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Fig. 1: TactAR is a low-cost and versatile teleoperation system which can provide real-time tactile / force feedback via
Augmented Reality (AR). Reactive Diffusion Policy (RDP) is a slow-fast imitation learning algorithm that can model
complex behaviors with a slow policy and achieve closed-loop control based on tactile / force feedback with a fast policy.

I. INTRODUCTION

Contact-rich manipulation tasks that appear simple to
humans remain challenging for robots. Research in neuro-
science [4, 11, 12] shows that human manipulation involves
both predictive action and closed-loop fine-tuning. While
recent visual imitation learning [2, 21] methods have shown
promise through action chunking, they operate in open-
loop during chunk execution, limiting their reactivity. In
addition, most approaches lack integration of fine-grained
tactile feedback, restricting them to low-precision tasks.

To address these challenges, we propose:

• TactAR: A teleoperation system providing real-time
tactile feedback through Augmented Reality (AR).

• RDP: An imitation learning algorithm that combines
a slow policy for complex trajectory modeling with a
fast policy for closed-loop tactile feedback control.

Our approach enables both complex action modeling and
quick reactive behavior within a unified framework. Exper-
iments on three challenging contact-rich tasks demonstrate
significant performance improvements over baselines, while
maintaining applicability on three different tactile / force
sensors (e.g., Gelsight Mini [8] and joint torque sensors).
More videos and analysis are available in the appendices
and on reactive-diffusion-policy.github.io.
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II. TELEOPERATION SYSTEM: TACTAR

TactAR is an AR-based teleoperation system (see Fig. 2)
that provides real-time tactile / force feedback for contact-
rich tasks with three key features:

• Real-time tactile feedback via AR: 3D deformation
fields are rendered and attached to the robot end-effector
in AR, providing intuitive tactile / force feedback.

• Cross-sensor compatibility: TactAR supports multiple
tactile / force sensors (GelSight Mini [8], MCTac [18],
and joint torque sensors).

• Low-cost: Requires only a consumer-level Meta Quest
3 headset ($500).

Please see Appendix I and our website for more details.

A. 3D Deformation Field Extraction

The gel surface’s marker array (Fig. 3) captures rich
contact information, but deriving forces from 2D optical
flow requires complex calibration with expensive sensors.
To improve accessibility, we instead visualize the 3D defor-
mation field. From tactile images It, we extract normalized
marker positions Dt using OpenCV [16]. We use a score-
based tracking algorithm [9] to calculate 2D optical flow
between the initial frame D0 and the current frame Dt:

Ft = [dx,dy] = Flow(D0, Dt) (1)

The 3D deformation field Vt = [dx,dy,oz] (with z-offset
oz) is then rendered in AR. For force sensors, we directly
visualize Vt = [fx, fy, fz].

https://reactive-diffusion-policy.github.io/
https://reactive-diffusion-policy.github.io/
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Fig. 2: Overview of TactAR teleoperation system. It can provide real-time tactile / force feedback by displaying 3D
deformation field via Augmented Reality (AR). 3D deformation field is a universal representation applicable to multiple
tactile / force sensors. It is rendered and “attached” to the robot end-effector in AR, which makes the user perceive the rich
tactile feedback in 3D space. TactAR also support real-time streaming for multiple RGB cameras and optical tactile sensors.
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Fig. 3: Examples of marker deformation field in GelSight
Mini [8] during different contact modes.

B. Real-time Tactile / Force Feedback Rendering in AR

Our TactAR system employs Meta Quest3’s color pass-
through mode through Unity to create an AR environment.
The native SLAM algorithm in Quest3 tracks headset /
controller poses, with coordinate alignment between AR
and robot spaces via a calibration process. The ROS2-based
architecture (Fig. 2) synchronizes data streams from robot
controllers, RGB cameras, and tactile / force sensors. Tactile
/ force information (3D deformation field Vt) is transformed
using real-time robot TCP poses and rendered in AR space.

III. LEARNING ALGORITHM: RDP

We introduce Reactive Diffusion Policy (RDP), a slow-
fast imitation learning algorithm that responds instantly to
tactile / force feedback while maintaining powerful action
modeling capabilities (see Fig. 4). Please see Appendix II
for more details.

A. Tactile / Force Representation

For optical tactile sensors, we extract a low-dimensional
representation from the 2D deformation field matrix using
principal component analysis (PCA). For force sensors, we
directly use the 6D wrench vector.

