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ABSTRACT

Existing generalization theories for supervised learning typically take a holistic
approach and provide bounds for the expected generalization over the whole data
distribution, which implicitly assumes that the model generalizes similarly for all
different classes. In practice, however, there are significant variations in general-
ization performance among different classes, which cannot be captured by the ex-
isting generalization bounds. In this work, we tackle this problem by theoretically
studying the class-generalization error, which quantifies the generalization per-
formance of the model for each individual class. We derive a novel information-
theoretic bound for class-generalization error using the KL divergence, and we
further obtain several tighter bounds using recent advances in conditional mutual
information bound, which enables practical evaluation. We empirically validate
our proposed bounds in various neural networks and show that they accurately
capture the complex class-generalization behavior. Moreover, we demonstrate
that the theoretical tools developed in this work can be applied in several other
applications.

1 INTRODUCTION

Despite the considerable progress towards a theoretical foundation for neural networks (He & Tao,
2020), a comprehensive understanding of the generalization behavior of deep learning is still elu-
sive (Zhang et al., 2016; 2021). Over the past decade, several approaches have been proposed to
uncover and provide a theoretical understanding of the different facets of generalization (He & Tao,
2020; Kawaguchi et al., 2017; Hochreiter & Schmidhuber, 1997; Roberts et al., 2022). In particular,
multiple tools have been used to characterize the expected generalization error of neural networks,
such as VC dimension (Sontag et al., 1998; Harvey et al., 2017), algorithmic stability (Bousquet &
Elisseeff, 2000; Hardt et al., 2016), algorithmic robustness (Xu & Mannor, 2012; Kawaguchi et al.,
2022), and information-theoretic measures (Xu & Raginsky, 2017; Steinke & Zakynthinou, 2020;
Wang & Mao, 2023). However, relying solely on the analysis of the expected generalization over the
entire data distribution may not provide a complete picture. One fundamental limitation of standard
expected generalization error is that it does not give any insight into the class-specific generalization
behavior, as it implicitly assumes that the model generalizes similarly for all the classes.

Does the model generalize equally for all classes? To answer this question, we conduct an ex-
periment using deep neural networks, namely ResNet50 (He et al., 2016; Srivastava et al., 2015) on
the CIFAR10 dataset (Krizhevsky et al., 2009). We plot the standard generalization error along with
the class-generalization errors, i.e., the gap between the test error of the samples from the selected
class and the corresponding training error, for three different classes of CIFAR10 in Figure 1 (left).
As can be seen, there are significant variants in generalization performance among different classes.
For instance, the model overfits the “cats” class, i.e., large generalization error, and generalizes rel-
atively well for the “trucks” class, with a generalization error of the former class consistently four
times larger than the latter. This suggests that neural networks do not generalize equally for all
classes. Therefore, reasoning only concerning the standard generalization error (red curve) cannot
capture this class-wise behavior.

Motivated by these observations, we conduct an additional experiment by introducing label noise
(5%) to the CIFAR10 dataset to study how a slight change in data can affect the class-generalization
behavior. Results are presented in Figure 1 (right). Intriguingly, despite the low noise level, the dis-
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Figure 1: Left: The standard generalization error, i.e., test loss minus train loss, and the generaliza-
tion errors for several classes on CIFAR10 as a function of number of training samples. Right: The
standard generalization error, bound proposed by Harutyunyan et al. (2021), and the generalization
errors for several classes on noisy CIFAR10. It is worthnoting here that CIFAR10 is a balanced
dataset. Experimental details are available in Section 3 and Appendix D.2.

parities between the class-wise generalization errors are aggravated, with some classes generalizing
up to eight times worse than others. Further, as shown in this example, different classes do not even
exhibit the same trend when the number of training samples increases. For instance, unlike the other
classes, the generalization error of the “trucks” class increases when more training data is available.
To further illustrate the issue of standard generalization analysis, we plot the information-theoretic
generalization bound proposed in Harutyunyan et al. (2021). Although the bound captures the be-
havior of the standard generalization error well and can be used to explain the behavior of some
classes (e.g., “cat”), it becomes an invalid upper bound for the “trucks” class1.

When comparing the results on both datasets, it is worth noting that the generalization error of the
same class “trucks” behaves significantly differently on the two datasets. This suggests that class-
wise generalization highly depends on factors beyond the class itself, including the data distribution,
the learning algorithm, and the number of training samples. Moreover, in alignment with our find-
ings, Balestriero et al. (2022); Kirichenko et al. (2023) showed that standard data augmentation and
regularization techniques, e.g., weight decay and dropout (Krizhevsky et al., 2012; Hanson, 1990)
improve standard average generalization. However, it is surprising to note that these techniques
inadvertently increase the disparity of generalization among different classes.

The main conclusion of all the aforementioned observations is that neural networks do not gen-
eralize equally for all classes, and their class-wise generalization depends on all ingredients of a
supervised learning problem. Furthermore, having more data may also exacerbate overfitting for
certain classes. This paper aims to provide some theoretical understanding of this phenomenon
using information-theoretic generalization bounds, as they are both data-dependent and algorithm-
dependent (Xu & Raginsky, 2017; Neu et al., 2021). This makes them an ideal tool to characterize
the class-generalization properties of a learning algorithm. A detailed related work discussion is
presented in Appendix A.

Our main contributions are as follows:

• We introduce the concept of “class-generalization error,” which quantifies the generalization per-
formance of each individual class. We derive a novel information-theoretic bound for this quan-
tity based on KL divergence (Theorem 1). Then, using the super-sample technique proposed
by Steinke & Zakynthinou (2020), we derive various tighter bounds based on conditional mu-
tual information that are significantly easier to estimate and do not require access to the model’s
parameters (Theorems 2, 3, and 4). A visual overview is presented in Figure 12.

• We validate our proposed bounds empirically in different neural networks using CIFAR10 and its
noisy variant in Section 3. We show that the proposed bounds can accurately capture the complex
behavior of the class-generalization error behavior in different contexts.

1We note that the bound by Harutyunyan et al. (2021) is proposed for the standard generalization error
instead of the class-generalization. Here, we plot it only for illustrative purposes.
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• We show that our novel theoretical tools can be applied to the following cases beyond the class-
generalization error: (i) Derive first class-dependent standard generalization error bounds high-
lighting how the class-generalization affects the standard generalization (Section 4.1) and in some
cases tightening the existing standard generalization error bounds using class-dependency ; (ii)
provide first practical tight bounds for the subtask problem, where the test data only encompasses
a specific subset of the classes encountered during training (Section 4.2); (iii) derive generalization
error bounds for learning in the presence of sensitive attributes (Section 4.3).

Notations: We use upper-case letters to denote random variables, e.g., Z, and lower-case letters to
denote the realization of random variables. EZ∼P denotes the expectation of Z over a distribution
P . Consider a pair of random variables W and Z = (X,Y) with joint distribution PW,Z. Let W be
an independent copy of W, and Z = (X,Y) be an independent copy of Z, such that PW,Z(w, z) =

PW(w) · PZ(z). For random variables X, Y and Z, I(X;Y) ≜ D(PX,Y∥PX ⊗ PY) denotes the
mutual information (MI), and Iz(X;Y) ≜ D(PX,Y|Z=z∥PX|Z=z ⊗PY|Z=z) denotes disintegrated
conditional mutual information (CMI), and EZ[IZ(X;Y)] = I(X;Y|Z) is the standard CMI. We
will also use the notation X,Y|z to simplify X,Y|Z = z when it is clear from the context.

2 CLASS-GENERALIZATION ERROR

2.1 MI-SETTING

Typically, in supervised learning, the training dataset S = {(Xi,Yi)}ni=1 = {Zi}ni=1 contains n
i.i.d. samples Zi ∈ Z generated from the distribution PZ. Here, we are interested in the performance
of a model with weights w ∈ W for data coming from a specific class y ∈ Y . To this end, we define
Sy as the subset of S composed of samples only in class y. For any model w ∈ W and fixed training
sets s and sy , the class-wise empirical risk can be defined as follows:

LE(w, sy) =
1

ny

∑
(xi,y)∈sy

ℓ(w, xi, y), (1)

where ny is the size of sy (ny ≤ n), and ℓ : W ×X × Y → R+
0 is a non-negative loss function. In

addition, the class-wise population risk that quantifies how well w performs on the conditional data
distribution PX|Y=y is defined as

LP (w,PX|Y=y) = EPX|Y=y
[ℓ(w,X, y)]. (2)

A learning algorithm can be characterized by a randomized mapping from the entire training
dataset S to model weights W according to a conditional distribution PW|S. The gap between
LP (w,PX|Y=y) and LE(w, sy) measures how well the trained model W overfits the training data
with label y, and the expected class-generalization error is formally defined as follows.
Definition 1. (class-generalization error) Given y ∈ Y , the class-generalization error is

geny(PX,Y, PW|S) ≜ EPW
[LP (W, PX|Y=y)]− EPW,Sy

[LE(W,Sy)], (3)

where PW and PW,Sy are marginal distributions induced by the learning algorithm PW|S and data
generating distribution PS.

KL divergence bound For most learning algorithms used in practice, e.g., Stochastic Gradient de-
scent (SGD), the index of training samples i will not affect the distribution of the learned model due
to the random batch selection. Thus, similar to prior works (Bu et al., 2020; Zhou et al., 2022), we
assume that the conditional distribution PW|Zi

obtained from the entire learning algorithm PW|S,
satisfies PW|Zi

= PW|Zj
, ∀i ̸= j, when each Zi is i.i.d. drawn from PZ. Under this assumption,

we have the following lemma that simplifies the class-generalization error
Lemma 1. The class-generalization error in definition 1 is given by

geny(PX,Y, PW|S) = EPW⊗PX|y
[ℓ(W,X, y)]− EPW,X|y [ℓ(W,X, y)], (4)

where PW,X|y is the conditional distribution of the shared PW,Z given Y = y.

The proof is available in Appendix B.1. Lemma 1 shows that, similar to the standard generalization
error (Xu & Raginsky, 2017; Bu et al., 2020; Zhou et al., 2022), the class-wise generalization error
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can be expressed as the difference between the loss evaluated under the joint distribution and the
product-of-marginal distribution. The key difference is that both expectations are taken with respect
to conditional distributions given Y = y.

