

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OUT-OF-DISTRIBUTION ROBUST EXPLAINER FOR GRAPH NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are powerful tools for analyzing graph-structured data; however, their interpretability remains a challenge, leading to the growing use of eXplainable AI (XAI) methods. Most existing XAI models assume that GNNs are well-trained and that all nodes in the graph share similar data characteristics to those used during GNN training. In real-world applications, new nodes and edges are frequently added to the input graph during testing. This dynamic environment can introduce out-of-distribution (OOD) nodes, potentially undermining the reliability of XAI models. To address this issue, we propose an OOD Robust Explainer (OREExplainer), a post-hoc, instance-level explanation model specifically designed to provide robust and reliable explanations in the presence of OOD nodes, noise, and outliers in graphs. OREExplainer incorporates Energy Scores to capture structural dependencies, allowing for prioritizing in-distribution nodes while reducing the impact of OOD nodes. We conduct experiments with varying types of OOD node inclusion. OREExplainer demonstrates superior robustness of generated explanations across synthetic and real-world datasets. Our code is available at <https://anonymous.4open.science/r/OREExplainer-C52C/>.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become essential for modeling graph-structured data in domains such as social networks, biology, and recommendation systems (Feng et al., 2023; Wu et al., 2022). As these models are increasingly used in critical applications (Longa et al., 2024; Yuan et al., 2022), their interpretability has attracted growing attention. To address this need, post-hoc instance-level explanation methods (Ying et al., 2019; Luo et al., 2020) aim to identify subgraphs most influential to predictions, and recent studies (Zhang et al., 2023; Chen et al., 2024) further improve their reliability in high-stakes domains.

While prior efforts have advanced our understanding of GNN decision-making, existing explanation methods often fail to align with real-world scenarios. Most approaches implicitly assume that the explainer model is trained on the same graph as the graph employed to train the underlying GNN model to be explained, an unrealistic setting when applied beyond controlled benchmarks. In practice, real-world graphs can evolve with the addition of new nodes and edges, such as newly published papers in citation networks or newly joined users in social networks. As a result, the graph available to the explainer model may differ from the one originally used to train the GNN. Since papers from entirely new domains or injected unexpected users may constitute out-of-distribution (OOD) instances, it is important to design explainer models that are robust to OOD scenarios.

To systematically analyze explanation robustness, we categorize OOD nodes into three representative types as shown in Figure 1. **Structure-level OOD** occurs when injected nodes alter the graph’s connectivity significantly. **Feature-level OOD** arises when new nodes exhibit feature patterns unseen during training. **Unseen-label OOD** refers to nodes belonging to classes absent from the training data. Together, these scenarios represent realistic challenges useful for evaluating the robustness of node-level explanations. For robust and trustworthy explanations, the explanatory subgraph should primarily rely on in-distribution (ID) evidence, while avoiding OOD instances that the pre-trained GNN cannot reliably process.

In response to these OOD scenarios, we introduce OREExplainer, a robust post-hoc explainer tailored for noisy graphs. OREExplainer extracts compact subgraphs that preserve predictive information

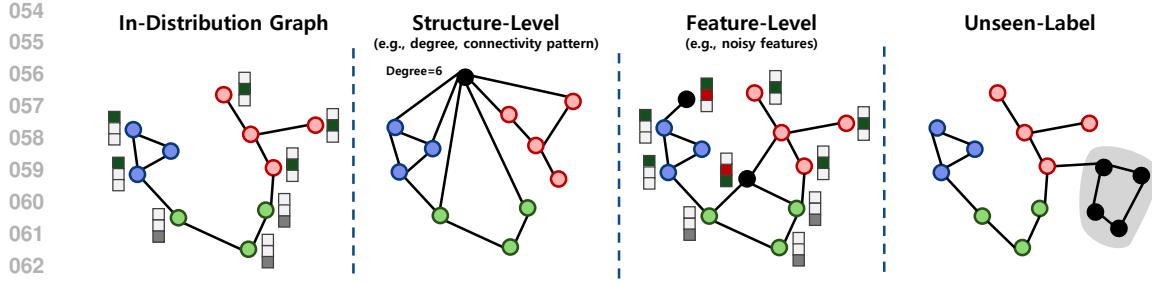


Figure 1: Illustration of different types of out-of-distribution (OOD) nodes in graphs, including structure-level, feature-level, and unseen-label OOD cases.

while reducing the impact of OOD nodes. It quantifies the model’s confidence in each node via energy scores (Ranzato et al., 2007; Liu et al., 2020) and introduces weighted energy propagation to capture relational structure, enabling robustness against various type of OOD interference. By focusing on ID nodes, OREExplainer provides reliable explanations even when ID and OOD nodes coexist, distinguishing it from prior explainers. Through extensive experiments on both synthetic benchmarks and real-world datasets under varying OOD conditions, we demonstrate that OREExplainer consistently delivers superior performance, underscoring its effectiveness in practical graph scenarios.

Contributions. We summarize our contributions:

- **Robust Explanation in Noisy Environments:** We propose OREExplainer, a post-hoc explainer designed for graphs with OOD or noisy nodes, providing robust explanations by suppressing unreliable information.
- **Analysis of Baseline Vulnerabilities:** We systematically evaluate existing explainers under OOD settings and show that many fail to provide accurate explanations, while OREExplainer addresses these vulnerabilities.
- **Energy-Based OOD Handling:** We introduce *Weighted Energy Propagation (WEP)*, which leverages energy scores to prioritize ID nodes and downweight OOD ones, enhancing robustness and reliability across diverse graph environments.

2 RELATED WORK

Explainable AI models in the graph domain focus on identifying substructures that significantly impact outputs from trained models. Primarily, GNNExplainer (Ying et al., 2019), a pioneering study in this field, proposes a mask-based method to find important subgraphs that maximize the mutual information with the predictive output. Furthermore, PGExplainer (Luo et al., 2020) advances this concept by parameterizing explainers in a more generalized setting, approximating multiple important subgraphs for various instances using a single explainer. Additionally, SubgraphX (Yuan et al., 2021) employs Monte Carlo Tree Search to identify important subgraphs with the highest Shapley value.

While various state-of-the-art explanation methods contribute to generating high-quality explanations, another line of research questions have emerged regarding their generalization and robustness. MixupExplainer (Zhang et al., 2023) and ProxyExplainer (Chen et al., 2024) address the issue that explanatory subgraphs often suffer from a distribution shift **relative to** the input graphs, due to differences in size or structural properties. Since a pretrained GNN model cannot properly process such distribution-shifted graphs, the training of the explainer itself becomes problematic. To mitigate this problem, MixupExplainer mixes input graphs with label-irrelevant graphs, whereas ProxyExplainer employs a VGAE (Kipf & Welling, 2016) encoder to enforce in-distribution explanations. In a different approach, HINT-G (Jung et al., 2025) leverages influence functions (Bae et al., 2022; Wu et al., 2023a) to trace how training nodes affect the prediction of a target node, providing explanations grounded in influence rather than subgraph generation.

Despite significant advancements in explainability, many existing methods often overlook the impact of OOD nodes and edges that can arise **within** the input graph. V-InFoR (Wang et al., 2024), unlike prior works, focuses on designing a robust explainer for structurally corrupted graphs. It leverages variational inference to learn robust graph representations in order to address structural

108 corruption. However, its robustness mainly targets structural OOD and does not extend to other
 109 types of corruption, such as feature noise. In addition, since it is originally developed for a graph
 110 classification task, its applicability to node-level scenarios such as node injection remains limited.
 111

112 **Different Setting Compared to Existing Methods:** Most existing explanation methods implicitly
 113 assume that the explainer is trained on the same in-distribution graphs as the GNN model. However,
 114 real-world graphs are inherently dynamic, continuously evolving through the addition of new nodes
 115 and edges. These dynamics naturally introduce OOD components, which existing explainers are
 116 not designed to handle. This underscores the necessity of developing explanation methods that are
 117 explicitly designed for graphs with newly added OOD nodes or edges. More extensive related work
 118 is provided in Appendix A.

119 3 PRELIMINARIES

120 3.1 NOTATION

122 Let $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ represent a graph, where $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ is the set of nodes with N being the
 123 number of nodes, and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges. Each node v_i has a feature vector $\mathbf{x}_i \in \mathbb{R}^D$ and
 124 a label $y_i \in \{1, 2, \dots, C\}$, where D is the feature dimension and C is the number of classes. The
 125 adjacency matrix is defined as $\mathbf{A} = [a_{ij}]_{N \times N}$, with $a_{ij} = 1$ if $(v_i, v_j) \in \mathcal{E}$ and $a_{ij} = 0$ otherwise.
 126

127 We denote the graph used to train GNN model f , as $\mathcal{G}_{\text{GNN}} = \{\mathcal{V}_{\text{GNN}}, \mathcal{E}_{\text{GNN}}\}$. The graph used for
 128 explanation, $\mathcal{G}_{\text{explain}} = \{\mathcal{V}_{\text{explain}}, \mathcal{E}_{\text{explain}}\}$, may contain additional OOD nodes and their edges, such
 129 that $\mathcal{V}_{\text{GNN}} \subseteq \mathcal{V}_{\text{explain}}$, $\mathcal{E}_{\text{GNN}} \subseteq \mathcal{E}_{\text{explain}}$.

130 **The model f is a node classifier**, where $f(\mathcal{G}, i)$ takes input as a graph \mathcal{G} and a target node index
 131 i . f consists of two parts: an encoder f_{enc} and a classifier f_{cls} . The encoder $f_{\text{enc}}(\mathcal{G})$ generates the
 132 embedding set $\mathcal{Z} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N\}$, where each $\mathbf{z}_i \in \mathbb{R}^H$ denotes the latent representation of
 133 node v_i , and H represents the dimensionality of the embedding vectors. The classifier f_{cls} generates a
 134 C -dimensional vector representing the class probabilities for each node. The predicted
 135 class label \hat{y}_i is then determined by applying the arg max function to the class probability vector:
 136 $\hat{y}_i = \arg \max(f_{\text{cls}}(\mathbf{z}_i))$.

137 3.2 POST-HOC EXPLAINERS FOR NODE CLASSIFICATION

139 Post-hoc explainers for node classification (Ying et al., 2019; Luo et al., 2020) aim to extract an
 140 explanatory subgraph \mathcal{G}_t^* that captures the most informative structure for a target node v_t . This is
 141 typically formulated by maximizing the mutual information between the model’s prediction \hat{y}_t and
 142 the candidate explanatory subgraph \mathcal{G}_t^* . Since direct optimization is infeasible, explanation methods
 143 introduce relaxations and parameterizations to learn edge masks.

144 GNNExplainer (Ying et al., 2019) directly assigns a soft edge mask a_{ij}^* for each edge (v_i, v_j) , op-
 145 timizing it to minimize the uncertainty of predictions conditioned on the selected subgraph. In
 146 contrast, PGExplainer (Luo et al., 2020) adopts a more general and scalable approach: it trains a
 147 Multi-Layer Perceptron (MLP) $g(\cdot)$ that receives edge embeddings $[\mathbf{z}_i; \mathbf{z}_j; \mathbf{z}_t]$ as inputs and out-
 148 puts mask logits ω_{ij} . These logits are reparameterized into probabilistic edge selections, enabling
 149 explanation across multiple nodes.

150 Both methods apply constraints to enhance interpretability and sparsity. Specifically, an L_1 penalty
 151 on the edge mask encourages compact subgraphs, while entropy regularization pushes mask values
 152 towards binary decisions.

