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Abstract

Spiking neural networks (SNNs) provide an alter-
native solution to conventional artificial neural
networks with energy-saving and high-efficiency
characteristics after hardware implantation.
However, due to its non-differentiable activation
function and the temporally delayed accumula-
tion in outputs, the direct training of SNNs is
extraordinarily tough even adopting a surrogate
gradient to mimic the backpropagation. For SNN
training, this non-differentiability causes the
intrinsic gradient error that would be magnified
through layerwise backpropagation, especially
through multiple layers. In this paper, we propose
a novel approach to reducing gradient error
from a new perspective called surrogate module
learning (SML). Surrogate module learning tries
to construct a shortcut path to back-propagate
a more accurate gradient to a certain SNN part
utilizing the surrogate modules. Then, we develop
a new loss function for concurrently training the
network and enhancing the surrogate modules’
surrogate capacity. We demonstrate that when the
outputs of surrogate modules are close to the SNN
output, the fraction of the gradient error drops
significantly. Our method consistently and signifi-
cantly enhances the performance of SNNs on all
experiment datasets, including CIFAR-10/100,
ImageNet, and ES-ImageNet. For example, for
spiking ResNet-34 architecture on ImageNet,
we increased the SNN accuracy by 3.46%.
Codes are available at https://github.
com/brain-intelligence-lab/
surrogate_module_learning.
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1. Introduction

Inspired by biological networks, the spike neural network
(SNN) selects the binary spike signal as the information
carrier, giving it the potential for high speed and low energy
consumption (Maass, 1997; Roy et al., 2019). The neuron
in SNN activates and fires, which is emitted only when the
membrane potential exceeds the threshold. Spikes can be
expressed numerically as O and 1, where O indicates the
neuron is at rest and 1 indicates the neuron is active. The
input of the network between each layer is only 0 or 1, so
the high-precision multiplication operation of the matrix can
degenerate into a high-precision addition operation. When
embedded in the neuromorphic hardware (DeBole et al.,
2019; Davies et al., 2018), this characteristic significantly
increases the computing speed of the SNN and reduces the
network’s energy consumption (Shrestha & Orchard, 2018;
Kim et al., 2019).

Although the inclusion of binary spiking signals gives SNNs
the potential for high speed and low energy consumption,
the discrete nature of the activation function makes train-
ing SNNs extremely challenging. In a traditional artifi-
cial neural network (ANN), the update gradient of the net-
work weights is calculated by a back-propagation algorithm,
which is feasible for continuous numerical signals. Nev-
ertheless, due to the discrete nature of the spike signal in
SNNs, the back-propagation technique cannot be directly
used to compute the gradient. The surrogate gradient (SG)
technique is a common solution to this problem (Lee et al.,
2016; Wu et al., 2018; Zheng et al., 2021). The surrogate
gradient method makes gradient computation feasible by
replacing the non-derivable step function (spike activate
function) with a smooth curve. Although the surrogate
gradient algorithm allows us to flexibly design the network
structure and requires few simulation time steps (Deng et al.,
2021), on deep architectures, the performance of SNNss is
still lower than that of ANNs due to the surrogate gradient
error accumulation. Some recent works have emerged to
design or search for a better surrogate gradient shape to
reduce the gradient error (Li et al., 2021; Herranz-Celotti &
Rouat, 2022; Suetake et al., 2022). These researches have
enhanced the SNN performance, but they still have a gap
between ANN. And under the same network architecture,
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the performance gap between ANN and SNN increases with
network depth (Hu et al., 2021).

While onsite backpropagation is not well supported by the
brain anatomy, the feedback connections from high-level
brain modules, e.g. the frontoparietal network to the sen-
sory and executive modules do exist (Friston, 2003) and may
deliver error information to the pointed modules(Lillicrap
et al., 2020). Although the exact role of these feedback
connections remains unclear, we hypothesize that it may
enable long-range error propagation for effective multi-layer
and multi-time-point learning. In this study, we provide a
surrogate module learning approach that provides a new
gradient backward path, so mitigating the gradient error ac-
cumulation problem caused by the surrogate gradient. When
a layer inserts a surrogate module, the gradient it obtains
has two parts: one back-propagate from the subsequent
layers of the SNN and one back-propagate from the surro-
gate module. We prove that introducing a surrogate module
will reduce the gradient error caused by the surrogate gra-
dient. It is worth noting that surrogate modules only work
during the training phase and can be removed right away
when training is completed, i.e., we do not alter the SNN
forward-propagation during inference. SNN performance
has improved significantly in almost all datasets with sur-
rogate module learning. Fig. 1 depicts the concept of the
surrogate module method.

The following summarizes our main contributions:

* We devised a surrogate module learning method to
mitigate the effect of surrogate gradient estimation
error accumulation.

* We theoretically analyze the feasibility of the surro-
gate module learning in SNN and provide sufficient
experiments to verify the effectiveness of our method.
For instance, our method improves the performance of
spiking ResNet-34 on ImageNet by 3.46%.

* We demonstrate the possibility of SNN training without
layerwise backpropagation and suggests a potential
role for backward connections to enable long-range
error propagation in deep spiking neural networks.