The following Theorem provides an upper bound for the class-generalization error in Definition 1.

Theorem 1. For y ∈ Y , assume the loss ℓ(W,X, y) is σy sub-Gaussian under PW ⊗ PX|y , then
the class-generalization error of class y in Definition 1 can be bounded as:

|geny(PX,Y, PW|S)|≤
√

2σ2
yD(PW,X|y||PW ⊗ PX|Y=y). (5)

The full proof is given in Appendix B.2, which utilizes Lemma 1 and Donsker-Varadhan’s variational
representation of the KL divergence. Theorem 1 shows that the class-generalization error can be
bounded using a class-dependent conditional KL divergence. This sheds some light on the puzzling
behavior of class-generalization performance, implying that classes with a lower conditional KL
divergence between the conditional joint distribution and the product of the marginal distributions
tend to generalize better. To our best knowledge, the bound in Theorem 1 is the first label-dependent
bound that aims to explain the variation of generalization errors among the different classes.

We note that our bound is obtained by considering the class-generalization gap of each individual
sample with label y. This approach, as shown in Bu et al. (2020); Zhou et al. (2022); Harutyunyan
et al. (2021), yields tighter bounds using the mutual information between an individual sample and
the output of the learning algorithm, compared to the conventional bounds relying on the MI of the
entire training set and the algorithm’s output (Xu & Raginsky, 2017).

2.2 SUPERSAMPLE-SETTING

One limitation of the proposed bound in Theorem 1 is that it can be vacuous and intractable to
estimate in practice, as the bound involves a high dimensional entity the model weights W. To
this end, the conditional mutual information (CMI) framework, as pioneered by Steinke & Zakyn-
thinou (2020), has been shown in recent studies (Zhou et al., 2022; Wang & Mao, 2023) to offer
tighter bounds on generalization error that are always finite even if the W is high dimensional and
continuous.

In this section, we extend our class-wise analysis using the CMI framework. In particular, we assume
that there are n super-samples 2 Z[2n] = (Z±

1 , · · · ,Z±
n ) ∈ Z2n i.i.d generated from PZ. The training

data S = (ZU1
1 ,ZU2

2 , · · · ,ZUn
n ) are selected from Z[2n], where U = (U1, · · · ,Un) ∈ {−1, 1}n

is the selection vector composed of n independent Rademacher random variables. Intuitively, Ui

selects sample ZUi
i from Z±

i to be used in training, and the remaining one Z−Ui
i is for the test.

One potential approach to define class-generalization in the supersample setting is to construct it
equivalently to the class generalization error in the MI setting (Definition 1).
Definition 2. (class-generalization error with global 1

ny ) For any y ∈ Y , the class-generalization
error is defined as

g̃eny ≜
1

ny
EZ[2n]

[ n∑
i=1

EUi,W|Z[2n]

[
1{Y −Ui

i =y}ℓ(W,Z−Ui
i )− 1{Y Ui

i =y}ℓ(W,ZUi
i )

]]
, (6)

where ny = nP (y), P (y) is the true probability of class y, and 1{a=b} is the indicator function,
returning 1 when a = b and zero otherwise.

We can show the exact equivalence between Definition 1 and Definition 2, with details presented in
Appendix C.1. Similarly to Definition 1, the class-generalization error in Definition 2 measures the
expected error gap between the training set and the test set relative to one specific class y.

As the class-generalization error as defined in Definition 2 depends explicitly on P (y), it has a
significant practical limitation: P (y) is not typically available in practice. Consequently, any em-
pirical analysis based on this variant necessitates the estimation of P (y), which in turn introduces
an additional layer of estimation bias. To overcome this issue, we propose another variant of class-
generalization error within the supersample setting. To this end, given a supersample z[2n] and for a

2In Steinke & Zakynthinou (2020), the term supersample refers to the Z[2n]. Here, it refers to a pair Z±
i .
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specific class y ∈ Y , let ny
z[2n]

denote half the number of samples with class y within z[2n]. Using
this random ny

z[2n]
instead of ny , class-generalization error in the setting as follows:

Definition 3. (super-sample-based class-generalization error) For any y ∈ Y , the class-
generalization error is defined as

geny ≜ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

EUi,W|Z[2n]

[
1{Y −Ui

i =y}ℓ(W,Z−Ui
i )− 1{Y Ui

i =y}ℓ(W,ZUi
i )

]]
. (7)

Compared to Definition 2, Definition 3 does not have a direct connection to Definition 1. Its main
advantage, however, lies in using ny

Z[2n]
, which can be computed for every Z[2n], making it more

practical for studying class generalization. Hence, in the rest of this Section and Section 3, we
focus mainly on this definition of class-generalization error. Note that all the bounds derived in
this section based on Definition 3 can also be obtained for Definition 2 in a similar manner and are
therefore omitted for simplicity.

Compared to the standard generalization error definition typically used in the super-sample set-
ting (Steinke & Zakynthinou, 2020; Zhou et al., 2022), we highlight two key differences in Defi-
nition 2 and 3: (i) Our class-wise generalization error involves indicator functions to consider only
samples belonging to a specific class y; (ii) Our generalization error is normalized by ny (or ny

Z[2n]
)

instead of the total number of samples n.

The indicators are critical in Definition 2 and 3, serving the vital purpose of delimiting errors relative
to the class of interest y. It is worth noting that alternative definitions for class generalization, aside
from Definitions 3 and 2, also exist: a notion of class generalization error could be defined using a
single indicator function by making each pair of super-samples have the same label, i.e., Y+

i = Y−
i .

However, this alternative requires a fundamental modification of the supersample setting and lacks
direct insights into the interrelation between class generalization and standard generalization errors.
In contrast, Definition 2, as illustrated later in Section 4.1, not only provides a direct connection
to the standard generalization error but also enables us to derive the first label-dependent standard
generalization bounds. A detailed discussion of the technical concerns for this alternative is provided
in Appendix C.2.

The loss term involved in Definition 3, i.e., 1{Y −Ui
i =y}ℓ(W,Z−Ui

i ) − 1{Y Ui
i =y}ℓ(W,ZUi

i ) has a
specific dependency with respect to the indicators. Thus, prior techniques (Wang & Mao, 2023;
Harutyunyan et al., 2021) designed for any generic loss function yield loose bounds. We provide a
novel CMI-based bound by exploring the structure of these indicator functions in the loss function.
The main technical result is presented in Lemma 2.
Lemma 2. Consider the super-sample setting, for a fixed z[2n], let V ∈ V be a random variable
depending on the learned weights W. For any function g that can be written as g(V,Ui, z[2n]) =

1{yUi=y}h(V, zUi
i )− 1{y−Ui=y}h(V , z−Ui

i ), where h ∈ [0, 1] is a bounded function, we have

EV,Ui|Z[2n]=z[2n]
[g(V,Ui, z[2n])] ≤

√
2max(1{y−

i =y},1{y+
i =y})Iz[2n]

(V;Ui). (8)

The presence of the indicator functions introduces a notable technical complexity, as they depend
on both Ui and Yi. The proof is based on Donsker-Varadhan’s variational representation of the KL
divergence and Hoeffding’s Lemma (Hoeffding, 1994) and is provided in Appendix B.3. Notably,
Lemma 2 forms the foundational element for all subsequent bounds in Theorems 2 and 3.

Class-CMI bound. The following theorem provides a bound for the super-sample-based class-
generalization error using the disintegrated conditional mutual information between W and the
selection variable Ui conditioned on super-sample Z[2n].
Theorem 2 (class-CMI). Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, then the class-
generalization error for class y in Definition 3 can be bounded as

|geny| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(W;Ui)
]
. (9)

The full proof is provided in Appendix B.4. Theorem 2 provides a bound of the class-generalization
error with explicit dependency on the weights W, which implies that the class-generalization error
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depends on how much information the random selection reveals about the weights when at least one
of the two samples of z±i corresponds to the class of interest y. Note that the links between overfit-
ting and memorization have been established in Zhang et al. (2016); Arpit et al. (2017); Chatterjee
(2018). Here, we also see that if model parameters W memorize the random selection U, the CMI
and the class-generalization error will be large.

Class-f-CMI bound. While the bound in Theorem 2 is always finite as Ui is binary, evaluating
IZ[2n]

(W;Ui) can be challenging, especially when W is high-dimensional as in deep networks.
One way to overcome this issue is by considering the predictions of the model fW(X±

i ) instead of
the model weights W, as proposed by Harutyunyan et al. (2021). Here, we denote the loss function
ℓ based on the prediction ŷ = fw(x) as ℓ(w, x, y) = ℓ(ŷ, y) = ℓ(fw(x), y). Throughout the rest of
the paper, we use these two notations of loss interchangeably when it is clear from the context.

In the following theorem, we bound the class-generalization error based on the disintegrated CMI
between the model prediction fW(X±

i ) and the random selection, i.e., IZ[2n]
(fW(X±

i );Ui).

Theorem 3. (class-f-CMI) Assume that the loss ℓ(ŷ, y) ∈ [0, 1] is bounded, then the class-
generalization error for class y in Definition 3 can be bounded as

|geny| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(fW(X±
i );Ui)

]
. (10)

Moreover, the class-f -CMI bound is always tighter than the class-CMI bound in Theorem 2.

The proof is available in Appendix B.5. The main benefit of the class-f-CMI bound, compared to
all previously presented bounds, lies in the evaluation of the CMI term involving a low-dimensional
random variable fW(X±

i ) and a binary random variable Ui. For example, in the case of binary
classification, fW(X±

i ) will be a pair of two binary variables, which enables us to estimate the
class-f-CMI bound efficiently and accurately, as will be shown in Section 3.
Remark 1. In contrast to the bound in Theorem 2, the bound in Theorem 3 does not require access
to the model parameters W. It only requires the model output f(·), which makes it suitable even for
non-parametric approaches or black-box evaluation.
Remark 2. An issue of both bounds in Theorems 2 and 3 is that they depend on information
quantities irrelevant to the class y. The term max(1{Y−

i =y},1{Y+
i =y}) filters out the CMI terms

where neither sample Z+
i nor Z−

i corresponds to the class y. However, this term does not require
both samples Z±

i to belong to class y. In the case that one sample in the pair (Z−
i ,Z

+
i ) is from class

y and the other is from a different class, this term is non-zero and the information from both samples
of the pair, i.e., IZ[2n]

(fW(X±
i );Ui), contributes to the bound. From this perspective, samples from

other classes (̸= y) can still affect the bounds, potentially leading to less tight bounds for class y.

