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Abstract

Translations created by machines or humans001
can suffer from translationese—an awkward or002
unnatural output due to the translation process.003
We argue that the advent of large language mod-004
els offers a means to mitigate translationese005
via iterative refinement, which is infeasible for006
conventional encoder-decoder models. Our ex-007
periments show that refinement reduces string-008
based metric scores, but neural metrics suggest009
comparable or improved quality. Human eval-010
uations demonstrate that translationese is less-011
ened compared to initial translations and even012
human references, while maintaining quality.013
Ablation studies underscore the importance of014
anchoring the refinement to the source and a015
reasonable seed translation. We also discuss016
current challenges in measuring translationese.017

1 Introduction018

Large language models (LLMs), e.g. generative019

pre-trained Transformers (GPT), have made no-020

table advancements in natural language processing.021

(Radford et al., 2019; Brown et al., 2020; Kaplan022

et al., 2020; Ouyang et al., 2022). In machine023

translation (MT), where the convention is to use an024

encoder-decoder architecture to deal with source025

and target sentences respectively (Bahdanau et al.,026

2015; Vaswani et al., 2017), recent papers have027

examined the feasibility of LLM prompting (Vilar028

et al., 2023; Zhang et al., 2023; Hendy et al., 2023).029

Prior research combining LLMs and MT did not030

extensively explore the phenomenon of “transla-031

tionese”, which refers to a translation that does032

not read as naturally as an original text. This is033

due to both source language interference and the034

translation process itself (Gellerstam, 1986; Baker,035

1996; Teich, 2003). It appears in various stages036

of MT: data (Riley et al., 2020), machine outputs037

(Freitag et al., 2020a), human post-edited transla-038

tions (“post-editese”, Toral, 2019), and even human039

references (Freitag et al., 2020b). Moreover, MT040

training typically relies on parallel data, which in 041

the first place would come from human translators, 042

or in some cases, other MT systems. Thus the data 043

naturally exhibit translationese patterns to a certain 044

extent, which in turn propagates into MT training. 045

Even LLMs might be translationese-prone as their 046

translation power is associated with implicit bilin- 047

gual signals (Briakou et al., 2023). These imperfec- 048

tions not only damage translation performance but 049

also undermine the evaluation process (Toral et al., 050

2018; Graham et al., 2020). 051

Going beyond the current translation paradigm, 052

we propose a simple way to refine translations it- 053

eratively with LLMs, building on automatic post- 054

editing which imitates human corrections (APE, 055

Knight and Chander, 1994; Chatterjee et al., 2018). 056

We prompt an LLM for a translation and feed the 057

source-translation pair back for a refined translation 058

in multiple rounds. Our method offers two insights 059

for combating translationese: (1) Unlike translation 060

or post-editing models, LLMs have been exposed 061

to datasets that are orders of magnitude larger and 062

less translationese. We thus indirectly incorporate 063

genuine texts to pursue natural translations.(2) Our 064

prompting mechanism allows for iterative and arbi- 065

trary rephrasing compared to APE which is limited 066

to token-level error correction without style editing 067

(Ive et al., 2020). 068

Empirical results show that the refinement pro- 069

cess introduces significant textual changes reflected 070

by the drop in BLEU and chrF++, but attains sim- 071

ilar or higher COMET scores compared to initial 072

translations. Native speakers prefer the refined out- 073

puts in terms of reduced translationese, which is 074

more prevalent in GPT translations and even the 075

human references. Referenced-based human eval- 076

uation confirms that such gains are made without 077

sacrificing general quality. As corroborated by re- 078

cent works, these are challenging to capture by 079

automatic metrics like BLEU or COMET alone 080

(Freitag et al., 2019, 2022). 081
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Mode Prompt

Translate Source: ${source}
Please give me a translation in ${lang} without any explanation.

Refine Source: ${source}
Translation: ${prev_translation}
Please give me a better ${lang} translation without any explanation.

RefineContrast Source: ${source}
Bad translation: ${prev_translation}
Please give me a better ${lang} translation without any explanation.

RefineRandom Source: ${source}
Bad translation: ${random_target} if first-round, else ${prev_translation}
Please give me a better ${lang} translation without any explanation.

Paraphrase Sentence: ${prev_translation}
Please give me a paraphrase in ${lang} without any explanation.

