
8th ICML Workshop on Automated Machine Learning (2021)

Meta Learning the Step Size in Policy Gradient Methods

Luca Sabbioni luca.sabbioni@polimi.it
Francesco Corda francesco.corda@mail.polimi.it
Marcello Restelli marcello.restelli@poimi.it
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy

Abstract
Policy-based algorithms are among the most widely adopted techniques in model-free RL,
thanks to their strong theoretical groundings and good properties in continuous action
spaces. Unfortunately, these methods require precise and problem-specific hyperparameter
tuning to achieve good performance and, as a consequence, they tend to struggle when
asked to accomplish a series of heterogeneous tasks. In particular, the selection of the
step size has a crucial impact on the ability to learn a highly performing policy, affecting
the speed and the stability of the training process, and often being the main culprit for
poor results. In this paper, we tackle these issues with a Meta Reinforcement Learning
approach, by introducing a new formulation, known as meta-MDP, that can be used to solve
any hyperparameter selection problem in RL with contextual processes. After providing a
theoretical Lipschitz bound to the performance in different tasks, we adopt the proposed
framework to train a batch RL algorithm to dynamically recommend the most adequate step
size for different policies and tasks. In conclusion, we present an experimental campaign to
show the advantages of selecting an adaptive learning rate in heterogeneous environments.
Keywords: Meta Reinforcement Learning, Hyperparameter tuning, Policy Gradient

1. Introduction

The main goal of reinforcement learning (RL, Sutton and Barto 1998) is to build an agent
capable of learning a behavior that maximizes the amount of reward collected while in-
teracting with the environment. Typically, these environments are modelled as Markov
decision processes (MDP, Puterman 2014), where all trajectories share the same underlying
distribution. Nevertheless, in many real world scenarios there can be exogenous variables
affecting the whole process; one might think for example of a car race, where the road
temperature, or the tyre choice may require different strategies. One of the most successful
stream of model-free RL applications adopts policy based algorithms, that provide strong the-
oretical groundings and good empirical properties in continuous action spaces. Unfortunately,
these methods require precise and problem-specific hyperparameter tuning to achieve good
performance, causing them to struggle when applied on a series of heterogeneous tasks. The
fundamental parameter to tune is the stepsize, which has a crucial impact on the ability to
learn a highly performing policy, affecting the speed and the stability of the training process,
and often being the main responsible for poor results. Hyperparameter optimization is an
important component of automated machine learning (Bergstra and Bengio, 2012; Snoek
et al., 2012; Meier et al., 2018; Zhu et al., 2019). However, these works are seldom adopted
in RL (as Paul et al. 2019; Xu et al. 2018; Paine et al. 2020) as they become computationally
intractable and sample inefficient. In this work, we consider the specific problem of learning
how to dynamically select the best step size for each policy; moreover, we consider the case

©2021 Sabbioni, Corda and Restelli.

Sabbioni, Corda and Restelli

where the MDP process might differ due to the presence of the exogenous variable, here
denoted as “tasks” or “contexts”. To start,we propose a formalization of the problem by
defining a meta-MDP.This general framework allows to solve a set of RL tasks, grouped as a
contextual Markov decision process (Hallak et al., 2015). We discuss the main elements of
the model, such as the meta objective function, which measures the return variations, and
the meta action, consisting in the hyperparameter selection for a policy update. Then we
consider Lipschitz meta-MDPs, in which the trajectories sampled from similar contexts have
comparable properties, and we derive some guarantees on the expected return. Subsequently,
we propose to learn the step size of policy gradient methods in a meta-MDP. We accomplish
this through the application of a value based algorithm, known as Fitted Q-Iteration (FQI),
used to dynamically recommend the most adequate step size in the current scenario. In
conclusion, we evaluate our approach in various simulated environments.

2. Preliminaries

A discrete-time MDP is defined as a tuple 〈S,A,P,R, γ, µ〉, where S andA are the state space
and the action space, P(·|s, a) is the Markovian transition, which assigns to each state-action
pair (s, a) the probability of reaching the next state s′, R is the reward distribution, with
expected value r(·|s, a), bounded by hypothesis, i.e. sups∈S,a∈A |R(s, a)| ≤ Rmax . Finally,
γ ∈ [0, 1] is the discount factor, and µ is the distribution of the initial state. The policy of an
agent, denoted as π(·|s), assigns to each state s a density distribution over the action space A.
We can define the return of a trajectory τ := (s0, a0, s1, a1, s2, a2, ..., aH−1, sH) with horizon
H as the discounted sum of the reward collected: Gτ =

∑H
t=0 γ

tR(st, at). Consequently, it is
possible to define the expected return jπ as the expected performance under policy π. In an
analogous way, we can define the value function Vπ(s) and the action-value function Qπ(s, a)
as the expected return obtained by starting respectively from the state s or from the pair
(s, a) and then following the policy π. For the rest of the paper, we consider parametric
policies, where the policy πθ is parametrized by a vector θ ∈ Θ ⊆ Rm. In this case, the goal is
to find the optimal parametric policy maximizing the performance, i.e. θ∗ = arg maxθ∈Θ j(θ).
Policy-based algorithms adopt a gradient-ascent approach, where the policy gradient ∇̂Nj(θ)
can be estimated from a batch of N trajectories (Sutton et al., 2000). An important variation
on the approach consists in following the steepest ascent direction by means of the natural
policy gradient (Kakade, 2001), which includes information regarding the curvature of the
return manifold over the policy space in the form of the Fisher information matrix. We
denote its estimator as ĝN (θ).