Class-∆yL-CMI bound. In the following, we show that it is possible to address the issue discussed
in Remark 2. To this end, we consider a new random variable ∆yLi based on the indicator function
and the loss, which is defined as ∆yLi ≜ 1{y−

i =y}ℓ(fW(Xi)
−, y−i ) − 1{y+

i =y}ℓ(fW(Xi)
+, y+i ).

As shown in Wang & Mao (2023); Hellström & Durisi (2022), using the difference of the loss
functions on Z±

i instead of the model output yields tighter generalization bounds for the standard
generalization error. In addition, this ∆yLi only subsumes terms related to class y, which further
tightens the bound for class-wise generalization. The following Theorem provides a bound based on
the CMI using the newly introduced variable.
Theorem 4. (class-∆yL-CMI) Assume that the loss ℓ(ŷ, y) ∈ [0, 1] is bounded, then the class-
generalization error of class y defined in 3 can be bounded as

|geny| ≤ EZ[2n]

[
1

ny
Z[2n]

n∑
i=1

√
2IZ[2n]

(∆yLi;Ui)

]
. (11)

Moreover, the ∆yL-CMI bound is always tighter than the class-f -CMI bound in Theorem 3.

The proof is available in Appendix B.7. Unlike Theorem 3, the bound in Theorem 4 does not directly
rely on the model output f(·). Instead, it only requires the loss values for Z±

i to compute ∆yLi.
Intuitively, the difference between two weighted loss values, ∆yLi, reveals much less information
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Figure 2: Experimental results of class-generalization error and our bounds in Theorems 3 and 4 for
the class of “trucks” (left) and “cats” (middle) in CIFAR10 (top) and noisy CIFAR10 (bottom), as
we increase the total number of training samples n. In the right column, we provide the scatter plots
between the bound in Theorem 4 and the true class-generalization error of the different classes for
CIFAR10 (top) and noisy CIFAR10 (bottom).

about the selection process Ui compared to the pair fW(X±
i ). In Appendix B.7, we formally

show that indeed the ∆yL-CMI bound is always tighter than the class-f -CMI bound. Another key
advantage of Theorem 4 is that computing the CMI term IZ[2n]

(∆yLi;Ui) is even simpler, given
that ∆yLi is a one-dimensional scalar, as opposed to the two-dimensional fW(X±

i ).

Interestingly, it should also be noted that a similar class-∆yL-CMI bound can be derived based on
the alternative Definition 2 using Theorem 3.1 in Wang & Mao (2023): As their result is valid for
any loss, consider in particular the loss 1yℓ. However, note that such proof technique can not be
used to derive the Theorem 4 for Definition 3 due to the presence of ny

Z[2n]
.

In corroboration with the results in Figure 1, Theorems 2, 3, and 4 show that having more samples
from class y (larger ny) cannot guarantee strong class-generalization, as ny is not the sole factor.
Indeed, our bounds highlight a fundamental dependency of the class-generalization error with the
CMI between the model and the class data. Moreover, this shows that having a more balanced dataset
(equal ny) does not guarantee equal class-generalization error, as it does not guarantee equal relative
CMI, which can explain the observed disparity of overfitting as shown in Figure 1 and Balestriero
et al. (2022); Kirichenko et al. (2023).

3 EMPIRICAL EVALUATIONS

In this section, we empirically evaluate the effectiveness of our class-wise generalization error
bounds. As mentioned earlier, The bounds in Section 2.2 are significantly easy to estimate in practi-
cal scenarios. Here, we evaluate the error bounds in Theorems 3 and 4 for deep neural networks. We
follow the same experimental settings in Harutyunyan et al. (2021), i.e., we fine-tune a ResNet-50
(He et al., 2016) on the CIFAR10 dataset (Krizhevsky et al., 2009) (pretrained (Schmidhuber, 1992)
on ImageNet (Deng et al., 2009)). Moreover, to understand how well our bounds perform in a more
challenging situation and to further highlight their effectiveness, we conduct an additional experi-
ment with a noisy variant (5% label noise) of CIFAR10. The details are provided in Appendix D.1.

The class-wise generalization error of two classes from CIFAR10 “trucks” and “cats”, along with
the bounds in Theorems 3 and 4 are presented in the first two columns of Figure 2. The results on all
the ten classes for both datasets, along with additional experiments, are presented in Appendix D.3.
Figure 2 shows that both bounds can capture the behavior of the class-generalization error. As
expected, the class-∆yL-CMI is consistently tighter and more stable compared to the class-f -CMI
bound for all the different scenarios. For CIFAR10 in Figure 2 (top), as we increase the number
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of training samples, the “trucks” class has a relatively constant class-generalization error, while the
“cats” class has a large slope at the start and then a steady incremental decrease. For both classes,
the class-∆yL-CMI precisely captures the behavior of class-generalization error.

The results on noisy CIFAR10 in Figure 2 (bottom) and the results in Appendix D.3 are consis-
tent with these observations. Notably, the “trucks” generalization error decreases for CIFAR10
and increases for noisy CIFAR10 with respect to the number of samples. Moreover, the class-
generalization error of “cat” is worse than “trucks” in CIFAR10, but the opposite is true for the
noisy CIFAR10. Our class-∆yL-CMI bound successfully captures all these complex behaviors.

The left and middle plots in Figure 2 show that the class-∆yL-CMI bound scales proportionally with
the actual class-generalization error, i.e., higher class-∆yL-CMI bound value indicate a higher class-
generalization error. To further highlight this dependency, Figure 2 (right) presents the scatter plot
between the different class-generalization errors and their corresponding class-∆yL bound values
for all classes in CIFAR10 (top) and Noisy CIFAR10 (bottom) under different number of samples.
Our bound is linearly correlated with the true error and can efficiently predict its behavior. A similar
pattern is observed for the f -CMI bound, as detailed in Appendix D.3. Further validation on the
more complex CIFAR100 dataset, provided in Appendix D.4, confirms the bounds’ capacity to
effectively capture class-specific generalization patterns.

Class-generalization in traditional ML approaches: Although the primary focus of this paper is
class-generalization in neural networks, it is worth noting that our theoretical results are valid for
any random learning algorithm, including classic approaches such as SVM and decision trees. The
empirical results of these two models with MNIST are available in Appendix D.5. The empirical
results further corroborate our findings and show that our bounds are generic and effectively capture
the class-generalization behavior of traditional ML algorithms.

Recall and Specificity: Standard generalization bounds (Xu & Raginsky, 2017; Harutyunyan et al.,
2021) focus on classification error or accuracy, but these metrics are often inadequate for imbalanced
datasets. In detecting rare cancers, for example, recall and specificity are more relevant performance
measures. However, existing bounds (Wu et al., 2020; Wang & Mao, 2023) offer no theoretical
insights into these metrics. This paper addresses this gap by providing a framework to analyze
generalization in terms of recall and specificity. In the special case of binary classification with 0-1
loss, the class-generalization errors studied here correspond to recall and specificity, as detailed in
Appendix D.6. Empirical results on MNIST, presented in Figure 10, validate the tightness of our
bounds and their utility in providing generalization certificates for recall and specificity, essential in
sensitive applications.

To sum up, (i) one can use our bound to predict which classes will generalize better than others
or which classes can benifit from having more data; (ii) in corroboration with theoretical results
in Section 2, the MI/CMI between the model and the class data can be used as a proxy for class-
generalization error. Such a result provides a new perspective on improving class-generalization
by reducing MI/CMI. The initial empirical results in Appendix D.7 show that this is a promising
research direction to mitigate the class-generalization disparity.

4 OTHER APPLICATIONS

Besides enabling us to study class-wise generalization errors, the tools developed in this work can
also be used to provide theoretical insights into several other applications. In this section, we explore
several use cases with detailed proofs provided in Appendix E.

4.1 FROM CLASS-GENERALIZATION TO STANDARD GENERALIZATION ERROR

Here, we study the connection between the standard generalization and the class-generalization
errors. We extend the bounds presented in Section 2 into class-dependent expected generalization
error bounds. First, we notice that taking the expectation over PY for the class-generalization error in
Definition 1 yields the standard expected generalization error. Thus, we can obtain a class-dependent
bound for the standard generalization error by taking the expectation of y ∼ PY in Theorem 1.
Corollary 1. Assume that for every y ∈ Y , the loss ℓ(W,X, y) is σy sub-Gaussian under PW ⊗
PX|Y=y , then

|gen| ≤ EY′

[√
2σ2

Y′D(PW|Z⊗PX|Y=Y′ ||PW⊗PX|Y=Y′)

]
. (12)
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We note that if the sub-Gaussian parameter σy = σ is independent of y, we can further show that
the bound in 1 is tighter than the individual sample bound in Bu et al. (2020). The proof is provided
in Appendix E.1. This shows that the technique proposed in this paper, i.e., deriving bounds by
conditioning on the class then converting the bound to standard generalization, can indeed tighten
existing information-theoretic bounds in the MI setting. For the supersamples setting, we can use
the class-generalization error as Defined in 2, i.e., g̃eny , as for this variant, we have gen = EY[g̃eny]
and hence we can derive the following bound:

Corollary 2. Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then

|gen| ≤ EY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2IZ[2n]

(∆YLi;Ui)
]]
.

To the best of our knowledge, Corollaries 1 and 2 are the first generalization bounds to provide
explicit label-dependency. Although prior bounds (Harutyunyan et al., 2021; Wang & Mao, 2022;
2023) might be tighter or more efficient to estimate, they do not provide any information on how
different classes affect the standard generalization error. The results presented here address this gap
and provide explicit label-dependent bounds. In m-way classification tasks, the bounds become a
sum of each class-generalization error weighted by the probability of the class, i.e., P (Y = y),
suggesting that classes with a higher occurrence probability affect the generalization error more.
From this perspective, our results can also provide insights into developing algorithms with better
generalization by focusing on the class-generalization error. For example, one can employ data aug-
mentation targeted at the classes with higher class-generalization error to attenuate their respective
error and thus improve the standard generalization of the model.