Table 1: Prompts used in our work, where ${variable} is substituted with its corresponding content.

2 Methodology082

Having an input source sentence x and an083

optimizable model θmt, the process to obtain084

a translation y can be modelled as y =085

argmaxy P (y|x, θmt). Next, an automatic post-086

editor θape creates a refined translation y′ through087

y′ = argmaxy′ P (y′|x, y, θape). Conventional088

translation or automatic post-editing models are089

trained on (x, y) or (x, y, y′) data pairs.090

Since translationese naturally arises during the091

translation process, we hypothesize that we can092

alleviate it via refinement using LLMs to bypass093

the direct translation formality. Our study uses094

zero-shot prompting by affixing a task description095

to form a prompt p and querying an LLM θLLM to096

elicit a response (Brown et al., 2020). We introduce097

five prompts in our study:098

1. Translate: this queries for a translation099

of a source input, extending the trans-100

lation process with a prompt p: y =101

argmaxy P (y|p, x, θLLM )102

2. Refine: similar to APE, the LLM is given103

the source sentence and the previous trans-104

lation to produce a better translation y′ =105

argmaxy′ P (y′|p, x, y, θLLM ).106

3. RefineContrast: as a contrasting prompt to the107

above, we insert the word “bad” to hint that108

the previously translated text is unwanted, re-109

gardless of its actual quality.110

4. RefineRandom: same prompt as RefineContrast,111

but in the first iteration, a random sentence is112

fed instead of a translation to imitate a gen-113

uinely “bad translation”.114

5. Paraphrase: to ablate the translation process,115

we prompt to rephrase a translation with-116

out feeding the source sentence x: y′′ =117

argmaxy′′ P (y′′|p, y, θLLM ).118

Our study proposes to iteratively call the refine-119

ment prompts, where the source stays the same but 120

the previous translation is updated with the latest, 121

to understand how quality changes. Through ab- 122

lative prompts, we can analyse to what degree the 123

source input and seed translations are helpful. The 124

exact prompt texts are displayed in Table 1. 125

3 Experiments 126

3.1 Data and model details 127

We experiment with language pairs from the trans- 128

lation tasks hosted at WMT 2021 and 2022 (Farhad 129

et al., 2021; Kocmi et al., 2022). In total, we tested 130

seven translation directions: English↔{German, 131

Chinese}, German→French, English→Japanese, 132

and Ukrainian→Czech. We directly benchmark 133

on the test sets, and in situations where multiple 134

references are available, we use human reference 135

“A” released by the WMT organizers. 136

We experiment with GPT-3.5, a powerful API 137

from OpenAI that can be accessed by all users.1 138

As the API is very slow to query, we randomly 139

sample 200 instances from the official test set to 140

form our own test. Similar to the black-box con- 141

dition in APE, we do not keep the query history, 142

in order to prevent an LLM from seeing that the 143

previous translation is produced by itself. Overall, 144

translation refinement is iterated four times. 145

3.2 Evaluation setup 146

We consider four automatic metrics: string-based 147

BLEU (Papineni et al., 2002) and chrF++ (Popović, 148

2017), as well as embedding-based COMETDA and 149

COMETQE (Rei et al., 2020). The difference be- 150

tween DA and QE versions is that COMETDA re- 151

1We accessed gpt-3.5-turbo which has training data up
to Sep 2021, so it should not have seen WMT 2021 or 2022
test references. Nevertheless, our findings are mostly drawn
from reference-free metrics and human evaluation.
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WMT21 de→en WMT21 en→de WMT21 zh→en WMT21 en→zh WMT22 de→fr WMT22 en→ja WMT22 uk→cs

BLEU COMETQE BLEU COMETQE BLEU COMETQE BLEU COMETQE BLEU COMETQE BLEU COMETQE BLEU COMETQE

ReferenceA - .0919 - .1127 - .0708 - .0956 - .0772 - .1345 - .1273

Translate 30.90 .1128 25.39 .1083 25.64 .0867 29.28 .0761 36.25 .0807 23.00 .1255 29.91 .1173
Refine 23.14 .1116 22.35 .1153 20.26 .0921 28.26 .0870 32.47 .0851 22.63 .1305 28.60 .1183
RefineContrast 22.88 .1162 22.54 .0929 24.81 .1132 29.28 .0881 33.12 .0805 22.82 .1282 28.90 .1151
RefineRandom 18.83 .0770 19.36 .0832 24.24 .1022 25.71 .0763 - - - - - -
Paraphrase 11.01 .0919 13.60 .1006 12.76 .0885 21.95 .0716 16.06 .0682 17.69 .1086 13.59 .0969