154 3.3 ENERGY-BASED OOD SCORING

156 A softmax classifier can be equivalently expressed as an Energy-Based Model (EBM) (Ranzato
 157 et al., 2007; Grathwohl et al., 2020; Du & Mordatch, 2019). For a GNN model f , the free energy of
 158 a node v_i is defined as

$$159 E(\mathcal{G}, i; f) = -\log \sum_{c=1}^C \exp(f(\mathcal{G}, i)_{[c]}). \quad (1)$$

160 This formulation allows the energy to be directly computed from model logits without additional
 161 training, and it has been widely used as an OOD score. In this setting, ID nodes generally obtain
 162 lower energy values, whereas OOD nodes yield higher energy (Liu et al., 2020; Wu et al., 2023b).

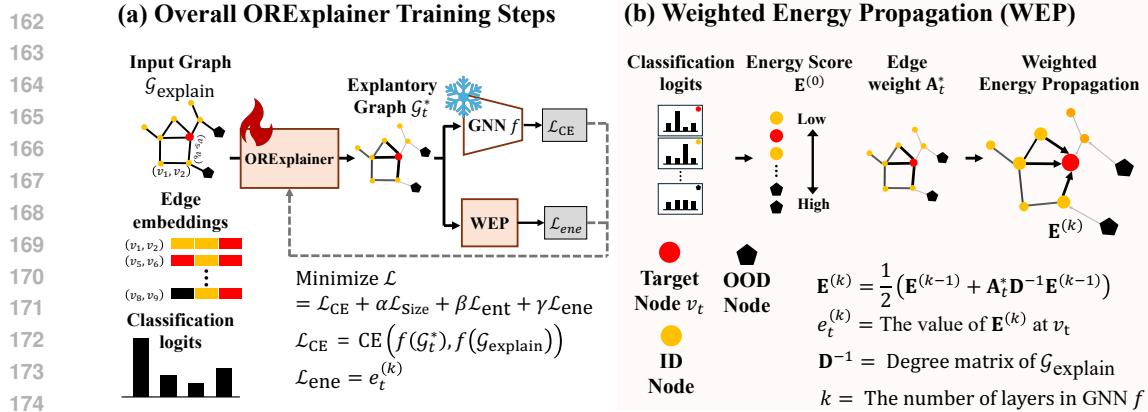


Figure 2: (a) illustrates the overall framework of OREExplainer and (b) details *Weighted Energy Propagation (WEP)* to reduce the effect of OOD nodes (edges).

4 OUR PROPOSED METHOD

We propose **Out-of-distribution Robust Explainer** termed as OREExplainer, a post-hoc explanation method for node classification in graphs where both ID and OOD nodes coexist at inference time, though not during training. OREExplainer generates explanations for ID target nodes whose predictions remain stable under OOD contamination. Under this setting, OREExplainer provides explanations that are faithful to the model’s decision while remaining robust to noise and the presence of OOD nodes. An overview of the training framework of OREExplainer is illustrated in Figure 2-(a). We next formalize the problem setting and describe how robust explanations are defined.

4.1 ROBUST EXPLANATION FOR NODE CLASSIFICATION

Given a pre-trained GNN f trained on \mathcal{G}_{GNN} and a target node v_t , the goal of an explanation model g is to identify a subgraph that accounts for the prediction of f on v_t , where $v_t \in \mathcal{V}_{\text{explain}}$. v_t is an ID node that is correctly classified. This condition suggests that the OOD components have a limited effect on the model’s decision-making process. Consequently, incorporating OOD nodes into the explanation subgraph can undermine its faithfulness.

Formally, the robust explainer g can be defined as

$$\mathcal{G}_t^* = g(f, \mathcal{G}_{\text{explain}}, t). \quad (2)$$

\mathcal{G}_t^* denotes the explanation subgraph and t is the index of the target node v_t . The key requirement is that \mathcal{G}_t^* should (i) preserve the predictive behavior of f for v_t , while (ii) minimizing the impact of OOD nodes that may affect v_t .

To instantiate g , we adopt a parameterized framework based on an MLP that takes edge embeddings as input. For each candidate edge (v_i, v_j) with respect to a target node v_t , the edge embedding is constructed by concatenating the node representations of v_i , v_j , and v_t . Unlike prior methods (Luo et al., 2020; Zhang et al., 2023) that only utilize the final-layer representation of the encoder f_{enc} , our model concatenates intermediate embeddings from all layers of f_{enc} together with the raw features of the nodes involved. This design provides the explainer with richer multi-scale information, enabling more expressive and reliable explanations. The MLP outputs a scalar logit ω_{ij} for each edge (v_i, v_j) , which is mapped via a sigmoid to a probabilistic edge mask $a_{ij}^* \in [0, 1]$, forming the weighted adjacency matrix $\mathbf{A}_t^* = [a_{ij}^*]$. During training, we employ the Gumbel-softmax reparameterization (Jang et al., 2017) for sampling.

We optimize a cross-entropy loss $\mathcal{L}_{\text{CE}} = \text{CE}(f(\mathcal{G}_t^*), f(\mathcal{G}_{\text{explain}}))$, ensuring fidelity between the explanatory subgraph and the original graph $\mathcal{G}_{\text{explain}}$. While \mathcal{L}_{CE} ensures fidelity and interpretability, it does not consider the reliability of explanations under OOD interference. To complement it, we introduce an energy-based scoring mechanism that accounts for OOD nodes.

216 4.2 WEIGHTED ENERGY PROPAGATION
217

218 To enhance robustness against various types of OOD interference, we design *Weighted Energy Propagation (WEP)*, which restricts the impact of nodes with unreliable prediction logits. The objective
219 is to construct explanations that emphasize information from ID nodes while suppressing contribu-
220 tions from OOD nodes.

221 Let $\mathbf{E}^{(0)} = [e_i^{(0)}]_{i=1}^N$ denote the initial energy scores of all nodes in $\mathcal{G}_{\text{explain}}$, where $e_i^{(0)} =$
222 $E(\mathcal{G}_{\text{explain}}, i; f)$ is obtained from the pre-trained GNN. Energy scores are then propagated through
223 the explanatory subgraph according to

$$224 \mathbf{E}^{(k)} = \frac{1}{2} \left(\mathbf{E}^{(k-1)} + \mathbf{A}_t^* \mathbf{D}^{-1} \mathbf{E}^{(k-1)} \right), \quad (3)$$

225 where \mathbf{A}_t^* is the weighted adjacency matrix produced by the explainer for target node v_t , and \mathbf{D}^{-1} is
226 the inverse degree matrix of $\mathcal{G}_{\text{explain}}$. This formulation ensures that each node retains part of its own
227 energy while also aggregating energy from its neighbors. From the perspective of the target node,
228 connections to low-energy (ID) neighbors reduce its propagated energy, whereas connections to
229 high-energy (OOD) neighbors increase it. By enforcing the target node's propagated energy score to
230 be minimized, the explainer is guided to prioritize information from ID neighbors while suppressing
231 that from OOD neighbors as shown in Figure 2-(b). This is achieved by introducing the robustness
232 term

$$233 \mathcal{L}_{\text{ene}} = e_t^{(k)}, \quad (4)$$

234 which penalizes highly propagated energy at the target node v_t . Importantly, because the energy
235 score quantifies how confidently the GNN processes each node, this mechanism is not restricted
236 to any single type of OOD (e.g., structural, featural, or unseen-label), but can adapt across diverse
237 scenarios. By explicitly aligning the explanation process with the GNN's own confidence, *WEP*
238 ensures that the resulting subgraph highlights informative ID neighbors while systematically sup-
239 pressing spurious OOD effects. This robustness term is then incorporated into the overall explainer
240 objective, described in the next section.

241 4.3 EXPLAINER LOSS
242

243 The explainer is trained with a composite objective that combines \mathcal{L}_{CE} , with our robustness term
244 from Weighted Energy Propagation. To prevent trivial solutions, we additionally impose an L_1 size
245 loss $\mathcal{L}_{\text{size}}$ and an entropy loss \mathcal{L}_{ent} from Ying et al. (2019); Luo et al. (2020) on the explanation mask
246 \mathbf{A}_t^* . The final objective is

$$247 \mathcal{L} = \mathcal{L}_{\text{CE}} + \alpha \mathcal{L}_{\text{size}} + \beta \mathcal{L}_{\text{ent}} + \gamma \mathcal{L}_{\text{ene}}, \quad (5)$$

248 where α, β, γ are hyperparameters controlling the trade-off among size, entropy, and robustness
249 terms.

250 5 THEORETICAL ANALYSIS
251

252 We formalize how *Weighted Energy Propagation (WEP)* in Eq. 3 induces a lazy *substochastic* diffu-
253 sion on the explanatory graph and why minimizing the propagated energy at the target, $\mathcal{L}_{\text{ene}} = e_t^{(k)}$,
254 suppresses OOD influence while preserving faithfulness under the composite loss in Eq. 4. We first
255 establish that the WEP operator $\mathbf{P}_t = \frac{1}{2}(\mathbf{I} + \mathbf{A}_t^* \mathbf{D}^{-1})$ is lazy and *column-substochastic*.

256 **Lemma 5.1** (Column-substochastic laziness). \mathbf{P}_t satisfies $\sum_i (\mathbf{P}_t)_{ij} \leq 1$ for every j , with equality
257 iff $\sum_i (\mathbf{A}_t^*)_{ij} = d_j$, and $(\mathbf{P}_t)_{jj} \geq \frac{1}{2}$ for all j . Hence \mathbf{P}_t^\top is aperiodic and row-substochastic; on
258 any closed communicating class with no leak (i.e., equality in the column sums), it is row-stochastic.

259 Its proof is provided in Appendix B. Having identified \mathbf{P}_t as a lazy *substochastic* diffusion, we
260 unroll the recurrence to obtain an explicit representation of propagated energy. We denote that, for
261 all $k \geq 1$, $\mathbf{E}^{(k)} = \mathbf{P}_t^k \mathbf{E}^{(0)}$. Intuitively, the propagated energy at a node after k steps equals a
262 survival-weighted average of initial energies over k -step walks emanating from that node. Assume
263 that there exist $a_{\text{ID}} \leq b_{\text{ID}} < a_{\text{OOD}} \leq b_{\text{OOD}}$ with $\delta := a_{\text{OOD}} - b_{\text{ID}} > 0$ such that $e_i^{(0)} \in [a_{\text{ID}}, b_{\text{ID}}]$
264 for ID nodes and $e_j^{(0)} \in [a_{\text{OOD}}, b_{\text{OOD}}]$ for OOD nodes (consistent with Eq. 1 used as an OOD score).
265 We now quantify how OOD visitation controls this value as:

270 **Theorem 5.2** (Energy–OOD linkage). Define the unnormalized OOD visitation $\phi_{\text{OOD}}^{(k)}(t) :=$
 271 $\sum_{j \in \mathcal{O}} (\mathbf{P}_t^k)_{tj}$ and the retained mass $s_t^{(k)} := \sum_i (\mathbf{P}_t^k)_{ti}$. For all $k \geq 1$,
 272

$$273 \quad a_{\text{ID}} s_t^{(k)} + \delta \phi_{\text{OOD}}^{(k)}(t) \leq e_t^{(k)} \leq b_{\text{ID}} s_t^{(k)} + (b_{\text{OOD}} - b_{\text{ID}}) \phi_{\text{OOD}}^{(k)}(t).$$