B. Slow-Fast Policy Learning

Previous action chunking approaches operate in open-
loop during chunk execution, preventing real-time feedback
incorporation. To overcome this limitation, we propose a
hierarchical framework with two key components:

1) Fast Policy: The Asymmetric Tokenizer (AT) consists
of a 1D-CNN encoder E and a GRU decoder D . The encoder
downsamples action chunks to latent space: Z = E (A). The
decoder reconstructs actions using both latent vectors Z and
tactile feedback Freduced : Â = D(concat([Z,Freduced])).
We choose to use a CNN-based encoder to preserve the
spatial structure of the raw sequence, enabling the latent
action chunk to be better processed by the latent diffusion
policy, which takes sequences as input. It is worth noting
that we utilize tactile representation solely as input in the
decoder. This deliberate asymmetry in structure is designed
to ensure that the latent action chunk retains only high-level
feedback strategies, while the precise locations are predicted
by the decoder with the tactile information. The AT is trained
using L1 reconstruction loss and a Kullback-Leibler (KL)
penalty loss [13]:

LAT = E(A,Freduced)∈Dpolicy

[
∥A− Â∥1 + λKLLKL

]
(2)

Importantly, the fast policy achieves sub-millisecond infer-
ence time, enabling high-frequency control.

2) Slow Policy: The Latent Diffusion Policy (LDP) oper-
ates on latent action chunks Z0 = E (A0) using a diffusion
model framework. This modeling method offers several
advantages. On the one hand, the downsampled latent rep-
resentation reduces computational costs. More importantly,
the asymmetric design in the AT allows challenging reactive
behaviors to be excluded from latent action chunks, thereby
reducing the learning difficulty of latent diffusion policy
under low-frequency observation and enhancing its gener-
alization capabilities. Given the observation O (including
image, tactility and proprioception), the LDP is trained using
DDPM loss [10]:

LLDP = E(O,A0)∈Dpolicy,k,ϵk∥ϵ
k−ϵθ(O,Z0+ϵk, k)∥2 (3)

where ϵθ is the estimated gradient field.

IV. EXPERIMENTS

Please see Appendix III for more details.
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Fig. 4: Overview of Reactive Diffusion Policy (RDP) framework: (a) The training pipeline involves training the fast policy
(Asymmetric Tokenizer) first, followed by training the slow policy (Latent Diffusion Policy). (b) The inference pipeline. The
slow policy leverages low-frequency observations for modeling complex behaviors with action chunking. The fast policy
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TABLE I: Policy Performance for Peeling Task

No Perturb. Perturb. All
Perturb. before Contact after Contact

DP 0.56 0.58 0.19 0.44
DP w. tactile img. 0.60 0.49 0.16 0.41
DP w. tactile emb. 0.48 0.55 0.15 0.39

RDP (GelSight) 0.98 0.93 0.80 0.90
RDP (MCTac) 1.00 0.84 0.79 0.88
RDP (Force) 0.99 0.98 0.88 0.95

TABLE II: Policy Performance for Wiping Task

No Perturb. Perturb. All
Perturb. before Contact after Contact

DP 0.75 0.70 0.25 0.57
DP w. tactile emb. 0.60 0.75 0.15 0.50

RDP (GelSight) 0.85 0.95 0.50 0.77
RDP (Force) 0.95 0.85 0.80 0.87

A. Tasks and Evaluation

We evaluate on three challenging contact-rich tasks:

• Peeling: Requires precision and fast response to pertur-
bations

• Wiping: Requires adaptive force control with rotation
and fast response

• Bimanual Lifting: Requires precise force control and
bimanual coordination

We conduct experiments with three different sensors:
GelSight Mini [8], MCTac [18], and joint torque sensors
of Flexiv Rizon 4 arms [7].

TABLE III: Policy Performance for Bimanual Lifting Task

Soft Paper Cup Hard Paper Cup All

Clamp Lift Score Clamp Lift Score Score

DP 0% 0% 0.00 0% 0% 0.00 0.00
DP w. tactile emb. 10% 10% 0.10 20% 10% 0.05 0.08

RDP (GelSight + MCTac) 100% 100% 0.55 90% 80% 0.40 0.48
RDP (Force) 100% 90% 0.80 90% 90% 0.60 0.70

B. Results and Analysis

Tactile integration approach matters. Simply adding
tactile signals to observations does not necessarily improve
performance. As shown in Table I, whether using raw tactile
images or using tactile embeddings in standard Diffusion
Policy (DP) performs similarly to visual-only approaches.
This suggests that effective tactile integration requires archi-
tectural changes beyond simply adding inputs.