Table 2: Automatic scores of different strategies on translation directions from WMT 2021 and 2022 news translation.

quires a source, a translation, and a human refer-152

ence, whereas COMETQE is reference-free.2153

Although these metrics are widely used to mea-154

sure translation quality, there is no effective mea-155

sure for translationese thus far. Freitag et al.156

(2020a) hint that too high a single-reference BLEU157

cannot imply high quality; we see it as an indi-158

cator of text variations from the reference. Fur-159

ther, we argue that since human references could160

be translationese-prone, evaluation should not an-161

chor to them. We hence rely on the reference-162

free COMETQE, which correlates well with human163

judgements (Freitag et al., 2022). We report BLEU164

and COMETQE scores in the main content but also165

attach chrF++ and COMETDA in Appendix A.166

3.3 Refinement results167

WMT21 We first experiment with en↔de and168

en↔zh from WMT21, and display results in Ta-169

ble 2. For iterative experiments, the best iteration170

is picked according to COMETQE. We observe171

that the refined translations record a drastic drop172

in string-based metrics compared to initial transla-173

tions, indicating lexical and structural variations.174

In terms of COMETQE, refined outputs surpass all175

initial GPT translations, with substantial improve-176

ment for into-English directions. The ablative Para-177

phrase method sees a decline in all metrics, sug-178

gesting the importance of feeding the input as an179

anchor during iterations to prevent semantic drift.180

To investigate the behaviour of different refine-181

ment strategies, we plot BLEU, COMETDA, and182

COMETQE at different iterations in Appendix C183

Figure 2. We see that Refine and RefineContrast usu-184

ally attain their best after the first iteration, but in185

almost all Paraphrase experiments, scores decrease186

monotonically, indicating that semantics drift away187

as paraphrasing iterates. Moreover, RefineRandom188

results start low, gradually catch up, but never reach189

2BLEU and chrF++ are as in the sacrebleu toolkit
(Post, 2018). For COMET, we use wmt-2022-da and
wmt-2021-qe-da respectively. We document details in Ap-
pendix E.