275 Equivalently, whenever $s_t^{(k)} > 0$, with the conditional OOD visitation $\hat{\pi}_{\text{OOD}}^{(k)}(t) := \phi_{\text{OOD}}^{(k)}(t)/s_t^{(k)}$,
 276

$$277 \quad a_{\text{ID}} + \delta \hat{\pi}_{\text{OOD}}^{(k)}(t) \leq \frac{e_t^{(k)}}{s_t^{(k)}} \leq b_{\text{ID}} + (b_{\text{OOD}} - b_{\text{ID}}) \hat{\pi}_{\text{OOD}}^{(k)}(t).$$

280 The proof is provided in Appendix B. The lower bound increases with slope $\delta > 0$ in the OOD
 281 visitation $\phi_{\text{OOD}}^{(k)}$ (or $\hat{\pi}_{\text{OOD}}^{(k)}$ in conditional form). Therefore, minimizing $\mathcal{L}_{\text{ene}} = e_t^{(k)}$ necessarily
 282 reduces OOD visitation along k -step walks from t . In practice, gradient descent on \mathcal{L}_{ene} suppresses
 283 edges that route mass into high-energy (OOD) regions and retains edges into low-energy (ID) re-
 284 gions, matching the empirical reduction in OOD-edge precision. Lastly, the time complexity of the
 285 WEP is given as:
 286

287 **Lemma 5.3** (Time Complexity). With sparse matrix–vector multiplies, computing $\mathbf{E}^{(k)} = \mathbf{P}_t^k \mathbf{E}^{(0)}$
 288 costs $O(k|\mathcal{E}|)$ per epoch; over T training epochs, WEP runs in $O(Tk|\mathcal{E}|)$ time and $O(|\mathcal{E}|)$ memory,
 289 i.e., linear in the number of edges.

290 *Proof.* Each multiplication by \mathbf{P}_t is a sparse matrix with \mathbf{A}_t^* (plus a scaled identity), both $O(|\mathcal{E}|)$.
 291 Repeating k times per epoch yields $O(k|\mathcal{E}|)$; with fixed T, k the total is $O(Tk|\mathcal{E}|)$. \square
 292

293 6 EXPERIMENTAL SET-UP

294 6.1 DATASET CONSTRUCTION

295 We evaluate the proposed OREExplainer with four synthetic datasets and two real-world datasets.
 296 The synthetic datasets (BA-Shapes, BA-Community, Tree-Cycles, Tree-Grids) (Ying et al., 2019)
 297 are designed to evaluate GNN XAI tasks. For real-world evaluation, we use Cora and Citeseer (Sen
 298 et al., 2008), two widely studied citation networks that serve as standard benchmarks for node clas-
 299 sification tasks.
 300

301 To evaluate the explainability methods under OOD conditions, we construct experimental settings
 302 that introduce different types of OOD: structure-level OOD, feature-level OOD, unseen-label. Struc-
 303 tural OOD involves adding new nodes and edges as noisy OOD instances. In the synthetic datasets,
 304 we introduce 10 to 30 new nodes as OOD nodes to measure the impact of their presence. These
 305 nodes are connected to the original graph through randomly generated edges, with each node hav-
 306 ing approximately twice the average degree of the graph. Featural OOD refers to transforming the
 307 features of certain nodes into noise. In the real-world datasets, we randomly select approximately
 308 30% of the nodes to act as OOD nodes. The features of these nodes are replaced with noise that
 309 contains roughly twice the information content of the original node features. Unseen-label OOD
 310 refers to the addition of nodes with labels that were not present during the GNN training process.
 311 Following the setting proposed in Wu et al. (2023b), we simulate the appearance of new labels as
 312 OOD instances. In a real-world dataset, the class with the largest number of nodes is designated as
 313 the OOD class. We trained a GCN on a modified version of the dataset where all edges connected
 314 to OOD nodes were removed, ensuring that no information from OOD nodes influenced the GCN
 315 during training. For evaluating the explanations generated by the explainer, we used the graph with
 316 OOD nodes restored, which includes the unseen nodes, edges, and labels.
 317

318 6.2 BASELINES

319 We compare our method with six instance-level post-hoc explainers: GNNExplainer (Ying et al.,
 320 2019), PGExplainer (Luo et al., 2020), MixupExplainer (Zhang et al., 2023), ProxyExplainer (Chen
 321 et al., 2024), V-InFoR (Wang et al., 2024), HINT-G (Jung et al., 2025). While ProxyExplainer and
 322 V-InFoR were originally proposed for graph classification, we adapt them to node classification by
 323 extending their edge embedding inputs to include the representations of the two endpoint nodes and
 the target node. For a fair comparison, we applied the same GNN architecture across all methods.

324

325 Table 1: Performance comparison on synthetic datasets with 10 injected **structure-level** OOD nodes.

Method	BA-Shapes		BA-Community		Tree-Cycle		Tree-Grid	
	AUC (↑)	OOD (↓)						
GNNEExplainer	0.755 ± 0.006	0.384 ± 0.014	0.911 ± 0.004	0.013 ± 0.003	0.583 ± 0.014	0.068 ± 0.011	0.707 ± 0.001	0.024 ± 0.001
PGExplainer	0.730 ± 0.062	0.170 ± 0.013	0.853 ± 0.028	0.039 ± 0.006	0.877 ± 0.013	0.018 ± 0.001	0.899 ± 0.014	0.006 ± 0.002
MixupExplainer	0.766 ± 0.055	0.151 ± 0.031	0.858 ± 0.024	0.035 ± 0.008	0.884 ± 0.005	0.019 ± 0.006	0.897 ± 0.013	0.006 ± 0.002
ProxyExplainer	0.732 ± 0.057	0.148 ± 0.029	0.851 ± 0.031	0.037 ± 0.008	0.884 ± 0.006	0.018 ± 0.001	0.897 ± 0.014	0.007 ± 0.002
V-InfOr ³	0.501 ± 0.009	0.034 ± 0.004	0.554 ± 0.044	0.040 ± 0.014	0.515 ± 0.027	0.066 ± 0.009	0.498 ± 0.017	0.071 ± 0.004
HINT-G	0.841 ± 0.000	0.034 ± 0.000	0.788 ± 0.000	0.080 ± 0.000	0.911 ± 0.000	0.060 ± 0.000	0.620 ± 0.000	0.097 ± 0.000
OREExplainer	0.995 ± 0.000	0.017 ± 0.003	0.993 ± 0.000	0.000 ± 0.000	0.954 ± 0.001	0.011 ± 0.000	0.962 ± 0.003	0.007 ± 0.000

331

332

333 Table 2: Performance comparison on the Real-world datasets with 10% of **feature-level** OOD nodes
334 assigned noisy features.

Method	Cora			Citeseer		
	<i>Fid</i> ₊ (↑)	<i>Fid</i> ₋ (↓)	OOD (↓)	<i>Fid</i> ₊ (↑)	<i>Fid</i> ₋ (↓)	OOD (↓)
GNNEExplainer	0.021 ± 0.002	0.117 ± 0.002	0.152 ± 0.006	-0.006 ± 0.001	0.031 ± 0.001	0.197 ± 0.009
PGExplainer	0.021 ± 0.001	0.114 ± 0.002	0.150 ± 0.011	0.003 ± 0.001	0.029 ± 0.002	0.165 ± 0.041
MixupExplainer	0.020 ± 0.001	0.118 ± 0.002	0.138 ± 0.002	0.004 ± 0.000	0.028 ± 0.001	0.147 ± 0.058
ProxyExplainer	0.018 ± 0.001	0.117 ± 0.001	0.201 ± 0.010	0.005 ± 0.001	0.026 ± 0.002	0.121 ± 0.037
V-InfOr	0.012 ± 0.003	0.116 ± 0.004	0.236 ± 0.022	0.005 ± 0.002	0.025 ± 0.004	0.125 ± 0.024
HINT-G	0.011 ± 0.000	0.166 ± 0.000	0.603 ± 0.000	0.010 ± 0.000	0.029 ± 0.000	0.372 ± 0.000
OREExplainer	0.038 ± 0.001	0.102 ± 0.002	0.037 ± 0.001	0.018 ± 0.001	0.016 ± 0.002	0.005 ± 0.004

343

344

6.3 EVALUATION METRICS

345

346

347 For **synthetic datasets**, where ground truth subgraph motifs are available, we report the Area Under
348 the ROC Curve (AUC) between the generated edge weights and the ground truth explanatory edges.
349 We additionally measure **OOD Edge Precision** (abbreviated as **OOD**), which calculates the fraction
350 of OOD edges contained in the explanatory subgraph. For **real-world datasets**, where ground truth
351 explanations are unavailable, we adopt **Fidelity** (Amara et al., 2022; Yuan et al., 2022), reported in
352 two complementary forms: *Fid*₊ (sufficiency) and *Fid*₋ (necessity). Alongside fidelity, we also
353 report **OOD** to evaluate robustness against OOD nodes and edges.

354

355

6.4 IMPLEMENTATION DETAILS

356

358

359 We used a 3-layer GCN with a hidden dimension of 20 per layer on the synthetic datasets, and a
360 2-layer GCN with a hidden dimension of 16 on the real-world datasets. For evaluation, the contin-
361 uous edge mask is discretized via top-*k*, *p* samplings into an explanatory subgraph. In the synthetic
362 datasets, we select the top-*k* edges, where *k* matches the number of edges in the ground-truth motif.
363 In the real-world datasets, we instead take the top-*p* fraction of edges, with *p* = 10%. Other details
364 of the experimental settings are provided in Appendix C.

365

366

7 EXPERIMENTAL RESULTS

367

368

7.1 RESEARCH QUESTION (RQ) 1: QUANTITATIVE EVALUATION

369

370

371 We evaluate the explanations generated by OREExplainer and baseline methods across three repre-
372 sentative OOD scenarios: (i) Strucutre-level OOD, (ii) Feature-level OOD, and (iii) Unseen-label
373 OOD. Each scenario highlights a different robustness challenge, and the corresponding results are
374 summarized in Table 1, Table 2, and Table 3, respectively. **The full results for all additional OOD**
375 **settings and datasets are reported in the Appendix D.**

376

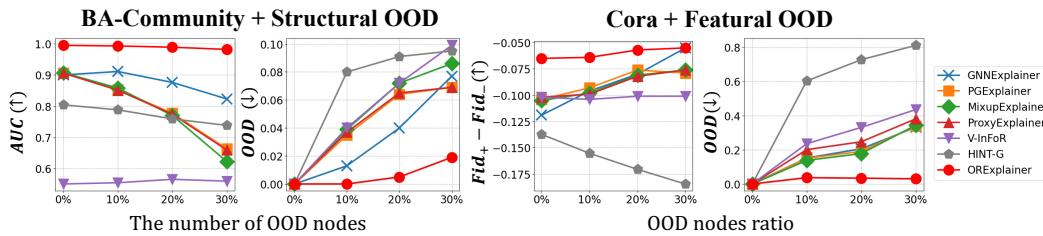
377

378 Table 1 reports results on synthetic datasets with 10 injected **structure-level** OOD nodes. ORE-
379 plainer consistently achieves the best performance across most datasets, showing the highest AUC
380 while keeping OOD Edge Precision low. This demonstrates that OREExplainer not only identifies
381 the ground-truth explanatory motifs more accurately but also effectively suppresses spurious OOD
382 edges. For the Tree-Grid dataset, OREExplainer records slightly higher OOD values compared to
383 some baselines, but the absolute magnitude remains very small. In contrast, the improvement in
384 AUC is relatively large, indicating that OREExplainer can still capture the true explanatory structure
385 more reliably while being less affected by structural perturbations introduced by OOD nodes. V-
386 InFor, in contrast, shows low performance since it is originally designed for graph classification
387 and struggles to scale to larger node classification graphs that require effective VGAE training.

