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Abstract

Translations created by machines or humans
can suffer from translationese—an awkward or
unnatural output due to the translation process.
We argue that the advent of large language mod-
els offers a means to mitigate translationese
via iterative refinement, which is infeasible for
conventional encoder-decoder models. Our ex-
periments show that refinement reduces string-
based metric scores, but neural metrics suggest
comparable or improved quality. Human eval-
uations demonstrate that translationese is less-
ened compared to initial translations and even
human references, while maintaining quality.
Ablation studies underscore the importance of
anchoring the refinement to the source and a
reasonable seed translation. We also discuss
current challenges in measuring translationese.

1 Introduction

Large language models (LLMs), e.g. generative
pre-trained Transformers (GPT), have made no-
table advancements in natural language processing.
(Radford et al., 2019; Brown et al., 2020; Kaplan
et al., 2020; Ouyang et al., 2022). In machine
translation (MT), where the convention is to use an
encoder-decoder architecture to deal with source
and target sentences respectively (Bahdanau et al.,
2015; Vaswani et al., 2017), recent papers have
examined the feasibility of LLM prompting (Vilar
et al., 2023; Zhang et al., 2023; Hendy et al., 2023).

Prior research combining LLMs and MT did not
extensively explore the phenomenon of “transla-
tionese”, which refers to a translation that does
not read as naturally as an original text. This is
due to both source language interference and the
translation process itself (Gellerstam, 1986; Baker,
1996; Teich, 2003). It appears in various stages
of MT: data (Riley et al., 2020), machine outputs
(Freitag et al., 2020a), human post-edited transla-
tions (“post-editese”, Toral, 2019), and even human
references (Freitag et al., 2020b). Moreover, MT

training typically relies on parallel data, which in
the first place would come from human translators,
or in some cases, other MT systems. Thus the data
naturally exhibit translationese patterns to a certain
extent, which in turn propagates into MT training.
Even LLMs might be translationese-prone as their
translation power is associated with implicit bilin-
gual signals (Briakou et al., 2023). These imperfec-
tions not only damage translation performance but
also undermine the evaluation process (Toral et al.,
2018; Graham et al., 2020).

Going beyond the current translation paradigm,
we propose a simple way to refine translations it-
eratively with LLMs, building on automatic post-
editing which imitates human corrections (APE,
Knight and Chander, 1994; Chatterjee et al., 2018).
We prompt an LLLM for a translation and feed the
source-translation pair back for a refined translation
in multiple rounds. Our method offers two insights
for combating translationese: (1) Unlike translation
or post-editing models, LLLMs have been exposed
to datasets that are orders of magnitude larger and
less translationese. We thus indirectly incorporate
genuine texts to pursue natural translations.(2) Our
prompting mechanism allows for iterative and arbi-
trary rephrasing compared to APE which is limited
to token-level error correction without style editing
(Ive et al., 2020).

Empirical results show that the refinement pro-
cess introduces significant textual changes reflected
by the drop in BLEU and chrF++, but attains sim-
ilar or higher COMET scores compared to initial
translations. Native speakers prefer the refined out-
puts in terms of reduced translationese, which is
more prevalent in GPT translations and even the
human references. Referenced-based human eval-
uation confirms that such gains are made without
sacrificing general quality. As corroborated by re-
cent works, these are challenging to capture by
automatic metrics like BLEU or COMET alone
(Freitag et al., 2019, 2022).



Mode Prompt
Translate Source:

Please give me a translation in ${lang} without any explanation.

" Refine ~ Source: ${source} T oo
Translation: ${prev_translation}
Please give me a better ${lang} translation without any explanation.

" Refineconmst  Source: ${source} T oo oo
Bad translation: ${prev_translation}
Please give me a better ${lang} translation without any explanation.

" Refinermdom  Source: ${source} T T oo oo
Bad translation: ${random_target} if first-round, else ${prev_translation}
Please give me a better ${lang} translation without any explanation.

" Paraphrase ~ Sentence: ${prev_translation} T~

Please give me a paraphrase in ${lang} without any explanation.

Table 1: Prompts used in our work, where ${variable} is substituted with its corresponding content.

2 Methodology

Having an input source sentence z and an
optimizable model 6,,;, the process to obtain
a translation y can be modelled as y =
argmaxy P(y|z,0,,;). Next, an automatic post-
editor 6, creates a refined translation y' through
y = argmaxy P(y'|x,y,0ape). Conventional
translation or automatic post-editing models are
trained on (x, y) or (x,y,y’) data pairs.