RDP significantly outperforms baselines. As shown in
Tab. I, Tab. II and Tab. III, RDP improves the overall
score by a large margin (> 35%) compared to various
Diffusion Policy baselines in all three tasks. These tasks
require different capabilities, including precision (Peeling),
adaptive force control with rotation (Wiping) and precise
force control with bimanual coordination (Bimanual Lifting).
We believe these capabilities are highly related to closed-loop
adjustments with high-frequency tactile / force feedback.

Cross-sensor applicability. RDP performs well with dif-
ferent tactile / force sensors despite their varying charac-
teristics. Performance with GelSight Mini and MCTac is
comparable (0.90 vs 0.88 on Peeling), and RDP can even
utilize different sensors simultaneously in bimanual tasks.



Despite the noise associated with the force sensor during
rapid robot movement, force sensor-based RDP consistently
achieves the best results, possibly due to lower latency and
dimensionality. This further implies that RDP can identifies
useful patterns from different sensor signals.

Fast reactivity to perturbations. RDP shows superior
performance under perturbations, especially after contact is
established. In the Peeling task, RDP achieves 0.80 score
under post-contact perturbations compared to 0.15 for DP
with tactile embedding. This demonstrates the fast policy can
provide immediate corrections based on tactile feedback.

Tactile / force feedback in TactAR improves data
quality. We have conducted a user study on how tactile /
force feedback in TactAR helps the data collection process.
We invited 10 users with different levels of experience in VR
teleoperation and Imitation Learning (IL). We perform 200
trials in total for quantitative analysis. As shown in Fig. 5,
most of the users (≥ 70%) found that tactile / force AR
feedback is very helpful in data collection, regardless of
whether they were acting as the teleoperator or the person
holding the cucumber. In Fig. 6, we can see that tactile / force
feedback in TactAR can greatly improve the data quality
from both the normalized peeling length (0.72 → 0.91) and
the ratio of stable contact force (0.58 → 0.87).
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Fig. 5: User study results among 10 users on teleoperation
w./w.o. tactile / force feedback in Peeling task.
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Fig. 6: Teleoperation data quality of 10 users on Peeling task
(no perturb.) w./w.o. tactile / force feedback.

Data with higher stability of contact forces boost the
policy performance. We have collected the same number
of demonstrations (60) for Peeling task with traditional VR
teleoperation without tactile / force feedback and trained
RDP (force) with these data. The results in Fig. 7 show
that data quality has a large influence on policy performance

No Perturb. Perturb. before Contact Perturb. after Contact
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e 
in

 P
ee

lin
g 

Ta
sk

30.3%
43.9% 33.0%

VR w.o. Feedback
Ours (TactAR)

Fig. 7: How data quality influences policy performance of
RDP (force) in Peeling task.

(the score decreases by more than 30%). We observe that
policies trained with low-quality data exhibited more unsta-
ble performance. That may be because the Fast Policy in
RDP is designed to identify associations between tactile /
force signals and trajectories from the data and learn reactive
behavior. When contact forces in the data are unstable, the
Fast Policy struggles to identify reasonable associations,
which reduces performance.

Slow-fast hierarchy is essential for RDP performance.
There are another two ways to increase the closed-loop con-
trol frequency without our slow-fast hierarchy: (1) reducing
action chunk size. (2) using temporal ensemble. However,
experiments in Tab. IV have proved that both options have
significant side effects. When reducing the action chunk size
from 8 to 2, the DP baseline tends to get stuck before
grasping. That is because policy with small chunk size is very
sensitive to non-markovian behaviors commonly found in
human demonstration data. For temporal ensemble [14, 21],
the model performance is very sensitive to the ensemble
factor τ . When τ = 0.2, the average weight will focus more
on the newest predictions, which also makes the model easily
get stuck. When τ = 0.8, the average weight will focus more
on the oldest predictions, which makes the model behavior
over-smoothed and hurt reactive ability.