378

379 Table 3: Performance comparison on real-world datasets where all unseen-label nodes are restored.

380 381 Method	Cora			Citeseer		
	$Fid_+(\uparrow)$	$Fid_-(\downarrow)$	$OOD(\downarrow)$	$Fid_+(\uparrow)$	$Fid_-(\downarrow)$	$OOD(\downarrow)$
GNNExplainer	0.005 ± 0.001	0.040 ± 0.001	0.141 ± 0.006	-0.003 ± 0.003	0.038 ± 0.002	0.026 ± 0.003
PGEExplainer	0.010 ± 0.001	0.031 ± 0.001	0.078 ± 0.003	0.009 ± 0.001	0.018 ± 0.002	0.007 ± 0.001
MixupExplainer	0.010 ± 0.001	0.032 ± 0.001	0.079 ± 0.003	0.010 ± 0.001	0.018 ± 0.001	0.005 ± 0.002
ProxyExplainer	0.010 ± 0.001	0.033 ± 0.002	0.074 ± 0.004	0.009 ± 0.001	0.019 ± 0.000	0.008 ± 0.003
V-InFoR	0.001 ± 0.001	0.039 ± 0.002	0.174 ± 0.007	0.005 ± 0.002	0.032 ± 0.006	0.033 ± 0.005
HINT-G	-0.002 ± 0.000	0.059 ± 0.000	0.174 ± 0.000	0.005 ± 0.000	0.049 ± 0.000	0.008 ± 0.000
OREExplainer	0.020 ± 0.001	0.029 ± 0.001	0.062 ± 0.005	0.026 ± 0.001	0.016 ± 0.002	0.007 ± 0.001

390
391
392
393
394
395
396
397
398
399
Figure 3: Performance of different explanation methods under varying OOD level

400 Table 2 presents results on real-world datasets where approximately 10% of nodes have been corrupted
401 with noisy features. OREExplainer consistently outperforms the baselines, achieving the highest
402 Fid_+ and lowest Fid_- while also maintaining significantly lower OOD edge precision. In
403 particular, on Citeseer, OREExplainer yields a substantial improvement in Fid_+ while keeping the
404 OOD value close to zero, demonstrating that our method can provide stable and ID-focused ex-
405 planations. In contrast, baselines show higher sensitivity to noisy features, often suffering from
406 increased Fid_- or unstable OOD precision. Since HINT-G solely relies on the trained GNN model
407 without reference to $\mathcal{G}_{\text{explain}}$, unseen OOD nodes or edges yield high influence scores, causing many
408 OOD edges to be included in the extracted explanation subgraph. As a result, edges connected to
409 OOD nodes are frequently selected, inflating OOD precision and undermining the reliability of the
410 resulting explanations.

411 Similarly, Table 3 reports results in the unseen-label OOD setting, where all previously removed
412 class nodes are restored. OREExplainer again achieves the best overall performance, with consistently
413 higher Fid_+ and lower Fid_- across both Cora and Citeseer. On Citeseer, OREExplainer achieves the
414 highest Fid_+ among all methods, while keeping the OOD precision at a comparably low level. This
415 indicates that our approach can provide stable and ID-focused explanations even in the presence of
416 unseen-label nodes.

417

418 7.2 RQ 2: Is OREXPLAINER ROBUST ACROSS VARIOUS LEVELS OF OOD?

419

420 This research question investigates whether OREExplainer can maintain robustness under varying
421 levels of OOD across different datasets. Figure 3 presents results on BA-Community (left) and Cora
422 (right), using AUC, the combined fidelity metric ($Fid_+ - Fid_-$), and OOD edge precision (OOD) for
423 evaluation. On both datasets, OREExplainer clearly outperforms all baselines in terms of AUC across
424 different OOD ratios. While PGEExplainer, MixupExplainer, and ProxyExplainer exhibit moderate
425 performance at low OOD levels, their scores quickly decline as the ratio increases, showing limited
426 robustness. V-InFoR remains relatively flat, but at a consistently low level, indicating weak expla-
427 natory capacity. For the real world dataset Cora, GNNExplainer exhibits high fidelity with the addi-
428 tion of OOD nodes, giving the impression of improved explanatory quality. However, many OOD
429 connected edges are included in the explanations. This compromises the reliability of its explanations,
430 since high fidelity achieved by relying on irrelevant or misleading edges cannot be regarded as trust-
431 worthy. By contrast, OREExplainer maintains both high AUC and stable behavior across all OOD
432 levels, demonstrating that it can reliably highlight informative structures without being distracted by
433 OOD nodes.

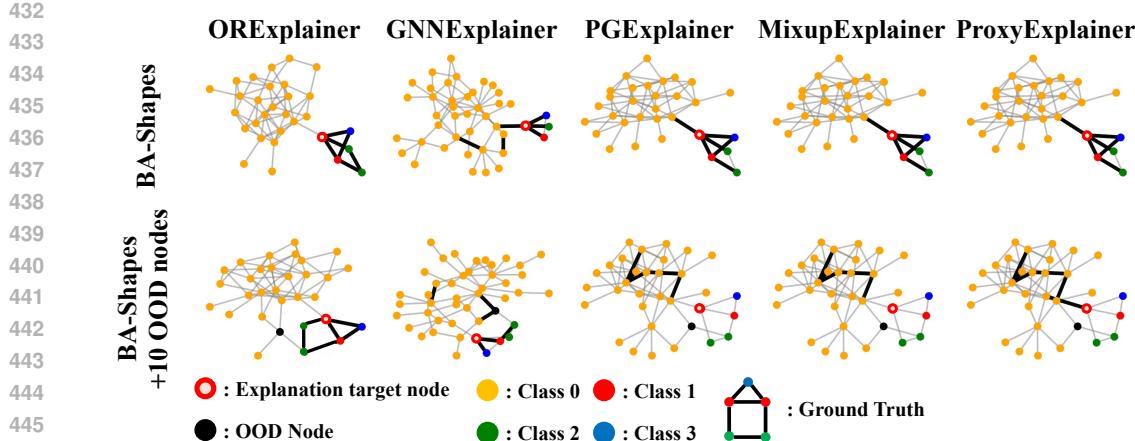


Figure 4: Example explanations generated by different methods on BA-Shapes and BA-Shapes with 10 OOD nodes.

7.3 RQ 3: QUALITATIVE ANALYSIS

Figure 4 shows example subgraph explanations for BA-Shapes, comparing cases without and with OOD nodes. The thick black edges indicate those assigned higher weights by each explanation model. When OOD nodes are absent, most methods are able to capture the house motif structure around the target node. However, once OOD nodes and spurious connections are introduced, the baselines frequently highlight irrelevant edges that are disconnected from the underlying motif, reducing the reliability of their explanations. In contrast, OREExplainer consistently assigns high weights to the house motif edges regardless of the presence of OOD nodes, demonstrating its robustness in producing faithful explanations under OOD conditions.

7.4 RQ 4: HYPERPARAMETER ANALYSIS

We further investigate the effect of γ on BA-Shapes with 30 injected OOD nodes. As shown in Figure 5, when γ is small, the performance fluctuates and the variance across runs is relatively large. As γ increases, both AUC and OOD precision stabilize, and the standard deviation becomes smaller, indicating that the training process is more stable. This demonstrates that assigning sufficient weight to the robustness term \mathcal{L}_{ene} allows the explainer to effectively suppress OOD influence and produce consistent explanations.

8 CONCLUSION

In this paper, we introduced OREExplainer, a post-hoc, instance-level explanation model designed to provide robust and reliable explanations in graph environments containing out-of-distribution, noisy, and outlier nodes. By incorporating Energy Scores to quantify the GNN’s understanding of each node and using the weighted energy score propagation to capture the structural dependencies within the graph, OREExplainer effectively mitigates the impact of OOD nodes while maintaining high explainability for ID nodes. Our extensive experiments demonstrated that existing baseline models are highly sensitive to OOD nodes, resulting in a significant drop in explanation quality and reliability. In contrast, OREExplainer exhibited superior robustness, with smaller performance degradation even as the proportion of OOD nodes increased. These results highlight OREExplainer’s ability to provide reliable explanations in real-world graph scenarios where ID and OOD nodes coexist, making it a highly effective tool for GNN interpretability in challenging environments.

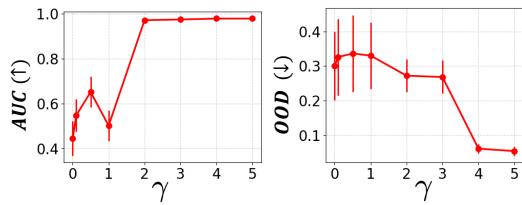


Figure 5: Effect of γ on BA-Shapes with 30 OOD nodes. The markers indicate the mean across different random seeds, and the error bars represent the standard deviations.

486 9 REPRODUCIBILITY STATEMENT
487488 We provide an anonymous GitHub repository containing the implementation and the datasets used
489 in our experiments: <https://anonymous.4open.science/r/OREExplainer-C52C>. The repository also in-
490 cludes all hyperparameter settings and training scripts. A detailed description of the hyperparameter
491 configurations is additionally provided in Appendix C to further facilitate reproducibility.
492493 10 ETHICS STATEMENT
494495 This work does not involve human subjects, personal data, or sensitive information. All experiments
496 are conducted on publicly available benchmark datasets (synthetic datasets and citation networks
497 such as Cora and Citeseer). Our study focuses on developing robust explainability methods for
498 graph neural networks under the presence of out-of-distribution nodes. We do not foresee direct
499 societal harm from the proposed methodology, but we acknowledge that explainability techniques
500 can potentially be misused if applied without consideration of fairness and bias in real-world data.
501 We encourage responsible use of our approach in line with the ICLR Code of Ethics.
502503 REFERENCES
504505 Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Brandes, Sebastian Schemm,
506 and Ce Zhang. Graphframex: Towards systematic evaluation of explainability methods for graph
507 neural networks. *arXiv preprint arXiv:2206.09677*, 2022.508 Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
509 are the answer, then what is the question? *Advances in Neural Information Processing Systems*,
510 35:17953–17967, 2022.512 Zhuomin Chen, Jiaxing Zhang, Jingchao Ni, Xiaoting Li, Yuchen Bian, Md Mezbahul Islam,
513 Ananda Mohan Mondal, Hua Wei, and Dongsheng Luo. Generating in-distribution proxy graphs
514 for explaining graph neural networks. In *Proceedings of the 41st International Conference on
515 Machine Learning*, volume 235, pp. 7712–7730. PMLR, 2024.516 Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. *Advances
517 in Neural Information Processing Systems*, 32, 2019.519 Zhiyuan Feng, Kai Qi, Bin Shi, Hao Mei, Qinghua Zheng, and Hua Wei. Deep evidential learning in
520 diffusion convolutional recurrent neural network. *Electronic Research Archive*, 31(4):2252–2264,
521 2023.523 Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
524 and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
525 one. In *International Conference on Learning Representations*, 2020.526 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
527 examples in neural networks. In *Proceedings of the International Conference on Learning Rep-
528 resentations*, 2017.530 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
531 *Proceedings of the International Conference on Learning Representations*, 2017.533 Heesoo Jung, Chanyong Kim, Geonhee Han, and Hogun Park. Harnessing influence function in
534 explaining graph neural networks. In *Proceedings of the 31st ACM SIGKDD Conference on
535 Knowledge Discovery and Data Mining V. 2*, pp. 1106–1117, 2025.536 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint
537 arXiv:1611.07308*, 2016.538 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
539 works. In *Proceedings of the International Conference on Learning Representations*, 2017.