4.2 SUB-TASK PROBLEM

Subtask problem refers to a specific case of distribution shift in supervised learning, where the
training data generated from the source domain PX,Y consists of multiple classes, while the test data
for the target domain QX,Y only encompasses a specific known subset of the classes encountered
during training. This problem is motivated by the situation where a large model has been trained
on numerous classes, potentially over thousands, but is being utilized in a target environment where
only a few classes, observed during training, exist. By tackling the problem as a standard domain
adaptation task, the generalization error of the subtask problem can be bounded as follows:

genQ,EP
≜ EPW,S

[LQ(W)− LE(W,S)] ≤
√
2σ2D(QX,Y∥PX,Y) +

√
2σ2I(W;S), (13)

where LQ(w) = LP (w,QX,Y) denotes the population risk of w under distribution QX,Y. We note
that (Wu et al., 2020) further tightens the result in equation 13, but these bounds are all based on the
KL divergence D(QX,Y∥PX,Y) for any generic distribution shift problem and do not leverage the
fact that the target task is encapsulated in the source task.

Obtaining tighter generalization error bounds for the subtask problem is straightforward using our
class-wise generalization tools. In fact, the generalization error of the subtask can be bounded by
summing the class-wise generalization over the space of the subtask classes A. Formally, by taking
the expectation of Y ∼ QY, we obtain the following notion of the subtask generalization error:

genQ,EQ
≜ EQY

[
˜genY

]
= EPW,S

[LQ(w)− LEQ
(W,S)], (14)

where LEQ
(w, S) = 1

nA

∑
yi∈A ℓ(w, xi, yi) is the empirical risk relative to the target domain Q,

and nA is the number of samples in S such that their labels yi ∈ A. We are interested in deriving
generalization bounds for genQ,EQ

, as it only differs from genQ,EP
by the difference in the empirical

risk LEQ
(W,S)− LE(W,S), which can be computed easily in practice.

As shown in Appendix E.2, we can use the results from Section 2 to obtain tighter bounds. For
example, using Theorem 4, we can obtain the subtask generalization error bound in Theorem 5.

Theorem 5. (subtask-∆yL-CMI) Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, Then the
subtask generalization error defined in equation 14 can be bounded as

|genQ,EQ
| ≤ EY∼QY

[
EZ[2n]

[
1

nY

n∑
i=1

√
2IZ[2n]

(∆YLi;Ui)

]]
. (15)
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Similarly, we can extend Theorems 2 or 3 to construct subtask generalization error bounds using the
model’s weights or output instead of ∆yLi. In Appendix E.2.1, we empirically validate our subtask
bounds and show its ability to capture the generalization behavior in practical subtask scenarios.
Remark 3. Existing distribution shift bounds, e.g., the bound in Eq. 13, typically depend on some
measure that quantifies the discrepancy between the true target and true domain distributions, e.g.,
KL divergence. Note that the difference between Eq. 13 and Eq. 14 is simply the difference between
the empirical losses on EQ and EP . Hence, the bound derived in Theorem 5 can be converted to
bounds for Eq. 13 by simply adding (EQ −EP ) on both sides, which can be directly computed from
the training data, eliminating the need for intractable discrepancy measures.

4.3 GENERALIZATION CERTIFICATES WITH SENSITIVE ATTRIBUTES

One main concern hindering the use of machine learning models in high-stakes applications is the
potential biases on sensitive attributes such as gender and skin color (Mehrabi et al., 2021; Barocas
et al., 2017). Thus, it is critical not only to reduce the sensitivity to such attributes but also to be able
to provide guarantees on the fairness of the models (Holstein et al., 2019; Rajkomar et al., 2018).
One aspect of fairness is that the machine learning model should generalize equally well for each
group with different sensitive attributes (Barocas et al., 2017; Williamson & Menon, 2019).

By tweaking the definition of our class-generalization error, we show that the theoretical tools devel-
oped in this paper can be used to obtain bounds for attribute-generalization errors. Suppose that we
have a random variable T ∈ T representing a sensitive feature. One might be interested in studying
the generalization of the model for the sub-population with the attribute T = t. Inspired by our
class-generalization, we define the attribute-generalization error as follows:
Definition 4. (attribute-generalization error) Given t ∈ T , the attribute-generalization error is
defined as follows:

gent =EPW⊗PZ|T=t
[ℓ(W,Z)]− EPW|Z⊗PZ|T=t

[ℓ(W,Z)]. (16)

By exchanging X and Y with Z and T in Theorem 1, respectively, we can show the following
bound for the attribute-generalization error.
Theorem 6. Given t ∈ T , assume that the loss ℓ(W,Z) is σ sub-Gaussian under PW ⊗ PZ, then
the attribute-generalization error of the sub-population T = t, can be bounded as follows:

|gent| ≤
√
2σ2D(PW|Z ⊗ PZ|t||PW ⊗ PZ|t).

We note extending our results to the super-sample settings is also straightforward. Using the attribute
generalization, we can show that the standard generalization error can be bounded as follows:
Corollary 3. Assume that the loss ℓ(W,Z) is σ sub-Gaussian under PW ⊗ PZ, then

|gen| ≤ ET′

[√
2σ2D(PW|Z ⊗ PZ|T=T′ ||PW ⊗ PZ|T=T′)

]
.

The result of Corollary 3 shows that the average generalization error is upper-bounded by the ex-
pectation over the attribute-wise generalization. This shows that it is possible to improve the overall
generalization by reducing the generalization of each population relative to the sensitive attribute.

5 CONCLUSION & FUTURE WORK

This paper studied the puzzle of noticeable disparity of generalization behavior among different
classes by introducing and exploring the concept of “class-generalization error”. To our knowledge,
we provided the first rigorous generalization bounds for this concept using either MI or CMI. We also
empirically strengthened the findings with supporting experiments validating the efficiency of the
proposed bounds. Furthermore, we demonstrated the versatility of our theoretical tools in providing
tight bounds for various contexts.

Overall, our goal is to understand generalization in deep learning through the lens of information
theory, which motivates future work on preventing high class-generalization error variability and
ensuring ‘equal’ generalization among the different classes. Other possible future research endeav-
ors focus on obtaining tighter bounds for the class-generalization error, e.g., using the chaining
technique (Clerico et al., 2022), and studying this concept in different contexts beyond supervised
learning, e.g., self-supervised learning.
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A EXTRA RELATED WORK

Information-theoretic generalization error bounds: Information-theoretic bounds have attracted
a lot of attention recently to characterize the generalization of learning algorithms (Neu et al., 2021;
Wang et al., 2010; Aminian et al., 2021; Schmidhuber, 1997; Wu et al., 2020; Wang & Mao, 2022;
Modak et al., 2021; Wang & Mao, 2021; Shui et al., 2020; Wang et al., 2023; Alabdulmohsin, 2020).
In the supervised learning context, several standard generalization error bounds have been proposed
based on different information measures, e.g., KL divergence (Zhou et al., 2023), Wasserstein dis-
tance (Rodrı́guez Gálvez et al., 2021), mutual information between the samples and the weights (Xu
& Raginsky, 2017; Bu et al., 2020). Recently, it was shown that tighter generalization bounds could
be obtained based on the conditional mutual information (CMI) in the super-sample setting (Steinke
& Zakynthinou, 2020; Zhou et al., 2022). Based on this framework, Harutyunyan et al. (2021) de-
rived f -CMI bounds based on the model output. In Hellström & Durisi (2022), tighter bounds have
been obtained based on the CMI of the loss function, which is further tightened by Wang & Mao
(2023) using the ∆L CMI.

Class-dependent analysis: Incorporating label information in generalization analysis is not en-
tirely new, given previous literature He & Su (2020); Chen et al. (2020); Deng et al. (2021). For
example, in He & Su (2020), the questions “When and how does the update of weights of neural net-
works using induced gradient at an example impact the prediction of another example?” have been
extensively studied and it was observed that the impact is significant if the two samples are from the
same class. In Balestriero et al. (2022); Kirichenko et al. (2023); Bitterwolf et al. (2022); Lee et al.
(2023), it has been showed that while standard data augmentation techniques (Goodfellow et al.,
2016) help improve overall performance, it yields lower performance on minority classes. From a
theoretical perspective, (Deng et al., 2021) noticed that in uniform stability context, the sensitivity
of neural networks is highly dependent on the label information and thus proposed the concept of
“Locally Elastic Stability” to derive tighter algorithmic stability generalization bounds. In Tishby
et al. (2000), an information bottleneck principle is proposed, which states that an optimal feature
map simultaneously minimizes its mutual information with the feature distribution and maximizes
its mutual information with the label distribution, thus incorporating the class information. In Tishby
& Zaslavsky (2015); Saxe et al. (2019); Kawaguchi et al. (2023), this principle was used to explain
the generalization of neural networks. It is also worth mentioning the work of Morvant et al. (2012),
which focuses on bounding the entries of the confusion matrix to understand multi-class classifica-
tion with PAC-Bayesian bounds. In contrast, our work takes a different perspective. Specifically, we
introduce the concept of class-generalization error, which quantifies the generalization of a specific
class and our theoretical results are not restricted to the Gibbs algorithm, like Morvant et al. (2012),
and are valid for any learning algorithm.

B PROOFS OF THE THEOREMS IN SECTION 2

This section includes all the proofs of the results presented in the main text in Section 2. We start
by the formal definition of sub-Gaussian random variable and the Hoeffding’s lemma (Hoeffding,
1994).