Lipschitz MDP. Let (X , dX), (Y, dY) be two metric spaces; a function f : X → Y
is called Lf -Lipschitz continuous (Lf -LC), if dY(f(x), f(x′)) ≤ LfdX (x, x′)∀x, x′ ∈ X .
Moreover, we define the Lipschitz semi-norm as ‖f‖L = supx,x′∈X :x6=x′

dY (f(x),f(x′))
dX (x,x′) . For real

functions, the usual metric is the Euclidean distance while, for distributions, a common metric
is the Kantorovich, or L1-Wasserstein distance K. Rachelson and Lagoudakis (2010b); Pirotta
et al. (2015) introduced some notion of smoothness in RL by defining the Lipschitz-MDP.
LetM be an MDP,M is called (LP , Lr)-LC if for all (s, a), (s, a) ∈ S ×A:

K (P (·|s, a), P (·|s, a)) ≤ LP dS×A ((s, a), (s, a)) , |r(s, a)− r(s, a)| ≤ Lr dS×A ((s, a), (s, a)) .

2

Meta Learning the Step Size in Policy Gradient Methods

Moreover, a policy π is called Lπ-LC if K (π(·|s), π(·|s)) ≤ Lπ dS (s, s)∀s, s ∈ S. An
important result is that, for a (Lp, Lr)− LC MDP, and a Lπ − LC policy, also the expected
return, the Q−function and the gradient components are Lipschitz continuous w.r.t. θ.

Meta Reinforcement Learning. As suggested by the name, meta learning implies a
higher level of abstraction with respect to regular machine learning. In particular, meta
reinforcement learning (meta-RL) consists in applying meta learning techniques to RL tasks.
Usually, these tasks are formalized in MDPs by a common set of parameters, known as the
context ω. The natural candidate to represent the set of RL tasks is the contextual Markov
decision process (CMDP), defined by Hallak et al. (2015) as a tuple (Ω,S,A,M(ω)) where
Ω is called the context space, S and A are the shared state and action space, and M is
function mapping any context ω ∈ Ω to an MDP, such thatM(ω) = 〈S,A, Pω, Rω, γω, µω〉.
In other words, a CMDP includes in a single entity a group of tasks that share the same
state and action space. In the following sections, we will also assume that γ and µ are shared
across all the tasks.

3. Meta-MDP

We now present the concept of meta-MDP, a framework to solve meta-RL tasks that extends
the CMDP model by including the learning model and the policy parametrization. Similar
approaches to the one proposed in this section can be found in Garcia and Thomas (2019).
To start, let’s consider the various tasks used in a meta-training procedure as a set of MDPs
such that each taskMω can be sampled from the distribution ψ defined on the context space
Ω. This set can be equivalently seen as a CMDP M = 〈Ω,S,A,M(ω)〉, whereM(ω) =Mω.
Similarly, we define a distribution ρ over the policy space Θ, in such a way that at each
iteration in an MDPMω, the policy parameters θ0 are initialized to a value sampled from ρ.
We assume to be able to explicitly represent the task ω.

Definition 3.1 A meta-MDP is a tuple 〈X ,H,L, γ̃, (M , ψ), (θ, ρ), f〉, where:

• X and H are respectively the meta observation space and the learning action;

• L : Θ× Ω×H → R is the meta reward function;

• γ̃ is the meta-discount factor;

• (M , ψ) and (θ, ρ) contain respectively a CMDP M with distribution over tasks ψ, and
the policy space, with initial distribution ρ;

• f : Θ×H → Θ is the update rule of the learning model chosen.

In particular, a meta-MDP attempts to enclose the general elements necessary to learn a
RL task into a model with similar properties to a classic MDP. The meta observation space
X of a meta-MDP can be considered as the generalization of the observation space in classic
MDPs. In order to have a complete information about the current position, it is necessary
to include in the state the policy θt and the task ω; moreover, relevant information of the
overall process is included in the gradient estimation. Consequently, in the following we will
model the meta state as the concatenation of all these features.

Each action h ∈ H performed on the meta-MDP determines a specific hyperparameter
that regulates the update rule f , i.e. θk+1 = f (θk, hk). In particular, in this work we focus

3

Sabbioni, Corda and Restelli

on (normalized) natural gradient ascent (NGA), in which the action h determines the step
size. Similarly to a standard RL problem, the training of a meta-MDP is accomplished by
optimizing a reward function. Meta-learning has the main goal of learning to learn: as a
consequence we want to consider learning as our reward, hence we define L(θ, ω, h) as the
performance gain obtained after one update of the policy θ with action h under context ω:
L(θ, ω, h) := jω(f(θ, h))− jω(θ).