as high as Refine or RefineContrast. This means that 190

iterative refinement is indeed useful in fixing trans- 191

lations, but starting with a reasonable translation is 192

also crucial for obtaining a strong result. 193

WMT22 For non-English translation, we pick 194

three directions from WMT22. Since RefineRandom 195

results are not desirable for WMT21, we omit ex- 196

periments with this. We find that Refine works best, 197

obtaining higher COMETQE than vanilla transla- 198

tions and RefineContrast. Also, the reduction in 199

string-based scores becomes less obvious, which 200

might be attributed to seed GPT translations in 201

lesser-resourced languages being lower in quality. 202

WMT system refinement Finally, in addition to 203

translation refinement from GPT-3.5 itself, we also 204

apply our refinement calls to outputs from conven- 205

tional MT systems and human translators. These 206

translations can represent genuine errors, if any, in- 207

troduced during the translation process. We experi- 208

ment with seven different submissions in the WMT 209

2021 German-to-English news translation track as 210

a starting point. Due to the space constraint, we 211

introduce the systems and report automatic metric 212

scores in Appendix B. 213

A pattern similar to previous GPT refinement is 214

noticed. For five out of seven WMT entries, the 215

refinement strategy reaches a higher COMETQE 216

score, surprisingly, with up to one-third drop in 217

BLEU. RefineContrast in all but one system surpass 218

Refine, and without the initial translation, Para- 219

phrase iterations record the lowest scores compared 220

to the original submissions and refinements. 221

4 Human Evaluation 222

String-based and neural scores are observed to vary 223

in opposite directions, which may suggest changes 224

in texts without affecting meaning (Freitag et al., 225

2020b). As there is no automatic metric for trans- 226

lationese, we set up human evaluations to measure 227

two characteristics in the refined translations: the 228

translationese degree and overall quality. 229

3



de→en en→de zh→en en→zh
0

20

40
3

2
3

5

1
7

2
8

1
5

2
9

2
3

1
9

1
2 1
6

1
0

Translationese:
Refine vs. Translate

de→en en→de zh→en en→zh
0

20

40

1

1
5

4

1
7

4
0

1
6

3
5

89

1
9

1
1

2
5

Translationese:
Refine vs. Reference

zh→en en→zh
0

20

40

3
1

2
5

1
2 1
4

7

1
1

Quality:
Refine vs. Translate

zh→en en→zh
0

20

40

1
7

1
1

2
0

2
0

1
3 1
9

Quality:
Refine vs. Reference

Tie RefineContrast Translate Reference
Figure 1: Human preferences on reduced translationese (source-free, left) and overall quality (source-based, right).

4.1 Translationese230

Since the term “translationese” is not commonly231

known, we mimic an established work on trans-232

lationese detection (Lembersky et al., 2012). We233

present native speakers with two translations but234

without the source sentence; then we ask “Please235

choose the translation that is more236

fluent, natural, and reflecting better237

use of ${language}”. The evaluators can select238

one of the two translations, or a “tie” if they con-239

sider both equally (un)natural. We conduct such240

pairwise evaluation to compare the first-round out-241

put from RefineContrast against human references, as242

well as against Translate separately.243

We evaluate 50 samples from en↔de and en↔zh244

experiments in Section 3.3, and report results in245

Figure 1 (left). Native speakers prefer RefineContrast246

to vanilla Translate in all four directions, and even247

favour RefineContrast over human references when248

translating into English. The results demonstrate249

that our simple strategy enhances the naturalness of250

GPT translations, and that human references could251

be more translationese than GPT outputs for into-252

English directions, thus making reference-based253

metrics like BLEU or COMETDA less reliable.254

4.2 Overall quality255

We then evaluate for general translation quality. In256

this setup, a source sentence and two translations257

are given to an evaluator who is fluent in both lan-258

guages. They are asked to pick the translation with259

better quality or indicate a tie. We only evaluated260

two translation directions, English to and from Chi-261

nese, due to the limited availability of bilingual262

speakers. Similar to the previous evaluation, we263

compare RefineContrast against human references, as264

well as RefineContrast against Translate separately.265

We plot the human preference results in Figure 1266

(right). It reveals that GPT Refine attains slightly267

better performance in zh→en and similar perfor-268

mance in en→zh when compared with human ref-269

erences. On the other hand, it is more favourable270

than GPT Translate in terms of human judgements. 271

Combining the findings with translationese eval- 272

uation, we conclude that the refinement strategy 273

could improve the naturalness of target translations 274

without undermining the general quality. 275

5 Discussions 276

In Appendix D Table 5 we show outputs from dif- 277

ferent strategies for a single source input, where a 278

native speaker marked preference for RefineContrast, 279

in both German→English and Chinese→English. 280

We use different colours for phrase-level align- 281

ments to highlight the lexical variations. It illus- 282

trates that the word choice is diverse for both direc- 283

tions, and specifically for Chinese→English, there 284

are substantial structural changes. The huge variety 285

in expressions across translations can result in low 286

BLEU against human references, but without much 287

change in meaning as we observed, for instance, in 288

Table 2 where BLEU can decline up to one-third, 289

but neural metric scores change little. 290

Integrating LLMs into MT could benefit ad- 291

vances in both translationese reduction and trans- 292

lationese detection, yet we show the inability to 293

measure translationese using automatic metrics at 294

the moment. Finally, although the concepts of it- 295

erative refinement, post-editing, or translationese 296

are not new, we use a combination of these to ex- 297

plore translationese reduction, instead of focusing 298

on achieving state-of-the-art metric scores. Apart 299

from the key related works in the introduction, we 300

detail other works in Appendix F. 301

6 Conclusion and Future Work 302

We presented a simple way of including a pow- 303

erful LLM in the process of translation refine- 304

ment, which significantly reduces translationese 305

in the outputs. It is shown that our method main- 306

tains translation quality and introduces lexical and 307

structural changes, especially for high-resource 308

into-English translation. Future work can explore 309

sentence-level refinement decisions to reduce cost. 310
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7 Limitations311

