003
PGExplainer 0.010 ± 0.001 0.031 ± 0.001 0.078 ± 0.003 0.009 ± 0.007 0.018 ± 0.002 0.007 ± 0.001
MixupExplainer 0.010 ± 0.001 0.032 ± 0.001 0.079 ± 0.003 0.010 ± 0.007 0.018 ± 0.002 0.005 ± 0.002
ProxyExplainer 0.010 ± 0.001 0.033 ± 0.001 0.074 ± 0.003 0.009 ± 0.007 0.019 ± 0.002 0.008 ± 0.003
V-InFoR 0.001 ± 0.001 0.039 ± 0.001 0.174 ± 0.004 0.005 ± 0.002 0.032 ± 0.006 0.033 ± 0.005
HINT-G -0.002 ± 0.000 0.059 ± 0.000 0.174 ± 0.007 0.005 ± 0.002 0.049 ± 0.000 0.008 ± 0.000
ORExplainer 0.020 ± 0.000 0.029 ± 0.000 0.062 ± 0.000 0.026 ± 0.000 0.016 ± 0.002 0.007 ± 0.001

Table 11: Runtime (in seconds) reported as mean ± standard deviation.
Method BA-Community Citeseer

GNNExplainer 1.676± 0.057 1.028± 0.032
PGExplainer 0.319± 0.025 0.247± 0.020
MixupExplainer 0.538± 0.013 0.409± 0.032
ProxyExplainer 4.595± 0.038 2.711± 0.118
V-InFoR 0.513± 0.025 0.436± 0.025
HINT-G 50.209± 2.686 1.240± 0.001
ORExplainer 0.360± 0.005 0.241± 2.591

all methods, PGExplainer shows the shortest training time due to its simple architecture. Mixup-
Explainer, ProxyExplainer, and V-InFoR incur additional overhead from data augmentation or the
use of VGAE, while HINT-G is significantly slower because it requires influence score calcula-
tion for each node. ORExplainer requires slightly more time than PGExplainer but remains faster
than the other baselines, demonstrating that the proposed WEP framework provides a clear runtime
advantage.

E LIMITATIONS

While ORExplainer demonstrates strong robustness across diverse OOD scenarios, several limita-
tions remain. First, since the proposed method relies on the energy scores derived from a pre-trained
GNN, its effectiveness is inherently bounded by the reliability of the underlying model. When the
pre-trained GNN suffers from severe distribution shifts that degrade its predictive performance, even
ID nodes may be mischaracterized, making WEP less effective. Second, our evaluation has been
limited to synthetic benchmarks and citation-style datasets; extending the analysis to more complex
graph settings, such as dynamic or heterogeneous graphs, is an important direction for future work.

19

	Introduction
	Related Work
	preliminaries
	Notation
	Post-hoc Explainers for Node Classification
	Energy-based OOD Scoring

	Our Proposed Method
	Robust Explanation for node classification
	Weighted Energy Propagation
	Explainer Loss

	Theoretical Analysis
	Experimental Set-up
	Dataset Construction
	Baselines
	Evaluation Metrics
	Implementation Details

	Experimental Results
	Research Question (RQ) 1: Quantitative Evaluation
	RQ 2: Is ORExplainer robust across various levels of OOD?
	RQ 3: Qualitative Analysis
	RQ 4: Hyperparameter Analysis

	Conclusion
	Reproducibility Statement
	Ethics Statement
	Extended Related Work
	Graph Neural Networks
	Explainability in Graph Neural Networks
	Node-level Out-of-Distribution Detection

	Extended Theoretical Analysis
	Experimental Settings
	Evaluation Metrics
	GNN Training
	Baseline Training
	ORExplainer Training

	Extended Experimental Results
	Runtime analysis

	Limitations