Definition 5. A random variable X is called sub-Gaussian if there exists a positive constant σ > 0
such that

E [exp (t(X− E[X]))] ≤ exp

(
σ2t2

2

)
for all t ∈ R. (17)

Lemma 3. Let X be a bounded random variable, i.e., X ∈ [a, b] almost surely. If E[X] = 0, then
X is (b− a)-sub-Gaussian and we have:

E[eλX ] ≤ e
λ2(b−a)2

8 , ∀λ ∈ R. (18)

B.1 PROOF OF LEMMA 1

With the Assumption that PW,Zi
= PW,Zj

, ∀i ̸= j, it follows directly that all the terms in the
sum in Definition 1 become identical and we obtain Lemma 1, i.e., the individual-sample-based
expression of the class-wise generalization.
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Lemma 1(restate) The class-generalization error in definition 1 is given by
geny(PX,Y, PW|S) = EPW⊗PX|y

[ℓ(W,X, y)]− EPW,X|y [ℓ(W,X, y)], (19)

where PW,X|y is the conditional distribution of the shared PW,Z given Y = y.

Proof. Starting from Definition 1, the class-generalization error of class y can be rewritten as
geny(PX,Y, PW|S) = EPW

[LP (W, PX|Y=y)]− EPW,Sy
[LE(W,Sy)]

= EPW
[EPX|Y=y

[ℓ(w,X, y)]]− EPW,Sy
[
1

ny

∑
(xi,y)∈sy

ℓ(w, xi, y)]

= EPW⊗PX|y
[ℓ(w,X, y)]− 1

ny

∑
(xi,y)∈sy

EPW,Xi|y
[ℓ(w, xi, y)]. (20)

Given the assumption that PW,Zi = PW,Zj , ∀i ̸= j, we have all the terms in the sum in equation 20
are identical. Thus we have

geny(PX,Y, PW|S) = EPW⊗PX|y
[ℓ(w,X, y)]− 1

ny

∑
(xi,y)∈sy

EPW,X|y [ℓ(w,X, y)]

= EPW⊗PX|y
[ℓ(W,X, y)]− EPW,X|y [ℓ(W,X, y)], (21)

which completes the proof.

B.2 PROOF OF THEOREM 1

Theorem 1 (restated) For y ∈ Y , assume the loss ℓ(W,X, y) is σy sub-Gaussian under PW ⊗
PX|Y=y , then the class-generalization error of class y in Definition 1 can be bounded as:

|geny(PX,Y, PW|S)| ≤
√

2σ2
yD(PW,X|Y=y||PW ⊗ PX|Y=y). (22)

Proof. From lemma 1, we have
geny(PX,Y, PW|S) = EPW⊗PX|Y=y

[ℓ(W,X, y)]− EPW,X|Y=y
[ℓ(W,X, y)]. (23)

Using the Donsker–Varadhan variational representation of the relative entropy, we have

D(PW,X|Y=y||PW⊗PX|Y=y) ≥ EPW,X|Y=y
[λℓ(W,X, y)]− logEPW⊗PX|Y=y

[eλℓ(W,X,y)],

(24)
for all λ ∈ R. On the other hand, we have:

logEPW⊗PX|Y=y

[
eλℓ(W,X,y)−λE[ℓ(W,X,y)]

]
= logEPW⊗PX|Y=y

[
eλℓ(W,X,y)e−λE[ℓ(W,X,y)]

)]
= logEPW⊗PX|Y=y

[eλℓ(W,X,y)]− λEPW⊗PX|Y=y
[ℓ(W,X, y)].

Using the sub-Gaussian assumption, we have

logEPW⊗PX|Y=y
[eλℓ(W,X,y)] ≤ λEPW⊗PX|Y=y

(ℓ(W,X, y)) +
λ2σ2

y

2
. (25)

By replacing in equation 24, we have

D(PW,X|Y=y||PW⊗PX|Y=y) ≥ λ
(
EPW,X|Y=y

[ℓ(W,X, y)]−EPW⊗PX|Y=y
[ℓ(W,X, y)]

)
−
λ2σ2

y

2
.

Thus,
D(PW,X|Y=y||PW ⊗ PX|Y=y)− λ(EPW,X|Y=y

[ℓ(W,X, y)]− EPW⊗PX|Y=y
[ℓ(W,X, y)])

+ λ2σ2
y ≥ 0, ∀λ ∈ R. (26)

Equation equation 26 is a non-negative parabola with respect to λ, which implies its discriminant
must be non-positive. Thus,

|EPW,X|Y=y
[ℓ(W,X, y)]− EPW⊗PX|Y=y

[ℓ(W,X, y)]| ≤
√

2σ2
yD(PW,X|Y=y||PW ⊗ PX|Y=y),

which completes the proof.
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B.3 PROOF OF LEMMA 2

We use Lemma 2 as a main tool to prove Theorem 2, 3, and 7 in Section 2.2 in the super-sample
setting.

Lemma 2 (restated) Consider the super-sample setting, and let V ∈ V be a random vari-
able, possibly depending on W. For any function g that can be written as g(V,Ui, z[2n]) =

1{yUi=y}h(V, zUi
i )− 1{y−Ui=y}h(V , z−Ui

i ), where h ∈ [0, 1] is a bounded function, we have

EV,Ui|Z[2n]=z[2n]
[g(V,Ui, z[2n])] ≤

√
2max(1{y−

i =y},1{y+
i =y})Iz[2n]

(V;Ui). (27)

Proof. Let (V,Ui) be an independent copy of (V,Ui). The disintegrated mutual information
Iz[2n]

(V;Ui) is equal to:

Iz[2n]
(Ui;V) = D

(
PV,Ui|Z[2n]=z[2n]

∥PV|Z[2n]=z[2n]
PUi

)
, (28)

Thus, by the Donsker–Varadhan variational representation of KL divergence, ∀λ ∈ R and for every
function g, we have

Iz[2n]
(V;Ui) ≥ λEV,Ui|Z[2n]=z[2n]

[g(V,Ui, z[2n])]− logEV,Ui|Z[2n]=z[2n]
[eλg(V,Ui,z[2n])]. (29)

Next, let g(V,Ui, z[2n]) = 1{yUi=y}h(V, zUi
i ) − 1{y−Ui=y}h(V , z−Ui

i ). It is easy to see that
g(V,Ui, z[2n]) can be rewritten as follows:

g(V,Ui, z[2n]) = Ui(1{y−
i =y}h(V, z−i )− 1{y+

i =y}h(V, z+i )). (30)

Thus, we have

logEV,Ui|Z[2n]=z[2n]
[eλg(V,Ui,z[2n])] = logEV,Ui|Z[2n]=z[2n]

[e
λUi(1{y−

i
=y}

h(V,z−
i )−1

{y+
i

=y}
h(V,z+

i ))
].

Note that EUi
[Ui(1{y−

i =y}h(V, z−i )− 1{y+
i =y}h(V, z+i ))] = 0 and Ui ∈ {−1,+1}. By Hoeffd-

ing’s Lemma, we have

logEV,Ui|Z[2n]=z[2n]
[eλg(V,Ui,z[2n])] ≤ logEV|Z[2n]=z[2n]

[e
λ2

2

(
1
{y−

i
=y}

h(V,z−
i )−1

{y+
i

=y}
h(V,z+

i )
)2

].

As h ∈ [0, 1],
∣∣∣1{y−

i =y}h(V, z−i )− 1{y+
i =y}h(V, z+i )

∣∣∣ ≤ max(1{y−
i =y},1{y+

i =y}). Thus,

logEV,Ui|Z[2n]=z[2n]
[eλg(V,Ui,z[2n])] ≤ λ2

2
max(1{y−

i =y},1{y+
i =y})

2 =
λ2

2
max(1{y−

i =y},1{y+
i =y}).

Replacing in equation 29, we have

Iz[2n]
(V;Ui) ≥ λEV,Ui|Z[2n]=z[2n]

[1yUi=yh(V, zUi
i )− 1{y−Ui=y}h(W, z−Ui

i )] (31)

− λ2

2
max(1{y−

i =y},1{y+
i =y}).

Therefore, ∀λ ∈ R,

λ2

2
max(1{y−

i =y},1{y+
i =y})− λEV,Ui|Z[2n]=z[2n]

[g(V,Ui, z[2n])] + Iz[2n]
(V;Ui) ≥ 0. (32)

The equation 32 is a non-negative parabola with respect to λ. Thus, its discriminant must be non-
positive, which implies

EV,Ui|Z[2n]=z[2n]
[g(V,Ui, z[2n])] ≤

√
2max(1{y−

i =y},1{y+
i =y})Iz[2n]

(V;Ui). (33)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.4 PROOF OF THEOREM 2

Theorem 2 (restated) Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, then the class-
generalization error for class y in Definition 3 can be bounded as

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(W;Ui)
]
. (34)

Proof. Using Lemma 2 with V = W and h(V, z) = ℓ(W, z) in, we have

EW;Ui|Z[2n]=z[2n]
[g(W,Ui, z[2n])] ≤

√
2max(1{y−

i =y},1{y+
i =y})Iz[2n]

(W;Ui), (35)

where g(W,Ui, z[2n]) = 1{yUi=y}ℓ(W, zUi
i ) − 1{y−Ui=y}ℓ(W, z−Ui

i ). Thus, by summing over
the different terms in Definition 3 and taking expectation over Z[2n],

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(W;Ui)
]
. (36)

B.5 PROOF OF THEOREM 3

Theorem 3 (restated) Assume that the loss ℓ(W,X, y) ∈ [0, 1], then the class-generalization error
of class y in Definition 3 can be bounded as

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(fW(X±
i );Ui)

]
.

(37)
Moreover, the class-f -CMI bound is always tighter than the class-CMI bound in Theorem 2.

Proof. Similar to the proof of Theorem 2. Using Lemma 2 with V = fW(x±
i ) and h(V, zi) =

ℓ(fW(xi), yi) in, we have

EfW(x±
i );Ui|Z[2n]=z[2n]

[g(fW(Xi),Ui, z[2n])] ≤
√
2max(1{y−

i =y},1{y+
i =y})Iz[2n]

(fW(x±
i );Ui).

(38)
Thus taking expectation with respect to Z[2n] yields the desired result

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(fW(X±
i );Ui)

]
.

(39)

Due to the data processing inequality, we have U → W → fW(X±
i ) given Z[2n]. It then follows

directly that the class-f -CMI bound is always tighter than the class-CMI bound.