Differently from a standard MDP, a meta-MDP does not include a Markovian transition
model that regulates its dynamics: given xt, the transition to the next state xk+1 is, of course,
stochastic, but it implicitly depends only on the distribution of the trajectories induced by
the pair (θk,Mω) and on the update rule f . The initial state hence depends on ψ and ρ.
The choice of the meta-discount factor γ̃ is critical: meta-learning is very often considered as
paired with few-shot learning, where a short horizon is taken into account for the learning
process. However, a myopic behavior induced by a low discount factor might lead to prefer
actions leading to local optima, while it might be necessary to take more cautious steps in
order to get to the global optima of the learning process. For this reason, we set γ̃ = 1.

4. Context Lipschitz Continuity

In this section, we consider a meta-MDP in which all inner tasks satisfy the Lipschitz continuity
assumption. Under this condition, we are able to derive a bound on the approximation errors
obtained by the meta-agent when acting on unseen tasks. Let’s suppose to be provided with
a CMDP, where all the inner MDPs are Lipschitz. Moreover, let’s also assume that the set
of MDPs is Lipschitz continuous w.r.t the context ω:

Assumption 4.1 Let M be a CMDP. M is called (LωP , Lωr)-Context Lipschitz Continuous
((LωP , Lωr)-CLC) if for all (s, a), (s, a) ∈ S ×A, ∀ω, ω̂ ∈ Ω:

K (Pω(· | s, a), Pω̂(· | s, a))) ≤ LωP dΩ(ω, ω̂)
∣∣∣Rω(s, a)−Rω̂(s, a)

∣∣∣ ≤ LωrdΩ(ω, ω̂);

This means that we have some notion of continuity w.r.t. the task: when two MDPs
with similar contexts are considered, then their transition and reward processes are similar.

Theorem 4.1 Let M be a (LωP , Lωr)-CLC CMDP for whichM(ω) is (LP (ω), Lr(ω))-LC
∀ω ∈ Ω. Given a Lπ-LC policy π, the action value function Qπω(s, a) is LωQ-CLC w.r.t. the
context ω, i.e.: ∣∣∣Qπω(s, a)−Qπω̂(s, a)

∣∣∣ ≤ LωQ(π)dΩ(ω, ω̂);

where

LωQ(π) =
Lωr + γLωpLV π(ω)

1− γ
, LV π(ω) =

Lr(ω)(1 + Lπ)

1− γLP (ω)(1 + Lπ)

Given this result, also the return function jω(π) is LωQ-CLC. In simpler terms, theorem
4.1 exploits the LC property to derive an upper bound on the distance between the Qπω
functions of two tasks ω1, ω2 ∈ Ω. This result represents an important guarantee on the
generalization capabilities of the approach, as it provides a boundary on the error obtained
in testing by making inference on a Q function based on the training tasks.

4

Meta Learning the Step Size in Policy Gradient Methods

5. Fitted Q-Iteration on Meta-MDP

We now define our approach to learn a dynamic step size in the framework of a meta-MDP.
As a meta-RL approach, the objectives of our algorithm are to improve the generalization
capabilities of PG methods and to remove the need of manually tuning the learning rate for
each task. The optimal dynamic step size identification serves two purposes: maximizing the
convergence speed and improving the overall training stability, especially when the return
is near to the optimum or the current region is uncertain. To accomplish these goals, we
propose the adoption of the Fitted Q-Iteration (FQI) (Ernst et al., 2005) algorithm, which is
an off-policy, and offline algorithm designed to learn a good approximation of the optimal
action-value function by exploiting the Bellman optimality operator. The approach consists
in the application of Supervised Learning techniques as, in our case, Extra Trees (Geurts
et al., 2006), in order to generalize the Q estimation over the entire state-action space. The
algorithm considers a dataset of tuples representing an interaction with the environment, and
at each iteration, the regression algorithm can estimate the value function with a planning
horizon increased of one step. The FQI version implemented involves Clipped Double Q-
learning, introduced by Fujimoto et al. (2019), to penalize the overestimation bias induced by
the maximum operator. The approach consists in maintaining two parallel functions Q{1,2}N

for each iteration and choosing the action h that maximizes a convex combination of the
minimum and the maximum between them, weighted by an external parameter λ > 0.5:

l + γ̃max
h∈H

[
λ min
j=1,2

Qj
(
x′, h

)
+ (1− λ) max

j=1,2
Qj
(
x′, h

)]
.

The dataset generation procedure consists in collecting learning trajectories on the meta-
MDP, where the context is sampled as well as the initial policy, while the next policies are
computed through iterations of NGA with random step sizes. Once the dataset is generated,
the meta-RL version of FQI can be applied, where the goal is to learn the action value
function of the Meta-MDP. In this way, for each policy and context, once the natural gradient
is estimated, the model can evaluate the best action from a discretization of H.

6. Experimental Evaluation

In this section, we show an empirical analysis of the performance of our approach in different
environments. When FQI models are trained, the iterations are compared and the best one
is shown in figure 1, along with NGA performed with fixed stepsize, evaluated on the same
20 random test tasks and initial policies.