2. Related Work

SNN Direcct Training. The direct training approach em-
ploys a backpropagation-based algorithm like STBP to train
the SNN. In this technique, the non-differentiable spike acti-
vation function is substituted by a smooth and differentiable
function, known as the surrogate gradient. Numerous sur-
rogate gradients, such as exponential (Shrestha & Orchard,
2018), Actan (Fang et al., 2021), S2NN (Suetake et al.,
2022), Dspike (Li et al., 2021), etc., have been proposed

recently. The selection of a surrogate gradient will influ-
ence the training result, and different surrogate gradients
may be suitable for different network structures and datasets
(Li et al., 2021). Then, with the introduction of the TDBN
(Zheng et al., 2021) algorithm, the performance of direct
training has been significantly enhanced, and it is now ca-
pable of producing superior results even on the ImageNet
dataset. Another advantage of direct training is that it is suit-
able for neuromorphic datasets. Due to the high noise and
temporal domain characteristics of neuromorphic datasets,
the results of traditional ANN are worse than direct training
SNN (Deng et al., 2020). With the introduction of specially
designed methods like TET (Deng et al., 2021), TA-SNN
(Yao et al., 2021) and TCJA-SNN (Zhu et al., 2022), the
performance of SNN on neuromorphic datasets has been fur-
ther improved. However, the direct training results of SNN
on static datasets can still not be compared to those of ANN
due to the limitation of the information expression ability
of spikes and the effect of gradient error from surrogate
gradients.

Auxiliary Module. In the middle of 2010s, the auxiliary
module is used to solve the training problem that network is
too deep (Szegedy et al., 2015). The auxiliary module exists
in the training phase and is deleted when training is finished.
Recently, the auxiliary module has been heavily used in
local learning (Belilovsky et al., 2020; Duan & Principe,
2021; Belilovsky et al., 2019). Local learning divides the
network into many local blocks and stops the gradient back-
propagation between them. Instead, each local block will be
connected to an auxiliary module for gradient backpropaga-
tion and training. A network search study has demonstrated
that well-designed local block divisions and auxiliary mod-
ule structures can make local learning better than end-to-end
learning (Pyeon et al., 2020). Meanwhile, a recent work
(BYOT) designs different exits that can be seen as auxiliary
modules for ANN to balance the inference speed and the
network accuracy (Zhang et al., 2019). It designs a self-
distillation method to significantly improve the early exits’
accuracy and finally enhance the overall network accuracy.
The previous works demonstrate that the auxiliary module
has the potential to help network training improve perfor-
mance. There are also some related works in SNN that use
auxiliary paths to assist training, for example: DECOLLE
(Kaiser et al., 2020) designs a layer-wise local learning for
SNN with a readout layer; some work to construct tandem
learning, which uses an ANN that shares parameters with
SNN to backpropagate gradients (Wu et al., 2021a; Xiao
et al., 2021; Meng et al., 2022); or direct learning from a
pre-trained ANN layer-by-layer (Yang et al., 2021).
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Figure 1. The concept of surrogate module learning. The figure illustrates the situation of using one surrogate module to help SNN
training. The SNN is divided into two parts: f. and f.. The gradient (G + o) of f. back propagate from f. contains gradient error
because it has passed through the surrogate gradient. G denotes the correct enough gradient that can be obtained by FDG (Li et al., 2021)
or NA (Yang et al., 2021). Surrogate module training seeks to provide an additional path f; known as the surrogate module of f. in order
to return a more precise gradient (S) to f.. It realizes this goal by employing ANN as the surrogate module and approximating SNN
fec’s output by self-distillation. After training is complete, the surrogate module-related portion, shown with a dash in the figure, will be

eliminated without affecting the SNN inference.

3. Preliminaries
3.1. SNN Neural Model

We use the Leaky Integrate-and-Fire (LIF) model and con-
vert it using the Euler technique into an iterative expression
(Wu et al., 2019). Mathematically, the membrane potential
is updated as

u(t+ 1) = mu(t) + 1(¢), D

where 7 is the constant leaky factor, u(t) is the membrane
potential at time ¢, and I(¢) denotes the pre-synaptic inputs,
which is the output (pre-activation value) of the convolu-
tional, pooling, or fully connected layer of SNN. When the
membrane potential exceed a specific threshold, V;;,, the
neuron fires a spike a(¢ + 1), which equals to 1. The mem-
brane potential will then follow the hard reset mechanism
and return to an initial potential, which is typically 0. So the
firing function and hard reset mechanism can be described
as
a(t+1)=0(u(t+1)— Vi) 2
ut+1)=ut+1)-(1—a(t+1)), 3)
where ® denotes the Heaviside step function. We do not
search for the optimal neuron model parameters in this paper,
but rather use the most common option, which is to set the

initial potential u(0)to 0, the threshold V;;, to 1, and the
leaky factor 7 to 0.5.