B.6 EXTRA BOUND OF CLASS-GENERALIZATION ERROR USING THE LOSS PAIR L±
i :

Theorem 7. (class-e-CMI) Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then the class-generalization error
of class y in Definition 3 can be bounded as

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(L±
i ;Ui)

]
. (40)

Proof. Similar to the proof of Theorems 2 and 3. Using Lemma 2 with V = L±
i and h(V, zi) = Li

in, we have

EL±
i ;Ui|Z[2n]=z[2n]

[g(fW(Xi),Ui, z[2n])] ≤
√

2max(1{y−
i =y},1{y+

i =y})Iz[2n]
(L±

i ;Ui). (41)
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Thus, taking expectation with respect to Z[2n] yields the desired result

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(L±
i ;Ui)

]
. (42)

B.7 PROOF OF THEOREM 4

Theorem 4 (restated) Define ∆yLi ≜ 1{y−
i =y}ℓ(fW(Xi)

−, y−i )− 1{y+
i =y}ℓ(fW(Xi)

+, y+i ). As-
sume that the loss ℓ(ŷ, y) ∈ [0, 1] is bounded, then the class-generalization error of class y in
Definition 3 can be bounded as

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2IZ[2n]

(∆yLi;Ui)
]
. (43)

Proof. First, we notice that for a fixed realization z[2n], 1{yUi=y}ℓ(W, zUi
i ) −

1{y−Ui=y}ℓ(W, z−Ui
i ) = Ui(1{y−

i =y}ℓ(W, z−i )− 1{y+
i =y}ℓ(W, z+i )) = Ui∆yLi.

Next, let (∆yLi,Ui) be an independent copy of (∆yLi;Ui). Using the Donsker–Varadhan varia-
tional representation of KL divergence, we have ∀λ ∈ R and for every function g

Iz[2n]
(∆yLi;Ui) ≥λE∆yLi,Ui|Z[2n]=z[2n]

[g(∆yLi,Ui, z[2n])] (44)

− logE∆yLi,Ui|Z[2n]=z[2n]
[eλg(∆yLi,Ui,z[2n])].

Next, let g(∆yLi,Ui, z[2n]) = Ui∆yLi, and we have

logE∆yLi,Ui|Z[2n]=z[2n]
[eλg(∆yLi,Ui,z[2n])] = logE∆yLi,Ui|Z[2n]=z[2n]

[eλUi∆yLi ]. (45)

Note that EUi
[Ui∆yLi] = 0 and Ui ∈ {−1,+1}. Thus, by Hoeffding’s Lemma, we have

logE
L

±
i ,Ui|Z[2n]=z[2n]

[eλg(∆yLi,Ui,z[2n])] ≤ logE∆yLi|Z[2n]=z[2n]
[e

λ2

2 ∆yL
2

i ]. (46)

As ℓ ∈ [0, 1], it follows that ∆yLi ∈ [−1, 1], and |∆yLi| ≤ 1. Thus,

logE∆yLi,Ui|Z[2n]=z[2n]
[eλg(∆yLi,Ui,z[2n])] ≤ λ2

2
. (47)

Replacing in equation 44, we have

Iz[2n]
(∆yLi;Ui) ≥ λE∆yLi,Ui|Z[2n]=z[2n]

[Ui∆yLi]−
λ2

2
. (48)

Therefore, ∀λ ∈ R
λ2

2
− λE∆yLi;Ui|Z[2n]=z[2n]

[g(∆yLi,Ui, z[2n])] + Iz[2n]
(∆yLi;Ui) ≥ 0. (49)

The equation 49 is a non-negative parabola with respect to λ. Thus, its discriminant must be non-
positive, which implies

E∆yLi;Ui|Z[2n]=z[2n]
[g(fW(Xi),Ui, z[2n])] ≤

√
2Iz[2n]

(∆yLi;Ui). (50)

Taking expectation with respect to Z[2n] yields the desired result

|geny(PX,Y, PW|S)| ≤ EZ[2n]

[ 1

ny
Z[2n]

n∑
i=1

√
2IZ[2n]

(∆yLi;Ui)
]
. (51)

In the following, we will show that the ∆yL-CMI is always tighter than the class-f -CMI bound in
Theorem 3. Due to the data processing inequality, we have U → W → fW(X±

i ) → ∆yLi given
Z[2n]. For a fixed Z[2n], we have four different possible cases for each term in the sum:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1. If y−i ̸= y and y+i ̸= y: In this case, max(1{Y−
i =y},1{Y+

i =y})IZ[2n]
(fW(X±

i );Ui) =

0. On the other hand, we have ∆yLi = 0. Therefore, IZ[2n]
(∆yLi;Ui) = 0 ≤

max(1{Y−
i =y},1{Y+

i =y})IZ[2n]
(fW(X±

i );Ui).

2. If y−i = y and y+i = y: In this case, max(1{Y−
i =y},1{Y+

i =y})IZ[2n]
(fW(X±

i );Ui) =

IZ[2n]
(fW(X±

i );Ui). Due to the data processing inequality, IZ[2n]
(∆yLi;Ui) ≤

IZ[2n]
(fW(X±

i );Ui) = max(1{Y−
i =y},1{Y+

i =y})IZ[2n]
(fW(X±

i );Ui)

3. If y+i ̸= y and y−i = y: In this case, max(1{Y−
i =y},1{Y+

i =y})IZ[2n]
(fW(X±

i );Ui) =

IZ[2n]
(fW(X±

i );Ui) and ∆yLi = L+
i . As W → fW(X±

i ) → L+
i is also a Markov chain,

using the data processing inequality, we have IZ[2n]
(L+

i ;Ui) ≤ IZ[2n]
(fW(X±

i );Ui) and
thus IZ[2n]

(∆yLi;Ui) ≤ IZ[2n]
(fW(X±

i );Ui).

4. If y+i = y and y−i ̸= y: This case will be the same as the previous situation by swapping
the + and −.

Based on this discussion, we can conclude that

IZ[2n]
(∆yLi;Ui) ≤ max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(fW(X±
i );Ui) (52)

∆yL-CMI is always tighter than the class-f -CMI bound.

C DISCUSSIONS ON DEFINITION 3

C.1 EQUIVALENCE BETWEEN DEFINITION 1 AND DEFINITION 2

Here, we show the exact equivalence between Definition 1 and Definition 2.

g̃eny ≜
1

ny
EZ[2n]

[ n∑
i=1

EUi,W|Z[2n]

[
1{Y −Ui

i =y}ℓ(W,Z−Ui
i )− 1{Y Ui

i =y}ℓ(W,ZUi
i )

]]
=

1

nP (y)
EZ[2n]

EU,W|Z[2n]

[ n∑
i=1

[
1{Y −Ui

i =y}ℓ(W,Z−Ui
i )− 1{Y Ui

i =y}ℓ(W,ZUi
i )

]]
=

1

n
EU,W,Z[2n]

[ 1

P (y)

n∑
i=1

[
1{Y −Ui

i =y}ℓ(W,Z−Ui
i )− 1{Y Ui

i =y}ℓ(W,ZUi
i )

]]
= EWEZ∼PZ|y

[
ℓ(W,Z)

]
− EZ,W|y

[
ℓ(W,Z)

]
= geny(PX,Y, PW|S). (53)

Hence, class-generalization bounds based on this variants can be converted directly to standard
generalization bounds by taking expectation over y, i.e., gen = EY[g̃eny].

C.2 OTHER POSSIBLE DEFINITION BY CHANGING THE SUPER-SAMPLES SETTING

Another possible approach to study class-generalization error requires tweaking the super-sample
setting as follows:

Let Y[n] = {Y1, · · · ,Yn} ∈ Yn be a collection be a collection of n i.i.d samples from PY.
Let X[2n] = {X±

1 , · · · ,X±
n } ∈ X 2n, such each pair X±

i are drawn independently from the dis-
tribution PX|Yi

. Then the supersamples Ẑ[2n] = (Z±
1 , · · · ,Z±

n ) ∈ Z2n is obtained such that
Z+

i = (X+
i ,Yi) and Z−

i = (X−
i ,Yi). The training data ẐR

[n] = (ZR1
1 ,ZR2

2 , · · · ,ZRn
n ) is se-

lected from the data Ẑ[2n] where R[n] = (R1, · · · ,Rn) ∈ {−1, 1}n is the vector composed of
n independent Rademacher random variables. Basically, Ri selects which sample from Z±

i to be
included in the training data and the other one for the test. The main difference compared to the
CMI formulation in the main paper is that we construct our data such that for each i ∈ 1, · · · , n,
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Z+
i and Z−

i are guaranteed to share the same label, while this is not necessarily the case for the
prior formulations (Steinke & Zakynthinou, 2020; Zhou et al., 2022). Hence, in this setting, the two
indicator functions in Definition 3 are equal and can be replaced with only one indicator function to
define the class-generalization error.

The key issue with such a formulation lies in creating some dependency between the training set
ẐR

[n] and the test set Ẑ−R
[n] . Therefore, the difference between the loss evaluated using Ẑ−R

[n] and ẐR
[n]

can no longer be interpreted as the true generalization error. Formally, in the main paper setup, by
taking the expectation over Y over Definition 2, we find

EZ[2n],U,W

[ 1
n

∑
i

(
ℓ(W,Z−Ui

i )− ℓ(W,ZUi
i )

)]
=

1

n

∑
i

EZi,U,W

[(
ℓ(W,Z−Ui

i )− ℓ(W,ZUi
i )

)]
= EWEz∼PZ

[
ℓ(W,Z)

]
− EW,S

[
ℓ(W,S)

]
(54)

= gen(PZ, PW|S).

This shows that the standard expected generalization error can be obtained by taking the expecta-
tion over Y for the class-generalization error. This would no longer be the case in the alternative
formulation presented above. The equality in equation 54 can no longer be achieved due to the
dependency between Ẑ−R

[n] and ẐR
[n]. Hence, the bounds for the standard generalization error via

the class-wise analysis (Section 4.1) can no longer be obtained directly. To see this, consider the
following partition of the sample space Z2 = Ω ∪ Ω̄, such that Ω = {z±|z± ∈ Z2, y+ = y−} only
contains sample pairs with the same label,

gen(PZ, PW|S) =EẐ[2n],U,W

[ 1
n

∑
i

(
ℓ(W, Ẑ−Ri

i )− ℓ(W, ẐRi
i )

)]
=P (Ẑ±

i ∈ Ω)EẐ[2n],U,W

[ 1
n

∑
i

(
ℓ(W, Ẑ−Ri

i )− ℓ(W, ẐRi
i )

)
|Ẑ±

i ∈ Ω]
]

(55)

+ (1− P (Ẑ±
i ∈ Ω))EẐ[2n],U,W

[ 1
n

∑
i

(
ℓ(W, Ẑ−Ri

i )− ℓ(W, ẐRi
i )

)
|Ẑ±

i ∈ Ω̄]
]
.