540 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 541 out-of-distribution samples and adversarial attacks. *Advances in neural information processing*
 542 *systems*, 31, 2018.

543 Woohyun Lee and Hogun Park. Self-supervised adversarial purification for graph neural networks.
 544 In *Proceedings of the 42nd International Conference on Machine Learning*, 2025.

545 Kuan Li, YiWen Chen, Yang Liu, Jin Wang, Qing He, Minhao Cheng, and Xiang Ao. Boosting the
 546 adversarial robustness of graph neural networks: An ood perspective. In *The Twelfth International*
 547 *Conference on Learning Representations*, 2024.

548 Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
 549 learning and out-of-distribution detection on graphs. *Advances in Neural Information Processing*
 550 *Systems*, 35:30277–30290, 2022.

551 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 552 tion. *Advances in neural information processing systems*, 33:21464–21475, 2020.

553 Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Liò, Bruno Lepri, and An-
 554 drea Passerini. Explaining the explainers in graph neural networks: a comparative study. *ACM*
 555 *Computing Surveys*, 2024.

556 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
 557 Zhang. Parameterized explainer for graph neural network. *Advances in neural information pro-
 558 cessing systems*, 33:19620–19631, 2020.

559 Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun. A unified energy-based
 560 framework for unsupervised learning. In *Artificial Intelligence and Statistics*, pp. 371–379.
 561 PMLR, 2007.

562 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
 563 The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

564 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 565 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

566 Yu Song and Donglin Wang. Learning on graphs with out-of-distribution nodes. In *Proceedings of*
 567 *the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1635–1645,
 568 2022.

569 Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann.
 570 Graph posterior network: Bayesian predictive uncertainty for node classification. *Advances in*
 571 *Neural Information Processing Systems*, 34:18033–18048, 2021.

572 Senzhang Wang, Jun Yin, Chaozhuo Li, Xing Xie, and Jianxin Wang. V-infor: a robust graph neural
 573 networks explainer for structurally corrupted graphs. *Advances in Neural Information Processing*
 574 *Systems*, 36, 2024.

575 Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan He. Gif: A general
 576 graph unlearning strategy via influence function. In *Proceedings of the ACM Web Conference*
 577 2023, pp. 651–661, 2023a.

578 Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
 579 for graph neural networks. In *International Conference on Learning Representations*, 2023b.

580 Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
 581 systems: a survey. *ACM Computing Surveys*, 55(5):1–37, 2022.

582 Shenzhi Yang, Bin Liang, An Liu, Lin Gui, Xingkai Yao, and Xiaofang Zhang. Bounded and
 583 uniform energy-based out-of-distribution detection for graphs. In *Proceedings of the 41st Inter-
 584 national Conference on Machine Learning*, 2024.

585 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
 586 Generating explanations for graph neural networks. *Advances in neural information processing*
 587 *systems*, 32, 2019.

594 Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
595 networks via subgraph explorations. In *International conference on machine learning*, pp. 12241–
596 12252. PMLR, 2021.

597 Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
598 A taxonomic survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(5):
599 5782–5799, 2022.

600 Jiaxing Zhang, Dongsheng Luo, and Hua Wei. Mixupexplainer: Generalizing explanations for graph
601 neural networks with data augmentation. In *Proceedings of the 29th ACM SIGKDD Conference
602 on Knowledge Discovery and Data Mining*, pp. 3286–3296, 2023.

603 Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. Uncertainty aware semi-supervised learning
604 on graph data. *Advances in Neural Information Processing Systems*, 33:12827–12836, 2020.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A EXTENDED RELATED WORK
649650 A.1 GRAPH NEURAL NETWORKS
651652 Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017) have become
653 fundamental tools for modeling graph-structured data and are widely applied to tasks such as node
654 classification, graph classification, and link prediction. Recent work has explored improving GNN
655 robustness through graph denoising and purification (Li et al., 2024; Lee & Park, 2025), which
656 mitigate the impact of noise, adversarial perturbations, and out-of-distribution (OOD) instances.
657658 A.2 EXPLAINABILITY IN GRAPH NEURAL NETWORKS
659660 Explainable AI models in the graph domain focus on identifying substructures that significantly
661 impact outputs from trained models. Primarily, GNNExplainer (Ying et al., 2019), a pioneering study
662 in this field, proposes a mask-based method to find important subgraphs that maximize the mutual
663 information with the predictive output. Furthermore, PGExplainer (Luo et al., 2020) advances this
664 concept by parameterizing explainers in a more generalized setting, approximating multiple impor-
665 tant subgraphs for various instances using a single explainer. Additionally, SubgraphX (Yuan et al.,
666 2021) employs Monte Carlo Tree Search to identify important subgraphs with the highest Shapley
667 value.668 While various state-of-the-art explanation methods contribute to generating high-quality expla-
669 nations, another line of research questions have emerged regarding their generalization and robust-
670 ness. MixupExplainer (Zhang et al., 2023) and ProxyExplainer (Chen et al., 2024) address the issue
671 that explanatory subgraphs often suffer from a distribution shift **relative to** the input graphs, due
672 to differences in size or structural properties. Since a pretrained GNN model cannot properly pro-
673 cess such distribution-shifted graphs, the training of the explainer itself becomes problematic. To
674 mitigate this problem, MixupExplainer mixes input graphs with label-irrelevant graphs, whereas
675 ProxyExplainer employs a VGAE (Kipf & Welling, 2016) encoder to enforce in-distribution expla-
676 nations. In a different approach, HINT-G (Jung et al., 2025) leverages influence functions (Bae et al.,
677 2022; Wu et al., 2023a) to trace how training nodes affect the prediction of a target node, providing
678 explanations grounded in influence rather than subgraph generation.679 Despite significant advancements in explainability, many existing methods often overlook the impact
680 of OOD nodes and edges that can arise **within** the input graph. V-InFoR (Wang et al., 2024),
681 unlike prior works, focuses on designing a robust explainer for structurally corrupted graphs. It
682 leverages variational inference to learn robust graph representations in order to address structural
683 corruption. However, its robustness mainly targets structure-level OOD and does not extend to other
684 types of corruption, such as feature noise. In addition, since it is originally developed for a graph
685 classification task, its applicability to node-level scenarios such as node injection remains limited.686 **Different Setting Compared to Existing Methods:** Most existing explanation methods implicitly
687 assume that the explainer is trained on the same in-distribution graphs as the GNN model. However,
688 real-world graphs are inherently dynamic, continuously evolving through the addition of new nodes
689 and edges. These dynamics naturally introduce out-of-distribution (OOD) components, which exist-
690 ing explainers are not designed to handle. This underscores the necessity of developing explanation
691 methods that are explicitly designed for graphs with newly added OOD nodes or edges.692
693 A.3 NODE-LEVEL OUT-OF-DISTRIBUTION DETECTION
694695 Node-level OOD detection seeks to distinguish nodes that have a distribution different from the
696 In-Distribution (ID) training data. One popular approach is to train a model for OOD scoring.
697 GPN (Stadler et al., 2021) leverages the Bayesian posterior to train GNNs for uncertainty estima-
698 tion. OODGAT (Song & Wang, 2022) incorporates entropy regularization alongside GNN training
699 for classification, enabling the distinction between ID and OOD nodes. GraphDE (Li et al., 2022)
700 employs variational inference to identify distributional differences between ID and OOD data. How-
701 ever, these methods have limitations when it comes to scoring OOD nodes based on a pre-trained
702 GNN.

702 Alternatively, post-hoc OOD detection methods can be applied on a pre-trained classifier. Mahalanobis distance (Lee et al., 2018) utilizes the latent space of a pre-trained classifier to measure
703 the distance between test samples and known in-distribution data, while Kernel Density Estimation
704 (Zhao et al., 2020) models the density of in-distribution samples in the latent space to assess
705 the likelihood of test samples belonging to the same distribution. However, these methods require
706 access to the ID data distribution, which may not always be feasible.

707 In contrast, logit-based scoring methods such as Maximum Softmax Probability (MSP) (Hendrycks
708 & Gimpel, 2017) and Energy Score (Liu et al., 2020; Wu et al., 2023b) are lightweight and do not
709 require retraining. In particular, prior studies (Wu et al., 2023b; Yang et al., 2024) have shown that
710 energy-based scoring is a simple yet effective baseline for OOD detection across domains, making it
711 especially appealing in settings where the graph to be explained may contain unknown distributions.
712

714 B EXTENDED THEORETICAL ANALYSIS

715
716 **Setup.** Let $\mathbf{E}^{(0)} = [e_1^{(0)}, \dots, e_N^{(0)}]^\top$ be the initial node energies computed from the fixed GNN f
717 (Eq. 1). WEP (Eq. 3) updates

$$718 \mathbf{E}^{(k)} = \frac{1}{2}(\mathbf{E}^{(k-1)} + \mathbf{A}_t^* \mathbf{D}^{-1} \mathbf{E}^{(k-1)}) = \mathbf{P}_t \mathbf{E}^{(k-1)} = \mathbf{P}_t^k \mathbf{E}^{(0)}, \quad \mathbf{P}_t := \frac{1}{2}(\mathbf{I} + \mathbf{A}_t^* \mathbf{D}^{-1}),$$

719 where $\mathbf{A}_t^* \in \mathbb{R}_{\geq 0}^{N \times N}$ is the explainer’s weighted adjacency for target t , and $\mathbf{D} = \text{diag}(d_1, \dots, d_N)$ is
720 the degree matrix of the *explanation* graph used in Eq. 3. Let $\mathbf{A}_{\text{explain}}$ denote the (binary) adjacency
721 of G_{explain} .

722 Assumptions.

- 723 • **A1 (Support & boundedness).** $0 \leq (\mathbf{A}_t^*)_{ij} \leq (\mathbf{A}_{\text{explain}})_{ij}$ element-wise.
- 724 • **A2 (Energy gap).** There exist $a_{\text{ID}} \leq b_{\text{ID}} < a_{\text{OOD}} \leq b_{\text{OOD}}$ with $\delta := a_{\text{OOD}} - b_{\text{ID}} > 0$ such
725 that $e_i^{(0)} \in [a_{\text{ID}}, b_{\text{ID}}]$ for ID nodes and $e_j^{(0)} \in [a_{\text{OOD}}, b_{\text{OOD}}]$ for OOD nodes (consistent with
726 Eq. 1 used as an OOD score).
- 727 • **A3 (Fixed degree scaling).** $\mathbf{D} = \text{diag}(d_1, \dots, d_N)$ is formed from $\mathcal{G}_{\text{explain}}$ and does not
728 depend on \mathbf{A}_t^* (as in Eq. 3).

729 We first establish that the WEP operator \mathbf{P}_t is lazy and *column-substochastic*.

730 **Lemma 5.1** (Column-substochastic laziness). \mathbf{P}_t satisfies $\sum_i (\mathbf{P}_t)_{ij} \leq 1$ for every j , with equality iff $\sum_i (\mathbf{A}_t^*)_{ij} = d_j$, and $(\mathbf{P}_t)_{jj} \geq \frac{1}{2}$ for all j . Hence \mathbf{P}_t^\top is aperiodic and row-substochastic; on any closed communicating class with no leak (i.e., equality in the column sums), it is row-stochastic.