3.2. Surrogate Gradient

Following the concept of direct training, we regard the
SNN as an RNN and calculate the gradients through spatial-

temporal backpropagation (STBP) (Wu et al., 2018):

oL OL QOa(t) ou(t) 0I(t) @
OW £~ da(t) du(t) OI(t) OW’
where the term gig is the gradient of the non-

differentiability step function involving the derivative of
Dirac § function that is typically replaced by surrogate gra-
dients with a derivable curve. In this paper, we employ the
Dspike (Li et al., 2021) function as the surrogate gradient
function, which consists of a tanh function that controls the
proximity of the smooth curve to the Delta-function through
a temperature coefficient b. Mathematically, Dspike’s for-
ward function can be described as:

tanh(b-z) 1

Dspike(r,b) = 2tanh(r-b) = 2

if —r<z<r. (5
where = 1 denotes the sample region.

4. Methodology
4.1. Problem of Surrogate Gradient

The gradient error lies in the difference between the smooth
curve of the surrogate gradient and the Dirac ¢ function. On
the one hand, if the surrogate gradient is too close, the Dirac
0 function may cause the gradient to vanish and thus fail
training. On the other hand, if the surrogate gradient is not
close to the Dirac § function, the gradient error may be very
large. Even though there are several studies devoted to opti-
mizing the shape of the surrogate gradient (Li et al., 2021;
Herranz-Celotti & Rouat, 2022; Suetake et al., 2022), they
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still suffer from gradient errors that cannot be completely
eliminated. Meanwhile, the gradient error of the surrogate
gradient grows as the number of layers and SNN simulation
time steps increase, making network convergence harder.
Therefore, directly training a deeper SNN with the surrogate
gradient usually results in poor performance.

Here, we examine the performance variation of directly
trained ANNs and SNNs (7' = 4) at different depths on
CIFAR-10 using a toy model. The toy model begins with
three stem layers, for example 3C64s1-3C64s2-3C128s2,
where 3C64s1 means using a convolutional layer with a
kernel size of 3, output channels 64, and stride 1. Then we
connect L 3C128s1 convolutional layers, and finally use an
adaptive average pooling layer with the kernel size 2 and a
classifier. As shown in Fig. 2, the accuracy peak of ANN
occurs at L = 13, whereas the accuracy peak of vanilla
SNN appears at L = 5. And as the depth exceeds 13, the
accuracy of vanilla SNN decreases dramatically as the depth
continues to increase, While ANN does not demonstrate a
substantial accuracy decline. This demonstrates that the
gradient error of the surrogate gradient will progressively
accumulate with the network depth, and therefore we cannot
train a deep SNN just using the surrogate gradient alone.

ANN vs. SNN (T = 4) with varying depth

Accuracy

75.0 ANN Accuracy on CIFAR-10
SNN (T=4) Accuracy on CIFAR-10
/| 1

01234567 8 910111213141516171819
Number of Layers

Figure 2. Comparison of the accuracy of ANN and SNN with dif-
ferent depth.

4.2. Surrogate Module Learning

Auxiliary Network. Assuming that the final training goal
is to minimize a loss function, £, and the network can be
divided into two parts, the first part can be viewed as a
feature encoder, f., with a trainable parameter, 6., and the
second part can be viewed as a classifier, f., with a trainable
parameter, 6.. Mathematically, the network is expected to
solve the following problem:

(07,07) € arg Inin L(feo fe(X),0c,0c,y),  (6)

where X and y denote the training input and target, re-
spectively. Suppose we insert an auxiliary network f; with
parameter 0, after f. and then optimize both the proxy task
loss £1(f1 o fe(X)) and L(fe o fo(X)), the total classifi-
cation loss becomes to: Lo = l}m - (L + aLly), where «
denotes the weight of proxy task loss. And when N auxil-
iary modules are added to the network for training, the total

classification loss is:

1

Lo=—
© 1+ N«

N
(LAa) L) (7)

Under this situation, an auxiliary module is similar to the
extra exits used in GoogleNet (Szegedy et al., 2015) to solve
the gradient vanishing problem. Because f; is not specially
designed, and network training necessitates optimizing both
L1 and L, obtaining better performance with an auxiliary
module than end-to-end training is difficult.

Surrogate Module. Consider a special case where the
structure of the auxiliary module f; is exactly the same as
the f. and f; does not have the gradient error problem. In
this situation, we can simply optimize £; and then copy 61
to 6. to train the SNN. When the structure of the auxiliary
network and the backbone classifier is inconsistent, that
is, fi # f., but both inputs are f.(X) from f., and the
optimization goals are the same (£; — 0 and £ — 0).
In this case, the output of f; and f. will become closer
and closer through training. Because both f; and f. inputs
are equal and their outputs are close, the auxiliary network
can be regarded as the surrogate module of the f. during
supervised learning. According to the idea of the transfer
adversarial attack, the surrogate module will return a close
correct gradient to the f. (Fang et al., 2022; Gil et al., 2019).