Translationese is an interesting phenomenon in312

the field of translation studies, but it is difficult313

to quantify. Our work uses automatic scores to314

show changes in wording but not meaning. Then315

we rely on assessing the translations’ naturalness316

as well as quality to show that translationese is re-317

duced without hurting overall quality. We did not318

use any direct measure for translationese, but this319

is due to the lack of such at the moment.320

We only experimented with GPT-3.5 without321

replicating with open-source LLMs. However, we322

argue that our intention is not to achieve state-of-323

the-art translation results, but to pose a new per-324

spective on translationese reduction. Therefore, us-325

ing a powerful LLM is necessary, and open-sourced326

models might not be as effective. Finally, involv-327

ing GPT in an iterated process is costly. We think328

that GPT is useful in showcasing our proposed ap-329

proach, but smarter refinement strategies need to330

be investigated for practical use cases.331

8 Ethical Statement332

The contents we analyse are machine-generated.333

We are not able to manually examine all model out-334

puts, but we are fairly confident that the generated335

texts do not include harmful or inappropriate ele-336

ments that will make readers uncomfortable. Our337

human evaluators are university students recruited338

by the authors. They are paird with an hourly rate339

higher than their local legal minimum wage.340
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A Additional scores for GPT refinement 600

Due to the space constraint, we are not able to dis- 601

play all metric scores in the main content, so we 602

attach chrF++ and COMETDA scores here for ref- 603

erence. We observe the same patterns in BLEU 604

and chrF++ across all language pairs. Regard- 605

ing COMETDA, as we have discussed, it is con- 606

ditioned on the human reference, which (1) can 607

be translationese-prone itself, and (2) is a subject 608

in our comparison. Hence it might be not indica- 609

tive. The Additional scores for GPT refinement 610

experiments are listed in Table 3. 611

B WMT system refinement 612

Out of the seven WMT21 submissions, we se- 613

lect outputs from four models built by research 614

labs that, based on human evaluation, have been 615

ranked at significantly different positions on the 616

German-to-English leaderboard: Tencent (Wang 617

et al., 2021), Facebook AI (Tran et al., 2021), Ed- 618

inburgh (Chen et al., 2021), and Huawei TSC (Wei 619

et al., 2021). These are competitive systems built 620

with data augmentation, multilingualism, ensem- 621

bling, re-ranking, etc. We then include two online 622

commercial systems tested in WMT 2021: Online- 623

A and Online-Y.3 Finally, human reference “B” 624

3The online systems were anonymized by WMT21 orga-
nizers, so we do not have knowledge about them. The time of
access is believed to be in 2021.
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WMT21 de→en WMT21 en→de WMT21 zh→en WMT21 en→zh WMT22 de→fr WMT22 en→ja WMT22 uk→cs

chrF++ COMETDA chrF++ COMETDA chrF++ COMETDA chrF++ COMETDA chrF++ COMETDA chrF++ COMETDA chrF++ COMETDA

ReferenceA - - - - - - - - - - - - - -

Translate 57.55 .8606 53.54 .8427 53.74 .8199 20.61 .8300 59.50 .8395 25.89 .8863 54.64 .9074
Refine 51.91 .8525 50.57 .8478 49.06 .8156 19.28 .8417 55.83 .8353 27.30 .8941 53.06 .9040
RefineContrast 52.47 .8452 51.21 .8211 51.77 .8538 19.69 .8395 56.37 .8308 26.71 .8928 54.29 .9036
RefineRandom 51.79 .7777 46.56 .7906 47.11 .8323 17.49 .8126 - - - - - -
Paraphrase 40.05 .8044 43.54 .8197 40.92 .7931 17.14 .8144 44.28 .7937 23.18 .8592 40.04 .8625

Table 3: Additional automatic scores of different strategies on translation directions from WMT 2021 and 2022 news translation.