Since translationese naturally arises during the
translation process, we hypothesize that we can
alleviate it via refinement using LLMs to bypass
the direct translation formality. Our study uses
zero-shot prompting by affixing a task description
to form a prompt p and querying an LLM 07,7/ to
elicit a response (Brown et al., 2020). We introduce
five prompts in our study:

1. Translate: this queries for a translation
of a source input, extending the trans-
lation process with a prompt p: y =
argmaxy P(y|p,x,0rr0m)

2. Refine: similar to APE, the LLM is given
the source sentence and the previous trans-
lation to produce a better translation y' =
argmax, P(y'|p, z,y,0rLm)-

3. Refineconwast: as a contrasting prompt to the
above, we insert the word “bad” to hint that
the previously translated text is unwanted, re-
gardless of its actual quality.

4. Refinerandom: same prompt as Refinecontrast,
but in the first iteration, a random sentence is
fed instead of a translation to imitate a gen-
uinely “bad translation”.

5. Paraphrase: to ablate the translation process,
we prompt to rephrase a translation with-
out feeding the source sentence z: 3y’ =
argmax, P(y"|p,y, OrL).

Our study proposes to iteratively call the refine-

ment prompts, where the source stays the same but
the previous translation is updated with the latest,
to understand how quality changes. Through ab-
lative prompts, we can analyse to what degree the
source input and seed translations are helpful. The
exact prompt texts are displayed in Table 1.

3 Experiments

3.1 Data and model details

We experiment with language pairs from the trans-
lation tasks hosted at WMT 2021 and 2022 (Farhad
et al., 2021; Kocmi et al., 2022). In total, we tested
seven translation directions: English<{German,
Chinese}, German—French, English—Japanese,
and Ukrainian—Czech. We directly benchmark
on the test sets, and in situations where multiple
references are available, we use human reference
“A” released by the WMT organizers.

We experiment with GPT-3.5, a powerful API
from OpenAl that can be accessed by all users.
As the API is very slow to query, we randomly
sample 200 instances from the official test set to
form our own test. Similar to the black-box con-
dition in APE, we do not keep the query history,
in order to prevent an LLM from seeing that the
previous translation is produced by itself. Overall,
translation refinement is iterated four times.

3.2 Evaluation setup

We consider four automatic metrics: string-based
BLEU (Papineni et al., 2002) and chrF++ (Popovié,
2017), as well as embedding-based COMETp, and
COMETgg (Rei et al., 2020). The difference be-
tween DA and QE versions is that COMETpy re-

'We accessed gpt-3.5-turbo which has training data up
to Sep 2021, so it should not have seen WMT 2021 or 2022
test references. Nevertheless, our findings are mostly drawn
from reference-free metrics and human evaluation.



WMT21 de—en WMT21 en—de WMT21 zh—en

WMT21 en—zh

wMT22 de—fr WMT22en—ja WMT22 uk—cs

BLEU COMETqr BLEU COMETqr BLEU COMETqg

BLEU COMETqz BLEU COMETqr BLEU COMETqr BLEU COMETqg

Referencen - .0919 - 1127 - 0708
Translate 30.90 .1128 25.39 .1083 25.64 .0867
Refine 23.14 1116 22.35 .1153 20.26 .0921
Refineconmase 22.88 1162 22.54 .0929 24.81 .1132
Refinerangom 18.83 .0770 19.36 .0832 24.24 .1022
Paraphrase 11.01 .0919 13.60 .1006 12.76 .0885

- 0956 - 0772 - 345 - .1273
0761 3625 .0807 23.00 .1255 29.91 .1173
0870 3247 .0851 22.63 .1305 28.60 .1183
0881 33.12 .0805 22.82 .1282 28.90 .1151
0763 - - - - - -
0716 1606 .0682 17.69 .1086 13.59 .0969

Table 2: Automatic scores of different strategies on translation directions from WMT 2021 and 2022 news translation.

quires a source, a translation, and a human refer-
ence, whereas COMET g is reference-free.?
Although these metrics are widely used to mea-
sure translation quality, there is no effective mea-
sure for translationese thus far. Freitag et al.
(2020a) hint that too high a single-reference BLEU
cannot imply high quality; we see it as an indi-
cator of text variations from the reference. Fur-
ther, we argue that since human references could
be translationese-prone, evaluation should not an-
chor to them. We hence rely on the reference-
free COMETqE, which correlates well with human
judgements (Freitag et al., 2022). We report BLEU
and COMET g scores in the main content but also
attach chrF++ and COMETp,4 in Appendix A.