The above decomposition of the generalization error contains two terms: The first term measures
the generalization gap between samples with the same label. Thus, it can be interpreted as a ‘within-
class generalization error.’ The second term measures the generalization error between the samples
with different labels. It can be interpreted as a ‘between-class generalization error.’ Taking the
expectation over Y of the class-generalization error, in the setting considered with Ẑ[2n], will only
include the first term in equation 55. Thus, we consider the class-generalization error given by
Definitions 2-3 instead of the setting discussed here.

D ADDITIONAL EMPIRICAL RESULTS

D.1 EXPERIMENT SETUP

Here, we fully describe the experimental setup used in the main body of the paper. In our study, we
focused on balanced datasets such as CIFAR-10/CIFAR100, where each class is represented equally,
to ensure that the observed class-generalization disparities are not confounded by class imbalance.
This balance allows us to attribute disparities in class-generalization error to intrinsic properties of
the model and data distribution rather than to skewed class proportions.

We use the same setup as in Harutyunyan et al. (2021), where the code is publicly available3. For ev-
ery number of training data n, we run m1 number of Monte-Carlo trials, i.e., we select m1 different
2n samples from the original dataset.Then, for each z[2n], we draw m2 different train/test splits, i.e.,
m2 random realizations of U. In total, we have m1m2 experiments. We report the mean and stan-
dard deviation on the m1 results. For the CIFER10 experiments, we select m1 = 2 and m2 = 20.

3https://github.com/hrayrhar/f-CMI/tree/master
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For its noisy variant, we select m1 = 5 and m2 = 15. For both datasets, we use ResNet50 pre-
trained on ImageNet. The training is conducted for 40 epochs using SGD with a learning rate of
0.01 and a batch size of 256.

D.2 FULL CLASS-GENERALIZATION ERROR VS. STANDARD GENERALIZATION RESULTS ON
CIFAR10

As a supplement to Figure 1 (left), we plot the standard generalization error along with the class-
generalization error of all the classes of CIFAR10 in Figure 3. Consistent with Section 1, we observe
significant variability in generalization performance across different classes.

Figure 3: The standard generalization error and the generalization error relative for all classes on
CIFAR10 as a function of the number of training data.

D.3 NUMERICAL RESULTS FOR ALL CLASSES OF CIFAR10 AND ITS NOISY VARIANTS

In Figure 4, we present the empirical evaluation of our bounds on all the classes of CIFAR10.
Moreover, we generate the scatter plot between the class-generalization error and the class-f -CMI
bound. We note that similar to the class-∆Ly results in Figure 2, our bound scales linearly with
the true class-generalization error. The results of noisy CIFAR10 with clean validation, presented in
Figure 5, are also consistent with these findings. We also experimented with noisy CIFAR10 with
noise added to both the train and validations. The results are presented in 6. Our bounds, in this
case, are able to capture the behavior of the class-generalization error for the different classes.
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Figure 4: Class-wise generalization on the ten classes of CIFAR10 and the scatter plot between
class-generalization error and the class-f -CMI bound in Theorem 3.

D.4 NUMERICAL RESULTS FOR CIFAR100

Here, we present the empirical evaluation of our bounds on a more complex dateset. namely CI-
FAR100. We use the same experimental setup as for CIFAR10 (in Section D.3). In Figure 7, we
generate the scatter-plots between the class-generalization error and both the class-f -CMI and the
class-∆Ly bounds under different number of samples. As can be see, our bounds, especially the
class-∆Ly bound, are indeed linearly correlated with the class-generalization error and can effi-
ciently predict its behavior, even for a dataset with high number of classes.

D.5 NUMERICAL RESULTS FOR SVM & DECISION TREES

Here, we present the empirical evaluation of our bounds for two classic ML approaches, namely
SVM and Random Forest Classifier on MNIST dataset. The main results for both approaches are
presented in Figures 8 and 9, respectively. As can be seen, the results for both approaches are
consistent with the neural networks’ experiments further confirming the ability of our bounds to
capture the complex behavior of class-generalization.
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Figure 5: Class-wise generalization on the ten classes of noisy CIFAR10 (clean validation) and the
scatter plot between class-generalization error and the class-f -CMI bound in Theorem 3.

D.6 EXTRA RESULTS: EXPECTED RECALL & SPECIFICITY GENERALIZATION

In the special case of binary classification with the 0-1 loss, the class-generalization errors studied
within this paper correspond to generalization in terms of recall and specificity:
expected recall − empirical recall = genp, where p is the positive class.
expected specificity − empirical specificity = genn, where n is the negative class.

Standard Generalization bounds (Xu & Raginsky, 2017; Harutyunyan et al., 2021) provide theoret-
ical certificates for learning algorithms regarding classification error/accuracy. However, in several
ML applications, e.g., an imbalanced binary dataset, accuracy/error are not considered good perfor-
mance metrics. For example, consider the binary classification problem of detecting a rare cancer
type. While analyzing the model’s generalization error is important, we might be more interested
in understanding generalization in terms of recall, as that is more critical in this case. Standard the-
oretical bounds (Neyshabur et al., 2017; Wu et al., 2020; Wang & Mao, 2023) do not provide any
insights for such metrics.

The tools developed in this paper can be used to close this gap and allow us to understand general-
ization for recall and specificity theoretically.
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Figure 6: Class-wise generalization on the ten classes of noisy CIFAR10 (noise added to both train
and validation) and the scatter plot between class-generalization error and the class-f -CMI bound
in Theorem 3.

We conduct an experiment of binary MNIST (digit 4 vs. digit 9), similar to Harutyunyan et al.
(2021). m1 and m2 discussed in Section D.1 are selected to be m1 = 5 and m2 = 30. Empirical
results for this case are presented in Figure 10. As can be seen in the Figure, our bounds efficiently
estimate the expected recall and specificity errors.

D.7 CLASS-SPECIFIC GRADIENT NOISE IMPROVES CLASS-GENERALIZATION

In this paper, we studied the phenomenon that the generalization errors for the same model can
differ significantly among different classes by introducing and exploring the concept of “class-
generalization error.” This provides a first theoretical step toward understanding this puzzling phe-
nomenon. Our results show that the mutual information between the model and the class data can be
used as a proxy for this class-generalization error. In other words, when the mutual information be-
tween the class samples and the model’s parameters is high (high memorization), the model overfits
this class (poor generalization) and vice versa.

Therefore, to improve the model’s generalization performance for a specific important class y, our
results suggest reducing the MI/CMI between the training samples with class y and the model
weights/output. A straightforward approach to achieve this is by adding noise to the gradient updates
during training when a sample in the batch has the label y.
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Figure 7: Experimental results of class-generalization error and our bounds in Theorems 3 and 4 for
CIFAR100. We provide the scatter plots between the bound in the true class-generalization error and
both: i) our bound in Theorem 3 (right); ii) our bound in Theorem 4 (right) for the different classes
for CIFAR100.

Table 1: average class-classification errors and generalization errors of the target class in the different
scenarios.

“cars” “cats”

method testy geny testy geny

ERM 3.91% 3.91% 12.27% 12.24%
Ours 3.55% 3.54% 12.11% 12.09%

We validate and confirm the effectiveness of this idea with two learning scenarios with target classes:
(i) “cars” and (ii) “cats” from the CIFAR10 dataset. We use random Gaussian noise with zero mean
and variance of 0.005. The results are reported in Table 1. As can be seen, using this simple
regularization consistently reduces the generalization error and the test error of these classes in both
scenarios. This further confirms the theoretical findings of our paper and provides some insights
into potential approaches to improve class generalization in the desired applications.

E DETAILS FOR RESULTS IN SECTION 4

E.1 FULL DETAILS OF SECTION 4.1: STANDARD GENERALIZATION ERROR

Corollary 1 (restated) Assume that for every y ∈ Y , the loss ℓ(W,X, y) is σy sub-Gaussian under
PW ⊗ PX|Y=y , then

|gen(PX,Y, PW|S)| ≤
1

n

n∑
i=1

EY

√
2σ2

YD(PW,Xi|Yi=y||PW ⊗ PXi|Yi=y). (56)

Proof. The generalization error can be written as

gen(PX,Y, PW|S) =
1

n

n∑
i=1

(
EW,Z[ℓ(W,Z)]− EW,Zi [ℓ(W,Zi)]

)
. (57)

As the loss ℓ is σY sub-Gaussian, using Theorem 1, we have

EPW,X|Y=y
[ℓ(W,X,Y)]− EPW⊗PX|Y=y

[ℓ(W,X,Y)] ≤
√

2σ2
yD(PW,X|Y=y||PW ⊗ PX|Y=y).

(58)
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Figure 8: SVM: Class-wise generalization on the ten classes of MNIST and the scatter plot between
class-generalization error and the class-f -CMI bound in Theorem 3.

Taking the expectation over Y in both sides, we have

EPW,X,Y
[ℓ(W,X,Y)]− EPW⊗PX,Y

[ℓ(W,X,Y)] ≤ EY

√
2σ2

YD(PW,X|Y=y||PW ⊗ PX|Y=y).

(59)
Applying equation 59 on each term of equation 57 for each Zi completes the proof.

Comparison between Corollary 1 and bounds in Bu et al. (2020) In the case of standard loss
sub-Gaussianity assumption, i.e., σy = σ is independent of y, it is possible to show that the bound
in 1 is tighter than the bound in Bu et al. (2020). This is because

EPY

√
2σ2D(PW,X|Y||PW ⊗ PX|Y) = EPY

√
2σ2EPW,X|Y log

PW,X|YPY

PW ⊗ PX|YPY

= EPY

√
2σ2EPW,X|Y log

PW,X,Y

PW ⊗ PX,Y
≤

√
2σ2I(W;Z) (60)
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Figure 9: Random Forest: Class-wise generalization on the ten classes of MNIST and the scatter
plot between class-generalization error and the class-f -CMI bound in Theorem 3.