For our first evaluation of the approach, we reproduce Navigation2D, presented in Finn
et al. (2017). This environment consists of a unit square space in which an agent aims to
reach a random goal in the plane, sampled uniformly in the unit square. In our second
experiment, inspired by Penner (2002); Tirinzoni et al. (2019), we consider the scenario of
a flat mini golf green, where the context is the putter length and the friction coefficient.
Successively, we examine the CartPole balancing task (Barto et al., 1990), that consists in a
pole attached to a cart, which the agent has to move to balance the pole as long as possible.
The CMDP is induced by varying two environment parameters, the pole mass and length.
As a last environment, we considered the Half-cheetah locomotion problem introduced in
Finn et al. (2017), where a planar cheetah has to learn to run with a specific goal velocity.

5

Sabbioni, Corda and Restelli

0 10 20

−4

−2

E
xp

ec
te

d
re

tu
rn

j
Navigation 2D

1
5

10
meta (N=2)

0 20 40

−30

−20

−10

0
Meta Minigolf

0.1
0.5
1

meta (N=2)

0 5 10 15

40

60

80

Meta Cartpole

1
2.5
7.5

meta (N=1)
meta (N=5)

0 20 40 60 80

0

20

40

60

80

Half-Cheetah-vel
0.1
0.5
1

meta (N=3)

0 10 20

0

2

4

6

Step

St
ep

si
ze

h

0 20 40

0

0.2

0.4

Step
0 5 10 15

0

2

4

6

Step
0 20 40 60 80

0.2

0.4

0.6

0.8

Step

Figure 1: FQI model performance on 20 random test context against fixed step size. The top
plots show the 95% c.i. of the expected returns (or the return gain j(θt)− j(θ0)
for Half-Cheetah environment). The bottom plots show the meta action chosen
through learning iterations (95% c.i.). N represents the FQI iteration selected.

As we can note in figure 1, the algorithm is able to select the stepsizes with a good return
gain without suffering from any drop. In Navigation and Minigolf environments, the model
is able to calibrate its actions, starting with larger steps and slowing down once the policies
obtain good results, and all trajectories reach convergence in fewer steps than any other
method and consistently reach the optimal values with a low variance. In Meta Cartpole
environment, it is possible to see that the best model (blue solid line) is choosing to update
the policy with small learning rates: this leads to a lower immediate return gain (high rates
have a better learning curve in the first steps), but allows to improve the overall meta return.
Finally, we can see the performance gain j(θt)− j(θ0) in Half-Cheetah environment. In this
case, the FQI model is clearly learning faster than benchmarks, although being far from
convergence. The interesting fact is that the fixed learning rates between 0.5 and 1 have
almost the same gain return; however, even though the meta actions chosen by the model are
almost always within this range, it is still able to adapt the steps to get higher meta-rewards.

7. Discussion and Future Work

In this work, we considered the problem of hyperparameter tuning for policy gradient-based
algorithms in contextual MDPs, modeling the general problem through the definition of the
meta-MDP, for which any policy update rule can be optimized by an agent whose reward is
learning. We analyzed the case of Lipschitz meta-MDPs, deriving some general guarantees
that hold if the decision process evolves smoothly with respect to the context parametrization.
Finally, we implemented the FQI algorithm on the meta-MDP whit natural gradient ascent
as update rule, and used it to choose an adaptive stepsize through the learning process. The
approach has been evaluated in different settings, where we observed good generalization
capabilities of the model, thanks to which it is possible to reach fast convergence speed and
robustness without the need of manual fine hyperparameter tuning.

6

Meta Learning the Step Size in Policy Gradient Methods

References

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems, page 81–93. IEEE Press,
1990. ISBN 0818620153.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6(Apr):503–556, 2005.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019.

Francisco M Garcia and Philip S Thomas. A meta-mdp approach to exploration for lifelong
reinforcement learning. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1976–1978, 2019.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes.
arXiv preprint arXiv:1502.02259, 2015.

Sham M Kakade. A natural policy gradient. Advances in neural information processing
systems, 14, 2001.

Franziska Meier, Daniel Kappler, and Stefan Schaal. Online learning of a memory for learning
rates. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
2425–2432. IEEE, 2018.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexan-
der Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline
reinforcement learning. arXiv preprint arXiv:2007.09055, 2020.

Supratik Paul, Vitaly Kurin, and Shimon Whiteson. Fast efficient hyperparameter tuning for
policy gradient methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/743c41a921516b04afde48bb48e28ce6-Paper.pdf.

A Raymond Penner. The physics of golf. Reports on Progress in Physics, 66(2):131, 2002.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz markov
decision processes. Machine Learning, 100(2):255–283, 2015.

7

https://proceedings.neurips.cc/paper/2019/file/743c41a921516b04afde48bb48e28ce6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/743c41a921516b04afde48bb48e28ce6-Paper.pdf

Sabbioni, Corda and Restelli

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action domination in
sequential decision making. In 11th International Symposium on Artificial Intelligence
and Mathematics (ISIAM 2010), pages 1–8, Fort Lauderdale, US, 2010a. URL https:
//oatao.univ-toulouse.fr/17977/.

Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action domination in
sequential decision making. In International Symposium on Artificial Intelligence and
Mathematics, ISAIM 2010, Fort Lauderdale, Florida, USA, January 6-8, 2010, 2010b.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. arXiv preprint arXiv:1206.2944, 2012.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gra-
dient methods for reinforcement learning with function approximation. In S. Solla,
T. Leen, and K. Müller, editors, Advances in Neural Information Processing Systems, vol-
ume 12. MIT Press, 2000. URL https://proceedings.neurips.cc/paper/1999/file/
464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of samples in policy search
via multiple importance sampling. In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
6264–6274. PMLR, 09–15 Jun 2019.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-gradient reinforcement learning.
arXiv preprint arXiv:1805.09801, 2018.

Yingda Zhu, Teruaki Hayashi, and Yukio Ohsawa. Gradient descent optimization by rein-
forcement learning. In The 33rd Annual Conference of the Japanese Society for Artificial
Intelligence, 2019.

8

https://oatao.univ-toulouse.fr/17977/
https://oatao.univ-toulouse.fr/17977/
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

Meta Learning the Step Size in Policy Gradient Methods

Appendix A. Proofs

In this part of the appendix, we provide the proofs of the results shown in the main paper.

A.1 Lipschitz continuity of the action-value function

Before describing the proof for Theorem 4.1, we need to recall the Bellman Operator T π for
the Action Value Function Qπω:

T πQπω(s, a) = Rω(s, a) + γ

∫
S
Pω(s′|s, a)

∫
A
Qπω(s′, a′)π(a′|s′)dads′ (1)

= Rω(s, a) + γ

∫
S
Pω(s′|s, a)V π

ω (s′)ds′ (2)

where Qπω is the fixed point.
Moreover, let’s consider a preliminary result on the LC-continuity of the value functions:

Lemma 1 (Lipschitz value functions) Given an (LP , LR)-LC MDP and a Lπ-LC sta-
tionary policy π, if γLP (1 + Lπ) < 1, then the Q-function Qπ is LQπ -LC and the V function
is LV π -LC w.r.t. the joint state-action space;

LQπ =
LR

1− γLP (1 + Lπ)
; LV π = LQπ(1 + Lπ) (3)

Theorem 4.1 Let M be a (LωP , Lωr)-CLC CMDP for whichM(ω) is (LP (ω), Lr(ω))-LC
∀ω ∈ Ω. Given a Lπ-LC policy π, the action value function Qπω(s, a) is LωQ-CLC w.r.t. the
context ω, i.e.: ∣∣∣Qπω(s, a)−Qπω̂(s, a)

∣∣∣ ≤ LωQ(π)dΩ(ω, ω̂);

where

LωQ(π) =
Lωr + γLωpLV π(ω)

1− γ
, LV π(ω) =

Lr(ω)(1 + Lπ)

1− γLP (ω)(1 + Lπ)

Proof We follow the same ideas as in Rachelson and Lagoudakis (2010a): first of all, given
an LωQ-LC continuous Q function Qπ w.r.t. the task space Ω, the related value function V π

ω

is LωQ-LC. Indeed,∣∣∣∣V π
ω (s)− V π

ω̂ (s)

∣∣∣∣ =

∣∣∣∣∫
A
π(a | s) (Qπω(s, a)−Qπω̂(s, a)) da

∣∣∣∣
≤
∫
A
π(a | s)

∣∣∣∣Qπω(s, a)−Qπω̂(s, a)

∣∣∣∣da
≤ max

a

∣∣∣∣Qπω(s, a)−Qπω̂(s, a)

∣∣∣∣ ≤ LωQdΩ(ω, ω̂).

(4)

Now, we consider the iterative application of Bellman Operators, in such a way that Qπ,n+1
ω =

T πQπ,nω , and we prove that Qπ,nω is LnωQ-LC continuous, and that satisfies the recurrence
relation:

Ln+1
ωQ

= Lωr + γLπLV (ω) + γLnωQ . (5)

9

Sabbioni, Corda and Restelli

Indeed, for n = 1 the property holds immediately, since:∣∣∣Qπ,1ω (s, a)−Qπ,1ω̂ (s, a)
∣∣∣ =

∣∣∣Rω(s, a)−Rω̂(s, a)
∣∣∣ ≤ LωrdΩ(ω, ω̂). (6)

Now, let us suppose the property holds for n. Then: ∣∣∣∣Qπ,n+1
ω (s, a)−Qπ,n+1

ω̂ (s, a)

∣∣∣∣ =∣∣∣∣Rω(s, a)−Rω̂(s, a) + γ

∫
S
Pω
(
s′ | s, a

)
V π,n
ω

(
s′
)
ds′ − γ

∫
S
Pω̂
(
s′ | s, a

)
V π
ω̂

(
s′
)
ds′
∣∣∣∣

≤ LωrdΩ(ω, ω̂) + γ

∣∣∣∣∫
S

(
Pω
(
s′ | s, a

)
− Pω̂

(
s′ | s, a

))
V π,n
ω

(
s′
)
ds′
∣∣∣∣

+γ

∣∣∣∣∫
S
Pω̂
(
s′ | s, a

) (
V π,n
ω

(
s′
)
− V π,n

ω̂

(
s′
))
ds′
∣∣∣∣

≤ LωrdΩ(ω, ω̂) + γLV (ω) sup
‖f‖L≤1

{∣∣∣∣∫
S

(
Pω
(
s′ | s, a

)
− Pω̂

(
s′ | s, a

))
f
(
s′
)
ds′
∣∣∣∣}

+γmax
s′

∣∣∣∣V π,n
ω

(
s′
)
− V π,n

ω̂

(
s′
)∣∣∣∣

≤
(
Lωr + γLωPLV (ω) + γLnωQ

)
dΩ(ω, ω̂).