3.3 Refinement results

WMT21 We first experiment with en«>de and
en<>zh from WMT21, and display results in Ta-
ble 2. For iterative experiments, the best iteration
is picked according to COMETqgg. We observe
that the refined translations record a drastic drop
in string-based metrics compared to initial transla-
tions, indicating lexical and structural variations.
In terms of COMET g, refined outputs surpass all
initial GPT translations, with substantial improve-
ment for into-English directions. The ablative Para-
phrase method sees a decline in all metrics, sug-
gesting the importance of feeding the input as an
anchor during iterations to prevent semantic drift.
To investigate the behaviour of different refine-
ment strategies, we plot BLEU, COMETp,, and
COMET at different iterations in Appendix C
Figure 2. We see that Refine and Refinecongrast USU-
ally attain their best after the first iteration, but in
almost all Paraphrase experiments, scores decrease
monotonically, indicating that semantics drift away
as paraphrasing iterates. Moreover, Refinerandom
results start low, gradually catch up, but never reach
’BLEU and chrF++ are as in the sacrebleu toolkit
(Post, 2018). For COMET, we use wmt-2022-da and

wmt-2021-ge-da respectively. We document details in Ap-
pendix E.

as high as Refine or Refinecontrast- This means that
iterative refinement is indeed useful in fixing trans-
lations, but starting with a reasonable translation is
also crucial for obtaining a strong result.

WMT22 For non-English translation, we pick
three directions from WMT22. Since Refinerandom
results are not desirable for WMT21, we omit ex-
periments with this. We find that Refine works best,
obtaining higher COMETE than vanilla transla-
tions and Refineconyast- Also, the reduction in
string-based scores becomes less obvious, which
might be attributed to seed GPT translations in
lesser-resourced languages being lower in quality.

WMT system refinement Finally, in addition to
translation refinement from GPT-3.5 itself, we also
apply our refinement calls to outputs from conven-
tional MT systems and human translators. These
translations can represent genuine errors, if any, in-
troduced during the translation process. We experi-
ment with seven different submissions in the WMT
2021 German-to-English news translation track as
a starting point. Due to the space constraint, we
introduce the systems and report automatic metric
scores in Appendix B.

A pattern similar to previous GPT refinement is
noticed. For five out of seven WMT entries, the
refinement strategy reaches a higher COMETgg
score, surprisingly, with up to one-third drop in
BLEU. Refinecontast in all but one system surpass
Refine, and without the initial translation, Para-
phrase iterations record the lowest scores compared
to the original submissions and refinements.

4 Human Evaluation

String-based and neural scores are observed to vary
in opposite directions, which may suggest changes
in texts without affecting meaning (Freitag et al.,
2020b). As there is no automatic metric for trans-
lationese, we set up human evaluations to measure
two characteristics in the refined translations: the
translationese degree and overall quality.
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Figure 1: Human preferences on reduced translationese (source-free, left) and overall quality (source-based, right).
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4.1 Translationese

Since the term “translationese” is not commonly
known, we mimic an established work on trans-
lationese detection (Lembersky et al., 2012). We
present native speakers with two translations but
without the source sentence; then we ask “Please
choose the translation that is more
fluent, natural, and reflecting better
use of ${language}”. The evaluators can select
one of the two translations, or a “tie” if they con-
sider both equally (un)natural. We conduct such
pairwise evaluation to compare the first-round out-
put from Refineconrast against human references, as
well as against Translate separately.

We evaluate 50 samples from en<>de and en<»zh
experiments in Section 3.3, and report results in
Figure 1 (left). Native speakers prefer Refinecontrast
to vanilla Translate in all four directions, and even
favour Refinecontast OVer human references when
translating into English. The results demonstrate
that our simple strategy enhances the naturalness of
GPT translations, and that human references could
be more translationese than GPT outputs for into-
English directions, thus making reference-based
metrics like BLEU or COMETp4 less reliable.

4.2 Overall quality

We then evaluate for general translation quality. In
this setup, a source sentence and two translations
are given to an evaluator who is fluent in both lan-
guages. They are asked to pick the translation with
better quality or indicate a tie. We only evaluated
two translation directions, English to and from Chi-
nese, due to the limited availability of bilingual
speakers. Similar to the previous evaluation, we
compare Refinecontast against human references, as
well as Refinecontrast against Translate separately.
We plot the human preference results in Figure 1
(right). It reveals that GPT Refine attains slightly
better performance in zh—en and similar perfor-
mance in en—zh when compared with human ref-
erences. On the other hand, it is more favourable

than GPT Translate in terms of human judgements.
Combining the findings with translationese eval-
uation, we conclude that the refinement strategy
could improve the naturalness of target translations
without undermining the general quality.