TABLE IV: Effects of Chunk Size and Temporal Ensemble

Wiping

action chunk temporal ensemble [14] Perturb. after Contact
size factor Grasp Score

DP w. tactile emb. 8 - 100% 0.15
2 - 20% 0.10

DP w. tactile emb.
8 τ=0.2 30% 0.05
8 τ=0.5 0% 0.00
8 τ=0.8 100% 0.15

RDP (GelSight) 8 - 100% 0.50

V. CONCLUSION

In this paper, we present TactAR and RDP to collect high-
quality data and learn reactive policy for contact-rich manip-
ulation. RDP addresses the trade-off between sequence mod-
eling and closed-loop control through its slow-fast design
and outperforms SOTA visual IL baselines in experiments.
We believe that this work takes an important step toward
making visual-tactile IL more practical and accessible.
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APPENDIX I FEATURES OF TACTAR

A. Real-time Tactile / Force Feedback Rendering in AR

Target position

Before calibration

After calibration

Fig. 8: Calibration process in AR. The user adjust the
translation and rotation of the virtual coordinate system such
that it can align with the pre-defined TCP position (the white
sphere) and the origin of the world coordinate system.

The Meta Quest 3 VR headset has a native refresh rate
of 90Hz, and it has a bulit-in SLAM algorithm for pose
estimation of the headset and controllers. Before teleopera-
tion, we first align the AR coordinate system in Quest3 with
the real-world robot coordinate system by a simple camera
calibration process described in Fig. 8.

Our system can achieve low-latency feedback for tactile
observation. Typically, the latency of the marker flow track-
ing algorithm is about 10ms. The latency for the force sensor
is less than 1ms. The rendering latency in Quest 3 is about
10ms. And the network latency is about 1-6ms depending on
the network condition. Optionally, our TactAR system also
supports real-time streaming of multi-view RGB cameras
(see in Fig. 2) and tactile cameras for more immersive
teleoperation experience.

APPENDIX II COMPONENTS OF RDP

A. Slow-Fast Policy Learning

As shown in Fig. 9, temporal ensembling finds a balance
between closed-loop control and sequence consistency by
aggregating the predictions of multiple iterations for the
same timestep. A significant drawback of this solution is
that it diminishes the policy’s ability to model multi-modal
distributions and non-Markovian actions, making it prone
to issues such as getting stuck. To break the above trade-
off between sequence modeling and closed-loop control,
we propose a slow-fast policy learning framework Reactive
Diffusion Policy (RDP) as in Fig. 4.

1) Fast Policy: During training, we keep the coefficient
λKL small as in LDM [19] because we want to smooth
the latent space of the AT rather than turning it into a
generative model. As shown in Tab. V, our fast policy only
takes less than 1ms for inference, which can even support
higher-frequency inputs (> 300Hz) theoretically.
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Fig. 9: Comparison among various pipelines. (a) Vanilla
action chunking [2] with open-loop control during the chunk
execution. (b) Action chunking enhanced with temporal en-
sembling [14, 21] for semi-closed-loop control. (c) Our slow-
fast inference pipeline, showcasing closed-loop capabilities
with fast responsive adjustments. (d) Human control patterns
in contact-rich tasks.

2) Slow Policy: We model the slow policy as a Diffusion
Policy [2] operating on latent action chunks, which is called
Latent Diffusion Policy (LDP). Diffusion Policy is a gener-
ative model that iteratively denoises the noisy action Ak to
a clean one Â0 through Stochastic Langevin Dynamics [20]
with the learned gradient field ∇E(A). We use CNN-base
Diffusion Policy with FiLM-based [17] condition injection
as the network architecture.

TABLE V: Inference Time of Different Modules

Diffusion Policy Slow Policy (LDP) Fast Policy (AT)

120ms 100ms < 1ms



3) Implementing Suggestions for Slow-Fast Policy: Com-
pared to the standard Diffusion Policy [2], our slow-fast
control policy requires certain key design elements to achieve
optimal performance.

• Relative trajectory. We use relative end-effector (EE)
trajectory for action representation and proprioception,
which has been proven to be effective even in complex
tasks by UMI [3].

• Latency matching. This method has been mentioned
in UMI [3] and is even more crucial for our slow-
fast policy. It ensures smoother transitions between
action chunks, preventing out-of-distribution tactile sig-
nals from causing the fast policy to predict abnormal
actions.

APPENDIX III EXPERIMENTS

A. Setup

Fig. 10: Improved MCTac Sensor for our task. The left part
is the gripper integrated illustration, and the right part is
the detailed structure and components of the camera-based
tactile sensor.