Now, if the sequence LnωQ is convergent, it converges to the fixed point of the recurrence
equation:

LωQ = Lωr + γLωPLV (ω) + γLωQ . (7)

Hence the limit point is the one expressed in 4.1, and the sequence can be proven to be
convergent since γ < 1.

As a consequence, the Proof that jω(π) is CLC under ω is immediate:∣∣∣∣jω(π)− jω̂(π)

∣∣∣∣ =

∣∣∣∣∫
S
µ (s0) [V π

ω (s0)− V π
ω̂ (s0)] ds0

∣∣∣∣
≤
∫
S×A

µ (s0)π (a | s0)
∣∣∣Qπω (s0, a)−Qπω̂ (s0, a)

∣∣∣dads0

≤ LωQ(π)dΩ(ω, ω̂).

Appendix B. FQI: dataset generation

In this section, we provide a synthetic description for FQI algorithm in the Meta-MDP. The
algorithm considers a full dataset F = {(xkt , hkt , lkt , xkt+1)}k, where each tuple represents an
interaction with the meta-MDP: in the k−th tuple, xkt and xkt+1 are respectively the current
and next meta-state, hkt the meta-action and lkt the meta reward function, as described in
Section 3. In order to consider each meta-state x, there is the need to sample n trajectories
in the inner MDP to estimate return and gradient. At the iteration N of the algorithm, given
the (meta) action-value function QN−1, the training set TSN = {(ik, ok)}k is built, where
each input is equivalent to the state-action pair ik = (xkt , h

k
t), and the target is the result of

10

Meta Learning the Step Size in Policy Gradient Methods

Algorithm 1 Meta-MDP Dataset Generation for NGA (trajectory method)
Input: CMDP M , distribution over tasks ψ, policy space Θ, distribution over initial
policies ρ, number of meta episodes K, number of learning steps T , number of inner
trajectories n.
Initialize: F = {},
for k = 1, . . . ,K do

Sample context ω ∼ ψ(Ω) and initial policy θ0 ∼ ρ(Θ)
Sample n trajectories in taskMω under policy π(θt) and Estimate jω(θ0), ĝn(θ0, ω)
for t = 0, . . . , T − 1 do

Sample meta-action h ∈ H and Update policy θt+1 = θt + h ĝN (θt,ω)
‖ĝn(θt,ω)‖

Sample n trajectories in (Mω, π(θt)) and estimate jω(θt+1), ĝn(θt+1, ω)
Set x = 〈θt, ĝn(θt, ω), ω〉, x′ = 〈θt+1, ĝn(θt+1, ω), ω〉 , l = jω(θt+1)− jω(θt).
Append {(x, h, x′, l)} to F

end for
end for
Output: F

Bellman optimal operator: ok = lkt + γmaxh∈HQN−1(xkt+1, h). In this way, the regression
algorithm adopted is trained on TS to learn QN with the learning horizon increased of one
step. However, as the regression procedures are iterated, new estimation errors are introduced
that might cumulate over time, resulting in a degradation of the performances with N .

In general, the dataset is created by following K learning trajectories over the CMDP:
at the beginning of each meta-episode, a new context ω and initial policy θ0 are sampled
from ψ and ρ; then, for each of the T learning steps, the meta action h is randomly sampled
to perform the policy update. In this way, the overall dataset is composed of KT tuples.
However, if the policy space is small enough, it is possible to explore the overall task-policy
space Ω×Θ through a generative approach: instead of following the learning trajectories,
both ω,θ0 and h are sampled every time. We refer to this method as “generative” approach,
while the former will be denoted as “trajectory” approach.

The pseudo code for the dataset generation process is provided in algorithm 1.

Appendix C. Experiment Details

In this section, we provide more details regarding the experimental campaign provided. In
the following environments, all the policies considered are Gaussian, and linear w.r.t. the
state observed (with bias θ0), i.e. πθ(a|s) ∼ N (θ0 + θ>s, σ2), where σ is fixed standard
deviation, with a different setting for each environment.

C.1 Navigation2D Description

The Navigation2D environment consists of a 2-dimensional square space in which an agent,
represented as a point, aims to reach a goal in the plane traversing the minimum distance.

At the start of the episode, the agent is placed in the initial position s0 = (0, 0) of the
Cartesian plane. Then, at each step t the agent observes its current position and performs

11

Sabbioni, Corda and Restelli

an action at corresponding to movement speeds along the x and y axes:

at = (vx, vy), where vx, vy ∈ [−vmax, vmax]. (8)

According to this action, the agent can move in every direction of the plane, with a limit
on the maximum speed vmax = 0.1 allowed in a single step. This parameters determines
the minimum number of steps necessary to reach the goal and can be varied to tune the
difficulty of the environment.