Self-distillation Loss. To achieve the goal of returning more
precise gradients to f., the output of the surrogate module
must be close to the output y. of f.. The self-distillation
learning that makes the surrogate module’s output close to
the final output has the potential to realize this target, e.g.,
BYOT (Zhang et al., 2019).We also let the final SNN output
Y. learn from the surrogate module output y;. First and
foremost, this is intended to bring the output of the surro-
gate module and f. closer together and to speed up SNN
training. Second, in the early stages of the training phase,
the output performance of the ANN surrogate module may
exceed that of the f.. Even when y. has a higher accu-
racy than y;, learning from a poor teacher imparts a label
smoothing effect on the SNN, making it more generaliz-
able. Mathmatically, the distillation loss can be described
as:

Lxr, = BiKL(Ye, D(y:), Tais) + B2 K L(yi, D(ye), Tais),

®
where D(-) means detach the gradient, X L means Kullback-
Leibler divergence loss with its temperature Ty;s, and 312 €
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{0, 1} are the parameters to control whether to use the two
direction Kullback-Leibler divergence loss.

Total surrogate module Loss. The overall loss function is:

N
A
Low=(1=NLo+ 55> Lxr O

where ) is the weight to balance the classification loss and
the distillation loss.

4.3. Surrogate Module Design

When designing the surrogate module, we need to consider
the balance between the computational complexity and the
structural complexity of the network. On the one hand,
when the surrogate module is too simple, it may be unable
to accurately reflect the output of the SNN, consequently
compromising the network’s training impact. On the other
hand, when the structure of the surrogate module is exces-
sively complex, the computational complexity will increase,
thereby reducing the training efficiency. In light of these
concerns, we employ bigger convolution kernels and fewer
layers on the surrogate module, therefore decreasing its
computational complexity and preserving its expressiveness.
In our experiments, we directly use a network with three
convolutional layers and two fully connected layers as the
surrogate module. The kernel sizes of the convolutional
layers are correspondingly 7, 5, and 3. On the first two
convolutional layers, feature map dimension reduction is
conducted to lower the computational complexity of the net-
work. Before the fully connected layers, an adaptive pooling
layer is employed to shrink the feature map to a 2 x 2 size.
Finally, the surrogate module structure that we employ is
as follows: kC7s2-kC5s2-kC3s1-AdP2 x 2-FC512-FCm,
where C represents the convolutional layer with £ channels,
s represents the stride, AdP represents the adaptive pooling
layer, and FC denotes the fully connected layer, and m is
the number of classifier categories. The activation function
employs Leaky-ReLU with a negative slope of 0.01, and
the input of the surrogate module is the spike frequency of

fe(X).

4.4. Theoretical Analysis

Previous research, such as BYOT (Zhang et al., 2019), has
shown that adding auxiliary networks to ANN improves
its generalization capability. The surrogate module can be
also seen as finding a more suitable proxy task for SNN
to improve its performance. In this part, we show how the
surrogate module technique in SNNs can help to alleviate
the gradient error problem caused by surrogate gradients.
For the sake of simplicity, let us insert only one surrogate
module after the encoder part f.. The Lk, converges
in the late stages of training, indicating that the surrogate
module’s output g is close to the SNN output y.. We can

quantify their difference by a small value €: y; = y. + €.
The gradient can be described as:

oL ) . oL
=y —g=Yete—G=—+¢ (10
33/1 ayc
where g denotes the one-hot coding of target. Similarly, we
can deduce:

iy _ Olwry | o (1

ayl ayc

where €’F = €F — Z'j]:l (y]€* + y¥el) is also very close

to zero. Then, we use o to represent the gradient error
accumulation value that result from the surrogate gradient:

Y.
00,
where SG means calculate the gradient with surrogate gra-
dient and G represents the accurate enough gradients of gg:
that can be obtained by FDG (Li et al., 2021) or NA (Yang
et al., 2021), though at a huge time cost. Note that, o is not
close to zero and cannot be ignored. When we apply the
standard direct training (SDT) with a surrogate gradient, the
proportion of the gradient error is K = &.

SG(=5) =G +o, (12)

When we implant a surrogate module, the gradient of 6,
changes to:

0L:otal _ 1—-Xx0L (Gtota-S)
a0, 1+ ady.
AOL (13)
KL, .

where S = %represents the gradients through the surro-

gate module, o(-) is the part that is proportional to Lk,
and close to zero. In this case, the scale of the gradient
error Ky falls into the range (GLJFS, ﬁ) Compare
the gradient error scales by two different training method,
Kim < Kgq indicates that the surrogate module method can
effectively reduce the effect of gradient error on SNN train-
ing. Particularly, when S = GG and o = 1, K, decreases
to about half of K ;.

Our training pipeline is detailed in Algo. 1. It’s worth
mentioning that when training is completed, the pipeline
will delete all surrogate modules so that surrogate module
learning does not affect the SNN inference.

5. Experiments

In order to verify the effectiveness of our method, we
provide sufficient experiments on different datasets. The
datasets in this section include CIFAR-10, CIFAR-100, Ima-
geNet, and ES-ImageNet. Among them, CIFAR-10, CIFAR-
100, and ImageNet are commonly used static image datasets,
and ES-ImageNet are neuromorphic datasets created by Im-
ageNet.
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Algorithm 1 Training pipeline for surrogate module learn-
ing.