731 *Proof.* By definition,

$$732 \sum_i (\mathbf{P}_t)_{ij} = \frac{1}{2} \left(\sum_i \delta_{ij} + \sum_i (\mathbf{A}_t^* \mathbf{D}^{-1})_{ij} \right) = \frac{1}{2} \left(1 + \frac{1}{d_j} \sum_i (\mathbf{A}_t^*)_{ij} \right) \leq 1,$$

733 where the inequality uses A1 and that $d_j = \sum_i (\mathbf{A}_{\text{explain}})_{ij}$. Also $(\mathbf{P}_t)_{jj} = \frac{1}{2}(1 + (\mathbf{A}_t^* \mathbf{D}^{-1})_{jj}) = \frac{1}{2}(1 + \frac{(\mathbf{A}_t^*)_{jj}}{d_j}) \geq \frac{1}{2}$. The diagonal self-loop probability $\geq \frac{1}{2}$ implies aperiodicity for \mathbf{P}_t^\top . Equality in the column-sum holds iff $\sum_i (\mathbf{A}_t^*)_{ij} = d_j$. \square

734 Based on the \mathbf{P}_t^\top above, Diffusion representation could be defined as:

735 **Lemma B.1** (Diffusion representation). *For all $k \geq 1$, $\mathbf{E}^{(k)} = \mathbf{P}_t^k \mathbf{E}^{(0)}$ and, in particular,*

$$736 e_t^{(k)} = \sum_i (\mathbf{P}_t^k)_{ti} e_i^{(0)}.$$

737 *Proof.* Unroll $\mathbf{E}^{(k)} = \mathbf{P}_t \mathbf{E}^{(k-1)}$ to obtain $\mathbf{E}^{(k)} = \mathbf{P}_t^k \mathbf{E}^{(0)}$. Taking the t -th coordinate yields the
738 identity. \square

756 **Theorem 5.2** (Energy–OOD linkage). Define the unnormalized OOD visitation $\phi_{\text{OOD}}^{(k)}(t) :=$
 757 $\sum_{j \in \mathcal{O}} (\mathbf{P}_t^k)_{tj}$ and the retained mass $s_t^{(k)} := \sum_i (\mathbf{P}_t^k)_{ti}$. For all $k \geq 1$,
 758

$$759 \quad a_{\text{ID}} s_t^{(k)} + \delta \phi_{\text{OOD}}^{(k)}(t) \leq e_t^{(k)} \leq b_{\text{ID}} s_t^{(k)} + (b_{\text{OOD}} - b_{\text{ID}}) \phi_{\text{OOD}}^{(k)}(t). \\ 760$$

761 Equivalently, whenever $s_t^{(k)} > 0$, with the conditional OOD visitation $\hat{\pi}_{\text{OOD}}^{(k)}(t) := \phi_{\text{OOD}}^{(k)}(t)/s_t^{(k)}$,
 762

$$763 \quad a_{\text{ID}} + \delta \hat{\pi}_{\text{OOD}}^{(k)}(t) \leq \frac{e_t^{(k)}}{s_t^{(k)}} \leq b_{\text{ID}} + (b_{\text{OOD}} - b_{\text{ID}}) \hat{\pi}_{\text{OOD}}^{(k)}(t). \\ 764 \\ 765$$

766 *Proof.* By Lemma B.1,

$$767 \quad e_t^{(k)} = \sum_{i \in \mathcal{I}} (\mathbf{P}_t^k)_{ti} e_i^{(0)} + \sum_{j \in \mathcal{O}} (\mathbf{P}_t^k)_{tj} e_j^{(0)}. \\ 768 \\ 769$$

770 **(1) Bound the ID part.** For all $i \in \mathcal{I}$, $a_{\text{ID}} \leq e_i^{(0)} \leq b_{\text{ID}}$, hence

$$771 \quad a_{\text{ID}} \sum_{i \in \mathcal{I}} (\mathbf{P}_t^k)_{ti} \leq \sum_{i \in \mathcal{I}} (\mathbf{P}_t^k)_{ti} e_i^{(0)} \leq b_{\text{ID}} \sum_{i \in \mathcal{I}} (\mathbf{P}_t^k)_{ti}. \\ 772 \\ 773$$

774 Since $\sum_{i \in \mathcal{I}} (\mathbf{P}_t^k)_{ti} = s_t^{(k)} - \phi_{\text{OOD}}^{(k)}(t)$, this becomes

$$775 \quad a_{\text{ID}} (s_t^{(k)} - \phi_{\text{OOD}}^{(k)}(t)) \leq \sum_{i \in \mathcal{I}} (\mathbf{P}_t^k)_{ti} e_i^{(0)} \leq b_{\text{ID}} (s_t^{(k)} - \phi_{\text{OOD}}^{(k)}(t)). \\ 776 \\ 777$$

778 **(2) Bound the OOD part.** For all $j \in \mathcal{O}$, $a_{\text{OOD}} \leq e_j^{(0)} \leq b_{\text{OOD}}$, hence

$$780 \quad a_{\text{OOD}} \phi_{\text{OOD}}^{(k)}(t) \leq \sum_{j \in \mathcal{O}} (\mathbf{P}_t^k)_{tj} e_j^{(0)} \leq b_{\text{OOD}} \phi_{\text{OOD}}^{(k)}(t). \\ 781 \\ 782$$

783 **(3) Add the bounds.** Summing yields

$$784 \quad a_{\text{ID}} (s_t^{(k)} - \phi_{\text{OOD}}^{(k)}) + a_{\text{OOD}} \phi_{\text{OOD}}^{(k)} \leq e_t^{(k)} \leq b_{\text{ID}} (s_t^{(k)} - \phi_{\text{OOD}}^{(k)}) + b_{\text{OOD}} \phi_{\text{OOD}}^{(k)}, \\ 785$$

786 where we abbreviate $\phi_{\text{OOD}}^{(k)} = \phi_{\text{OOD}}^{(k)}(t)$. Rearranging and substituting $a_{\text{OOD}} = b_{\text{ID}} + \delta$ gives the
 787 first display; dividing by $s_t^{(k)}$ (when $s_t^{(k)} > 0$) yields the conditional statement. \square
 788

789 Theorem 5.2 above yields an explicit upper bound on the OOD visitation in terms of the propagated
 790 energy. Rearranging the lower bound gives

$$792 \quad \phi_{\text{OOD}}^{(k)}(t) \leq \frac{e_t^{(k)} - a_{\text{ID}} s_t^{(k)}}{\delta}. \quad (6) \\ 793$$

794 Consequently, if during training we enforce $e_t^{(k)} \leq \tau$ for some threshold $\tau > 0$, then

$$796 \quad \phi_{\text{OOD}}^{(k)}(t) \leq \frac{\tau - a_{\text{ID}} s_t^{(k)}}{\delta}. \quad (7) \\ 797$$

798 For fixed retained mass $s_t^{(k)}$ and energy gap δ , the WEP regularizer \mathcal{L}_{ene} directly upper-bounds the
 799 total probability mass of k -step walks from t that ever visit OOD nodes. In this sense, \mathcal{L}_{ene} is a
 800 quantitative surrogate for constraining path-based OOD exposure, which is empirically reflected in
 801 the reduced OOD edge precision reported in Section 7.

803 So far we have established how \mathcal{L}_{ene} controls robustness to OOD nodes. We next clarify how the
 804 cross-entropy term in Eq. 4 formalizes faithfulness of the explanation. Let $p_t := f(\mathcal{G}_{\text{explain}}, t)$ and
 805 $q_t := f(\mathcal{G}_t^*, t)$ denote the predictive class distributions (after softmax) of the pre-trained GNN on
 806 the full graph $\mathcal{G}_{\text{explain}}$ and on the explanatory subgraph \mathcal{G}_t^* , respectively. The cross-entropy loss can
 807 be written as

$$808 \quad \mathcal{L}_{\text{CE}} = \text{CE}(p_t, q_t) = H(p_t) + \text{KL}(p_t \| q_t), \quad (8) \\ 809$$

809 where $H(\cdot)$ is the Shannon entropy and $\text{KL}(\cdot \| \cdot)$ is the Kullback–Leibler divergence. Since p_t is
 810 fixed by the pre-trained GNN and the input graph, $H(p_t)$ is constant with respect to the explainer

parameters, so minimizing \mathcal{L}_{CE} is equivalent to minimizing $KL(p_t \| q_t)$. Thus, the cross-entropy term encourages the explanatory subgraph to preserve the original predictive distribution on the target node up to small KL divergence, providing an information-theoretic notion of faithfulness that complements the robustness control offered by \mathcal{L}_{ene} . Together, the composite objective in Eq. 4 couples a surrogate control of OOD exposure with a distributional matching term for faithfulness.

In summary, under A1–A3, WEP forms a lazy *substochastic* diffusion whose propagated energy equals a k -step survival-weighted average of initial energies (Lemmas 5.1–B.1). Moreover, the target energy is tightly bounded by OOD visitation, so minimizing \mathcal{L}_{ene} suppresses OOD exposure (Theorem 5.2).

C EXPERIMENTAL SETTINGS

C.1 EVALUATION METRICS

We evaluated it using Fidelity Amara et al. (2022); Yuan et al. (2022), a commonly used metric in the XAI field. Fidelity (Fid) is a metric that evaluates the quality of an explanation by measuring how well the explanatory subgraph supports the model’s prediction. It consists of two complementary components: Fid_+ and Fid_- . A higher Fid_+ indicates that the explanatory subgraph contains sufficient information to retain the model’s prediction for the class \hat{y}_t . In contrast, a lower Fid_- suggests that the explanatory subgraph contains necessary information for the model’s prediction, meaning that removing the explanatory subgraph significantly impacts the prediction. *Fidelities* are defined as follows:

$$Fid_+ = f(\mathcal{G}_{\text{explain}}, t)_{[\hat{y}_t]} - f((\mathcal{G}_{\text{explain}} - \mathcal{G}_t^*), t)_{[\hat{y}_t]}, \quad (9)$$

$$Fid_- = f(\mathcal{G}_{\text{explain}}, t)_{[\hat{y}_t]} - f(\mathcal{G}_t^*, t)_{[\hat{y}_t]}, \quad (10)$$

where $\hat{y}_t = \arg \max_c f(\mathcal{G}_{\text{explain}}, t)_{[c]}$. $f(\mathcal{G}_{\text{explain}}, t)_{[\hat{y}_t]}$ denotes the predicted probability assigned by the pre-trained GNN f to class \hat{y}_t on the target node v_t . The explanatory subgraph \mathcal{G}_t^* is generated by the explainer for v_t within $\mathcal{G}_{\text{explain}}$. Since the adjacency matrix of \mathcal{G}_t^* is continuous, it is discretized via top- k or top- p sampling as described above. $\mathcal{G}_{\text{explain}} - \mathcal{G}_t^*$ denotes the graph obtained by removing all edges of the explanatory subgraph \mathcal{G}_t^* from the input graph $\mathcal{G}_{\text{explain}}$.