At each step, the environment produces a reward equal to the negative Euclidean distance
from the goal:

rt =
√

(xt − xgoal)2 + (yt − ygoal)2. (9)

An episode terminates when the agent is within a threshold distance dthresh from the goal or
when the horizon H = 10 is reached.

The distribution of tasks is implemented as a CMDPM(ω) in which, at each episode, a
different goal point is selected at random. The context ω is given by a 2D vector, such that:

ω = (xgoal, ygoal), where xgoal, ygoal ∼ U(−1, 1). (10)

Parameters used for experiments:

• initial policy distribution ρ = N (0, 0.1);

• discount factor γ = 0.99;

• policy standard deviation σ = 1.001;

• task distribution ψ = U([−0.5, 0.5]2);

• FQI dataset method: trajectories;

• FQI number of samples: K = 4000 with learning horizon T = 20;

• inner trajectories n = 200 with horizon H = 10;

• number of estimators = 50, minimum samples split = 0.01;

• step size H = [0, 8];

• step size sampling distribution: uniform in H;
• step size selected in evaluation from an evenly spaced discretization of 101 values in H.

C.2 Minigolf Description

In the minigolf game, the agent has to shoot a ball with radius r inside a hole of diameter D
with the smallest number of strokes. The friction imposed by the green surface is modeled
by a constant deceleration d = 5

7ρg, where ρ is the dynamic friction coefficient between the
ball and the ground and g is the gravitational acceleration. Given the distance x of the ball
from the hole, the agent must choose the force a, from which the velocity of the ball v of
the ball is determined as v = al2(1 + ε), where ε ∼ N (0, 0.25) and l is the putter length.
For each distance x, the ball falls in the hole if its velocity v ranges from vmin =

√
2dx to

vmax =
√

(2D − r)2 g
2r + v2

min. In this case, the episode ends with a reward 0; if v > vmax
the ball falls outside the green, and the episode ends with a reward -100. Otherwise, if

12

Meta Learning the Step Size in Policy Gradient Methods

v < vmin, the agents gets a reward equal to -1, and the episode goes on from a new position
xnew = xold − v2

2d . At the beginning of each episode, the initial position is selected from an
uniform distribution between 0m and 20m from the hole. The stochasticity of the action
implies that the stronger is the action chosen the more uncertain is the outcome, as the
effect of r.v. ε become more effective. As a result, when it is away from the hole, the agent
might not prefer to try to make a hole in one shot, preferring to perform a sequence of closer
shots. In this case, the context is given by the friction coefficient ρ ∈ [0.065, 0.196] and by
the putter length l ∈ [0.7, 1]m.

During the experiment, the environment parameters are set to imitate the dynamics of a
realistic shot in a minigolf green, within the limits of our simplified simulation. This is the
complete configuration adopted:

• horizon H = 20;

• discount factor γ = 0.99;

• angular velocity ω ∈ [1× 10−5, 10];

• initial distance x0 ∈ [0, 20] meters;

• ball radius r = 0.02135 meters;

• hole diameter D = 0.10 meters;

The distribution of tasks is built as a CMDPM(ω), induced by the pair ω = (l, ρ). At each
meta episode, a new task is sampled from a multivariate uniform distribution within this
ranges:

• putter length l ∼ U(0.7, 1) meters;

• friction coefficient ρ ∼ U(0.065, 0.196).

Parameters used for experiments:

• initial policy distribution θ = (w, b) ∼ U((−1, 2), (−2, 3.5)) (2-dimensional policy);

• policy standard deviation σ = 0.1;

• FQI dataset method: generative;

• FQI number of samples: K = 10000;

• inner trajectories n = 400 with horizon H = 20;

• number of estimators = 50, minimum samples split = 0.01;

• step size space: H = [0, 1]

• step size sampling distribution: uniform in H;
• step size selected in evaluation from an evenly spaced discretization of 101 values in H.

C.3 CartPole description

The CartPole environment (Barto et al., 1990), also known as the Inverted Pendulum problem,
consists in a pole attached to a cart by a non actuated joint, making it an inherently unstable

13

Sabbioni, Corda and Restelli

system. The cart can move horizontally along a frictionless track to balance the pole. The
objective is to maintain the equilibrium as long as possible.

In this implementation, an episode starts with the pendulum in vertical position. At
each step, the agent observes the following 4-tuple of continuous values:

• cart position xcart ∈ [−4.8, 4.8];

• cart velocity vcart ∈ R;
• pole angle φpole ∈ [−0.418, 0.418] rad;

• pole angular velocity ωpole ∈ R.

Given the state, the agent chooses an action between 0 and 1 to push the cart to the left
or to the right. For each step in which the pole is in balance, the environment produces a
reward of +1. An episode ends when the pole angle from the vertical position is higher than
12 degrees, or the cart moves more than 2.4 units from the center, or the horizon H = 100 is
reached.

In our experiments, some parameters are fixed, as the mass of the cart (mcart = 1 kg),
the length of the pole (lpole = 0.5 m) and the force applied by the cart (F = 10 N). The
CMDPM(ω) is induced by varying two environment parameters, the pole mass mpole and
the pole length lpole, that form the context parameterization ω = (mpole, lpole). Each task in
the meta-MDP is built by sampling ω from a multivariate uniform distribution, within these
ranges:

• pole length lpole ∼ U(0.5, 1.5)m;

• pole mass mpole ∼ U(0.1, 2) kg.