Input: SNN model f;,,, surrogate model channels k& and
insert position: p, hyper-parameter A, o, Training epochs
FE, training iteration in one epoch: It,qin
for k; = 1to k do

Create f; with k; channels

Insert every f; to fsu, with the position p;
end for
Initialize SNN and all surrogate modules’ parameters
initialize the loss function (Eqn. 7, 8, 9) with A and «
fore =1to E do

for iyrqin = 110 Itrqin do

Optimizing the loss function:
(1= NLe+ 55 SN L, (Eqn. 9)

end for
end for
for k;, =1to k do

Delete f;
end for

5.1. Implementation Details

We find that it is hard to obtain an optimal learning rate
and weight decay with the SGD optimizer when the SNN
has multiple exits. As a result, in our experiments, we
use the AdamW optimizer with a weight decay of 0.02.
The learning rate will cosine decay to O during the training
for all experiments. The LIF neuron model has the same
hyper-parameters as TET (Deng et al., 2021), which means
Vin =1and 7 = 0.5.

5.2. Ablation Study

In this part, we use the ResNet-18 SNN network with time
step T' = 2 as the basic network. All the experiments are
training with 200 epochs and the learning rate is 0.01.

Effect of the surrogate modules on ANN Here, we first
validate our method on ANN. Since the gradient on ANN is
exact, end-to-end learning is able to acquire well-performed
ANN. We need to provide experimental proof that the mul-
tiple exit scheme does not affect the final performance too
much on ANN. We use the ANN trained with SGD opti-
mizer as our baseline because the performance of ANN
trained by AdamW optimizer (learning rate 0.01, weight
decay 0.02) is significantly worse than that of ANN trained
by SGD optimizer (learning rate 0.1, weight decay 5e — 4).
Then, at the 4-th basic block of ResNet-18, we insert one
surrogate module (A = 1/3, @ = 1) and train the ANN with
the AdamW optimizer at a learning rate of 0.01, weight de-
cay of 0.02. The results were slightly lower than end-to-end
training: —0.35% on CIFAR-10 and —0.31% on CIFAR-
100. The reason for this phenomenon could be that we are

Table 1. Verify surrogate module method on ANN.

AdamW
AdamW  SGD Surrogate Module
CIFAR-10 94.73 95.6 95.25
CIFAR-100  71.00  78.45 78.14

Table 2. Accuracy under different learning strategy.

ﬂLocal 1 0
B 0 1 0 1 0 1 0 1
B2 0 0 1 1 0 0 1 1

Accuracy 688 69.7 69.7 724 70.7 71.8 719 745

using a different optimizer or that the final network classifier
learns from a weaker teacher. Even so, it can be seen that
the surrogate module method has the ability to obtain a high-
performing network and is ideally suited for implantation
into SNN training where gradient error exists.

Effect of different self-distillation strategies (51, [(2)
Here, we adjust 3, and (3 to verify the impact of dif-
ferent self-distillation strategies. Meanwhile, we define
Brocal € {0, 1} to control if we are using the local learning
strategy, in which the backbone network’s backward gradi-
ent is detached at the position of the surrogate module and
the preceding encoding part acquires the gradient only from
the connected surrogate module. Only one surrogate module
is used in this part with £k = 256, A = 0.9 and @ = 0.5.
Combining these three factors (Case = {SLocal; £1, 52})
yields eight situations, and their results are shown in Table
2. When the Case is {1, 0, 0}, it is common local learning,
and its result is only 68.8%. When the Case is {1,1,1},
the accuracy reaches 72.43%, which is 3.63% higher than
the case that only uses local learning. This demonstrates
that simply applying an auxiliary network does not help
SNN training. However, turning it into a surrogate module
through self-distillation can effectively facilitate SNN train-
ing. The complete surrogate module learning ({0, 1,1})
yields the best result, which is 3.79% higher than the stan-
dard end-to-end training ({0, 0, 0}) and 2.59% higher than
the BYOT (Zhang et al., 2019) technique ({0,0,1}). And
{0,1,1} is 2.06% higher than {1,1,1}, which indicates
that the backward gradient from the backbone network is
necessary, even though there is gradient error in it.

Additional training costs for SML. Here we provide in-
formation on the additional time and memory overhead of
using SML (using two surrogate modules) compared to di-
rect training on ResNetl8. As shown in Table 4, when
T = 1, using SML will increase training time by 53.84%
and memory usage by 11.34%. However, as simulation time
increases, the additional overhead of SML decreases. When
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Table 3. Compare with existing works on CIFAR datasets. Our method improves network performance across all tasks. T denotes

introduces additional floating-point multiplications, * denotes applying autoaugmentation and cutout.