BLEU chrF++ COMETDA COMETQE

ReferenceA - - - .0919

R
ef

er
en

ce
B Submission 30.05 56.00 .8497 .1050

Refine 23.39 51.80 .8527 .1123
RefineContrast 25.10 53.82 .8566 .1116
Paraphrase 12.52 41.03 .8031 .0894

O
nl

in
e A

Submission 34.45 60.78 .8582 .1061
Refine 23.37 51.67 .8494 .1098
RefineContrast 25.14 52.84 .8534 .1137
Paraphrase 12.22 41.34 .8097 .0942

O
nl

in
e Y

Submission 32.70 59.32 .8500 .0981
Refine 22.92 50.85 .8522 .1080
RefineContrast 24.40 53.32 .8517 .1134
Paraphrase 11.97 40.29 .8054 .0892

Te
nc

en
t Submission 35.35 61.28 .8584 .1055

Refine 23.75 52.16 .8488 .1095
RefineContrast 26.89 54.75 .8553 .1116
Paraphrase 12.43 41.35 .8116 .0947

Fa
ce

bo
ok Submission 34.67 60.78 .8677 .1146

Refine 22.97 51.05 .8505 .1113
RefineContrast 25.74 53.88 .8548 .1130
Paraphrase 11.80 40.99 .8099 .0922

E
di

nb
ur

gh Submission 34.20 60.03 .8588 .1087
Refine 22.04 50.29 .8496 .1097
RefineContrast 25.24 52.87 .8546 .1147
Paraphrase 12.79 40.18 .8067 .0921

H
ua

w
ei

Submission 35.13 61.17 .8643 .1126
Refine 22.24 50.82 .8519 .1097
RefineContrast 24.95 52.47 .8560 .1124
Paraphrase 12.20 40.74 .8078 .0909

Table 4: Automatic scores of refining WMT 2021 news shared
task German-to-English submissions.

is added so that we can experiment with our re-625

finement strategy with human translations.4 Ref-626

erences “A” and “B” are sourced from different627

translation agencies (Farhad et al., 2021).628

We report automatic scores from the refinement629

process in Table 4. We explain the results in630

the main content Section 3.3. Overall, we ob-631

4The overview paper of WMT 2021 states that “for
German↔English, the ‘B’ reference was found to be a post-
edited version of one of the participating online systems”.
We discover that it refers to English→German only, and
German→English is not affected.

serve patterns similar to refining GPT translations. 632

The string-based metrics see significant drops, but 633

COMETQE improves for five out of seven original 634

entries. 635

C Score changes through iterations 636

We plot the changes in BLEU, COMETDA, and 637

COMETQE in Figure 2. Apart from scores from 638

our translate and refinement queries, we also in- 639

clude the human reference performance in the 640

COMETQE plot. 641

D Example outputs 642

We place two examples in Table 5 as a case study. 643

The cases illustrate significant string changes, but 644

the meaning of sentences does not vary too much. 645

This signifies the inability to use automatic string- 646

based metrics in distinguishing translation quality 647

or the degree of translationese when the outputs are 648

relatively high-quality. 649

E Evaluation metric details 650

BLEU and chrF++ are as implemented in the 651

sacrebleu toolkit.5 We also use this toolkit to ob- 652

tain test sets with references as well as past WMT 653

systems’ outputs. Specifically for tokenization in 654

BLEU calculation, we use “zh” for Chinese, “ja- 655

mecab” for Japanese, and “13a” for the rest. The 656

BLEU signature is nrefs:1 | case:mixed | 657

eff:no | smooth:exp | version:2.3.1, and 658

the chrF++ signature is nrefs:1 | case:mixed 659

| eff:yes | nc:6 | nw:2 | space:no | 660

version:2.3.1. For COMET metrics, we used 661

the official implementation released by the au- 662

thors.6 663

5https://github.com/mjpost/sacrebleu
6https://github.com/Unbabel/COMET
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Figure 2: BLEU, COMETDA, and COMETQE at different refinement and paraphrase iterations for high-resource translation.

Source Der 17-Jährige floh zunächst vom Tatort, seine Personalien konnten aber im Nachhinein ermittelt werden.
Reference The 17 year-old proceeded to flee the crime scene, however, his personal details could be retrieved later.
Translate The 17-year-old initially fled from the crime scene, but his personal information was later determined.
RefineContrast The 17-year-old initially fled from the scene of the crime, but his personal details could later be identified.
Paraphrase At first, the 17-year-old ran away from where the crime occurred, but eventually, the authorities were able to

identify him by his personal details.