Parameters used for experiments:

• initial policy distribution θd ∼ N (0, 0.1) for each component θd;

• policy standard deviation σ = 1.001;

• meta-discount factor γ̃ = 1;

• FQI dataset method: trajectories;

• FQI number of samples: K = 3200 with learning horizon T = 15;

• inner trajectories n = 100 with horizon H = 100;

• number of estimators = 150, minimum samples split = 0.05;

• step size H = [0, 10];

• step size sampling distribution: uniform in H;
• step size selected in evaluation from an evenly spaced discretization of 101 values in H.

C.4 Half Cheetah description

The CMDPM(ω) is induced by varying the goal velocity of the half cheetah vgoal, which
defines the context ω, with uniform distribution U(0, 2).

Parameters used for experiments:

14

Meta Learning the Step Size in Policy Gradient Methods

0 10 20

−4

−3

−2

Step

E
xp

ec
te

d
re

tu
rn

j
Navigation 2D

N=1
N=2
N=4
N=7

0 20 40

−20

−15

−10

−5

Step

Meta MiniGolf

N=1
N=2
N=3
N=5

0 5 10 15

40

60

80

Step

Meta CartPole

N=1
N=4
N=5
N=8

Figure 2: FQI model performance among different iterations. For the sake of clarity, only
the average values are shown.

• initial policy distribution θd ∼ N (0, 0.1) for each component θd;

• policy standard deviation σ = 1.001;

• meta-discount factor γ̃ = 1;

• FQI dataset method: trajectories;

• FQI number of samples: K = 200 with learning horizon T = 80;

• inner trajectories n = 100 with horizon H = 100;

• number of estimators = 150, minimum samples split = 0.05;

• step size H = [0, 1];

• step size sampling distribution: uniform in H;
• step size selected in evaluation from an evenly spaced discretization of 101 values in H.

Appendix D. Other results

Comparison among FQI Iterations.

As said, as the regression procedures are iterated in the application of FQI algorithm, there
is a trade-off between a larger planning horizon and the accumulation of new regression
errors. In figure 2 we show some of the learning curves with different FQI iterations. For
all the environments considered, it is possible to see that the direct regression on the meta
reward (i.e. one FQI iteration) does not provide the best performances, while from a certain
point the results start to get worse. As far as Meta Cartpole environment is concerned, we
can clearly see that the models select progressively more cautious steps in order to improve
learning, as explained in section 6.

Comparison with learning rate schedules.

In figure 1 we compared the FQI models with the choice of a fixed step size. Other
schedules are often considered, as for example a dynamic step size ht+1 = α

t (or, similarly,
an exponentially decreasing learning rate ht+1 = αht). In figure 3, the baselines considered
are three different starting step sizes α, which are compared to our approach, which is still
proving the best performance.

15

Sabbioni, Corda and Restelli

0 10 20

−4

−2

Step

E
xp

ec
te

d
re

tu
rn

j
Navigation 2D

meta
1/t
5/t
10/t

0 20 40

−30

−20

−10

0

Step

Meta Minigolf

meta
0.5/t
1/t
2/t

0 5 10 15

40

60

80

Step

Meta Cartpole

meta
7.5/t
10/t
15/t

Figure 3: FQI model performance on 20 random test context against a decreasing step size
(95% c.i.).

0 5 10 15 20

−5

−4

−3

−2

E
xp

ec
te

d
re

tu
rn
j

Navigation 2D

0 10 20 30 40 50

−20

−10

E
xp

ec
te

d
re

tu
rn
j

Meta MiniGolf

0 5 10 15

40

60

80

Step

E
xp

ec
te

d
re

tu
rn
j

Meta CartPole

0 20 40 60 80

0

20

40

60

80

Step

R
et

ur
n

ga
in

Half Cheetah vel

x = 〈θt, ĝ(θt, ω), ω〉 x = 〈θt, ĝ(θt, ω)〉

Figure 4: FQI model performance obtained by considering or excluding the explicit task
parametrization ω. (95% c.i.)

Explicit knowledge of the context: is it informative?

In the experimental campaign, we assumed to be able to represent the parametrized context
ω, as this information can be used to achieve an implicit task-identification by the agent.
However, in some cases the external variables influencing the process might be not observable.
However, the gradient itself already implicitly includes information regarding the transition
and reward probabilities: what is lost when we do not consider the explicit parametrization
of the task? In general, as we can see in figure 4, there is no big loss in the performance,
especially for Minigolf environment; however, in Meta CartPole, the task parametrization
seem to be informative to the choice of the step size.

16

	Introduction
	Preliminaries
	Meta-MDP
	Context Lipschitz Continuity
	Fitted Q-Iteration on Meta-MDP
	Experimental Evaluation
	Discussion and Future Work
	Proofs
	Lipschitz continuity of the action-value function

	FQI: dataset generation
	Experiment Details
	Navigation2D Description
	Minigolf Description
	CartPole description
	Half Cheetah description

	Other results