Dataset Methods Type Architecture  Time Steps  Accuracy (%)

6 95.49+0.05

IM-Loss (Guo et al., 2022b) Hybrid ResNet-19 4 95.40+0.08

2 93.85+0.10

6 96.49++0.08

InfLoR-SNN *T (Guo et al., 2022a) ~ Surrogate Gradient ResNet-19 4 96.27+0.07

2 94.44+0.08

! 6 95.03£0.08

GLIF' (Yao et al.) Surrogate Gradient ResNet-19 4 94.85+0.07

CIFAR-10 2 94.4420.10

6 95.12+0.10

ResNet-18 4 95.01+£0.08

our method Surrogate Module 2 94.58+0.18

4 95.54+0.03

ResNet-19 2 95.280.15

ResNet-18 4 96.04+0.10

our method* Surrogate Module ResNoi-10 7 96.8250 13

6 74.2440.10

Dspike (Li et al., 2021) Surrogate Gradient ResNet-18 4 73.35+0.14

2 71.68+0.12

6 74.72£0.28

TET (Deng et al., 2021) Surrogate Gradient ResNet-19 4 74.47+£0.15

2 72.874+0.10

6 79.51++0.11

InfLoR-SNN *' (Guo et al., 2022a) ~ Surrogate Gradient ResNet-19 4 78.42+0.09

2 75.56+0.11

CIFAR-100 6 77.35£0.07

GLIF' (Yao et al.) Surrogate Gradient ResNet-19 4 77.05+0.14

2 75.48+0.08

6 78.00+0.19

ResNet-18 4 77.36+£0.14

our method Surrogate Module 2 76.44+0.15

4 79.18+0.13

ResNet-19 2 78.38-0.30

ResNet-18 4 79.49+0.11

our method* Surrogate Module RosNet-19 7 SL705017
NDA (Li et al., 2022) Surrogate Gradient VGG-11 10 81.7

InfLoR-SNNT (Guo et al., 2022a) Surrogate Gradient ResNet-19 10 75.501+0.12

TET (Deng et al., 2021) Surrogate Gradient VGGSNN 10 83.17£0.15
DVS-CIFAR10 TCJA-TET-SNN' (Zhu et al., 2022) Surrogate Gradient VGGSNN 10 83.3

Our method Surrogate Module ResNet-18 10 83.19 £0.41
VGGSNN 10 84.60

Our method (+TET) Surrogate Module ResNet-18 10 85.23 4+ 0.52

Table 4. Additional training costs for SML on ResNet18.

Time Step T=1 T=2 T=3 T=4 T=5
Time Cost (%) +53.84 +27.42 +20.86 +11.88 +11.04
Memory Cost (%) +11.34 +8.22  +856 +6.13 +2.44

we use the commonly used simulation time of 4 in SNN, the
additional time overhead is only 11.88% and the additional
memory overhead is only 6.13%. We believe that this level
of additional training overhead is acceptable when com-
pared to the significant improvement in SNN performance
brought by SML.

5.3. Comparison to exiting works

In this section, we compare our experimental results with
current SOTA work. Note that, to improve the SNN per-

formance, several current works introduce some additional
floating-point operations in the SNN; for instance, GLIF
(Yao et al.) uses some learnable gating units to control the
leaky and reset of the LIF model, and InfLoR-SNN (Guo
et al., 2022a) applies a non-linear function to membrane po-
tential before the step function. On the contrary, our method
will delete the surrogate modules during the network in-
ference, retaining just the standard SNN backbone without
introducing any additional floating-point operations, which
is advantageous for embedding in neuromorphic hardware.

CIFAR. For the static CIFAR-10 and CIFAR-100 datasets,
we validate our method on both commonly used network
architectures, ResNet-18 and ResNet-19. It should be noted
that ResNet-19 (2.22 GFlops), which is significantly larger
than ResNet-18 (0.56 GFlops), is a network architecture de-
signed specifically for SNN (Zheng et al., 2021) on CIFAR.
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Table 5. Compare with existing works on large-scale datasets. Our method improves network performance across all tasks. | denotes
introduces additional floating-point multiplications.

Dataset Methods Type Architecture Time Steps  Accuracy (%)
tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-34 6 63.72
SEW T (Fang et al., 2021) Surrogate Gradient ~SEW-ResNet-34 4 67.04
Tandem Learning (Wu et al., 2021b) Tandem Learning VGG-16 16 65.08
TET (Deng et al., 2021) Surrogate Gradient ResNet-34 6 64.79
TEBN (Duan et al.) Surrogate Gradient ResNet-34 4 64.29

ImageNet IM-Loss (Guo et al., 2022b) Hybrid ResNet-34 6 67.43+0.11

GLIF' (Yao et al.) Surrogate Gradient ResNet-34 4 67.52
4 64.53
ResNet-18 5 62.49
our method Surrogate Module 6 69.35
ResNet-34 4 68.25
2 65.77
. . ResNet-18 8 39.89
ES-ImageNet (Lin et al., 2021) Surrogate Gradient ResNet-34 8 43.42
ES-ImageNet  Bridge Conversion (Lin et al., 2022) Hybrid ResNet-18 8 43.74
ConvECLIF2D-A t (Wu et al., 2022)  Surrogate Gradient ResNet-18 8 4425
our method Surrogate Module ResNet-18 8 44.76