C.2 GNN TRAINING

Table 4: GNN model and training parameters

Dataset	Synthetic	Cora, Citeseer
Layer	3	2
Hidden dimension	20	16
Epochs	1000	200
Learning rate	0.001	0.01
Weight decay	5×10^{-3}	5×10^{-4}
Dropout	0	0.05
Embedding concat	Yes	No

Table 4 shows the hyperparameters when we train the GNN model. We utilize the Adam optimizer. The term Embedding concat refers to constructing node representations by concatenating the intermediate embeddings from all GNN layers together. For synthetic datasets, we adopt an 8:1:1 split ratio for training, validation, and test sets, respectively. For real-world datasets, we follow the standard semi-supervised setting. The GNN model is trained on graphs where all OOD nodes have been removed. For a given dataset, the same GNN model is explained regardless of the OOD level.

In Table 5, the OOD level corresponds to the number of structure-level OOD nodes for the synthetic datasets, While for Cora and Citeseer, it refers to the ratio of feature-level OOD nodes. For all experiments, we ensure that explanations are generated only for nodes whose predictions by the GNN remained correct after OOD nodes were added.

OOD Level	BA-Shapes	BA-Comm.	Tree-Cycle	Tree-Grid	Cora	Citeseer	
0	0.986	0.786	0.977	0.984	0.766	0.680	
10	0.957	0.793	0.943	0.976	0.763	0.677	
20	0.943	0.764	0.966	0.976	0.766	0.673	
30	0.886	0.771	0.955	0.952	0.763	0.669	
Unseen-label OOD							
		Cora	Citeseer				
		without	0.746	0.784			
		with	0.741	0.780			

Table 5: GNN test accuracy under different OOD settings.

C.3 BASELINE TRAINING

For synthetic datasets, we applied the same hyperparameter settings as reported in the official implementations of each baseline explainer. For real-world datasets, we tune hyperparameters within the following search space.

Table 6: Hyperparameter search ranges for baselines

Method	Learning rate	Epochs	Size	Entropy	Others
GNNExplainer	[0.01, 0.1]	[10, 100]	[0.001, 0.01]	[0.1, 1.0]	
PGExplainer	[0.001, 0.01]	[10, 100]	[0.001, 1.0]	[10^{-4} , 1.0]	
MixupExplainer	[0.001, 0.01]	[10, 100]	[0.001, 1.0]	[10^{-4} , 1.0]	
ProxyExplainer	[0.001, 0.01]	[10, 100]	[0.001, 1.0]	[10^{-4} , 1.0]	
V-InFoR	[0.001, 0.01]	[10, 100]			$\beta \in [0.1, 1.0], \pi \in [0.1, 1.0], \tau \in [0.1, 0.5]$

Table 6 shows the hyperparameter search space of the baselines. Here, *Size* and *Entropy* correspond to the ℓ_1 size regularizer and the entropy term used to control the explanation mask, respectively. V-InFoR involves different hyperparameters, which are listed separately. HINT-G is a training-free model, and thus, no additional hyperparameter search is conducted.

C.4 OREXPLAINER TRAINING

Table 7 summarizes the hyperparameter settings used for the experiments of OREExplainer. For the synthetic datasets, the learning rate, number of epochs, α , and β were set according to the PGExplainer implementation¹, since OREExplainer employs an MLP architecture similar to that of PGExplainer, which ensures a fair comparison with other mask-based methods.

Table 7: Hyperparameter search ranges (in brackets) and the selected values (in bold) for OREExplainer across different datasets and OOD types.

OOD type	Dataset	Learning rate	Epochs	α	β	γ
Structural	BA-Shapes	0.003	10	0.05	1.0	[0.1, 5.0], 5.0
	BA-Community	0.003	20	0.05	1.0	[0.1, 5.0], 5.0
	Tree-Cycle	0.003	20	0.1	1.0	[0.1, 5.0], 5.0
	Tree-Grid	0.003	30	1.0	1.0	[0.1, 10.0], 10.0
Featural	Cora	[0.001, 0.1], 0.005	[10, 100], 20	[0.1, 1.0], 1.0	[10^{-4} , 0.1], 5×10^{-4}	[10^{-3} , 0.5], 0.1
	Citeseer	[0.001, 0.1], 0.005	[10, 100], 20	[0.1, 1.0], 1.0	[10^{-4} , 0.1], 5×10^{-4}	[10^{-3} , 0.5], 0.1
Unseen	Cora	[0.001, 0.1], 0.005	[10, 100], 20	[0.1, 1.0], 1.0	[10^{-4} , 0.1], 5×10^{-4}	[10^{-3} , 0.5], 0.1
	Citeseer	[0.001, 0.1], 0.005	[10, 100], 20	[0.1, 1.0], 1.0	[10^{-4} , 0.1], 5×10^{-4}	[10^{-3} , 0.5], 0.05

¹<https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks>

918 D EXTENDED EXPERIMENTAL RESULTS

920 Table 8, Table 9, and Table 10 present additional results under varying levels of structure-level,
921 feature-level, and unseen-label OOD settings, respectively. Across all scenarios, OREExplainer
922 consistently outperforms baselines in terms of both AUC and fidelity, while also selecting fewer OOD
923 edges. These results demonstrate that OREExplainer produces more reliable explanations by focusing
924 on in-distribution structure even under different OOD levels.

926 Table 8: Performance comparison on synthetic datasets (BA-Shapes, BA-Community, Tree-Cycle,
927 Tree-Grid) with different numbers of OOD nodes (0, 10, 20, 30). Reported are the mean \pm standard
928 deviation for *AUC* and *OOD* ratio.

# OOD	Method	BA-Shapes		BA-Community		Tree-Cycle		Tree-Grid	
		<i>AUC</i> (\uparrow)	<i>OOD</i> (\downarrow)	<i>AUC</i> (\uparrow)	<i>OOD</i> (\downarrow)	<i>AUC</i> (\uparrow)	<i>OOD</i> (\downarrow)	<i>AUC</i> (\uparrow)	<i>OOD</i> (\downarrow)
0	GNNExplainer	0.785 \pm 0.010	0.000 \pm 0.000	0.900 \pm 0.004	0.000 \pm 0.000	0.559 \pm 0.010	0.000 \pm 0.000	0.661 \pm 0.002	0.000 \pm 0.000
	PGExplainer	0.956 \pm 0.016	0.000 \pm 0.000	0.906 \pm 0.020	0.000 \pm 0.000	0.896 \pm 0.009	0.000 \pm 0.000	0.900 \pm 0.030	0.000 \pm 0.000
	MixupExplainer	0.913 \pm 0.093	0.000 \pm 0.000	0.907 \pm 0.016	0.000 \pm 0.000	0.909 \pm 0.004	0.000 \pm 0.000	0.900 \pm 0.030	0.000 \pm 0.000
	ProxyExplainer	0.961 \pm 0.013	0.000 \pm 0.000	0.906 \pm 0.020	0.000 \pm 0.000	0.906 \pm 0.004	0.000 \pm 0.000	0.899 \pm 0.030	0.000 \pm 0.000
	V-InFor	0.502 \pm 0.017	0.000 \pm 0.000	0.550 \pm 0.035	0.000 \pm 0.000	0.514 \pm 0.020	0.000 \pm 0.000	0.492 \pm 0.010	0.000 \pm 0.000
	HINT-G	0.910 \pm 0.000	0.000 \pm 0.000	0.804 \pm 0.000	0.000 \pm 0.000	0.976 \pm 0.000	0.000 \pm 0.000	0.819 \pm 0.000	0.000 \pm 0.000
10	OREExplainer	0.999 \pm 0.000	0.000 \pm 0.000	0.995 \pm 0.000	0.000 \pm 0.000	0.950 \pm 0.027	0.000 \pm 0.000	0.990 \pm 0.000	0.000 \pm 0.000
	GNNExplainer	0.755 \pm 0.012	0.384 \pm 0.014	0.911 \pm 0.004	0.014 \pm 0.003	0.583 \pm 0.014	0.068 \pm 0.011	0.707 \pm 0.001	0.024 \pm 0.001
	PGExplainer	0.730 \pm 0.062	0.151 \pm 0.031	0.853 \pm 0.028	0.035 \pm 0.008	0.877 \pm 0.013	0.019 \pm 0.006	0.899 \pm 0.014	0.006 \pm 0.002
	MixupExplainer	0.766 \pm 0.055	0.170 \pm 0.013	0.858 \pm 0.024	0.039 \pm 0.006	0.884 \pm 0.005	0.018 \pm 0.001	0.897 \pm 0.013	0.007 \pm 0.002
	ProxyExplainer	0.732 \pm 0.057	0.148 \pm 0.029	0.851 \pm 0.031	0.037 \pm 0.008	0.884 \pm 0.005	0.018 \pm 0.001	0.897 \pm 0.014	0.006 \pm 0.002
	V-InFor	0.501 \pm 0.009	0.034 \pm 0.004	0.554 \pm 0.044	0.040 \pm 0.014	0.515 \pm 0.027	0.066 \pm 0.009	0.498 \pm 0.017	0.071 \pm 0.004
20	HINT-G	0.841 \pm 0.000	0.134 \pm 0.000	0.788 \pm 0.000	0.080 \pm 0.000	0.911 \pm 0.000	0.060 \pm 0.000	0.620 \pm 0.000	0.097 \pm 0.000
	OREExplainer	0.995 \pm 0.000	0.017 \pm 0.003	0.993 \pm 0.000	0.000 \pm 0.000	0.954 \pm 0.001	0.011 \pm 0.000	0.962 \pm 0.003	0.007 \pm 0.000
	GNNExplainer	0.680 \pm 0.012	0.607 \pm 0.008	0.876 \pm 0.006	0.040 \pm 0.006	0.600 \pm 0.007	0.098 \pm 0.007	0.728 \pm 0.001	0.039 \pm 0.001
	PGExplainer	0.490 \pm 0.085	0.197 \pm 0.074	0.777 \pm 0.030	0.064 \pm 0.017	0.870 \pm 0.011	0.041 \pm 0.010	0.888 \pm 0.010	0.015 \pm 0.003
	MixupExplainer	0.509 \pm 0.079	0.215 \pm 0.077	0.770 \pm 0.029	0.072 \pm 0.013	0.877 \pm 0.006	0.035 \pm 0.003	0.887 \pm 0.010	0.016 \pm 0.002
	ProxyExplainer	0.493 \pm 0.088	0.197 \pm 0.073	0.774 \pm 0.033	0.065 \pm 0.018	0.877 \pm 0.005	0.034 \pm 0.003	0.887 \pm 0.010	0.015 \pm 0.003
30	V-InFor	0.497 \pm 0.014	0.068 \pm 0.014	0.565 \pm 0.034	0.072 \pm 0.030	0.511 \pm 0.021	0.124 \pm 0.008	0.502 \pm 0.016	0.123 \pm 0.006
	HINT-G	0.791 \pm 0.000	0.131 \pm 0.000	0.759 \pm 0.000	0.091 \pm 0.000	0.885 \pm 0.000	0.103 \pm 0.000	0.617 \pm 0.000	0.135 \pm 0.000
	OREExplainer	0.989 \pm 0.000	0.018 \pm 0.000	0.989 \pm 0.000	0.005 \pm 0.001	0.947 \pm 0.005	0.015 \pm 0.000	0.934 \pm 0.002	0.011 \pm 0.001
	GNNExplainer	0.646 \pm 0.011	0.682 \pm 0.010	0.823 \pm 0.005	0.077 \pm 0.006	0.620 \pm 0.013	0.087 \pm 0.010	0.728 \pm 0.001	0.055 \pm 0.001
	PGExplainer	0.444 \pm 0.077	0.319 \pm 0.102	0.622 \pm 0.035	0.086 \pm 0.011	0.852 \pm 0.006	0.041 \pm 0.002	0.887 \pm 0.009	0.021 \pm 0.005
	MixupExplainer	0.457 \pm 0.079	0.319 \pm 0.102	0.622 \pm 0.035	0.086 \pm 0.011	0.852 \pm 0.006	0.041 \pm 0.002	0.886 \pm 0.009	0.021 \pm 0.005
44	ProxyExplainer	0.447 \pm 0.080	0.304 \pm 0.004	0.659 \pm 0.047	0.069 \pm 0.008	0.852 \pm 0.007	0.042 \pm 0.003	0.886 \pm 0.009	0.019 \pm 0.004
	V-InFor	0.519 \pm 0.023	0.080 \pm 0.021	0.559 \pm 0.031	0.099 \pm 0.033	0.498 \pm 0.018	0.129 \pm 0.023	0.502 \pm 0.012	0.148 \pm 0.008
	HINT-G	0.712 \pm 0.000	0.224 \pm 0.000	0.738 \pm 0.000	0.095 \pm 0.000	0.882 \pm 0.000	0.104 \pm 0.000	0.614 \pm 0.000	0.172 \pm 0.000
	OREExplainer	0.978 \pm 0.000	0.054 \pm 0.013	0.982 \pm 0.003	0.019 \pm 0.004	0.934 \pm 0.001	0.034 \pm 0.000	0.906 \pm 0.004	0.015 \pm 0.002

946 Table 9: Performance comparison across different OOD ratios (0%, 10%, 20%, 30%) on Cora and
947 Citeseer. Reported are mean \pm standard deviation for Fidelity (*Fid*₊, *Fid*₋) and OOD ratio.