5 Discussions

In Appendix D Table 5 we show outputs from dif-
ferent strategies for a single source input, where a
native speaker marked preference for Refinecontrasts
in both German—English and Chinese—English.
We use different colours for phrase-level align-
ments to highlight the lexical variations. It illus-
trates that the word choice is diverse for both direc-
tions, and specifically for Chinese—English, there
are substantial structural changes. The huge variety
in expressions across translations can result in low
BLEU against human references, but without much
change in meaning as we observed, for instance, in
Table 2 where BLEU can decline up to one-third,
but neural metric scores change little.

Integrating LL.Ms into MT could benefit ad-
vances in both translationese reduction and trans-
lationese detection, yet we show the inability to
measure translationese using automatic metrics at
the moment. Finally, although the concepts of it-
erative refinement, post-editing, or translationese
are not new, we use a combination of these to ex-
plore translationese reduction, instead of focusing
on achieving state-of-the-art metric scores. Apart
from the key related works in the introduction, we
detail other works in Appendix F.

6 Conclusion and Future Work

We presented a simple way of including a pow-
erful LLM in the process of translation refine-
ment, which significantly reduces translationese
in the outputs. It is shown that our method main-
tains translation quality and introduces lexical and
structural changes, especially for high-resource
into-English translation. Future work can explore
sentence-level refinement decisions to reduce cost.



7 Limitations

Translationese is an interesting phenomenon in
the field of translation studies, but it is difficult
to quantify. Our work uses automatic scores to
show changes in wording but not meaning. Then
we rely on assessing the translations’ naturalness
as well as quality to show that translationese is re-
duced without hurting overall quality. We did not
use any direct measure for translationese, but this
is due to the lack of such at the moment.

We only experimented with GPT-3.5 without
replicating with open-source LLMs. However, we
argue that our intention is not to achieve state-of-
the-art translation results, but to pose a new per-
spective on translationese reduction. Therefore, us-
ing a powerful LLM is necessary, and open-sourced
models might not be as effective. Finally, involv-
ing GPT in an iterated process is costly. We think
that GPT is useful in showcasing our proposed ap-
proach, but smarter refinement strategies need to
be investigated for practical use cases.

8 Ethical Statement

The contents we analyse are machine-generated.
We are not able to manually examine all model out-
puts, but we are fairly confident that the generated
texts do not include harmful or inappropriate ele-
ments that will make readers uncomfortable. Our
human evaluators are university students recruited
by the authors. They are paird with an hourly rate
higher than their local legal minimum wage.
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A Additional scores for GPT refinement

Due to the space constraint, we are not able to dis-
play all metric scores in the main content, so we
attach chrF++ and COMETp,4 scores here for ref-
erence. We observe the same patterns in BLEU
and chrF++ across all language pairs. Regard-
ing COMETp,, as we have discussed, it is con-
ditioned on the human reference, which (1) can
be translationese-prone itself, and (2) is a subject
in our comparison. Hence it might be not indica-
tive. The Additional scores for GPT refinement
experiments are listed in Table 3.

B WMT system refinement

Out of the seven WMT21 submissions, we se-
lect outputs from four models built by research
labs that, based on human evaluation, have been
ranked at significantly different positions on the
German-to-English leaderboard: Tencent (Wang
et al., 2021), Facebook AI (Tran et al., 2021), Ed-
inburgh (Chen et al., 2021), and Huawei TSC (Wei
et al., 2021). These are competitive systems built
with data augmentation, multilingualism, ensem-
bling, re-ranking, etc. We then include two online
commercial systems tested in WMT 2021: Online-
A and Online-Y.? Finally, human reference “B”

3The online systems were anonymized by WMT21 orga-
nizers, so we do not have knowledge about them. The time of
access is believed to be in 2021.
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wMT21 de—en WMT21 en—de WMT21 zh—en WMT21 en—zh WMT22 de—fr WMT22 en—ja WMT22 uk—cs

chrF++ COMETp, chrF++ COMETp, chrF++ COMETp, chrF++ COMETp, chrF++ COMETp, chrF++ COMETp, chrF++ COMETp,

Referencea - - - - - - - - - - - - _ _

Translate
Refine 51.91
Refinecontrast 32.47
Refinerandom 51.79
Paraphrase 40.05

Table 3: Additional automatic scores of different strategies on translation directions from WMT 2021 and 2022 news translation.