1) Hardware: The experimental platform consists of two
Flexiv Rizon 4 [7] robotic arms with joint torque sensors
and two Flexiv Grav [5] grippers. For single-arm tasks, we
only use one Realsense D435 camera on the robot arm for
the wrist view. For the bimanual task, we use two Realsense
D435 cameras for wrist views and a fixed Realsense D415
camera in front of the robot workspace for external view. We
use three different tactile / force sensors for experiments:

• GelSight Mini [8] (Robotics Package) optical tactile
sensor with 8MP resolution at 25 FPS, and it has a
7× 9 marker dot array on the surface.

• MCTac [18] optical tactile sensor with 2MP resolution
at 30 FPS, and it has a 5 × 7 marker dot array on the
surface. To acquire a stable and sensitive tactile signal,
we have improved the camera-based tactile sensor based
on the open source MCTac [15, 18], details are shown
in Fig. 10.

• Built-in joint torque sensors in Flexiv Rizon 4 [7]
robotic arm. We use the estimated TCP force/torque
calculated by Flexiv RDK [6] for experiments. We
stream the sensor data at 120Hz and downsample it to
24 FPS. Note that the estimated TCP force / torque
signals have relatively larger noise compared to the

force sensor mounted on the robot end effector (e.g.,
ATI mini 45[1]) due to inaccurate dynamics model,
which further challenges the learning algorithm.

In order to evaluate policy performance under different
tactile / force sensors, we attach MCTac and GelSight Mini
to different fingertips of the same gripper. In this way,
we can collect synchronized data from MCTac, GelSight
Mini and force/torque sensors simultaneously. The TactAR
teleoperation uses a Meta Quest 3 VR headset. All devices
are connected to a workstation with an Intel Core i9-
14900K CPU and an NVIDIA RTX 4090 GPU for both data
collection and evaluation.

2) Baselines: We use the following baselines for compar-
ison:

• Diffusion Policy: vanilla implementation of Diffusion
Policy [2] with only visual input (RGB images) and
open-loop action chunking.

• Diffusion Policy (tactile image): Diffusion Policy with
raw tactile images and visual input.

• Diffusion Policy (tactile embedding) Diffusion Policy
with tactile embeddings (PCA feature) and visual input.

• Reactive Diffusion Policy (tactile embedding) (Ours):
our slow-fast policy with high-frequency tactile embed-
ding (PCA feature) and visual input.

• Reactive Diffusion Policy (force) (Ours): our slow-
fast policy with high-frequency wrench (force/torque)
and visual input.

We use similar initial states across all methods for both the
robots and the objects, by manually aligning the scene with
the pre-defined images. There are three test-time variations
for Peeling and Wiping tasks: (a) No perturbation. The object
is fixed with a random 6D pose in the air. (b) Perturbation
before contact. The human evaluator will move the object
right before the tool makes contact. (c) Perturbation after
contact. The human evaluator will move the object after the
tool makes contact to break the contact state. There are two
test-time variations for Bimanual Lifting task: (a) soft paper
cup. (b) hard paper cup. We run 10 trials for each test-time
variation.

For Peeling task, we calculate the score based on the
proportion of the peeled cucumber skin to the total length
of the cucumber, normalized by the average score of the
demonstration data. For Wiping task, we calculate the score
based on the size of the remaining handwriting compared
to the demonstration data. If the residue reaches the human
demonstration level, the score is 1; If there is minor residue
(less than one third of the handwriting length), the score
is 0.5; If significant residue remains, the score is 0. For
Bimanual Lifting task, if the paper cup is lifted into the
air following the designated trajectory without significant
compression, the score will be 1; If the paper cup is partially
compressed in the air, the score will be 0.5; If the cup is not
lifted up, or dropped in the air, the score will be 0.

3) Details of the Data Collection Process: For three
tasks used in our experiments, we collect 60 demonstrations
for Peeling task, 80 demonstrations for Wiping task and



Task1: Peeling

Init Grasp the peeler Display the resultPerturbation (Optional)Begin peelingApproach the cucumber

Init Grasp the eraser Display the resultPerturbation (Optional)Begin wiping the vaseApproach the Vase

Task2: Wiping

Init Grasp the eraser Display the resultPerturbation (Optional)Begin wiping the vaseApproach the Vase

Task3: Bimanual Lifting

Init Grasp the handler Approach target positionLift the cup (multi-modal)Clamp the cup Approach the cup

Fig. 11: Three experiment tasks including Peeling, Wiping and Bimanual Lifting.

50 demonstrations for Bimanual Lifting tasks with TactAR
system. During the data collection process, we proactively
recorded some reactive behaviors to enhance the robustness
of the model.