It expands the space domain to alleviate the absence of a
binary spike. We employ two surrogate modules (/N = 2),
which are positioned after the third and sixth basic modules
(p = 3,6), respectively. The surrogate modules have 256
channels (k = 256). And we set the A = 0.9 and o = 1/2.
Our training pipeline has 300 epochs with learning rate
0.01 and batchsize 256. As shown in Table 3, compare to
these works (IM-Loss and TET) that dose not introduce
additional floating-point multiplications, our method en-
hance the SNN accuracy both on CIFAR-10 (0.05% to IM-
Loss) and CIFAR-100 (4.46% to TET). We also verify our
method with stronger data augmentation (Guo et al., 2022a),
as a result, the SNN achieves a performance of 81.86%
at T=4 on CIFAR-100 datasets and ResNet-19 structure,
which is 2.19% higher than the current SOTA results. On
the CIFAR10-DVS dataset, we set the hyper-parameters
A=1/3,a =1, and k = 256. We employ two surrogate
modules, which are put after the third and sixth ResNet-18
basic blocks, respectively. The results are summarized in Ta-
ble. 3. Our stated result (only surrogate module) is slightly
inferior to the TCJA-TET-SNN (-0.11%) However, with the
aid of TET loss, we may obtain an 85.23% SOTA accuracy.

ImageNet. ImageNet (Deng et al., 2009) is the most popular
large-scale dataset that contains more than 1280k training
images and 50k validation images. We also use the standard
augmentation pipeline and crop the images to 224 x224.
Following tdBN (Zheng et al., 2021), we remove the original
Maxpooling and setting the first basic block stride to 2 for
downsampling. For surrogate module learning, we use 2
surrogate modules for ResNet-18 and 3 surrogate modules
for ResNet-34, and we place them on the positions p = 3,6
and p = 3,7, 13, respectively. And we haven’t searched
for the optimal hyperparameters of loss Eqn. 9, but just
set k = 256, A = 1/3 and = 1. We adopt an AdamW
optimizer with a learning rate 4e-3, which is cosine decay

to 0, and the weight decay is 0.02. We use the TIT method
to reduce training time (Deng et al., 2021; Hu et al., 2021).
First, we train the SNN for 160 epochs with T = 2 (batch
size is 512); Then we change the time steps 7 to 4, learn
rate 4e-4, batch size 256, and continue training for another
80 epochs; Finally, we continue changing the time steps
T to 6 and training for another 40 epochs. The results are
summarized in Table. 5. Under the same architecture, our
method enhances the SNN accuracy by 1.92% compared
to the hybrid training method IM-Loss and significantly
improves the accuracy by 3.46% compared to the training
from scratch method. In comparison to other SNN-based
works but introduce the floating-point multiplications, our
ResNet-34 result is marginally better than SEW’s (Fang
et al., 2021)and GLIF (Yao et al.).

ES-ImageNet. ES-Imagenet (Lin et al., 2021) is one of the
most challenging event-stream datasets. It is derived from
ImageNet and contains 1257K training images and 50K test
images. We use the same pre-process pipeline as in previous
work (Lin et al., 2021) and the same hyperparameter set-
tings as in the ImageNet experiments, with the exception of
adjusting the learning rate to 4e-4 and batch size to 192. We
train the dataset with 50 epochs from scratch without any
other technique. During the training phase, we discovered
that it is very easy to overfit on this massive, noisy dataset.
When the accuracy rate of the training set reaches to 64.7%,
the accuracy of the test set is only 44.76%. As a result, the
accumulate gradient error may not be the most important
factor affecting test accuracy. However, when compared to
previous work that used the same LIF model and ResNet-18
structure, we still have a significant improvement in accu-
racy (+4.87%).
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6. Conclusion

This paper focuses on the gradient error accumulation prob-
lem in SNN training and proposes surrogate module learn-
ing to mitigate its effects by creating a new path to back-
propagate the gradient. On almost all mainstream datasets,
we significantly improve SNN performance.
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A. Effect of the surrogate modules number (V)

We experiment with the number of surrogate modules since it influences the training effect and training costs. We utilize 1,
2, and 3 surrogate modules and evenly insert them into the ResNet-18. We placed the surrogate module after the fourth basic
block if using only one surrogate module. In cases 2 and 3, two surrogate modules are placed after the third and sixth basic
blocks, and three surrogate modules are placed after the second, fourth, and sixth basic blocks, respectively. We set the
k = 256, « = 1, and A\ = 1/3. The results are shown in Table. 6. Even in the situation of simply setting hyperparameters, it
is evident that increasing the number of surrogate modules can improve the training impact of the SNN. However, increasing
the number of surrogate modules will increase the training time. For instance, when the number of surrogate modules is 1 or
2, the training time rises by 13.3% and 25.5%, and the SNN performance increases by 2.45% and 3.19%, respectively. The
network performance only improves by 0.29% when the number of surrogate modules increases from 2 to 3. Considering
the increase in training time, the improvement in SNN performance is not obvious, hence we employ 2 surrogate modules
on ResNet-18.