BLEU  chrF++ COMETps COMETqe serve patterns similar to refining GPT translations.
References - i i 0919 The string-based metrics see significant drops, but
& Submission 30.05  56.00  .8497  .1050 COMET g improves for five out of seven original
% Refine 23.39 51.80 8527 1123 entries.
8 Refineconrat 25.10 53.82 8566 1116
o Paraphrase 12.52  41.03 8031  .0894 C Score changes through iterations
< Submission 34.45 60.78 8582 1061 .
2 Refine 2337  51.67 8494 1098 We plot the changes in BLEU, COMETp,, and
= Refineconrase 25.14 52.84 8534 1137 COMETg in Figure 2. Apart from scores from
© Paraphrase 12.22 41.34 .8097 .0942 . .
,,,,,,,,,,,,,,,,,,,,,,,,,, our translate and refinement queries, we also in-
Submission 32.70 59.32 8500 .0981 .
g Refine 2200 5085 8522 1080 clude the human reference performance in the
E Refineconas 2440 5332 8517 1134 COMET plot.
O Paraphrase 11.97 4029 8054 0892
_ Submission 3535 6128  .8584 1055 D Example outputs
§ Refine 23.75 52.16 .8488 1095 .
S Refineconrast 26.89  54.75 8553 1116 We place two examples in Table 5 as a case study.
TﬁPir{PflraiSfi (12434135 8116 .0947 The cases illustrate significant string changes, but
% Submission 34.67  60.78 8677 1146 the meaning of sentences does not vary too much.
& Refine 2297 5105 8505 1113 This signifies the inability to use automatic string-
S Refineconss 2574  53.88 8548 1130 ENUIES The Mablity 1o - 15
i£ Paraphrase 11.80  40.99 8099 0922 based metrics in distinguishing translation quality
=, Submission 3420 60.03 8588 1087 or th§ degre'e of tran§lat10nese when the outputs are
5 Refine 22.04  50.29 8496 1097 relatively high-quality.
g Refineconirast 25.24 52.87 .8546 1147
@ Paraphrase = 1279 = 40.18 =~ 8067 = 0921 ~ E Evaluation metric details
— Submission 35.13 61.17 .8643 1126 . .
£ Refine 2224  50.82 8519 1097 BLEU and chrF++ are as implemented in the
< . . .
2 Refineconas 24.95 5247 8560 1124 sacrebleu toolkit.> We also use this toolkit to ob-
Paraphrase 12.20 40.74 .8078 .0909

Table 4: Automatic scores of refining WMT 2021 news shared
task German-to-English submissions.

is added so that we can experiment with our re-

tain test sets with references as well as past WMT
systems’ outputs. Specifically for tokenization in
BLEU calculation, we use “zh” for Chinese, “ja-
mecab” for Japanese, and “13a” for the rest. The
BLEU signature is nrefs:1 | case:mixed |

) ' 1 eff:no | smooth:exp | version:2.3.1, and
ﬁnement“st,r’ategy‘yvfh human translatlons.. Ref- the chrF++ signature is nrefs:1 | case:mixed
erences “A” and “B” are sourced from different | eff:yes | nc:6 | nw:2 | space:no |

translation agencies (Farhad et al., 2021).

We report automatic scores from the refinement
process in Table 4. We explain the results in
the main content Section 3.3. Overall, we ob-

“The overview paper of WMT 2021 states that “for
German<+English, the ‘B’ reference was found to be a post-
edited version of one of the participating online systems”.
We discover that it refers to English—German only, and
German—English is not affected.

version:2.3.1. For COMET metrics, we used
the official implementation released by the au-
thors.°

Shttps://github.com/mjpost/sacrebleu
https://github.com/Unbabel/COMET
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Figure 2: BLEU, COMETpa, and COMET at different refinement and paraphrase iterations for high-resource translation.

Source
Reference
Translate
Refinecontrast
Paraphrase

Der 17-Jéhrige floh zunichst vom Tatort, seine Personalien konnten aber im Nachhinein ermittelt werden.
The 17 year-old proceeded to flee the crime scene, however, his personal details could be retrieved later.
The 17-year-old initially fled from the crime scene, but his personal information was later determined.