Source 新法令规定，坎帕尼亚大区自即日起室内公共场所必须戴口罩，违者最高可处以1000欧元罚金。
Reference According to a new decree, people must wear masks in indoor public places in Campania from now on, and

offenders can be fined up to 1,000 euros.
Translate A new regulation stipulates that in Campania, indoor public places must wear masks. Violators can be fined

up to 1000 euros.
RefineContrast A new regulation states that in the Campania region, masks must be worn in indoor public places, with a

maximum fine of 1000 euros for those who violate the rule.
Paraphrase A new rule in Campania requires people to wear masks in indoor public places, and those who don’t follow

this rule may be charged up to 1000 euros.

Table 5: German→English and Chinese→English examples showing rich lexical variations across translation strategies.
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F Other related works664

F.1 Translation post-editing665

Closely related to translation refinement is auto-666

matic post-editing (APE), which trains a neural667

network to fix translation errors by learning from668

human correction data (Knight and Chander, 1994).669

While it has shown notable developments in sta-670

tistical machine translation, it could become less671

effective in the deep learning era due to original672

translations being high-quality and lack of post-673

editing data (Junczys-Dowmunt and Grundkiewicz,674

2018; Chatterjee et al., 2018). Whilst one way675

to facilitate this is more data provision (Chollam-676

patt et al., 2020; Ive et al., 2020), our workaround677

utilizes a large language model, which possesses678

the post-editing capability without being specifi-679

cally tuned. Furthermore, post-editing models have680

limited power to alleviate translationese, because681

human editing data is collected from annotators682

who are usually instructed to not make style im-683

provements (Ive et al., 2020). Compared to APE,684

our method allows LLMs to re-generate an entirely685

different translation, which could escape the “post-686

editese” phenomenon, where Toral (2019) demon-687

strated that human-edited machine translations still688

exhibit translationese features.689

Some post-editing works do not rely on the690

source translation or human editing data (Simard691

et al., 2007). For instance, Freitag et al. (2019)692

trained a post-editor solely on monolingual data by693

reconstructing the original text given its round-trip694

translation. In our work, we incorporate stronger695

natural language modelling into post-editing by696

employing LLMs. Other translation refinement697

research includes combining statistical and neu-698

ral systems (Novak et al., 2016; Niehues et al.,699

2016), merging APE into the NMT framework700

(Pal et al., 2020; Chen et al., 2022), and debias-701

ing translationese in the latent embedding space702

(Dutta Chowdhury et al., 2022). The iterative edit-703

ing mechanism is not commonly employed in au-704

toregressive translation or translation editing. Its705

use cases mostly lie in non-autoregressive trans-706

lation, where each output token is independent of707

other target positions and iterative decoding en-708

hances output quality (Lee et al., 2018; Gu et al.,709

2019; Xu and Carpuat, 2021).710

F.2 Large language models711

Large language models have recently become712

highly effective tools for various NLP tasks (Rad-713

ford et al., 2019; Brown et al., 2020; Chowdhery 714

et al., 2022; Ouyang et al., 2022). Nowadays, opti- 715

mising LLMs directly for specific tasks becomes 716

infeasible yet unnecessary since they generalize 717

to downstream tasks without explicit supervision. 718

With more parameters and training data, LLMs may 719

offer stronger performance than dedicated transla- 720

tion or post-editing models. The method we use 721

to elicit a response from GPT is zero-shot hard 722

prompting (Brown et al., 2020), which means affix- 723

ing a description to the original task input to form 724

a query to the model. Researchers have bench- 725

marked LLMs’ capability to translate (Vilar et al., 726

2023; Zhang et al., 2023; Jiao et al., 2023; Hendy 727

et al., 2023), and to evaluate translations (Kocmi 728

and Federmann, 2023; Lu et al., 2023; Xu et al., 729

2023). 730

Recent findings show that GPT produces less 731

literal translations, especially for out-of-English 732

translations (Raunak et al., 2023a), which to some 733

extent stands in contrast with our evaluation out- 734

come. Concurrent with our study, Raunak et al. 735

(2023b) formalized post-editing as a chain-of- 736

thought process (Wei et al., 2022) with GPT-4 and 737

showed promising results. Different from their 738

focus, our work features the iterative refinement 739

process as a means to mitigate translationese. The 740

improvement, especially for into-English, may be 741

attributed to the abundant English pre-training data 742

available for LLMs. To the best of our knowledge, 743

although the concept of iterative refinement is not 744

new, ours is the pioneering paper in applying such 745

strategies to LLMs for translation. 746
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