Table 6. Accuracy and time cost under the different numbers of surrogate modules.
N=0 N=1 N=2 N=3

Accuracy 69.65 72.10 7284  73.13
Training Time (s) 6043 6868 7583 9959

B. Effect of the channels of the surrogate module (%)

In this section, we use two surrogate modules with A = 0.9 and o« = 0.5 (placed after the third and sixth basic modules)
to test training performance under different surrogate module channel numbers k. The number of channels will affect the
computational cost and surrogate modules’ expressiveness. The outcomes are presented in Tabel 7. We found that when £ is
too small, such as 64, the surrogate module usually cannot adequately reflect the SNN’s output, resulting in a significant
accuracy drop. When k is too large, such as k = 512, the computational complexity of the surrogate module will increase.
And the final accuracy, in this case, is slightly worse than in the situation where k£ = 256. This might be because the network
has not been sufficiently trained when the surrogate module is complex. As a result, we recommend setting the k£ = 256 for
the surrogate module.

Table 7. Accuracy under different channel number k of surrogate module.

k 64 128 256 512
Accuracy 73.64 74.14 7449 7431
Training Time (s) 6570 6870 7583 9400

C. Effect of surrogate module position.

Here, we also set k = 256, & = 1, and A = 1/3, and only consider the influence of surrogate module position when the
number of surrogate modules is one. In the three cases, the surrogate module is positioned in the second, fourth, and sixth
places of the basic block sequence, respectively. The results are displayed in Table 8. It can be seen that the placement of
the surrogate module has minimal influence on the final performance. This is because of the balance between the subsequent
classification block’s surrogate gradient error accumulation and the learning capacity. Some local learning studies have also
discovered the second term: the optimal local learning position is more likely to be found in the shallow layer rather than the
deep layer (Pyeon et al., 2020). In this paper, we always utilize the surrogate module positions to uniformly split all basic
block sequences on the ResNet structure network.

Table 8. Accuracy under different placement of surrogate modules.
Positon p=2 p=4 p=6
Accuracy 72.05 72.10 72.16
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D. Greedy search for optimal hyper-parameters on CIFAR-100

Different datasets may have varying optimum hyper-parameters for surrogate module learning; however, in this part, we
simply employ a greedy search to identify the ideal hyper-parameters for CIFAR-100.

A denotes the weight of distillation loss. Here, we analyze the performance of ResNet18 on CIFAR100 under various
commonly-used A values. We use two surrogate modules (/N = 2), placed after the 3rd and 6-th basic blocks, respectively,
and keep £ = 256 and o = 1.0. As shown in Table 9, SNN’s performance will increase proportionally as A gradually
increases. When A is 0.9, the SNN performance is at its peak. In addition, we examined the performance of the network
when lambda is 0.99. In this situation, the proportion of distillation loss is significantly more than that of classification loss,
but the network’s accuracy is still very high (73.97).

Table 9. Accuracy under different A.
A 0 1/5 1/3 1/2 2/3 3/4 9/10 99/100
Accuracy 70.69 72.64 72.84 73.03 73.82 7397 7410 7397

Then we set A to its optimal value of 0.9, and search for the ideal value of a. « represents the weight of the classification
loss of the surrogate modules. The results (Table 10) show that the value o does not significantly affect the final SNN
performance, and its optimal value on CIFAR100 is 0.5.

Table 10. Accuracy with different .
« 1/4 2/4 3/4 1
Accuracy 7431 7449 7397 74.10

After determining the optimal lambda and alpha, we begin our search for the Tyis. The Ty;s denotes the temperature of the
distillation loss. As shown in Table 11, the optimal temperature is 3. As a result, both too strict and too loose distillations
are detrimental to SNN surrogate gradient learning. It is worth noting that the optimal 7y¢s value is also the optimal value in
the CIFAR-DVS dataset. And the temperature value is the same as in previous work (Zhang et al., 2019).

Table 11. Accuracy under different distillation temperature ;.
Tdis 1 2 3 4 5
Accuracy 72.80 742 7449 73.87 73.60

E. SML adaptability to long simulation time.

As gradient errors caused by surrogate gradients also accumulate over time, here we verified the performance of SML over
long simulation times. We used one surrogete module, placed after the 4th basic block of ResNet18, with hyperparameters
a set to 0.5 and A set to 0.9. The results are summarized in Table 12. Direct training achieved the highest accuracy at T=6.
However, as T increased to 10, the accuracy decreased by 0.32% despite SNN expression enhancement. On the other hand,
SML achieved the best accuracy at T=8, and when T increased to 10, the accuracy only dropped by 0.02%. These results
suggest that SML can also reduce the accumulation of gradient errors over time to some extent.

F. Changes in accuracy during training

As demonstrated in Fig. 3, the accuracy of the training set improves more rapidly with surrogate module learning than with
standard direct training, indicating that surrogate module may give more accurate gradients for SNN’s f,. At the same time,
surrogate module learning requires approximately half as many training epochs as stardand direct training the same SNN
performance.
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Table 12. Accuracy comparison under different simulation time.
T 4 6 8 10
SDT 7195 7254 7229 7222
SML 76.62 77.08 77.22 77.20

100

40

—— Train Acc with Standard Direct Training
—— Train Acc with Surrogate Module Learning 10

—— Test Acc with Standard Direct Training
—— Test Acc with Surrogate Module Learning

0 50 100 150 200 250 300 0 50 100 150

200 250 300

Figure 3. Comparison of the training speed of standard direct training and surrogate module training on CIFAR-100.
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