The 17-year-old initially fled from the scene of the crime, but his personal details could later be identified.
At first, the 17-year-old ran away from where the crime occurred, but eventually, the authorities were able to
identify him by his personal details.

Source
Reference

Translate
ReﬁneComrasl

Paraphrase

Frs o E, KARILAX BRI HEEN AL, 357 Him Al 4 PL1000RKTT 11 4 -
According to a new decree, people must wear masks in indoor public places in Campania from now on, and
offenders can be fined up to 1,000 euros.

A new regulation stipulates that in Campania, indoor public places must wear masks. Violators can be fined
up to 1000 euros.

A new regulation states that in the Campania region, masks must be worn in indoor public places, with a
maximum fine of 1000 euros for those who violate the rule.

A new rule in Campania requires people to wear masks in indoor public places, and those who don’t follow
this rule may be charged up to 1000 euros.

Table 5: German—English and Chinese—English examples showing rich lexical variations across translation strategies.



F Other related works

F.1 Translation post-editing

Closely related to translation refinement is auto-
matic post-editing (APE), which trains a neural
network to fix translation errors by learning from
human correction data (Knight and Chander, 1994).
While it has shown notable developments in sta-
tistical machine translation, it could become less
effective in the deep learning era due to original
translations being high-quality and lack of post-
editing data (Junczys-Dowmunt and Grundkiewicz,
2018; Chatterjee et al., 2018). Whilst one way
to facilitate this is more data provision (Chollam-
patt et al., 2020; Ive et al., 2020), our workaround
utilizes a large language model, which possesses
the post-editing capability without being specifi-
cally tuned. Furthermore, post-editing models have
limited power to alleviate translationese, because
human editing data is collected from annotators
who are usually instructed to not make style im-
provements (Ive et al., 2020). Compared to APE,
our method allows LLMs to re-generate an entirely
different translation, which could escape the “post-
editese” phenomenon, where Toral (2019) demon-
strated that human-edited machine translations still
exhibit translationese features.

Some post-editing works do not rely on the
source translation or human editing data (Simard
et al., 2007). For instance, Freitag et al. (2019)
trained a post-editor solely on monolingual data by
reconstructing the original text given its round-trip
translation. In our work, we incorporate stronger
natural language modelling into post-editing by
employing LLMs. Other translation refinement
research includes combining statistical and neu-
ral systems (Novak et al., 2016; Niehues et al.,
2016), merging APE into the NMT framework
(Pal et al., 2020; Chen et al., 2022), and debias-
ing translationese in the latent embedding space
(Dutta Chowdhury et al., 2022). The iterative edit-
ing mechanism is not commonly employed in au-
toregressive translation or translation editing. Its
use cases mostly lie in non-autoregressive trans-
lation, where each output token is independent of
other target positions and iterative decoding en-
hances output quality (Lee et al., 2018; Gu et al.,
2019; Xu and Carpuat, 2021).

F.2 Large language models

Large language models have recently become
highly effective tools for various NLP tasks (Rad-

10

ford et al., 2019; Brown et al., 2020; Chowdhery
et al., 2022; Ouyang et al., 2022). Nowadays, opti-
mising LLMs directly for specific tasks becomes
infeasible yet unnecessary since they generalize
to downstream tasks without explicit supervision.
With more parameters and training data, LLMs may
offer stronger performance than dedicated transla-
tion or post-editing models. The method we use
to elicit a response from GPT is zero-shot hard
prompting (Brown et al., 2020), which means affix-
ing a description to the original task input to form
a query to the model. Researchers have bench-
marked LLMs’ capability to translate (Vilar et al.,
2023; Zhang et al., 2023; Jiao et al., 2023; Hendy
et al., 2023), and to evaluate translations (Kocmi
and Federmann, 2023; Lu et al., 2023; Xu et al.,
2023).

Recent findings show that GPT produces less
literal translations, especially for out-of-English
translations (Raunak et al., 2023a), which to some
extent stands in contrast with our evaluation out-
come. Concurrent with our study, Raunak et al.
(2023b) formalized post-editing as a chain-of-
thought process (Wei et al., 2022) with GPT-4 and
showed promising results. Different from their
focus, our work features the iterative refinement
process as a means to mitigate translationese. The
improvement, especially for into-English, may be
attributed to the abundant English pre-training data
available for LLLMs. To the best of our knowledge,
although the concept of iterative refinement is not
new, ours is the pioneering paper in applying such
strategies to LLMs for translation.