OOD Ratio	Method	Cora			Citeseer		
		<i>Fid</i> ₊ (\uparrow)	<i>Fid</i> ₋ (\downarrow)	<i>OOD</i> (\downarrow)	<i>Fid</i> ₊ (\uparrow)	<i>Fid</i> ₋ (\downarrow)	<i>OOD</i> (\downarrow)
0%	GNNExplainer	0.010 \pm 0.003	0.129 \pm 0.006	0.000 \pm 0.000	-0.005 \pm 0.001	0.036 \pm 0.002	0.000 \pm 0.000
	PGExplainer	0.018 \pm 0.001	0.122 \pm 0.002	0.000 \pm 0.000	0.002 \pm 0.001	0.035 \pm 0.001	0.000 \pm 0.000
	MixupExplainer	0.018 \pm 0.001	0.123 \pm 0.001	0.000 \pm 0.000	0.002 \pm 0.001	0.034 \pm 0.001	0.000 \pm 0.000
	ProxyExplainer	0.019 \pm 0.002	0.121 \pm 0.002	0.000 \pm 0.000	0.002 \pm 0.001	0.036 \pm 0.001	0.000 \pm 0.000
	V-InFor	0.012 \pm 0.003	0.114 \pm 0.009	0.000 \pm 0.000	0.005 \pm 0.003	0.029 \pm 0.005	0.000 \pm 0.000
	HINT-G	0.007 \pm 0.000	0.144 \pm 0.000	0.000 \pm 0.000	0.002 \pm 0.000	0.028 \pm 0.000	0.000 \pm 0.000
10%	OREExplainer	0.038 \pm 0.001	0.103 \pm 0.003	0.000 \pm 0.000	0.016 \pm 0.002	0.024 \pm 0.002	0.000 \pm 0.000
	GNNExplainer	0.021 \pm 0.002	0.117 \pm 0.002	0.152 \pm 0.006	-0.006 \pm 0.001	0.031 \pm 0.001	0.197 \pm 0.005
	PGExplainer	0.021 \pm 0.001	0.114 \pm 0.002	0.150 \pm 0.011	0.003 \pm 0.001	0.029 \pm 0.002	0.165 \pm 0.041
	MixupExplainer	0.020 \pm 0.001	0.118 \pm 0.002	0.138 \pm 0.007	0.004 \pm 0.000	0.028 \pm 0.001	0.147 \pm 0.056
	ProxyExplainer	0.018 \pm 0.001	0.117 \pm 0.001	0.201 \pm 0.010	0.005 \pm 0.001	0.026 \pm 0.002	0.121 \pm 0.033
	V-InFor	0.012 \pm 0.003	0.116 \pm 0.004	0.236 \pm 0.022	0.005 \pm 0.002	0.025 \pm 0.004	0.125 \pm 0.024
20%	HINT-G	0.011 \pm 0.000	0.166 \pm 0.000	0.603 \pm 0.000	0.010 \pm 0.000	0.029 \pm 0.000	0.372 \pm 0.000
	OREExplainer	0.040 \pm 0.002	0.097 \pm 0.001	0.034 \pm 0.003	0.019 \pm 0.001	0.011 \pm 0.001	0.007 \pm 0.001
	GNNExplainer	0.024 \pm 0.004	0.104 \pm 0.004	0.206 \pm 0.005	-0.006 \pm 0.001	0.026 \pm 0.002	0.287 \pm 0.011
	PGExplainer	0.027 \pm 0.000	0.103 \pm 0.001	0.191 \pm 0.001	0.002 \pm 0.001	0.025 \pm 0.001	0.231 \pm 0.033
	MixupExplainer	0.025 \pm 0.001	0.101 \pm 0.002	0.344 \pm 0.003	0.003 \pm 0.001	0.020 \pm 0.000	0.348 \pm 0.029
	ProxyExplainer	0.020 \pm 0.001	0.096 \pm 0.002	0.381 \pm 0.005	0.005 \pm 0.002	0.018 \pm 0.002	0.229 \pm 0.007
30%	V-InFor	0.010 \pm 0.003	0.111 \pm 0.011	0.435 \pm 0.007	0.004 \pm 0.000	0.018 \pm 0.004	0.315 \pm 0.027
	HINT-G	0.010 \pm 0.000	0.195 \pm 0.000	0.811 \pm 0.000	0.012 \pm 0.000	0.046 \pm 0.000	0.576 \pm 0.000
	OREExplainer	0.037 \pm 0.001	0.092 \pm 0.002	0.030 \pm 0.001	0.019 \pm 0.001	0.005 \pm 0.001	0.007 \pm 0.000

968 D.1 RUNTIME ANALYSIS

970 The results in Table 11 are obtained on BA-Community with 30 structure-level OOD nodes and on
971 Citeseer with a 30% feature-level OOD ratio. The runtime is reported in seconds per node. Among

972
 973 Table 10: Performance comparison on Cora and Citeseer with and without unseen label nodes.
 974 Reported are mean \pm standard deviation for Fidelity (Fid_+ , Fid_-) and OOD ratio across different
 975 explainers.

	Method	Cora			Citeseer		
		Fid_+ (\uparrow)	Fid_- (\downarrow)	OOD (\downarrow)	Fid_+ (\uparrow)	Fid_- (\downarrow)	OOD (\downarrow)
without unseen label nodes	GNNEExplainer	0.001 \pm 0.002	0.048 \pm 0.001	0.000 \pm 0.000	-0.003 \pm 0.002	0.047 \pm 0.002	0.000 \pm 0.000
	PGExplainer	0.007 \pm 0.001	0.034 \pm 0.001	0.000 \pm 0.000	0.018 \pm 0.001	0.031 \pm 0.003	0.000 \pm 0.000
	MixupExplainer	0.006 \pm 0.001	0.035 \pm 0.000	0.000 \pm 0.000	0.010 \pm 0.001	0.026 \pm 0.002	0.000 \pm 0.000
	ProxyExplainer	0.007 \pm 0.001	0.037 \pm 0.002	0.000 \pm 0.000	0.009 \pm 0.001	0.027 \pm 0.001	0.000 \pm 0.000
	V-InFoR	0.001 \pm 0.002	0.046 \pm 0.003	0.000 \pm 0.000	0.006 \pm 0.003	0.040 \pm 0.003	0.000 \pm 0.000
	HINT-G	0.003 \pm 0.000	0.043 \pm 0.000	0.000 \pm 0.000	0.009 \pm 0.000	0.047 \pm 0.000	0.000 \pm 0.000
with unseen label nodes	OREExplainer	0.018 \pm 0.002	0.034 \pm 0.001	0.000 \pm 0.000	0.023 \pm 0.002	0.022 \pm 0.002	0.000 \pm 0.000
	GNNEExplainer	0.005 \pm 0.001	0.040 \pm 0.001	0.141 \pm 0.006	-0.003 \pm 0.002	0.038 \pm 0.002	0.026 \pm 0.003
	PGExplainer	0.010 \pm 0.001	0.031 \pm 0.001	0.078 \pm 0.003	0.009 \pm 0.007	0.018 \pm 0.002	0.007 \pm 0.001
	MixupExplainer	0.010 \pm 0.001	0.032 \pm 0.001	0.079 \pm 0.003	0.010 \pm 0.007	0.018 \pm 0.002	0.005 \pm 0.002
	ProxyExplainer	0.010 \pm 0.001	0.033 \pm 0.001	0.074 \pm 0.003	0.009 \pm 0.007	0.019 \pm 0.002	0.008 \pm 0.003
	V-InFoR	0.001 \pm 0.001	0.039 \pm 0.001	0.174 \pm 0.004	0.005 \pm 0.002	0.032 \pm 0.006	0.033 \pm 0.005
982 983 984 985	HINT-G	-0.002 \pm 0.000	0.059 \pm 0.000	0.174 \pm 0.007	0.005 \pm 0.002	0.049 \pm 0.000	0.008 \pm 0.000
	OREExplainer	0.020 \pm 0.000	0.029 \pm 0.000	0.062 \pm 0.000	0.026 \pm 0.000	0.016 \pm 0.002	0.007 \pm 0.001

986 Table 11: Runtime (in seconds) reported as mean \pm standard deviation.

Method	BA-Community	Citeseer
GNNEExplainer	1.676 \pm 0.057	1.028 \pm 0.032
PGExplainer	0.319 \pm 0.025	0.247 \pm 0.020
MixupExplainer	0.538 \pm 0.013	0.409 \pm 0.032
ProxyExplainer	4.595 \pm 0.038	2.711 \pm 0.118
V-InFoR	0.513 \pm 0.025	0.436 \pm 0.025
HINT-G	50.209 \pm 2.686	1.240 \pm 0.001
OREExplainer	0.360 \pm 0.005	0.241 \pm 2.591

996 all methods, PGExplainer shows the shortest training time due to its simple architecture. Mixup-
 997 Explainer, ProxyExplainer, and V-InFoR incur additional overhead from data augmentation or the
 998 use of VGAE, while HINT-G is significantly slower because it requires influence score calcula-
 999 tion for each node. OREExplainer requires slightly more time than PGExplainer but remains faster
 1000 than the other baselines, demonstrating that the proposed *WEP* framework provides a clear runtime
 1001 advantage.

1004 E LIMITATIONS

1005 While OREExplainer demonstrates strong robustness across diverse OOD scenarios, several limita-
 1006 tions remain. First, since the proposed method relies on the energy scores derived from a pre-trained
 1007 GNN, its effectiveness is inherently bounded by the reliability of the underlying model. When the
 1008 pre-trained GNN suffers from severe distribution shifts that degrade its predictive performance, even
 1009 ID nodes may be mischaracterized, making WEP less effective. Second, our evaluation has been
 1010 limited to synthetic benchmarks and citation-style datasets; extending the analysis to more complex
 1011 graph settings, such as dynamic or heterogeneous graphs, is an important direction for future work.

1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025