Figure 10: Recall generalization error (left) and specificity generalization error (right) for the binary
classification 4 vs 9 from MNIST. The digit 4 is considered the positive class.

where the last inequality comes from Jensen’s inequality. This shows that class-wise analysis can be
used to derive tighter generalization bounds.
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In the supersamples setting, extending the results in Theorems 2, 3, and 4 into standard generaliza-
tion bounds is not strightforward, as we do not have gen = EY[geny]. However, it is still possible
to show that gen ≤ EY[geny] and hence the bounds in Theorems 2, 3, and 4 can be used to de-
rive class-dependent bounds for the standard generalization error in the supersample setting. For
example, in Corollary 2, we provide such an extension of Theorem 4.

by taking the expectation over y ∼ PY. In Corollaries 4, 5, 6, and 2, we provide such an extension
of Theorems 2, 3, 7, and 4, respectively.

Corollary 2(restated) Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then

|gen(PX,Y, PW|S)| ≤ EY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2IZ[2n]

(∆YLi;Ui)
]]
. (61)

Corollary 4. (extra result) Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then

|gen(PX,Y, PW|S)| ≤ EY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2max(1Y−

i =Y,1Y+
i =Y)IZ[2n]

(W;Ui)
]]
. (62)

Corollary 5. (extra result) Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then

|gen(PX,Y, PW|S)| ≤ EY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2max(1Y−

i =Y,1Y+
i =Y)IZ[2n]

(fW(X±
i );Ui)

]]
.

(63)
Corollary 6. (extra result) Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then

|gen(PX,Y, PW|S)| ≤ EY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2max(1Y−

i =Y,1Y+
i =Y)IZ[2n]

(L±
i ;Ui)

]]
. (64)

E.2 FULL DETAILS OF SECTION 4.2: SUB-TASK PROBLEM

Consider a supervised learning problem where the machine learning model fW(·), parameterized
with w ∈ W , is obtained with a training dataset S consisting of n i.i.d samples zi = (xi,yi) ∈
X ×Y ≜ Z generated from distribution PXY. The quality of the model with parameter w is
evaluated with a loss function ℓ : W ×Z → R+.

For any w ∈ W , the population risk is defined as follows

LP (w) = EPX,Y
[ℓ(w,X,Y)]. (65)

and the empirical risk is:

LEP
(w, S) =

1

n

n∑
i=1

ℓ(w, xi, yi). (66)

Here, we are interested in the subtask problem, which is a special case of distribution shift, i.e., the
test performance of the model w is evaluated using a specific subset of classes A ⊂ Y of the source
distribution PXY. Thus, the target distribution QXY is defined as QXY(x, y) =

PXY(x,y)1{y∈A}
PY(y∈A) .

The population risk on the target domain Q of the subtask problem is

LQ(w) = EQX,Y
[ℓ(w,X,Y)]. (67)

A learning algorithm can be modeled as a randomized mapping from the training set S onto a model
parameter w ∈ W according to the conditional distribution PW|S . The expected generalization
error on the subtask problem is the difference between the population risk of Q and the empirical
risk evaluated using all samples from S:

genQ,EP
= EPW,S

[LQ(W)− LEP
(W,S)], (68)

where the expectation is taken over the joint distribution PW,S = PW|S ⊗ Pn
Z .

The generalization error defined above can be decomposed as follows:

genQ,EP
= EPW

[LQ(W)− LP (W)] + EPW,S
[LP (W)− LEP

(W,S)]. (69)
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The first term quantifies the gap of the population risks in two different domains, and the second
term is the source domain generalization error. Assuming that loss is σ-sub-Gaussian under PZ, it is
shown in Wang & Mao (2022) that the first term can be bounded using the KL divergence between
P and Q:

EPW
[LQ(w)− LP (w)] ≤

√
2σ2D(Q∥P ). (70)

The second term can be bounded using the standard mutual information approach in Xu & Raginsky
(2017) as

EPW,S
[LP (W)− LEP

(W,S)] ≤
√
2σ2I(W;S). (71)

Thus, the generalization error of the subtask problem can be bounded as follows:

genQ,EP
≤

√
2σ2D(Q∥P ) +

√
2σ2I(W;S). (72)

Obtaining tighter generalization error bounds for the subtask problem is straightforward using our
class-wise generalization bounds. In fact, the generalization error bound of the subtask can be
obtained by taking the expectation of Y ∼ QY.

Using Jensen’s inequality, we have |genQ,EQ
| = |EY∼QY

[
genY

]
| ≤ EY∼QY

[
|genY|

]
. Thus, we

can use the results from Section 2 to obtain tighter bounds.

Theorem 5 (subtask-∆Ly-CMI) (restated) Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, Then
the subtask generalization error defined in 14 can be bounded as

|genQ,EQ
| ≤ EY∼QY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2IZ[2n]

(∆YLi;Ui)
]]
.

Similarly, we can also extend the result of Theorem 2 and 3 to the subtask as follows:

Theorem 8. (subtask-CMI) (extra result) Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, then
the subtask generalization error defined in 14 can be bounded as

|genQ,EQ
| ≤ EY∼QY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2max(1Y−

i =Y,1Y+
i =Y)IZ[2n]

(W;Ui)
]]
.

Theorem 9. (subtask-f-CMI) (extra result) Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, then
the subtask generalization error defined in 14 can be bounded as

|genQ,EQ
| ≤ EY∼QY

[
EZ[2n]

[ 1

nY

n∑
i=1

√
2max(1Y−

i =Y,1Y+
i =Y)IZ[2n]

(fW(X±
i );Ui)

]]
.

E.2.1 EMPIRICAL VALIDATION OF BOUNDS FOR SUB-TASK PROBLEM

We conduct an experiment of the CIFAR10 dataset, similar to Section 3. We design two subtask
problems with this dataset. In the first scenario, referred to here by subtask1, we consider the
target distribution to be composed of the two classes “airplanes” and “cars”. Whereas in the second
scenario, referred to here by subtask2, we construct the target distribution using three classes, namely
“airplanes”, “cars” and “birds”.

m1 and m2 discussed in Section D.1 are selected to be m1 = 2 and m2 = 15. Empirical results
of the bounds in Theorems 9 and 5 are presented in Figure 11. As can be seen in the Figure, our
bounds efficiently estimate the generalization errors for the subtask problem.

E.3 FULL DETAILS OF SECTION 4.3: GENERALIZATION CERTIFICATES WITH SENSITIVE
ATTRIBUTES

Theorem 6 (restated) Given t ∈ T , assume that the loss ℓ(W,Z) is σ sub-Gaussian under PW⊗PZ,
then the attribute-generalization error of the sub-population T = t, as defined in 4, can be bounded
as follows:

|gent(PX,Y, PW|S)| ≤
√

2σ2D(PW|Z ⊗ PZ|T=t||PW ⊗ PZ|T=t). (73)
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Figure 11: Generalization performance on two subtask1 (“airplanes” and “cars”) and subtask2 “air-
planes”, “cars” and “birds”) problems constructed using CIFAR10 dataset for different training sam-
ple sizes.

Proof. We have

gent(PX,Y, PW|S) = EPW⊗PZ|T=t
[ℓ(W,Z)]− EPW|Z⊗PZ|T=t

[ℓ(W,Z)]. (74)

Using the Donsker–Varadhan variational representation of the relative entropy, we have

D(PW|Z⊗PZ|T=t||PW⊗PZ|T=t) ≥ EPW|Z⊗PZ|T=t
[λℓ(W,Z)]−logEPW⊗PZ|T=t

[eλℓ(W,Z)],∀λ ∈ R.
(75)

On the other hand, we have:

logEPW⊗PZ|T=t

[
eλℓ(W,Z)−λE[ℓ(W,Z)]

]
= logEPW⊗PZ|T=t

[
eλℓ(W,Z)e−λE[ℓ(W,Z)]

)]
= logEPW⊗PZ|T=t

[eλℓ(W,Z)]− λEPW⊗PZ|T=t
[ℓ(W,Z)].

Using the sub-Gaussian assumption, we have

logEPW⊗PZ|T=t
[eλℓ(W,Z)] ≤ λEPW⊗PZ|T=t

(ℓ(W,Z)) +
λ2σ2

2
. (76)

By replacing in equation 75, we have

D(PW|Z⊗PZ|T=t||PW⊗PZ|T=t) ≥ λ
(
EPW|Z⊗PZ|T=t

[ℓ(W,Z)]−EPW⊗PZ|T=t
[ℓ(W,Z)]

)
−λ2σ

2
.

(77)

Thus, we have:

D(PW|Z ⊗ PZ|T=t||PW ⊗ PZ|T=t)− λ(EPW|Z⊗PZ|T=t
[ℓ(W,Z)]− EPW⊗PZ|T=t

[ℓ(W,Z)])

+ λ2σ2 ≥ 0,∀λ ∈ R. (78)

equation 78 is a non-negative parabola with respect to λ. Thus, its discriminant must be non-positive.
This implies

|EPW|Z⊗PZ|T=t
[ℓ(W,Z)]−EPW⊗PZ|T=t

[ℓ(W,Z)]| ≤
√
2σ2D(PW|Z ⊗ PZ|T=t||PW ⊗ PZ|T=t),

(79)
which completes the proof.

E.4 OVERVIEW OF THE CONTRIBUTIONS OF THIS WORK
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Definition 1

Definition 2

Definition 3

Theorem 1:
D(PW,X|y||PW ⊗ PX|Y=y)

Theorem 2:
IZ[2n]

(W;Ui)

Theorem 3:
IZ[2n]

(fW(X±
i );Ui)

Theorem 4:
IZ[2n]

(∆yLi;Ui)

Corollary 1

Corollary 2

Class-generalization Standard generalization

Improved by

Improved by

Figure 12: Overview of the main Definitions, Theorems, and Corollaries of Sections 2 and 4.1, in
our paper. We use dark gray to refer the MI setting and the light gray to refer the supersample setting
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