4) Details of the Inference Process: We use observation
To = 2 for all Diffusion Policy baselines and our Latent
Diffusion Policy (LDP). The Diffusion Policy and our slow
policy (LDP) predict open-loop 12 FPS action sequences for
each action chunk. They will periodically (1-2Hz) predict
new inference results at time intervals determined by the
action chunk (about 0.67s in real-world time). The fast policy
(AT) takes tactile / force observations at 24 FPS and outputs
action predictions at 24 FPS. The final actions are interpo-
lated and sent to robots with a higher frequency (>500Hz).
Note that we use 24 FPS because we are constrained by
the frame rate limitation of GelSight [8], which is 25 FPS.
Our RDP algorithm can also be applied to higher frequency
tactile / force signals in theory.

B. Results

Relative trajectory and latency matching are essential
for RDP performance. As shown in Fig. 14, the relative
trajectory prediction performs much better compared to the

absolute action prediction in Peeling Task. It may be because
relative trajectory are easier to learn for a smaller, fast
policy, which brings a more generalizable reactive strategy
from tactile feedback. In addition, the relative trajectory also
compresses the latent space, facilitating the learning process
of the latent diffusion policy. We also find that latency
matching also contributes a lot to the policy performance (see
Fig. 14) by ensuring smooth action transition between action
chunks and reducing out-of-distribution (OOD) behaviors.

Tactile / force feedback in TactAR improves data
quality in contact-rich tasks by improving the stability of
contact forces. Each pair of users participated in experiments
on the Peeling task, whereby one user teleoperated the
robotic arm to peel a cucumber, while the other held the
cucumber. The teleoperator was subjected to two distinct
settings: traditional VR teleoperation and TactAR. For each
setting, they conducted 10 peeling trials, with the cucumber
pose varying in each trial. We recorded the length of the
cucumber peel obtained in each trial and assessed whether
the force applied by the robotic arm was consistently stable
from the perspective of the user holding the cucumber. We
perform 10× 10× 2 = 200 trials for quantitative analysis.

For a more detailed quantitative analysis of contact forces,



(a) Peeling (b) Wiping (c) Bimanual Lifting

Failure Case 2 (DP w. tactile emb.): Stuck before contacting.

gap

Failure Case 1 (DP w. tactile emb.): Slow response to perturbation.

Success Case (Ours w. MCTac): Reactive action.

Failure Case 3 (DP w. tactile img.): Wrong contact point & large force.

Failure Case (DP w. tactile emb.): Get stuck before clamping the cup.

Success Case (Ours w. GelSight + MCTac): Smoothly lift to the target 

position.

Success Case (Ours w. Force): Reactive action with rotation.

Failure Case 3 (DP w. tactile emb., 𝜏 = 0.8): Oversmoothed trajectory.

Failure Case 4 (DP w. tactile emb., chunk 2): Stuck before grasping.

Failure Case 1 (DP w. tactile emb.): Slow response to perturbation.

Failure Case 2 (DP): Inaccurate trajectory & large force.

gap gap

Fig. 12: Evaluation results and failure cases of baselines. Please see the website for more details.
Case Study 1: Correct minor positional errors during contact using tactile feedback.

Predicted Original Action Reactive Action

Case Study 3: Precise force control during clamping the cup.

Predicted Original Action Reactive ActionCase Study 2: Adaptive capability for tracking complex surfaces.

Fig. 13: Visualization of the RDP inference process. The red (left) and blue (right) dots can be seen as the predicted action
chunk of the slow policy. The green arrow represents the correction direction and magnitude (scaled up for better visibility)
of the reactive action predicted by the fast policy during inference. Please see the videos on the website for more details.
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Fig. 14: Ablation Study.

we collect data (10 demos) for Peeling task with the same
user by VR teleoperation and TactAR respectively, then we
calculate the Rolling Standard Deviation of the recorded
force curve with a window size of 10 steps, and the results
are shown in Fig. 15. We can observe that using TactAR to
collect data helps avoid a large rolling standard deviation,
indicating reduced temporal fluctuations and more stable
contact forces.
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Fig. 15: The stability of contact forces with different teleop-
eration systems in Peeling task. Data collected with TactAR
has higher stability of contact forces compared to traditional
VR teleoperation.

C. Case Study and Explainability

We conduct several case studies and visualize the RDP
inference process. Please refer to Fig. 12 and Fig. 13.

https://reactive-diffusion-policy.github.io/
https://reactive-diffusion-policy.github.io/
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